
WASHINGTON UNIVERSITY

THE HENRY EDWIN SEVER GRADUATE SCHOOL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

HIGH PERFORMANCE PACKET CLASSIFICATION

by Edward W. Spitznagel

ADVISOR: Professor Jonathan S. Turner

December 2005

Saint Louis, Missouri

High-performance packet classification is crucial for a multitude of emerging
network services. Diffserv edge routers, firewalls, intrusion-detection devices and
many QoS-enabled routers need to classify packets to determine what to do with
them. With link rates of 10 Gb/s and higher this becomes a difficult task at best, and
packet classification becomes a bottleneck. This dissertation addresses that problem
by providing packet classification techniques with increased scalability. The contri-
butions of this work include a new TCAM architecture called Extended TCAMs, a
refinement of that approach (inspired in part by Parallel Packet Classification) and a
method for reducing the size of data structures used in Recursive Flow Classification.
Extended TCAMs are studied in detail and are shown to allow packet classification
using over 100,000 rules at the same rate as a standard TCAM while reducing power
requirements by a factor of ten to twenty.

copyright by

Edward W. Spitznagel

2005

to my family

Contents

List of Tables . vii

List of Figures . ix

Acknowledgments . xiii

1 Introduction . 1

1.1 Internetworking Background . 1

1.2 Current Trends

And The Need For Packet Classification 4

1.3 The Packet Classification Problem . 5

1.4 Metrics For Evaluating Classification Methods 7

1.5 Outline of Dissertation . 8

2 The State of the Art . 9

2.1 Ternary Content-Addressable

Memories (TCAMs) . 9

2.2 Recursive Flow Classification (RFC) 11

2.2.1 Equivalence Classes in RFC 12

2.2.2 Use of Crossproducting . 14

2.2.3 Extending to k Dimensions 18

2.3 Parallel Packet Classification . 22

2.4 Summary of Additional Related Work 26

2.4.1 Classification in One Dimension 26

2.4.2 Classification in Two Dimensions 27

2.4.3 General Multi-dimensional Classification 27

2.4.4 Packet Classification Repository 29

2.5 The ClassBench Benchmark . 29

iv

3 Compressed Data Structures for RFC 30

3.1 Compression of Data Structures . 30

3.1.1 Simple Compression Algorithm 31

3.1.2 Results . 32

3.2 Improving Compression . 35

3.2.1 TSP Heuristic . 37

3.2.2 Results . 37

3.3 Performance on Larger Databases . 41

3.4 Choice of Reduction Trees . 42

3.4.1 Impact of Reduction Tree Selection 43

3.4.2 Finding an Optimal Reduction Tree 43

3.4.3 Results . 46

3.5 Summary . 46

4 Extended TCAMs . 48

4.1 Overview . 48

4.2 Partitioning of the TCAM . 49

4.2.1 Region-Splitting Algorithm 51

4.2.2 Region-Splitting Results . 58

4.2.3 Trie-Carving Algorithm . 62

4.2.4 Trie-Carving Results . 69

4.3 Range Check Hardware . 72

4.3.1 Implementation with four inter-stage signals 73

4.3.2 Implementation with three inter-stage signals 75

4.3.3 Revised implementation with three inter-stage signals 77

4.3.4 Subfield Chaining . 79

4.3.5 Summary of Range Check Hardware 83

4.4 Combined Results . 83

4.5 Handling Filter Updates . 86

4.5.1 Trie-Carving Update Algorithm 87

4.5.2 Results . 90

4.6 Multilevel Indexing . 97

4.6.1 Using Region-Splitting Algorithm 98

4.6.2 Using Trie-Carving Algorithm 101

4.7 Summary . 103

v

5 Partitioned Encoded Search of TCAMs 104

5.1 PEST Architecture . 104

5.1.1 Encoding of Field Values . 106

5.1.2 Partitioning of TCAM . 108

5.2 TCAM Update Technique . 116

5.3 Evaluation and Results . 118

5.4 Lower Bounds on Encoding Width 125

5.4.1 Initial Lower Bounds on P2C Encoding Widths 125

5.4.2 Generalized Lower Bound . 128

5.4.3 Evaluation of P2C Encoding Results 132

5.5 Summary . 134

6 Conclusion . 136

6.1 Contributions . 136

6.2 Future Directions . 138

References . 139

Vita . 144

vi

List of Tables

1.1 Example: simplified firewall filter database 6

2.1 Example 1-dimensional filter database 12

2.2 Equivalence sets for the 1-D example 13

2.3 Lookup table for the 1-D example . 13

2.4 Best matching filter for each equivalence class (1-D example) 14

2.5 Example 2-dimensional filter database 15

2.6 Equivalence sets for destination address (2-D example) 15

2.7 Equivalence sets for source address (2-D example) 15

2.8 Lookup table for destination address (2-D example) 17

2.9 Lookup table for source address (2-D example) 17

2.10 Equivalence classes for crossproducting table (2-D example) 18

2.11 2-dimensional crossproducting table (2-D example) 18

2.12 An example set of chunks for a typical 5-tuple classifier. 20

2.13 Example encodings for match conditions (filter fields) 25

2.14 Encoding widths for some real-world filter databases, using P2C en-

coding style I . 26

3.1 Chunks used in evaluating RFC compression scheme 33

3.2 Experimental compression results . 34

3.3 Two-dimensional crossproducting table with poor compression 36

3.4 Two-dimensional crossproducting table with better compression . . . 36

3.5 Experimental TSP-heuristic compression results 38

3.6 Results from optimal reduction tree selection for real-world filter sets 47

4.1 Example set of filters . 51

4.2 Example set of filters . 62

vii

5.1 Example set of filters . 106

5.2 Encoding for source addresses in example rules 107

5.3 Encoding for destination addresses in example rules 107

5.4 Encoded representation of example filters 108

5.5 Filters for partitioning example . 109

5.6 TCAM width required, in bits . 119

5.7 Lower bound on TCAM width required 119

5.8 Layers required for encoding fields . 120

5.9 Results of expanding ranges for standard TCAM representation . . . 121

5.10 Block sizes used for partitioned TCAM 122

5.11 Encoding width results for Source Address field 133

5.12 Encoding width results for Destination Address field 134

viii

List of Figures

1.1 Internet Protocol packet structure . 2

1.2 Internetworking example . 3

2.1 Conventional 6-transistor SRAM storage cell 10

2.2 TCAM cell (details of SRAM storage cells omitted) 10

2.3 Filters projected onto an axis (1-D example) 12

2.4 Filters projected onto axes (2-D example) 16

2.5 Reduction of three equivalence class identifiers to one 20

2.6 An example reduction tree for classifying on three fields 21

2.7 Simplified representation of example reduction tree 21

2.8 An example reduction tree for a typical 5-tuple classifier 22

2.9 P2C lookup process . 23

2.10 Example primitive range hierarchies 24

3.1 Example structure of RFC classifier. 31

3.2 Example representations of a two-dimensional array. 32

3.3 Overall compression ratios from experimental results. 35

3.4 Compression ratios for crossproducting tables only, in experimental

results. 35

3.5 Overall TSP compression ratios from experimental results. 39

3.6 TSP compression ratios for crossproducting tables only, in experimen-

tal results. 39

3.7 TSP compression ratio relative to simple compression, in terms of over-

all data structure size. 40

3.8 TSP compression ratio, relative to simple compression, in terms of size

of crossproducting tables. 41

3.9 Compression Efficiency vs. Number of Filters. 42

ix

4.1 An example of filters and index filters in an Extended TCAM 50

4.2 Example filters plotted in two dimensions 52

4.3 First split performed in region-splitting example 53

4.4 Second split performed in region-splitting example 54

4.5 Second phase of region-splitting example 55

4.6 Contents of Extended TCAM for region-splitting example 56

4.7 Power fraction results for different filter storage block sizes 60

4.8 Power fraction results for region-splitting algorithm 60

4.9 Storage complexity results for region-splitting algorithm 61

4.10 Source address trie for example filter set 63

4.11 Destination address trie for example filter set 63

4.12 First carving step for source address trie 65

4.13 Second carving step for source address trie 66

4.14 Third carving step for source address trie 66

4.15 Fourth carving step for source address trie 67

4.16 First carving step for destination address trie 67

4.17 Second carving step for destination address trie 68

4.18 Extended TCAM contents for trie-carving example 69

4.19 Power fraction results for different filter storage block sizes 70

4.20 Power fraction results for trie-carving algorithm 71

4.21 Storage complexity results for trie-carving algorithm 71

4.22 Iterative structure of range check circuit 73

4.23 Range-check sub-circuit for upper bound comparison 74

4.24 Range-check sub-circuit for lower bound comparison 74

4.25 Iterative structure of range check circuit 75

4.26 Range-check sub-circuit using three inter-stage signals 77

4.27 Iterative structure of revised range check circuit 77

4.28 Sub-circuit for out-of-range signal . 79

4.29 Sub-circuit for equals-hi-if-in-range signal 80

4.30 Sub-circuit for equals-lo-if-in-range signal 80

4.31 Sub-circuit for out-of-range signal for input to stage si− 1 81

4.32 Sub-circuit for equals-hi-if-in-range signal for input to stage si− 1 . . 82

4.33 Sub-circuit for equals-lo-if-in-range signal for input to stage si− 1 . . 82

4.34 Power fraction results, including effects of range support 84

4.35 Storage complexity results, including effects of range support 85

x

4.36 Power fraction after switching to the final filter set 91

4.37 Storage complexity after switching to the final filter set 92

4.38 Average rate of update processing in software on 700 MHz Pentium III 93

4.39 Average number of TCAM writes needed per update 94

4.40 Maximum number of TCAM writes needed for an update 95

4.41 Time history of performance for updating from 2,000 filter acl1 to fw1 96

4.42 Example of a two-level indexing structure 97

4.43 Effects of varying storage block size, for region-splitting with a two-

level index . 99

4.44 Power fraction for region-splitting with a two-level index 99

4.45 Storage complexity for region-splitting with a two-level index 99

4.46 Power fraction for region-splitting with a two-level index, including

effects of range-check circuit . 100

4.47 Storage complexity for region-splitting with a two-level index, includ-

ing effects of range-check circuit . 100

4.48 Effects of varying storage block size, for trie-carving with a two-level

index . 101

4.49 Power fraction for trie-carving with a two-level index 102

4.50 Storage complexity for trie-carving with a two-level index 102

4.51 Power fraction for trie-carving with a two-level index, including effects

of range-check circuit . 102

4.52 Storage complexity for trie-carving with a two-level index, including

effects of range-check circuit . 102

5.1 PEST lookup architecture. 105

5.2 Destination address primitive range hierarchy from example 107

5.3 Filters for partitioning example . 110

5.4 Partitioning after one step . 111

5.5 Partitioning after two steps . 111

5.6 Partitioning during second phase . 112

5.7 Extended TCAM contents for simplified partitioning example 112

5.8 Extended TCAM contents for example 116

5.9 TCAM power fraction resulting from partitioning 122

5.10 Storage complexity factor resulting from partitioning 123

5.11 Overall TCAM power fraction . 124

xi

5.12 Overall TCAM storage complexity 124

xii

Acknowledgments

I would like to express my sincere gratitude to the many people who have made this

dissertation possible.

First and foremost I would like to thank my advisor Jon Turner for all of his

guidance in my scholarly endeavors and for encouraging me to be unafraid to reach

my full potential. I would also like to thank Sally Goldman, Sergey Gorinsky, Joseph

O’Sullivan and George Varghese for all the guidance and constructive input they have

provided as members of my dissertation committee. I would furthermore like to thank

Subhash Suri for his assistance with my early research in packet classification.

I would like to thank all the professors who have been a part of my education,

and I would like to thank all the staff members who have made it possible; without

them, I would never have made it this far. In particular I would like to acknowledge

Ken Wong, John DeHart, and W. David Richard, among the many contributors to

my experiences at Washington University.

For countless insightful discussions and for the wonderful camaraderie found in

the ARL back hallway, I would like to thank Anshul Kantawala, Ralph Keller, Ruibiao

Qiu, Jai Ramamirtham, Sherlia Shi, Prashanth Pappu, Sumi Choi, Samphel Norden,

Sarang Dharmapurikar, Dave Lim, Todd Sproull, and all the other students with

whom I have interacted over the years. I would like to thank David Taylor in particular

for many collaborations in the field of packet classification; I am also grateful for

having Tilman Wolf as an exceptionally helpful and dependable officemate.

Many thanks also go to Chuck Cranor, for encouraging me many years ago to

select computer science as a field of study, and for encouraging me to pursue graduate

school after completion of my undergraduate education.

Finally, I would like to thank my parents, for everything they have done to

support and encourage me, and for teaching me the joys of learning.

Edward W. Spitznagel

Washington University in Saint Louis

December 2005

xiii

1

Chapter 1

Introduction

In recent years, the Internet has become an incredible success story, and new applica-

tions (such as video on demand, Internet telephony, and programmable networking)

promise to provide an even richer, more useful experience to Internet users. Many of

these new applications, however, require classification of packets at certain points in

the network. This is already a difficult task at best, at current network speeds of 10

Gb/s and 40 Gb/s, and it will become harder as link rates increase. In this disser-

tation we seek to design packet classification techniques which can support emerging

applications at high network speeds.

1.1 Internetworking Background

In order to set the stage for the packet classification problem, let us begin with a brief

explanation of internetworking with packet-switched networks.

A network consists of a set of hosts and the links connecting them. A host

might be a workstation, server, or a personal computer; it could also be a laptop, PDA,

webcam, network-enabled video monitor, or an Internet-enabled cellular telephone.

Links may be wires, fiber optic cables, or radio signals; the links carry signals (e.g. in

the case of wires, the signal may be the presence of a certain voltage level on a wire,

relative to a reference voltage on another wire) representing data.

The Internet is a packet-switched network, which means its functionality is

based on the sending and receiving of packets of data. When a host needs to send

data to another host, it splits the data into pieces of reasonable size and puts each

piece into a packet. The host then sends these packets on the network.

2

A packet consists of a set of header fields and the data contained within the

packet. The header fields are used to store information about the packet, such as the

address of the host that sent the packet, the address of the host to which the packet

should be delivered, and information regarding how the packet should be processed

when it arrives. For example, the format of header fields currently used in the Internet

is shown in Figure 1.1. These fields are fully described in the Internet Protocol version

4 (IPv4) [34] specification.

Source Address

TTL

(Options and padding)

Destination Address

Header ChecksumProtocol

Identification

Total Length

Fragment OffsetFlags

Type of ServiceVersion Hdr.len.

Data

Figure 1.1: Internet Protocol packet structure

The Internet is composed of a large number of networks connected to each

other by devices called routers. A router is a device which is connected to two or

more networks and can forward packets from one network to another. That is, a

packet can be sent from one network to a different network by sending it to a router

connecting the two. Additional routers can continue to send the packet to further

and further networks on its journey.

Figure 1.2 shows an example where three networks A, B, and C with various

hosts are connected by means of the two routers R1 and R2. Let us consider what

must happen to enable the host H1 to be able to send packets to host H2. H1 sends

packets out on Network A, because that is the network to which is it attached. Router

R1 must receive the packets and send them out on Network B, so that Router R2 can

receive the packets and send them to H2 via Network C.

3

Network B

Network A Network C

R1

R2H1 H2

Figure 1.2: Internetworking example

In order to send packets towards the proper destinations, a router looks at

the destination address contained in the packet’s header. This address is a 32-bit

quantity. In written text it is often expressed in dotted quad format, consisting of

four decimal numbers (each representing 8 bits of the address) joined by periods.

For example, 128.252.169.16 is the dotted-quad format for the 32-bit binary address

10000000111111001010010100010000.

Host addresses in the Internet are typically assigned so that all hosts on the

same network have a common prefix in their address; thus routers need not keep

track of the location of every host on the Internet (which obviously would not scale

well). Instead, they use a set of prefixes to determine the network towards which

the packet should be sent, based on the destination address in the packet. The hosts

on a particular subnetwork belonging to the Washington University Computer and

Communications Research Center all have addresses of the form 128.252.169.*, for

example, where the asterisk (*) is used as a wildcard character.

Thus, as part of their normal operation, routers are required to match the des-

tination addresses of incoming packets against a set of address prefixes. Each of these

prefixes is associated with information about how to reach the network corresponding

4

to that prefix. In the case where more than one prefix matches a destination address,

the most specific (i.e. longest) prefix is preferred. This act of finding the longest

matching prefix for a destination address is sometimes called a routing lookup.

The basic idea behind packet classification is the use of several of the packet

header fields to identify packets belonging to particular classes or flows of interest.

Most IPv4 packet classifiers use the Source Address field (indicating the IP address

of the sending host), the Destination Address field (indicating the IP address of the

destination host) and the protocol field. The protocol field indicates which higher

layer protocol module should process the packet on the destination host; in the case

where the higher layer protocol is the Transmission Control Protocol (TCP) [35] or

the User Datagram Protocol (UDP) [32], the higher layer protocol header contains a

source port number and a destination port number. Most IPv4 packet classifiers use

use these port numbers, when available, in addition to the other fields mentioned.

1.2 Current Trends

And The Need For Packet Classification

Increasingly, routers (and other devices in the network) are called upon to perform

more advanced services. These services involve processing packets differently de-

pending on several header fields, not simply the destination address, and thus re-

quire classification of the packets. These new applications include Quality-of-Service

(QoS) based routing [5] [6], firewalls [29], Network Address Translation [15], and other

emerging services.

New applications are emerging which demand more from the Internet than

just a single “best effort” data forwarding service. Video-on-demand and Internet

telephony, for example, require guaranteed bandwidth and low delay. Even in cases

where different service levels are not explicitly required, network managers can find

it advantageous to provide higher service levels for certain types of traffic (e.g. make

interactive sessions higher priority than file transfers). To provide the desired quality

of service to the packets belonging to such an application, a router must be able to

identify the flow to which the packets belong. In the case of Integrated Services [6],

this requires packet classification by all routers the packet encounters. The Differenti-

ated Services [5] approach, on the other hand, simplifies the requirements of the core

routers, but still requires packet classification to be performed by the edge routers.

5

Firewalls [29] are becoming a common network security measure. A firewall

connects two or more networks together, but differs from a router in terms of what

packets it allows to cross from one network to another. Whereas a typical router

is willing to forward any valid IP datagram, a firewall uses a set of rules (filters)

specifying which packets are allowed to pass through it.

Intrusion detection systems [38] are another security-related example. These

devices need to process packets arriving at wire speed to detect signs of attacks on

host or network security. There are many attack forms that only occur in certain

types of packets; a packet classifier provides an easy way to identify exactly which

packets need to be scanned for particular attack signatures, thereby increasing the

efficiency of the intrusion detection system.

Network managers often seek to either measure or capture (for analysis) packets

meeting certain criteria. For example, a network manager may want to measure the

number of packets send from host A to network B, or the network manager may want

to log information about all packets sent to host C on UDP port d. Thus there is a

need for packet classification in several network management scenarios.

We expect other advanced network services to appear as well, particularly with

the use of network processors [11] [22] [36] and programmable networks [9] [12] [51].

1.3 The Packet Classification Problem

The object of packet classification is to categorize packets by applying a set of rules

called filters to the header fields of a packet. Each rule consists of a specification of

header field values, and an action to perform on packets whose headers match that

specification.

The information relevant for classifying a packet is contained inside the packet

in K distinct header fields, denoted H[1], H[2], ..., H[K]. For example, the fields

typically used to classify Internet Protocol (IP) packets are the destination IP address,

source IP address, destination port number, source port number, protocol number and

protocol flags. The number of protocol flags is limited, so they are often combined

into the protocol field itself.

Using those fields for classifying IP packets, a filter F = (128.252.∗, ∗, TCP,

23, ∗), for example, specifies a rule matching traffic addressed to subnet 128.252 using

TCP destination port 23, which is used for incoming Telnet; using a filter like this, a

firewall may disallow Telnet into its network.

6

A filter database consists of N filters F1, F2, ..., FN . Each filter Fj is an array of

K values, where Fj[i] is a specification on the i-th header field. The i-th header field

is sometimes referred to as the i-th dimension or the i-th axis, when considering a

packet’s header as specifying a point in K-dimensional space. The value Fj[i] specifies

what the i-th header field of a packet must contain in order for the packet to match

filter j. These specifications often have (but need not be restricted to) the following

forms: exact match, for example “source address must equal 128.252.169.16”; prefix

match, like “destination address must match prefix 128.252.*”; or range match, e.g.

“destination port must be in the range 0 to 1023.”

Each filter Fj has an associated directive dispj, which specifies the action to

perform for a packet that matches this filter. This directive may indicate whether

to block the packet, send it out a particular interface, or perform some other action.

Filter databases look like the example in Table 1.1, but most real-world databases

have many more filters in them.

A packet P is said to match a filter F if each field of P matches the cor-

responding field of F . For instance, let F = (128.252.∗, ∗, TCP, 23, ∗) be a filter

with disp = block. Then, a packet with header (128.252.169.16, 128.111.41.101,

TCP, 23, 1025) matches F , and is therefore blocked. The packet (128.252.169.16,

128.111.41.101, TCP, 79, 1025), on the other hand, doesn’t match F .

Since a packet may match multiple filters in the database, we associate a pri-

ority for each filter to resolve ambiguous matches. The packet classification problem

is to find the highest priority filter matching a given packet P . Often, the priority is

implied by the ordering of filters (with highest priority first), rather than by explicitly

storing a priority value for each filter.

Destination Source Dest. Src. Protocol Comments
Address Address Port Port and flags

host M1 * 25 * TCP allow inbound mail to M1

host M2 * 53 * UDP allow DNS access to M2

* network N * * * allow outgoing packets

network N * * * TCP-ack return ACKs OK

* * * * * block everything else

Table 1.1: Example: simplified firewall filter database

7

To classify a packet, one could simply apply each rule, in decreasing order of

priority, until a match is found. This approach is easy to use, but is clearly not fast

enough when a large number of rules are used. Several more sophisticated algorithms

have been developed that use data structures cleverly to improve the speed of packet

classification.

1.4 Metrics For Evaluating Classification Methods

There are many techniques for packet classification. In this section we discuss criteria

for measuring the performance of a packet classification scheme.

The metric of primary concern is the rate at which packets can be classified.

Exactly how much speed is needed, however, depends on the application. Classifica-

tion of minimum-sized IPv4 packets (20 bytes) arriving back to back on a 10 Mb/s

link requires 62,500 lookups per second. With a 40 Gb/s link, the required lookup

rate is 250 million classifications per second. As network speeds increase, it will be

desirable to have packet classification techniques that can scale to higher speeds.

Another important metric is storage requirements of the classifier. Very often

there is a tradeoff between storage requirements and lookup speed; for example,

classification in one memory access (via direct table lookup) would be possible, if one

has storage for a table with 2W entries, where W is the total number of bits contained

in the K header fields of interest. Another extreme case would be simply iterating

through a list of all filters, requiring N ·W bits of storage, but taking O(N) time for

classification.

The complexity of processing filter updates (i.e. insertion or deletion of filters)

is also a metric of concern. The rate of updates depends greatly on the specific

application. A small firewall with a manually-configured ruleset, for example, does

not require handling thousands of filter updates per second. A high-performance

QoS-enabled router, on the other hand, may need to establish hundreds or thousands

of flows per second, each requiring a filter database update.

In some cases (as we shall see when TCAMs are discussed), power dissipation

is important too. This is not only due to the need to supply that much power, but

also due to the need to dissipate the resulting heat produced.

8

1.5 Outline of Dissertation

The remainder of this dissertation is organized as follows:

Chapter 2 describes related work in the field of packet classification; particu-

lar attention is directed towards TCAMs, Recursive Flow Classification and Parallel

Packet Classification, since some of the work in this dissertation builds off those ideas.

Chapter 3 describes techniques for reducing the amount of memory needed by

Recursive Flow Classification. These techniques include a method for compressing

the data structures while still allowing high speed classification, and a method for

rearranging the data structures for improving the compression efficiency. This chapter

also explores the effects of reduction tree selection on the classifier size.

In Chapter 4 we discuss Extended TCAMs, a TCAM-based classification tech-

nique with greatly reduced power requirements; this is particularly noteworthy be-

cause TCAMs are currently the most practical approach to high performance packet

classification, and their biggest drawback is their high power consumption. We also

describe a means of avoiding inefficiencies in the representation of range match fields

in TCAMs.

Chapter 5 explores the idea of packet classification via Partitioned Encoded

Search of TCAMs; here we leverage techniques from Parallel Packet Classification

and Extended TCAMs to produce a high performance packet classification method

with even lower power requirements.

Finally, some concluding remarks are made in Chapter 6.

9

Chapter 2

The State of the Art

Much research has already been done in the field of high-performance packet clas-

sification. In this chapter we discuss the most prominent approaches to date, pay-

ing particular attention to those most relevant to this dissertation. These include

Ternary Content Addressable Memories (Section 2.1), Recursive Flow Classification

(Section 2.2), Parallel Packet Classification (Section 2.3). Other classification meth-

ods are included in Section 2.4. Finally, Section 2.5 describes ClassBench, a packet

classification benchmark.

2.1 Ternary Content-Addressable

Memories (TCAMs)

Ternary Content-Addressable Memories (TCAMs) [17] [21] [30] are the most popular

practical approach to general multidimensional packet classification in high perfor-

mance routers. Ordinary TCAMs perform matching in a bitwise fashion; a query

word q matches a stored value, mask pair (v, m) if q&m = v&m, where the amper-

sand denotes the bitwise logical “and” operation. Another way to think about this is

to consider the stored words to be sequences over not only the traditional bits 0 and

1, but also a “don’t care” value (often represented as an X.) The “don’t care” bits

correspond to bits with mask 0 in the bitmask representation.

TCAMs are used for classifying packets by concatenating all header fields of

interest, and using that concatenation as a word for TCAM lookup. This works well

for prefix matching (often used on the IP address fields) but is not well-suited for

range matching (which is used on the port fields.) The usual way to handle a port

10

range is to replace each filter with several filters, each using a prefix match that covers

a portion of the desired port range. For example, the range 2-10 can be expanded

into the bit patterns 001*, 01*, 100* and 1010, which exactly cover that range.

In this manner, any sub-range of a k bit field can be represented as a set of

prefixes, requiring up to 2(k − 1) prefixes per sub-range. So, a 16-bit port field can

require as many as 30 distinct TCAM entries. But if ranges are present in both the

source and destination port fields, then we need a filter for all combinations of the

sub-ranges for the two fields. Thus a single packet filter may require 900 TCAM

entries.

wl

blbl

Figure 2.1: Conventional 6-transistor SRAM storage cell

ml

sl0sl1
d0 d12 storage

cells

d0 d1T
Ternary bit Storage cell values

0 0 1

1 1 0

X 0 0

Figure 2.2: TCAM cell (details of SRAM storage cells omitted)

Figures 2.1 and 2.2 show the circuitry for a single bit in a typical TCAM design,

requiring 16 transistors (proprietary designs exist requiring as few as 14 transistors

per cell [21] [17]). A ternary bit T stored in the cell has three possible values: 0, 1,

and X, where X is the “don’t care” value that matches on both 0 and 1. To store

11

a ternary bit, the TCAM cell uses two SRAM cells with values d0 and d1 as shown

in Figure 2.2. The value d0 is 0 when a zero bit in the query word should match,

and the value d1 is 0 when a one bit in the query word should match. Details of an

SRAM cell are shown in Figure 2.1. In the SRAM, data is read from and written to

the storage cell via the bitlines bl and bl, under control of the wordline wl.

In the TCAM circuit, the query value and its complement are input via search

lines sl0 and sl1. A mismatch in this circuit creates a path to ground from the

matchline ml. Comparison for all TCAM words is done in parallel, which allows a

lookup to be very fast, but it also means that power consumption is quite high [25] [31].

Indeed, TCAMs consume approximately 3 microwatts per ternary bit [28], versus

SRAM’s need for merely 20 to 30 nanowatts per bit [27].

A recent paper [31] describes CoolCAMs, a technique for using partitioned

TCAMs to perform IP routing lookups with greatly reduced power dissipation. A

partitioned TCAM is a TCAM divided into blocks of words, where each block can

be enabled or disabled during a query; power consumption is approximately pro-

portional to the number of blocks searched [31]. With the CoolCAMs method, IP

routing lookups require searching just two TCAM blocks. This technique described

relies on certain properties of the one-dimensional case, and thus does not gener-

alize to multi-dimensional classification. But, we will take the basic idea of using

partitioned TCAMs to reduce power usage, and find ways to apply it in the case of

multi-dimensional classification.

2.2 Recursive Flow Classification (RFC)

RFC [19] is an algorithmic approach which has excellent performance in terms of time

to classify a packet. This comes at the expense of storage requirements, which can

be quite high for large filter databases.

The RFC algorithm works by processing the header fields of a packet in chunks.

Effectively, the algorithm tracks which filters have been matched by the various header

chunks, and combines the results for the chunks to determine the set of filters matched

by the complete headers.

In order to do this efficiently, RFC uses two techniques described in detail later

in this section. First, at each step it uses equivalence classes defined by the set of filters

matched thus far in processing the packet; these equivalence classes are a concise way

for the algorithm to keep track of which filters have been matched by the various

12

chunks of the header fields. Secondly, in order to combine the results for different

chunks together efficiently, RFC uses crossproducting tables to store precomputed

results. Both of these techniques are described in the examples below, which build

up from an overly simplified example to the basis of the full RFC algorithm.

2.2.1 Equivalence Classes in RFC

Consider the following example, in which only one header field is used for classifica-

tion; for simplicity, let this field represent a destination address of a mere four bits in

length. The set of filters in this example are shown in Table 2.1.

Filter Destination Cost
Number Address (in binary)

1 001* 1
2 0101-0111 2
3 110* 3
4 0001-1001 4

Table 2.1: Example 1-dimensional filter database

The filters in Table 2.1 can be projected graphically along an axis representing

the domain of possible values for the destination address. The axis can be divided

into intervals at the endpoints of each filter, as shown in Figure 2.3. Within each

interval, a particular set of filters is matched.

Filter 1 Fil ter 2

Fil ter 3Fil ter 4
A d d r e s s

0
A d d r e s s

1 5

1 ,4
m a t c h
here filter 4

ma tches
here

2 ,4
m a t c h
here

filter 3
ma tches

here

no ma tch
here

no ma tch
here

no ma tch
here

1 2 3 5 7 9 1 2 1 3

Figure 2.3: Filters projected onto an axis (1-D example)

We can use this to partition the set of possible values for this field (in this

case, the space of all possible destination addresses) into equivalence sets, where all

values in a set match exactly the same filters. In this example the addresses 1, 4, 8,

13

and 9 all match exactly the same filters (i.e. only filter 4.) Therefore, those addresses

belong in the same equivalence set. There are a total of five of these equivalence sets

in this example, shown in Table 2.2.

Two points in the same interval always belong to the same equivalence set.

Also, two intervals are in the same equivalence set if exactly the same filters project

onto them.

Equivalence Filters Values (destination
Class Matched addresses) in

Equivalence Set
E0 none 0, 10, 11, 14, 15
E1 only 4 1, 4, 8, 9
E2 1 and 4 2, 3
E3 2 and 4 5..7
E4 only 3 12, 13

Table 2.2: Equivalence sets for the 1-D example

To help us solve the best matching filter problem, we can precompute a table

that maps each possible value for the address to the equivalence class to which it

belongs. For the example we are using, this lookup table would look like Table 2.3.

Address Equivalence Class

0 E0

1 E1

2 E2

3 E2

4 E1

5 E3

6 E3

7 E3

8 E1

9 E1

10 E0

11 E0

12 E4

13 E4

14 E0

15 E0

Table 2.3: Lookup table for the 1-D example

14

In actual implementation, the equivalence classes are represented by integers

0, 1, 2,... instead of symbols E0, E1, E2, ... so they can be used to index into another

table. In this case, since we know the filters matching each equivalence class, we can

precompute a table that maps each equivalence class to the least cost filter matched

by the values in its equivalence set. The result of this is Table 2.4.

Equivalence Least Cost
Class Filter Matched
E0 none
E1 4
E2 1
E3 2
E4 3

Table 2.4: Best matching filter for each equivalence class (1-D example)

So, to perform a lookup for a packet P with header field containing x, we would

do the following: Perform a table lookup of the address x (using Table 2.3) to find

the equivalence class to which the address x belongs. This equivalence class indicates

which filters match the packet P . Next, perform a table lookup of this equivalence

class identifier (using Table 2.4) to determine the least-cost matching filter.

If, for example, we receive a packet with destination address 5, we first look

up destination address 5 in Table 2.3. The fifth entry is E3, i.e. E3 is the equivalence

class for address 5. We then look up E3 in Table 2.4; the third entry is 2, indicating

that Filter 2 is the least cost filter matched by addresses in E3 (and thus by address

5.)

Of course, this 1-dimensional lookup can be streamlined, by storing the best

matching filters instead of the equivalence class identifiers in Table 2.3. Thus, for the

1-dimensional case, the equivalence classes are not required. They are, however, a

compact representation for intermediate results (i.e. which filters have been matched

so far) during classification on multiple fields; this becomes more apparent in the next

example, which involves a 2-dimensional lookup.

2.2.2 Use of Crossproducting

Consider now an example where two header fields are used for classification. Let the

fields be source and destination addresses; for simplicity, let each address be only four

bits in length. The filters in this example are listed in Table 2.5.

15

Filter Destination Source Cost
Number Address Address

1 * 10* 1
2 100* 010* 2
3 10* * 3
4 010* 010* 4

Table 2.5: Example 2-dimensional filter database

As before, we can project the filters onto an axis that represents the destina-

tion address, as shown at the top of Figure 2.4. This can be used to partition the

destination address space into equivalence sets; these are indicated in the same figure

and Table 2.6.

Similarly, we can project the filters onto an axis that represents the source

address, as shown at the left of Figure 2.4. We use this to partition the source address

space into equivalence sets, where source address values in the same set match exactly

the same filters. These equivalence sets are shown in the figure and in Table 2.7.

Equivalence Filters Destination Addresses
Class Matched in Equivalence Set

ED0 1 only 0..3, 6, 7, 12..15

ED1 1 and 4 4..6

ED2 1, 2, and 3 8, 9

ED3 1 and 3 10, 11

Table 2.6: Equivalence sets for destination address (2-D example)

Equivalence Filters Source Addresses
Class Matched in Equivalence Set

ES0 3 only 0..3, 6, 7, 12..15

ES1 2, 3, and 4 4, 5

ES2 1 and 3 8..11

Table 2.7: Equivalence sets for source address (2-D example)

A table can now be constructed mapping each destination address to the equiv-

alence class to which it belongs; this mapping is shown in Table 2.8. Another table

can be constructed to map each source address to the equivalence class to which it

belongs; this mapping is shown in Table 2.9.

16

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

Fi l ter 1

Fi l ter 4

Fi l ter 3

Fi l ter 2

40 6 8 9 1 1 1 5
0

4

5

8

1 1

1 5

Fi l ter 4
Fi l ter 2

Fi l ter 3
Fi l ter 1

F 4

F 2

F 3

F 1

E S 0

E D 1 E D 0 E D 3 E D 0E D 2

E S 1

E S 0

E S 2

E S 0

Des t ina t ion Address

So
ur

ce
 A

dd
re

ss

E D 0

Figure 2.4: Filters projected onto axes (2-D example)

By looking up a packet’s destination address in Table 2.8, we obtain an equiv-

alence class identifier which indicates the set of filters matched by that destination

address. Similarly, by looking up a packet’s source address in Table 2.9, we obtain an

equivalence class identifier which indicates the set of filters matched by that source

address. But, what we really want is an indication of which filters are matched by

both the destination and the source addresses.

17

Dest. Equivalence
Address Class

0 ED0

1 ED0

2 ED0

3 ED0

4 ED1

5 ED1

6 ED0

7 ED0

8 ED2

9 ED2

10 ED3

11 ED3

12 ED0

13 ED0

14 ED0

15 ED0

Table 2.8: Lookup table for destination
address (2-D example)

Source Equivalence
Address Class

0 ES0

1 ES0

2 ES0

3 ES0

4 ES1

5 ES1

6 ES0

7 ES0

8 ES2

9 ES2

10 ES2

11 ES2

12 ES0

13 ES0

14 ES0

15 ES0

Table 2.9: Lookup table for source ad-
dress (2-D example)

We can compute this by finding the intersection of the set of filters matched

by the destination address and the set of filters matched by the source address. This,

however, can be too expensive to compute at lookup time if there are many filters (if

there are N filters, an N -bit wide AND operation would be needed), so we precompute

the results of these intersections and store the results in a 2-dimensional table; the

table is computed such that the entry table[x][y] indicates the intersection of the set

of filters matched in equivalence class x and the set of filters matched in equivalence

class y.

Each entry in this 2-dimensional crossproducting table is used to indicate a set

of matching filters. The same set of filters may occur more than one time in the table;

thus it makes sense define a new set of equivalence class identifiers to represent these

sets, so the table itself only contains equivalence class identifiers. So, to precompute

an entry table[x][y] in the crossproducting table, we must do the following:

1. Look up the set of filters matched by equivalence classes x and y,

2. Compute the intersection of that set (bitwise AND),

3. Determine the equivalence class to which that result belongs; store this as

table[x][y].

18

The new equivalence classes for this example are listed in Table 2.10. These

classes are defined during the creation of the crossproducting table, shown in Ta-

ble 2.11, for it is only then that we know which sets of filters will occur.

Equivalence Filters
Class Matched
EC0 none
EC1 only 2
EC2 only 4
EC3 2 and 3
EC4 only 1
EC5 1 and 2

Table 2.10: Equivalence classes for
crossproducting table (2-D example)

ED0 ED1 ED2 ED3

ES0 EC0 EC0 EC1 EC1

ES1 EC0 EC2 EC3 EC1

ES2 EC4 EC4 EC1 EC5

Table 2.11: 2-dimensional crossproduct-
ing table (2-D example)

To perform classification, we need both one-dimensional lookup tables (Tables

2.8 and 2.9), the two-dimensional crossproducting table (Table 2.11), and the mapping

from final equivalence class identifier to classifier output (Table 2.10.) The other

tables are only needed during initialization. To see how this works, consider the

following example:

Suppose a packet arrives with destination address 9 and source address 5.

To classify this packet, we first look up destination address 9 in Table 2.8, which

gives us the result ED2. We also look up source address 5 in Table 2.9, giving us

the result ES1. These results, ED2 and ES1, indicate the filters matched by the

destination address and by the source address respectively; we use these equivalence

class identifiers to index into Table 2.11 to find which filters are matched by both

destination and source addresses. In this example, we would use entry (2, 1) of

Table 2.11, which is EC3. Using Table 2.10 we can see that filters 2 and 3 were

matched by the packet.

The last step (using Table 2.10) can be eliminated by storing the least-cost

matching filter directly in the entries of Table 2.11; in our example, then, entry (2, 1)

of that table would contain the number 2 (identifying the least cost filter matched.)

2.2.3 Extending to k Dimensions

Classification in two dimensions starts by finding a pair of equivalence class identifiers,

and uses a precomputed 2-dimensional table to map those to a single equivalence class

identifier.

19

In the case of three dimensions, we start by finding three equivalence class iden-

tifiers; let us call these x, y, and z. Each identifier indicates which filters are matched

by the corresponding header field. To find which filters match in all three dimen-

sions, we need to compute the intersection of these three sets of filters. Again, this

intersection can be too costly to evaluate during a lookup, so we wish to precompute

as much as we can.

One approach to this in RFC is to create a 3-dimensional crossproducting

table, where each value table[x][y][z] is precomputed by finding the intersection of the

sets of filters matched in equivalence sets x, y, and z. But this approach can scale

poorly in terms of memory requirements, especially when extending to more than

three dimensions; thus, it is not considered in depth in this paper.

Another approach to this in RFC is to use multiple 2-dimensional crosspro-

ducting tables; this is the approach preferred in this paper. To classify packets in

three dimensions, we need two such 2-dimensional crossproducting tables. The first

table is computed such that table1[x][y] = a where a identifies an equivalence class

corresponding to the intersection of the filters matched in x and y. The second table

is computed such that table2[a][z] = b where b identifies an equivalence class corre-

sponding to the intersection of the filters matched in a and z. This example is shown

in Figure 2.5.

The equivalence class identified by b, then, corresponds to the set of filters

matched by all three header fields. Thus, we can get the same result while generally

requiring less memory than the 3-dimensional table.

This idea can be extended to handle k dimensions, by using k − 1 separate

2-dimensional tables. Each table combines two equivalence class identifiers into one

equivalence class identifier; thus, with k − 1 two-dimensional crossproducting tables,

we can go from k equivalence class identifiers (one for each field) to just one.

The order in which these identifiers are combined corresponds to a structure

called a reduction tree, where each node in the tree represents a crossproducting table,

and its children are the source of the equivalence class identifiers used to index into

that table. Figure 2.6 shows an example of a reduction tree for classification using

three dimensions (source address, destination address, protocol information.) A more

compact representation of the same tree is shown in Figure 2.7; the 1-dimensional

lookup tables are implied, but omitted from the figure for brevity.

Prefix matching on a large field can be performed by splitting it up into more

than one chunk. This is useful for fields exceeding 16 bits in length (e.g. IP addresses),

20

result : b

a

ba

z

y

x

Table 1

Table 2

x y z

Figure 2.5: Reduction of three equivalence class identifiers to one

Chunk Chunk
Number Contents

0 First 16 bits of IP source address

1 Last 16 bits of IP source address

2 First 16 bits of IP destination address

3 Last 16 bits of IP destination address

4 Source port number

5 Destination port number

6 Transport protocol number and flags

Table 2.12: An example set of chunks for a typical 5-tuple classifier.

since a field W bits wide requires a table with 2W entries to map values to equivalence

classes. Fields with range matches cannot be split this way, but a method exists for

transforming the range location problem into a prefix matching problem [16].

Using these techniques, we can build a classifier for the standard 5-tuple used

in the Internet context. Table 2.12 shows one way to define the header chunks, and

Figure 2.8 shows one of the possible reduction trees for this set of chunks.

21

zx

y

xv

w

wb

Chunk 1
dst addr = b

va

Chunk 0
src addr = a

yc

Chunk 2
protocol = c

Output eqID = z

Figure 2.6: An example reduction tree for classifying on three fields

Chunk #
0 1 2

Figure 2.7: Simplified representation of example reduction tree

Thus, with these extensions, what began as a simple example has been ex-

tended to become Recursive Flow Classification. The authors of [19] also describe an

optional adjacency group optimization which can be used in some applications.

22

Chunk #
0 1 62 3 4 5

Figure 2.8: An example reduction tree for a typical 5-tuple classifier

2.3 Parallel Packet Classification

Parallel Packet Classification (P2C) [53] is a packet classification technique which

uses an encoding scheme to reduce the width required of a TCAM. Classification of a

packet requires converting the values of each field of the packet header into encoded

values, and then querying the TCAM with the encoded values. This is motivated by

the observation that, for each field in a typical filter database, only a small number of

distinct match conditions are used; thus the encoded representation of a set of packet

headers will only require a small number of bits.

A lookup in P2C proceeds as shown in Figure 2.9. First, the values from the

packet’s header fields are converted into their encoded representations; the concate-

nation of these form the encoded query, which is presented to a TCAM containing

encoded versions of all the filters. The encoding is done in such a way that standard

TCAM matching will find the entry corresponding to the highest priority matching

filter. The authors of [53] suggest using a modified version of BART [52] as an efficient

means of converting header fields to the encoded values during lookup.

The authors of [53] describe three encoding styles, each involving the con-

struction of a primitive range hierarchy. Primitive ranges are the intervals of field

values specified in the match conditions for a given dimension in a filter database.

Hierarchies can be constructed from these as follows:

With the first encoding style, the set of ranges used in a given field of the

database are grouped into layers, such that no two ranges in the same layer overlap;

23
Packet Header

Fields

Encode field values
(independently)
 e.g. via BART

Encoded query

TCAM

Result

Figure 2.9: P2C lookup process

this can be accomplished incrementally by adding each range one at a time, or all

at once via interval graph coloring. Within each layer, identifiers are assigned as

follows: 0 corresponds to all regions not in any range in the layer, 1 corresponds to

the first range in the layer, 2 corresponds to the next range in the layer, and so on.

Each layer, then, is represented by some set of bits in the encoded representation of

a field value; the exact number of bits needed for each layer depends on the number

of ranges within that layer. An example of this encoding style is shown at the top

of Figure 2.10; this example has four primitive ranges, and this style of encoding

requires two layers for the primitive range hierarchy.

When encoding a field in a rule using this technique, the range used in that field

is added to a layer in the primitive range hierarchy, if not already present. The bits

corresponding to that layer are set to the identifier for that range; bits corresponding

to other layers in that field are set to the “don’t care” value. Table 2.13 continues

the example from Figure 2.10, indicating how to encode match conditions that occur

in filters, using the three different encoding styles.

When encoding a field of a search query, the encoded value must include iden-

tifiers for every layer in the primitive range hierarchy; for example, using the encoding

style I entries in Table 2.13, a packet header field value of 0x24 would be encoded as

0101 (since it falls within range 01 from layer 1 and range 01 of layer 2), and a packet

24

header field value of 0x13 would be encoded as 0100 (since it falls within range 01

from layer 1, and no range in layer 2).

Layer 1

01
Aint Gonna Bump No More

Layer 2

01

10

10

0x00 0xFF

P2C Encoding Style I

1

01

1

10

0x00 0xFF

P2C Encoding Style II

010001 011

0x00 0xFF

P2C Encoding Style III

001 100

Layer 1

Layer 2

Layer 1

0x20 0x3F 0x5F 0x80 0xC0

0x20 0x3F 0x5F 0x80 0xC0

0x20 0x40
0x5F 0x80 0xC00xBF0x3F0x1F

Figure 2.10: Example primitive range hierarchies

Note that the range corresponding to a fully wildcarded value need not be

included in the primitive range hierarchy; wildcarding all bits for that field will work.

Also, for the sake of efficiency, placing all exact-match entries in the same layer of

the primitive range hierarchy is generally a good idea.

The second encoding style is similar to the first, but reduces the number of bits

required for a layer when ranges within that layer can already be distinguished via

bits of some other layer. For example, in the Encoding Style II section of Figure 2.10,

the filters in Layer 2 can be distinguished by making use of one of the bits from Layer

25

Range in Encoded value Encoded value Encoded values
filter (hex) (style I) (style II) (style III)

0x00-0xFF xxxx xxx xxx

0x00-0x5F 01xx 01x 001, 010

0x20-0x3F xx01 0x1 010

0x80-0xFF 10xx 10x 011, 100

0xC0-0xFF xx10 1x1 100

Table 2.13: Example encodings for match conditions (filter fields)

1. This can further reduce the bit width required of the TCAM, but adds substantial

complexity to the creation and maintenance of the data structures (in our example,

if the encodings of Layer 1 change, this affects the encodings of Layer 2 which make

use of those.)

The third encoding scheme reduces the number of layers by combining layers

together. When layers are combined, the ranges that overlap are split into nonover-

lapping ranges; any rule using those ranges is thus required to span multiple TCAM

entries (assuming hardware support for general range matching is not available) in

order to correctly cover the range specified in the rule. The primitive range hierarchy

can even be flattened into a single layer by repeated application of this technique. The

bottom of Figure 2.10 shows the result of combining the two layers in our example

together.

These three encoding schemes can be used in the same classifier for different

rules, which can be useful since each encoding scheme has its own advantages and

disadvantages. The data structures used in the first scheme are the easiest to create

and maintain; the second scheme can reduce the number of bits needed for some

layers, at the cost of increased complexity of the data structures used. The third

scheme can reduce the number of bits of TCAM width needed by combining layers in

the primitive range hierarchy, at the cost of using multiple TCAM entries for some

rules.

The process of converting a search key to its encoded representation can be

done in a variety of ways. Ultimately the encoded search key contains the identifiers

of the regions matching the packet’s header, but there are more efficient methods

than looking up the value in each layer separately and combining the results. The

authors of [53] suggest using a slightly modified version of BART [52] for encoding

the search keys; this approach is fast (a lookup for a 32-bit field can be done in four

memory accesses) and provides high storage efficiency while allowing fast updates.

26

In [53], results are shown for three databases, ranging from 37 rules to 1,733

rules in size. The encoding decreases the TCAM width required from 96 bits (for the

4-tuple used in that study) to 22 to 25 bits, with a corresponding decrease in total

TCAM size required; the additional SRAM used for the BART lookup was quite

small, ranging from 0.25 kB for the 37 rule database to 2.0 kB for the 1,733 rule

database.

We include in Table 2.14 our own results of P2C encoding style I applied to

seven real-world filter databases. The table indicates how many bits are required to

encode the 4-tuple used in [53], and the number of bits required for encoding the

5-tuple of Source Address, Destination Address, Source Port, Destination Port, and

Protocol. The results for small databases appear consistent with the results in [53].

While the larger databases in this study do not appear to encode quite as well, the

encoding still results in a significant decrease in the width required of the TCAM.

Number of Bits Required Bits Required
Filters for 4-tuple for 5-tuple

160 29 33
184 25 29
192 16 20
280 31 36
613 38 43

1,556 49 56
2,396 60 65

Table 2.14: Encoding widths for some real-world filter databases, using P2C encoding
style I

2.4 Summary of Additional Related Work

TCAMs, RFC and P2C are of particular interest with respect to this dissertation,

but there are several additional classification techniques worthy of mention.

2.4.1 Classification in One Dimension

Classification in one dimension is equivalent to the IP route lookup problem; several

algorithms have been developed for this special case that perform very well [7] [24]

27

[54] [18] [45] [26] [14]. The focus of this dissertation, however, is the more general

multi-dimensional case, which is a much harder problem.

A recent paper [31] describes a method for performing IP routing lookups

using a partitioned TCAM. By restricting the search to only relevant partitions in

the TCAM, power requirements are greatly reduced. One may think of it as carving

out portions of a routing tree, and placing each portion in a partition of the TCAM.

The prefix for each carved portion is placed in the index partition, along with the best

matching route covering that portion. A routing lookup, then, requires a search of

only two partitions: first, the index partition is searched, to determine which portion

of the tree is relevant to that query; secondly, the relevant partition itself (as indicated

by the result from the index) is searched. If a route is not found in that partition,

the best matching cover (which was obtained from the lookup in the index) is used.

2.4.2 Classification in Two Dimensions

Packet classification in two dimensions (e.g. classifying by Source Address and Desti-

nation Address) is more difficult than in just one dimension, but reasonable algorithms

for this case exist also.

The Grid-of-Tries [46] algorithm constructs a search trie for the Destination

Address, followed by several search tries for the Source Address. Clever use of switch

pointers allows this algorithm to avoid backtracking; it also keeps storage require-

ments linear in terms of the number of filters, but this is only possible for the two

dimensional case.

Area-based quadtrees (AQT) [8] are based on space decomposition techniques.

In the two dimensional case, AQT requires O(N) storage, takes O(aw) memory ac-

cesses for query processing and O(aN 1/a) time for updates, where N is the number of

filters, w is the width of the fields used for classification, and a is a tunable parameter.

Filters can also be organized using FIS-trees [16], which can support query

processing with O(log w) memory accesses. This approach has reasonable storage

requirements in the two dimensional case, but does not scale well beyond two dimen-

sions.

2.4.3 General Multi-dimensional Classification

In the most general case, classifying packets in K dimensions is inherently hard for

K greater than 2 [23] [46] [44] [19] [20]. The best algorithms at this time require

28

O(logK−1 N) time and linear space, or log N time and O(NK) space, where N is the

number of rules [23].

Fortunately, the filters in real-world classifiers tend to exhibit certain proper-

ties; these properties allow clever algorithms to beat the worst-case bounds in most

real-world applications. This idea has led to a number of classification algorithms

which, in spite of the aforementioned bad worst-case bounds, tend to perform very

well with “typical” filter databases.

Tuple-space search [44] is an early heuristic approach, and Entry Pruned Tuple

Search [43] is a refinement of that technique. In these approaches, filters are catego-

rized by the lengths of each specified field; this decomposes the classification problem

into a number of exact-match problems, where hashing is used to probe for a match.

In many cases this works well, but the hashing can lead to unpredictable search times.

HiCuts [20] constructs a decision tree to partition the classification space into

regions until the number of filters in each region falls below a threshold. Thus classi-

fication is performed by walking the decision tree and then performing a short linear

search through the filters in that region. HiCuts is not as fast as RFC, but its memory

usage is not quite as bad.

Extended Grid-of-Tries (EGT) and EGT with Path Compression (EGT-PC)

[3] use a slightly modified two dimensional Grid-of-Tries for classification on Source

Address and Destination Address, and then a linear search of the filters which match

the filters at that point. For “typical” databases, the storage requirements appear to

grow linearly with the number of filters; the query time, however, is not as fast as

HiCuts or RFC.

HyperCuts [37] is similar to HiCuts, but uses multidimensional cuts at each

step and includes several other storage-related optimizations. Nodes containing the

same rulesets are merged; any rule covered by a higher priority rule in the same node

is not stored in that node; the region associated with each node is compacted to

the minimum cover for the rules in that region; and, filters that are stored in many

leaves of the decision tree are pushed “upward” (i.e. towards the root), to reduce the

number of times these filters are stored. Furthermore, the heuristics used to build the

decision tree are specifically designed with minimization of storage requirements in

mind. HyperCuts appears to have excellent lookup performance (very close to RFC),

but thus far results have not been shown for databases with more than 25,000 filters.

It has excellent storage efficiency in many cases, but does not fare quite as well with

heavily wildcarded filters.

29

2.4.4 Packet Classification Repository

A repository [2] has been established for retaining papers and source code for some

of these algorithms. This repository allows researchers to share information, and to

study and compare implementations of known algorithms, without the time-consum-

ing and potentially error-prone process of re-implementing them.

2.5 The ClassBench Benchmark

Since many modern packet classification techniques employ heuristics to obtain good

performance, the use of realistic test vectors is vital for proper performance analysis.

Such input test vectors are difficult to obtain, however, since the network adminis-

trators who have access to real filter databases have strong concerns about privacy

and security. Additionally, since the current technologies do not scale well for truly

large filter databases, there are very few filter databases of great size.

ClassBench [1] [49] is a recent project addressing that problem. A key com-

ponent of ClassBench is the Filter Set Generator, which produces a synthetic filter

database using parameters measured from real databases. At this time, twelve fil-

ter set parameter files are available, each measured from a different real-world filter

database. This allows the creation of filter sets having any size and retaining impor-

tant properties (such as prefix length distributions, correlations between the speci-

ficity of each field, and maximum prefix nesting depth) that affect the performance

of packet classification algorithms. In addition, the generator allows certain proper-

ties of the output filter set to be adjusted (e.g. alterations in filter scoping or the

smoothness of tuple distributions) if desired.

ClassBench also includes a filter set analyzer and a packet trace generator. The

filter set analyzer is used to produce filter set parameter files from real-world filter

sets; the packet trace generator produces sequences of packet headers usable as test

inputs to exercise a classifier.

30

Chapter 3

Compressed Data Structures for

RFC

In the previous chapter, we saw that Recursive Flow Classification performs packet

classification extremely quickly, but this speed comes at the cost of relatively high

storage requirements. In this chapter we explore ways to reduce those storage re-

quirements.

The chapter is organized as follows: a simple compression scheme is described

in Section 3.1; Section 3.2 contains an improvement of the simple compression tech-

nique; the impact of selecting different reduction trees is explored in Section 3.4.2.

3.1 Compression of Data Structures

Recursive Flow Classification has excellent performance with respect to lookup time,

but its memory requirements can be quite high when many filters are used. Here we

describe a scheme using compressed data structures to reduce the memory require-

ments of the lookup algorithm.

Recall that, in RFC, classification is performed by first looking up individ-

ual header chunks, and then by combining the chunks in a series of crossproducting

steps. An example of this is shown in Figure 3.1. The major data structures in-

volved, then, are the data structures for looking up chunks in the initial step, and the

crossproducting tables.

The proposed compression method is based on two observations: first, that

much of the storage is required for the crossproducting tables (especially for large

filter databases), and secondly, that these crossproducting tables tend to have many

31

Header field
chunks

Individual chunk
lookup tables

(indexed by
chunk value)

Crossproducting
tables (indexed
by equivalence

class identifiers)

Packet header
fields

Final result

Figure 3.1: Example structure of RFC classifier.

contiguous elements repeated (again, especially true with large filter databases.) We

can take advantage of this to compress the crossproducting tables, but this new

representation must still allow fast lookups.

3.1.1 Simple Compression Algorithm

To see how we might compress the tables, let us consider a table stored in row-major

order in an array. The original array can be represented by a compressed array and

a bit vector, constructed in the following way: For each run of repeated elements,

we store only one such element in the compressed array. Thus, the compressed array

for A A A A B B B C B B C C would be A B C B C. The bit vector has

a bit corresponding to each element in the original (uncompressed) array; this bit

is a 0 if that element is the first element or is the same as the previous element,

32

and 1 otherwise; thus, the bit vector for A A A A B B B C B B C C would be

0 0 0 0 1 0 0 1 1 0 1 0, as shown in Figure 3.2.

A A A A
B B B C
B B C C

A A A A B B B C B B C C

0 0 0 0 1 0 0 1 1 0 1 0

A B C B C

Array in two
dimensions

Row-major order

Bit vector
and

compressed array A B C B C=

Figure 3.2: Example representations of a two-dimensional array.

The bit vector is used to find the results of a lookup in the compressed array.

If we want to know what the ith item was in the original array, we count the number

of 1s in bit vector elements zero through i, inclusive. If there are j 1s, then we can

find the result by looking at the jth element of the compressed array. Continuing

the example from the previous paragraph: To look up the 7th element of the original

array A A A A B B B C B B C C, we count the 1s in bit vector elements 0 through

7; there are 2, so the answer is element 2 of the compressed array A B C B C, i. e. the

answer is C.

Counting the number of 1s becomes expensive when the bit vector is large; to

avoid performing much of this work at classification time, we use precomputation as

follows: If we precompute the total of 1s set in the first W bits, the first 2W bits, the

first 3W bits, etc., then at lookup time we only need to count at most W − 1 bits in

the bit vector.

Thus, each crossproducting table can be represented efficiently by a compressed

array, a bit vector with a bit for each item in the original array, and a set of precom-

puted counts of ones.

3.1.2 Results

To evaluate the compression techniques, we construct a packet classifier using a real

filter database with 159 rules. The classifier splits the header fields into 7 chunks

33

Chunk Chunk
Number Contents

0 First 16 bits of IP source address
1 Last 16 bits of IP source address
2 First 16 bits of IP destination address
3 Last 16 bits of IP destination address
4 Source port number
5 Destination port number
6 Transport protocol number and flags

Table 3.1: Chunks used in evaluating RFC compression scheme

as indicated in Table 3.1. We use 16-bit chunks as suggested in [19], and because

the port fields require range matching, which precludes splitting them into smaller

chunks. We perform classification on five header fields in this experiment, though in

some papers it appears that RFC is only used for classification on four fields.

Since the choice of reduction tree affects the size of the crossproducting tables,

and there is no immediately obvious “best choice” reduction tree, we consider all

possible binary reduction trees for this database. For each possible reduction tree,

we determine the size of the data structures in an uncompressed form and in the

compressed form. In this way, we not only find the best choice of reduction trees, but

we also gain insight into the effect of choosing non-optimal reduction trees as well.

Results are shown in Table 3.2. Rows 1-6 each correspond to a specific reduc-

tion tree; for example, row 1 shows the results for the reduction tree which resulted

in the largest data structures when using the uncompressed form. Rows 7 and 8 do

not correspond to specific reduction trees; instead they show the average and median

for each metric across all reduction trees. In this experiment, compression typically

reduced the crossproducting table storage requirements by 39%. The overall stor-

age requirements were typically reduced by 22%, but we expect that larger classifiers

would enjoy better results. With the relatively small (159 filter) classifier in this

experiment, the individual field lookup tables (which are not compressed) occupied

2,621,440 bits; in some cases, this accounted for the majority of the data structure

size. But with a larger classifier, we expect that the crossproducting tables occupy a

much greater fraction of the overall storage needed.

Reductions of over 80% occurred in some cases, usually involving large crosspro-

ducting tables that compressed well (but, not all large tables compress well.) In a

few cases, the compressed form actually required more storage than the uncompressed

34

form; this occurs when the size reduction from the original array to the compressed

array is less than the additional storage needed to hold the bit vector.

The choice of reduction tree has a significant effect, as well. In this experi-

ment, the best choice outperforms the worst choice roughly by a factor of 30, and it

outperforms the typical case by a factor of two to three. We explore the selection of

reduction tree more in Section 3.4.

Uncompressed Compressed Overall Reduction of
size size size crossproduct

(bits) (bits) reduction tables

Largest uncompressed 89,380,018 19,926,831 77.7% 80.1%

Smallest uncompressed 3,113,672 2,914,527 6.4% 40.5%

Largest compressed 89,380,018 96,187,539 -7.6% -7.8%

Smallest compressed 3,113,672 2,914,527 6.4% 40.5%

Most overall compression 77,233,034 15,235,167 80.3% 83.1%

Least overall compression 67,280,539 72,425,225 -7.6% -7.9%

Average over all values 12,196,446 8,227,865 25.4% 36.7%

Median over all values 7,454,688 5,800,143 22.4% 39.5%

Table 3.2: Experimental compression results

A graph showing the overall compression ratios achieved in this experiment is

shown in Figure 3.3; these figures represent the ratio of bits required for the com-

pressed representation to the bits required for the uncompressed representation. The

results have been sorted by compression ratio, so that one can easily see from the

graph, for example, that for 10% of the reduction trees used the algorithm reduced

overall storage requirements to 44% of the original amount. Since we are using a

small classifier, a significant fraction of the overall storage is needed for the indi-

vidual chunk lookup tables; therefore we also present the compression ratios for the

crossproducting tables by themselves, shown in Figure 3.4.

In this study, the bitvectors account for 6.15% to 46.3% of the storage re-

quirements for the compressed representation of the crossproducting tables, with the

median value being 11.42%; thus it appears that, in the typical case, the majority of

the storage needed for the compressed representation is due to the compressed arrays,

rather than the bitvectors.

35

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Percentile

C
o

m
p

re
ss

io
n

 R
at

io

Figure 3.3: Overall compression ratios from experimental results.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Percentile

C
o

m
p

re
ss

io
n

 R
at

io

Figure 3.4: Compression ratios for crossproducting tables only, in experimental re-
sults.

3.2 Improving Compression

The compression technique just described relies on the tendency for adjacent table

entries in the same row to have the same value. For this reason, some tables compress

36

0 1 2 3 4 5 6 7
0 a b a b a b a b
1 b a b a b a b a
2 a b a b a b a b
3 b a b a b a b a
4 a b a b a b a b
5 b a b a b a b a

Table 3.3: Two-dimensional crossproducting table with poor compression

0 1 2 3 4 5 6 7
0 a a a a b b b b
1 b b b b a a a a
2 a a a a b b b b
3 b b b b a a a a
4 a a a a b b b b
5 b b b b a a a a

Table 3.4: Two-dimensional crossproducting table with better compression

well, and others do not. For example, Table 3.3 does not compress particularly well;

in fact, the “compressed” representation requires more storage than the uncompressed

form.

Since the equivalence class identifiers are assigned in an arbitrary order, it is

possible to re-arrange rows and/or columns of the tables by reassigning the identifiers.

Thus it is possible to re-arrange rows and columns in a table to improve compression.

If we re-order the columns of Table 3.3 we can produce Table 3.4, which will result

in improved compression since it has more runs of repeated elements.

In general, there are too many ways re-arrange a large table to conduct an

exhaustive search. However, there are some heuristics that usually produce good re-

sults. For example, if tables are stored in row-major order, then re-arranging rows will

have little effect compared to re-arranging columns. This is because the compression

works well when a value in memory is followed by the same value; re-arranging rows

will only alter that at the wrap-around point (where the end of one row is followed

by the beginning of the next row), whereas re-arranging columns will alter that at

every position in the column.

Therefore, in this work we focus on re-arranging columns; in the following sec-

tion we develop a heuristic for selecting orderings of columns with good compression.

37

3.2.1 TSP Heuristic

The question of how to re-arrange the columns for best compression can be trans-

formed into a variation of the Traveling Salesman Problem, as follows: Let each

column in the table be represented as a node in the TSP problem. The goal is to

select an ordering (tour) of the columns (nodes) such that the number of elements in

the compressed array (cost of the tour) is minimized.

The total cost of an ordering of columns is the number of elements in the

compressed array. An element in column i + 1 is only added to the compressed array

if it differs from the element in column i of the same row; thus, the cost contribution

of placing column i + 1 immediately after column i is equal to the number of rows in

which the two columns have differing entries. This way, the cost of a particular tour

reflects the cost of using that ordering for columns, except for the cost of the first

column itself (due to wrap-around from last column of a row to first column of the

next row.)

With this definition of cost, note that cost(A,C) ≤ cost(A,B) + cost(B,C) (i.e.

the triangle inequality applies.) Thus, TSP approximation algorithms based on a

minimum spanning tree will work and can be used to find an ordering of columns

that produces good results.

This generally produces better results than the naive compression scheme de-

scribed earlier, but computing the TSP cost matrix can be expensive. For a 2-

dimensional table with R rows and C columns, this requires O(C2R) time and O(C2)

space.

3.2.2 Results

To evaluate the effectiveness of the TSP heuristic, we perform compression on the

same filter set that is used in Section 3.1.2; again, we study the effects of compression

on all the possible binary reduction trees for the header chunks defined in Table 3.1.

This time, the TSP heuristic is used whenever practical, given the time constraints

(in this case, as long as no crossproducting table exceeded 6,400 columns), and the

simpler compression technique is used otherwise. The results are shown in Table 3.5.

Rows 1-6 each correspond to a specific reduction tree; rows 7 and 8 are average and

median for these values across all reduction trees.

In this study, we use a simple approach of finding a minimum spanning tree

and traversing around it in preorder to determine the new order of columns, starting

38

with the first column. The intent of this particular experiment is merely to discern

whether re-arrangement of columns produces benefits sufficient to justify the cost of

computing the new column ordering. Thus it is worth keeping in mind that small

improvements on this (e.g. Christofides’ approximation algorithm [10] for TSP, and

intelligent selection of the start and end of the tour) are still possible.

In these results, compression with the TSP heuristic typically reduced the

crossproduct table storage requirements by 62%. Reductions over 85% occurred in

some cases, usually involving large tables that compressed well (but, not all large ta-

bles compress well.) There are still cases where the compressed form requires slightly

more storage than the uncompressed form, but not as much as when using the naive

compression method.

The overall storage requirements were typically reduced by 37%. But, again,

that is mainly due to the individual field lookup tables occupying a significant fraction

of the data structure, due to the small size of this classifier. We expect that larger

classifiers will experience more overall compression, since their crossproduct tables

will occupy a larger fraction of the overall data structure size.

Uncompressed Compressed Overall Reduction of
size size size crossproduct

(bits) (bits) reduction tables

Largest uncompressed 89,380,018 13,677,785 84.7% 87.3%

Smallest uncompressed 3,113,672 2,905,502 6.7% 42.3%

Largest compressed 67,963,198 73,138,696 -7.6% -7.9%

Smallest compressed 3,113,672 2,905,502 6.7% 42.3%

Most overall compression 89,253,854 13,580,518 84.8% 87.3%

Least overall compression 73,052,072 67,868,399 -7.6% -7.9%

Average over all values 12,196,446 5,976,058 38.1% 54.4%

Median over all values 7,454,688 4,931,011 37.7% 61.6%

Table 3.5: Experimental TSP-heuristic compression results

A graph showing the overall compression ratios achieved using the TSP heuris-

tic when possible is shown in Figure 3.5; as before, these figures represent the ratio

of bits required for the compressed representation to the bits required for the uncom-

pressed representation. We also present the compression ratios for the crossproducting

tables by themselves, shown in Figure 3.6. These results indeed are an improvement

over the simple compression algorithm.

39

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Percentile

C
o

m
p

re
ss

io
n

 R
at

io

Figure 3.5: Overall TSP compression ratios from experimental results.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Percentile

C
o

m
p

re
ss

io
n

 R
at

io

Figure 3.6: TSP compression ratios for crossproducting tables only, in experimental
results.

40

For an indication of how much the TSP heuristic helps, we divide the number

of bits needed with the TSP heuristic by the number of bits needed for the simple

compression method. A graph of results is shown in Figure 3.7 with respect to overall

compression, and in Figure 3.8 with respect to the sizes of the crossproducting tables

only.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Percentile

C
o

m
p

re
ss

io
n

 R
el

at
iv

e
to

 S
im

p
le

 C
o

m
p

re
ss

io
n

Figure 3.7: TSP compression ratio relative to simple compression, in terms of overall
data structure size.

In both graphs, it can be seen that the TSP heuristic usually improves the

compression ratio; unfortunately, this comes at the cost of additional computation

needed to apply the TSP heuristic (which, for a table with R rows and C columns,

requires O(C2R) time and O(C2) space for the TSP cost matrix).

With TSP compression, the bitvectors account for 6.15% to 54.1% of the stor-

age requirements for the compressed representation of the crossproducting tables in

this experiment, with the median value being 17.91%; the increase over the non-TSP

case is due to the compressed arrays containing fewer elements with TSP, while the

bitvectors have the same in both cases.

41

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Percentile

C
o

m
p

re
ss

io
n

 R
el

at
iv

e
to

 S
im

p
le

 C
o

m
p

re
ss

io
n

Figure 3.8: TSP compression ratio, relative to simple compression, in terms of size of
crossproducting tables.

3.3 Performance on Larger Databases

In this section, we briefly explore the idea that larger classifiers may, in general,

produce crossproducting tables that are more compressible than smaller classifiers.

This would be a beneficial property, since it is typically with the larger classifiers that

storage space becomes a concern.

To explore this idea, we apply the TSP-guided compression scheme to subsets

of a larger filter database, varying the number of rules each time. In this experiment,

we are considering only one reduction tree, selected arbitrarily from those having

average results with the other database. The results are shown in Figure 3.9.

These results suggest that, for typical filter database, a larger number of rules

tends to result in more compressible arrays. As the number of filters increases, the

reduction in size of the crossproduct table tends to increase (exceeding 60% at around

250 filters.) The sharp jumps in the overall compression efficiency in Figure 3.9

appear to occur when the addition of a particular rule greatly increases the size

of the crossproducting tables; note that the compression ratio of the crossproducting

tables remains approximately the same, but the overall compression ratio jumps since

the crossproducting tables are now a larger part of the whole.

42

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

Number of Filters

S
iz

e
R

ed
u

ct
io

n
 (

%
)

Overall

Crossproduct
tables only

Figure 3.9: Compression Efficiency vs. Number of Filters.

3.4 Choice of Reduction Trees

The choice of reduction tree (explained in Section 2.2.3) affects the size of the data

structure created. This is true for both the uncompressed representations and the

compressed representations of the data structures.

In [19], two heuristics for selecting the reduction tree are mentioned: (i) com-

bining chunks with the most “correlation,” e.g. the two 16-bit chunks of IP source

address, as soon as possible, and (ii) combining as many chunks as possible without

causing unreasonable memory consumption. In our studies of RFC, we follow heuris-

tic (ii) by only combining chunks two at a time. The “correlation” for heuristic (i)

is not clearly defined, so we consider all possible combinations. This allows us to see

exactly how much of a difference the choice of reduction tree can make, in terms of

the RFC data structure size.

43

3.4.1 Impact of Reduction Tree Selection

The impact of reduction tree selection can be seen in the results summarized in Ta-

ble 3.2 and Table 3.5. The average uncompressed data structure required 12,196,446

bits of storage, but the most efficient one required only 3,113,672 bits; this represents

a 74.5% reduction in size. So, although compression can help, proper selection of the

reduction tree can help more.

3.4.2 Finding an Optimal Reduction Tree

Now that we have seen how important the selection of the reduction tree can be,

we turn our attention to the question of how to select a tree resulting in minimal

storage requirements. Certainly, the exhaustive search technique of instantiating each

possible tree and checking its size will find the optimal tree; that method, however,

generally requires far too much compute time to be practical. For example, if the

header is split into 7 chunks, and we restrict ourselves to only considering binary

reduction trees (i.e. each node in the tree has exactly two children), then there are

665,280 different reduction trees that must be created.

We therefore consider a more efficient means for finding an optimal reduction

tree; the approach described in this chapter uses dynamic programming techniques

to do this.

This approach runs in a series of steps. In step i, the algorithm finds, for each

unique set of i+1 header chunks, a optimal reduction tree with exactly those chunks

as leaves.

Step 1 is fairly straightforward: for each pair of chunks (j, k), the algorithm

compares the size of the crossproducting table with left child j and right child k

against the size of the crossproducting table with left child k and right child j. The

algorithm chooses the table with the smaller total size.

The uncompressed size of each of the two possible crossproducting tables will

be the same; this is because the number of elements in each is simply the product

of the number of equivalence classes for chunks j and k by themselves, and each

element will require dlog2 me bits, where m is the number of distinct equivalence

classes produced by combining j and k.

The compressed sizes, however, may differ; this occurs because one case may

involve more runs of repeated elements than the other, when stored in row-major

order. Therefore, when seeking a reduction tree with minimal compressed storage

44

requirements, all candidate crossproducting tables must be computed (since the com-

pressed size will not be known until we can see how much compression can be done.)

When seeking a reduction tree with minimal uncompressed storage requirements, only

the table with minimal size is computed, since the uncompressed size of the candi-

date tables can be determined without filling them all out (i.e. it does not depend on

compression.)

In the second and subsequent steps, the algorithm has more choices to make.

For example, in step 2, for each trio of unique chunks (j, k, l) the algorithm searches

for an optimal subtree containing exactly those chunks as leaves; if we are only consid-

ering binary reduction trees (because the resulting two-dimensional reduction tables

will generally be smaller than tables with three or more dimensions) then it must

consider every pair of subtrees from the previous step(s) that, when combined, have

leaves i, j, and k. Over all of these, the algorithm selects the subtree with minimal

total size for its tables.

Note that, before step i, the algorithm has already found optimal subtrees

for all combinations of i chunks. Thus, the algorithm is not building subtrees from

scratch in each step; it is building subtrees by combining the smaller subtrees built

in the previous steps.

More formally, we can express the algorithm to find an optimal binary reduc-

tion tree as follows. Let C represent the set of header chunks used by the classifier,

and let k represent the number of such chunks. Variables St, Lt, and Rt are sub-

scripted t, where t is a subset of C indicating some collection of header chunks. One

could instead think of t as a vector of bits, with one bit for each chunk used by

the classifier; this would require more complicated notation in the algorithm’s pseu-

docode, but may make implementation easier. The algorithm can then be expressed

as follows:

1: for each t ∈ C∗ do

2: T|t| ← T|t| ∪ t

3: end for

4: for i = 1 to k do

5: Si ← 0

6: end for

7: for i = 1 to k − 1 do

8: for each t ∈ Ti+1 do

9: St ←∞

45

10: LC ← t∗ − {∅ ∪ t}
11: for each l ∈ LC do

12: r ← t− l

13: s← size of table for (l, r)

14: newsize = Sl + Sr + s

15: if newsize < St then

16: Lt ← l

17: Rt ← r

18: St ← newsize

19: end if

20: end for

21: end for

22: end for

The algorithm builds the following data structures in a dynamic programming

fashion: St represents the total size of the crossproducting tables for the best subtree

found having exactly the chunks in set t as leaves. Lt and Rt represent the left

child and right child (respectively) of the root node, in the best subtree found having

exactly the chunks in set t as leaves.

Lines 1 and 2 create sets Ti, where set Ti indicates all subtrees with exactly i

leaves; this is useful so we can iterate through the small subtrees first, and then larger

and larger subtrees.

Lines 3 through 5 initialize the “total size of crossproducting tables” measure

(Si) for the subtrees of size 1. These subtrees have no crossproducting tables, so the

total size for them is zero. (We could instead initialize each of these to the size of its

chunk’s lookup table, in which case Si becomes a measure of the total data structure

size, i.e. not just the crossproduct tables.)

The for loop starting at line 6 iterates through the aforementioned steps of the

algorithm. In step i, we find an optimal subtree for each possible combination of i

header chunks; thus the foreach loop starting at line 8 iterates over all such subtrees.

Line 9 initializes the “total size” variable for St to infinity, since we have not

yet processed any subtrees with leaves indicated by t.

Line 10 creates set LC, which is a set of candidates for the left child; for each

candidate left child, the algorithm determines what the corresponding right child must

be (line 12). It then computes the size of the crossproducting table for combining the

left child and right child; that value is added to the size of the best subtree found for

46

the left child and the best child found for the right subtree. If the total size is better

than the (previous) best value found for this subtree, then we update that “best”

value (St) and record the left and right children that produce this value.

In the final step (step k − 1), the foreach loop in line 8 runs for only one

iteration, since there is only one element in Tk (i.e. a set containing all k elements

from the set C.) Thus in this step, it computes an optimal binary reduction tree and

stores its size in SC . The structure of the tree can be found by traversing Lt and Rt

values, starting with LC and RC .

3.4.3 Results

To evaluate the dynamic programming algorithm just described, we apply it to several

real-world filter databases of various sizes. The results are shown in Table 3.6.

This dynamic programming algorithm is interesting, at least from a theoretical

perspective, but it should be noted that its memory requirements makes it less useful

for practical application. The high memory requirements stem from the need to

retain the equivalence classes resulting from each subtree considered by the algorithm;

these are necessary for the determination of how many unique equivalence classes are

produced in a given crossproducting table, which in turn helps determine the size of

its parent table in the tree.

If a classifier has N rules and m equivalence classes, then associating a bitvector

of N bits for each equivalence class (to indicate which filters are matched by the class)

requires Nm bits; additional memory is typically required for the reverse mapping,

i.e. the ability to look up equivalence classes by identifying the set of filters matched.

If m grows proportionally to N (as observed in [19]), or faster, then this is at best

an O(N2) memory requirement. Thus the memory requirements of the tree selection

algorithm become unwieldy beyond several thousand filters; in such a case, a more

practical approach would be to randomly select a small number (around ten or twenty)

of reduction trees, and choose the one with the best performance.

3.5 Summary

Recursive Flow Classification [19] is a packet classification technique which performs

classification very quickly (e.g. 12 memory accesses for classification using the typical

47

Number Minimum Bits Storage for Storage for
Database of Bits Required Per individual crossproduct

Filters (total) Filter chunk lookups tables
ifw1 280 3,813,448 13,619.46 72.2% 27.8%
ifw3 184 2,946,976 16,016.17 86.73% 13.27%
acl1 814 3,615,296 4,441.40 76.1% 23.9%
acl2 613 7,721,637 12,596.47 37.3% 62.7%
acl3 2,396 35,106,066 14,651.95 9.33% 90.67%

ipc fwd 1,556 16,036,551 10,306.27 20.0% 80.0 &
ipc inp 192 2,087,180 10,870.73 97.34% 2.66%

Table 3.6: Results from optimal reduction tree selection for real-world filter sets

Internet 5-tuple) but has relatively high storage requirements. In this chapter we

have studied methods for reducing the amount of storage required by RFC.

The simple compression technique described in Section 3.1 reduced storage

requirements for the classifier’s crossproduct tables by 37% on average in the exper-

iment. The overall storage requirements were reduced by 25% on average, but it

appears that larger classifiers will be more compressible.

The efficiency of the compression can be improved by the TSP heuristic de-

scribed in Section 3.2. This reduced storage requirements by 54% on average in

the experiment. The efficiency of compression appears to increase with larger fil-

ter databases, but for sufficiently large filter databases (where compression is really

needed) the computational cost of this heuristic becomes excessive.

The most benefit, in terms of reducing storage requirements, comes from proper

selection of the reduction tree. Optimal reduction tree selection reduced the storage

requirements by 74% over the average size in our experiment. A dynamic program-

ming algorithm can be used to select an optimal reduction tree, but the memory

requirements for such an algorithm are steep.

48

Chapter 4

Extended TCAMs

This chapter discusses a hardware approach to packet classification called Extended

TCAMs. This method achieves classification at a rate comparable to TCAMs, but

without TCAM’s high power consumption and inefficient handling of range match

fields.

This chapter is organized as follows: Section 4.1 provides a brief overview of the

ideas behind Extended TCAMs; Section 4.2 describes the partitioning techniques used

to group filters. A CMOS implementation of hardware range checking is provided in

Section 4.3. Results for Extended TCAMs using both the partitioning and range check

support are given in Section 4.4. A technique for handling dynamic filter database

updates is discussed in Section 4.5. Section 4.6 describes the used of multi-level

indexing. Finally, a summary is presented in Section 4.7

4.1 Overview

TCAMs (described in Chapter 2) are the most popular practical approach to high

performance packet classification, but TCAMs suffer from high power requirements

and inefficient representation of range match fields. A large TCAM at the time of

this writing can store 18 Mb and requires up to 20 watts or more; this is particularly

problematic in high performance routers requiring one or more such chips on each

port. Implementation of range matching in TCAMs requires replication of rules; this

causes typical filter databases to expand by a factor of two to six [42], thus increasing

both transistor count and power dissipation. To address these issues, we introduce a

packet classification technique called Extended TCAMs.

49

The Extended TCAM concept is based on two main ideas. First is the idea

that power dissipation can be reduced by dividing the TCAM into partitions, and

only activating a small subset of these on each query; this idea was inspired by [31],

which uses a partitioned TCAM on the much simpler problem of IP address lookup.

The second idea is the use of range-matching logic in the hardware itself to solve the

range-match storage problem.

4.2 Partitioning of the TCAM

The most serious problem with using standard TCAMs for packet classification is their

excessive power consumption. It has been observed [31] that the main component of

power consumption in TCAM search is proportional to the number of entries searched;

thus, to reduce a TCAM’s power consumption, we can partition it into blocks of words,

and only search a small number of block(s) when performing a lookup. For this to

work, of course, an index mechanism is needed to determine which block(s) of the

TCAM to search for a given query.

In the IP lookup case [31], a lookup in the index identifies a single bucket that

needs to be searched; thus the index can actually be implemented simply by using

one of the blocks inside the TCAM. Multi-dimensional packet classification, on the

other hand, may require searching several blocks for filters; thus we use an indexing

mechanism that can support this. Each Extended TCAM block has an associated

index filter, which consists of the same match circuitry as one word in the Extended

TCAM device. When this filter is matched, it enables its corresponding TCAM block

for search.

So, a search in an Extended TCAM device works as follows: first, the index

filters are searched (in parallel) to determine which blocks to enable; then, the enabled

blocks are searched (in parallel) for matching filters. Each block then returns its

highest priority matching filter, and a final priority resolution step returns the highest

priority filter of those.

An example of an Extended TCAM is shown in Figure 4.1; for simplicity, we

perform two-dimensional classification in the example, with a four bit range field and

a four bit bitmask field. To perform a lookup for a packet with header field values

(2, 10), we first check the index filters and determine that the second and fourth index

filters match the packet. The search then progresses to the second filter block and

50

the fourth filter block. In the second block we find the matching filter (1-2, 1x1x),

and in the fourth block we find the matching filter (0-14, 1010).

0-15, 0xxx
0-6, 1xxx

7-15, 1xxx
0-15, xxxx

1-13, 001x
2-3, 00xx

11-14, 011x
12-12, 01xx

0-5, 1110
1-2, 11xx

7-7, 110x
13-14, 11xx
11-15, 111x

9-10, xxxx
0-14, 1010

index filters:

filter blocks:

Figure 4.1: An example of filters and index filters in an Extended TCAM

When using a partitioned TCAM for packet classification, the key to making

the search power efficient is to group the filters in such a way that only a few TCAM

blocks must be searched for any given query. The current approach is to use a

heuristic filter grouping algorithm to organize the filters. The lookup process itself

is completely independent of the algorithm used to group the filters, i.e. the same

Extended TCAM hardware will work regardless of what filter grouping algorithm is

used.

This dissertation describes two specific algorithms for filter grouping. The

first algorithm runs through a series of phases, and in each phase it divides the

multidimensional classification space into subregions; it then uses these subregions to

group the filters. The second algorithm organizes the filters by storing them in tries

and then carving sections out of the tries; this approach is more directly inspired by

[31] but includes modifications for application to the general multidimensional packet

classification problem.

51

4.2.1 Region-Splitting Algorithm

The region-splitting algorithm runs in a series of phases. In each phase, a partitioning

is made of the entire classification space; it is this partitioning that is used to group

the filters. Later in this section we provide specifics for how the partitionings are

chosen, but let us first build some intuition about what it means to split the regions.

Filter Source Port Source Address
a 1-13 001x
b 2-3 00xx
c 9-10 xxxx
d 11-14 011x
e 12-13 0xxx
f 0-14 1010
g 7 110x
h 0-5 1110
i 1-2 11xx
j 13-14 11xx
k 11-15 111x

Table 4.1: Example set of filters

Let us begin with a simple example using the filters shown in Table 4.1. These

filters can be plotting in two dimensions, as shown in Figure 4.2. In this example, let

us use an Extended TCAM with block size of four, i.e. each filter storage block can

hold up to four filters.

52

122 14108640

12

2

14

10

8

6

4

0

f

c

a

b

 d

e

 h

i g

k

j

Figure 4.2: Example filters plotted in two dimensions

53

122 14108640

12

2

14

10

8

6

4

0

f

c

a

b

 d

e

 h

i g

k

j

Figure 4.3: First split performed in region-splitting example

We begin the first phase considering the region spanning all of the two-dimen-

sional classification space. For the sake of example, let us assume the algorithm

decides to split that region along the dashed line shown in Figure 4.3. Note that

the lower region (spanning source ports 0-15, and source addresses matching 0xxx)

completely contains four filters (filters a, b, d, e), which will fit within a TCAM block.

We can therefore allocate a TCAM block to correspond to that region, store these

filters in the block, and set its index entry to the filter (0-15, 0xxx). And now we can

remove filters a, b, d, e from consideration in future steps.

54

122 14108640

12

2

14

10

8

6

4

0

f

c

g

k

j
 h

i

Figure 4.4: Second split performed in region-splitting example

We now turn our attention to the upper region. Suppose, for the sake of

example, that the algorithm decides to split the upper region along the vertical dotted

line shown in Figure 4.4. Note that the region in the upper left (spanning source ports

0-6 and source addresses matching 1xxx) contains two filters (h and i), which will fit

in a TCAM block. We can therefore allocate a TCAM block to correspond to this

region, store the filters in that block, and set its index entry to the filter (0-6, 1xxx).

Now we remove filters h, i from consideration in future steps.

Now let us look at the upper right region spanning source ports 7-15 and source

addresses matching 1xxx. This region contains three filters (g, j, k), which will fit in a

TCAM block. We can therefore allocate a TCAM block to correspond to this region,

store the filters in that block, and set its index entry to the filter (7-15, 1xxx). At

this point we remove filters g, j, k from consideration in future steps.

55

122 14108640

12

2

14

10

8

6

4

0

f

c

Figure 4.5: Second phase of region-splitting example

Filters c and f still remain (as shown in Figure 4.5), so we need to run the

algorithm for another phase. We begin this phase considering the region spanning

all of the two-dimensional classification space. This contains two filters (c and f), so

there is no need to split it further. We allocate a TCAM block for this region, store

filters c and f in that block, and set its index entry to the filter (0-15, xxxx).

56

0-15, 0xxx
0-6, 1xxx

7-15, 1xxx
0-15, xxxx

1-13, 001x
2-3, 00xx

11-14, 011x
12-12, 01xx

0-5, 1110
1-2, 11xx

7-7, 110x
13-14, 11xx
11-15, 111x

9-10, xxxx
0-14, 1010

index filters:

filter blocks:

F
igu

re
4.6:

C
on

ten
ts

of
E

x
ten

d
ed

T
C

A
M

for
region

-sp
littin

g
ex

am
p
le

A
fter

th
at,

all
fi
lters

h
ave

b
een

assign
ed

to
storage

b
lo

ck
s,

so
th

e
algorith

m

is
d
on

e.
T

h
e

con
ten

ts
of

th
e

E
x
ten

d
ed

T
C

A
M

are
sh

ow
n

in
F
igu

re
4.6.

N
ote

th
at

a
q
u
ery

corresp
on

d
s

to
a

p
oin

t
in

th
e

tw
o-d

im
en

sion
al

classifi
cation

sp
ace,

an
d

th
u
s

an
y

given
q
u
ery

w
ill

fall
in

to
on

e
of

th
e

fi
rst

3
region

s
an

d
also

in
to

th
e

last
region

;

th
u
s,

for
an

y
q
u
ery,

w
e

w
ill

n
eed

to
search

ex
actly

tw
o

T
C

A
M

storage
b
lo

ck
s

(i.e.
on

e

of
fi
rst

th
ree

b
lo

ck
s,

an
d

also
th

e
last

b
lo

ck
).

F
or

ex
am

p
le,

su
p
p
ose

a
p
acket

arrives

w
ith

a
sou

rce
p
ort

of
10

(d
ecim

al)
an

d
a

sou
rce

ad
d
ress

of
0010

(b
in

ary
).

W
e

fi
rst

ch
eck

th
e

in
d
ex

fi
lters

an
d

d
eterm

in
e

th
at

th
e

fi
rst

an
d

fou
rth

in
d
ex

fi
lters

m
atch

;
as

a
resu

lt,
in

th
e

secon
d

step
w

e
activate

th
e

fi
rst

an
d

fou
rth

fi
lter

storage
b
lo

ck
s

for

search
in

g.
W

e
fi
n
d

th
at

fi
lter

(1-13,
001x

)
in

th
e

fi
rst

b
lo

ck
an

d
fi
lter

(9-10,
x
x
x
x
)

in

th
e

fou
rth

b
lo

ck
m

atch
;
w

e
th

en
p
erform

p
riority

resolu
tion

to
d
eterm

in
e

th
at,

of
th

e

m
atch

in
g

fi
lters,

(1-13,
001x

)
o
ccu

rred
fi
rst

in
th

e
origin

al
list.

A
s

n
oted

b
efore,

in
each

step
of

th
e

algorith
m

,
a

region
r

is
selected

an
d

cu
t

in
to

tw
o

su
b
-region

s
r
1

an
d

r
2 .

A
region

can
b
e

d
efi

n
ed

b
y

th
e

fi
lter

sp
ecifi

cation

w
h
ich

ex
actly

covers
th

at
region

.
A

cu
t

alon
g

a
b
itm

ask
d
im

en
sion

is
p
erform

ed
b
y

selectin
g

on
e

of
th

e
“d

on
’t

care”
b
its

an
d

settin
g

its
valu

e
to

0
in

on
e

su
b
region

an
d

1

in
th

e
oth

er
su

b
region

;
all

oth
er

sp
ecifi

cation
s

are
in

h
erited

from
th

e
origin

al
region

.

A
ran

ge-m
atch

in
g

d
im

en
sion

is
sp

lit
b
y

d
iv

id
in

g
a

ran
ge

(lo,h
i)

in
to

su
b
ran

ges
(lo,m

)

57

and (m + 1, hi) where lo ≤ m < hi, and inheriting all other specifications from the

original region.

A step of the algorithm, then, can be expressed as follows. Let Fi be the set of

filters remaining to be processed at the start of phase i, and let Si be the set of sub-

regions created by the algorithm during phase i. At the start of phase i, Si contains

one region spanning the entire classification space. Let σ(r) denote the set of filters

in Fi that lie entirely within r. In all but the last phase, we repeat the following step,

until no region r in Si can be split into two sub-regions containing least k filters from

Fi in each:

• Let r be a region, selected from Si, with |σ(r)| > k.

• Consider cuts that divide r into two sub-regions r1 and r2 that satisfy |σ(r1)| ≥ k

and |σ(r2)| ≥ k

• Among all such candidate cuts, select one that maximizes |σ(r1) ∪ σ(r2)|

• Remove r from Si, and replace it with r1 and r2.

If no candidate cuts are found for a region, it is not split, and is not considered again

in that phase. The phase terminates when no more candidate cuts can be found. At

the end of the phase, a storage block is allocated for each region, and up to k filters

from that region are placed in the block.

These splitting criteria differ from the criteria described in [42], which require

tuning of parameters α and β to achieve a good partitioning. By splitting only when

both sub-regions have at least k filters each, where k is the block size, we improve

storage efficiency by avoiding the creation of a lot of blocks that are only partially

filled.

During the final phase of the algorithm, the filters are allowed to span more

than one region; if a filter spans more than one region, it must be stored in the blocks

corresponding to each of those regions. This special handling in the last phase is

not absolutely necessary, but can often reduce the number of phases needed (if there

is a small set of hard-to-fit filters left towards the end) at a small cost of storage

efficiency. Since a query will result in searching one block for each phase, the best

power efficiency is achieved when the number of phases is minimized.

In the final phase, we also allow a region to be split even if the sub-regions do

not contain at least k filters each. The basic step for the last phase can be expressed

58

as follows, letting χ(r) denote the set of filters in Fi that intersect with r but are not

completely contained within r:

• Let r be a region, selected from Si, with |σ(r) ∪ χ(r)| > k.

• Consider the cuts that divide r into two sub-regions r1 and r2.

• Among all such candidate cuts, select one that maximizes |σ(r1) ∪ σ(r2)|

• Remove r from Si, and replace it with r1 and r2.

The last phase terminates when, for every region r in Si, |σ(r) ∪ χ(r)| ≤ k, or when

a cut results in no decrease in |σ(r) ∪ χ(r)|. In the latter case, the final phase fails

to include all filters; the algorithm must be re-run, specifying more phases. The

algorithm can be re-run, increasing the number of phases each time until it complete

successfully; or, most of the redundant computation can be avoided by rolling back to

the start of the last phase, if it fails (or if storage efficiency in the last phase became

undesirably low). Alternately, the algorithm can be run without the special handling

of the last phase; this simplifies implementation, but the results in some cases are not

quite as good.

4.2.2 Region-Splitting Results

We evaluate performance on filter databases which are synthetically generated (via

ClassBench) using real filter databases as seeds. The seed database “acl1” is an

Access Control List obtained from an ISP; “fw1” is a firewall database from another

ISP; “ipc1” is derived from an IP Chains database used by another ISP.

To measure power efficiency, we define the TCAM power fraction as the ratio of

TCAM bits searched using a partitioned TCAM to the number of TCAM bits searched

using a nonpartitioned TCAM; this can be computed by the expression (b + sk)/N ,

where b is the number of filter storage blocks needed (and thus the number of index

entries), s is the maximum number of filter blocks searched for any query (which

equals the number of phases, when using the region-splitting algorithm), k represents

the filter storage block size, and N is the number of filters in the database. For this

metric, lower is better.

To measure storage efficiency, we define the TCAM storage complexity as the

ratio of TCAM storage bits required, using a partitioned TCAM, to the number of

TCAM storage bits required for a nonpartitioned TCAM; this can be computed by

59

the expression (b + bk)/N . For this metric also, lower is better. Note that, in the

case of the partitioned TCAM, index entries are to be included in these calculations,

as well as the unused entries in any storage blocks only partially filled

Before we can obtain meaningful results, we must first decide how to select

the filter storage block size. Figure 4.7 shows power fraction results for databases

of varying sizes (8,000 filters to 64,000 filters) as we vary the block size. With a

sufficiently large block size, we may only need to search one TCAM block for any

given query. But, that TCAM block will likely contain a lot of filters that are not

particularly relevant to the query received. Thus in that case we achieve poor power

efficiency. On the other hand, if we use a very small block size, we will need a much

larger total number of blocks; this means a larger index size, which again means poor

power efficiency. The best choice lies somewhere between those two extremes, and

appears to be proportional to the square root of the storage block size. Based on

this data, we select a storage block of size equal to the largest power of two less than
1
2

√
N , where N is the number of filters. Now that we have a method for selecting the

storage block size, we can obtain some meaningful results regarding the algorithm’s

performance.

Power fraction results are shown in Figure 4.8. Even for the smaller filter

databases, where a small TCAM can be used and thus power dissipation is a lesser

concern, the results are good; in the case of the larger databases, where power dissi-

pation is a critical issue, these results are extremely good.

For example, a standard TCAM large enough to hold one of the databases with

128,000 filters would consume 20 to 30 watts; an Extended TCAM implementation

with a power fraction of 0.02 would only require 0.4 to 0.6 watts.

Storage complexity results are shown in Figure 4.9. In most cases the partition-

ing does not require much additional storage when compared to a standard TCAM

implementation; given the substantial improvements in the power fraction, this is in

most cases a very reasonable tradeoff to make. The two cases of high storage com-

plexity in the chart are the result of the final phase allowing filters to span more than

one block; in both cases a much lower storage complexity can be achieved (with a

slight increase in power fraction) by allowing the algorithm to use one more phase.

60

0

0.05

0.1

0.15

0.2

0.25

10 100 1000 10000

Filters Per Block

P
o

w
er

 F
ra

ct
io

n

8k 16k 32k

 64k
filters

Figure 4.7: Power fraction results for different filter storage block sizes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

2000 4000 8000 16000 32000 64000 128000

Number of Filters

T
C

A
M

 P
o

w
er

 F
ra

ct
io

n

acl1

fw1

ipc1

Figure 4.8: Power fraction results for region-splitting algorithm

61

0

0.5

1

1.5

2

2.5

2000 4000 8000 16000 32000 64000 128000

Number of Filters

T
C

A
M

 S
to

ra
g

e
C

o
m

p
le

xi
ty

acl1

fw1

ipc1

Figure 4.9: Storage complexity results for region-splitting algorithm

62

4.2.3 Trie-Carving Algorithm

In this section we present a trie-based filter grouping algorithm inspired by [31] as an

alternative method for grouping filters. As we shall see, the trie-carving algorithm is

simpler (thus more amenable to the handling of filter updates) and faster than the

region-splitting algorithm, but not nearly as storage-efficient.

The trie-carving algorithm maintains a pair of tries containing filters; one trie

is organized using the source address of the filters, and the other trie is organized

using the destination address of the filters. Each filter is inserted into one of the two

tries, and then filters are grouped by carving out sections of the trie. To decide into

which trie a filter should be inserted, we examine the source and destination address

fields of the filter and choose whichever one is more fully specified; in the case of a

tie, the source address trie is used.

Filter Source Destination Protocol
Address Address

a 0010 1101 *
b 10* 0001 TCP
c 11* 10* TCP
d 11* * *
e 00* 0* UDP
f 01* 10* TCP
g 01* * TCP
h 0* 10* *
i * 10* UDP
j 1* 0* *
k * 0* UDP
l * * TCP
m * * UDP

Table 4.2: Example set of filters

For example, consider the filters in Table 4.2, which are defined over a four bit

wide source address, a four bit wide destination address, and a protocol value which

can be either TCP or UDP. These filters would be placed in the Source Address trie

shown in Figure 4.10 and the Destination Address trie shown in Figure 4.11. Each

node is associated with a count value (shown below the node) which indicates the

number of filters contained in the subtree rooted at that node.

63

l, m

0

j

e f, g c, d

a

0

0

1

1

1

1

(9)

(4)

(2) (2)

(3)

(2)

(1)

(1)

Figure 4.10: Source address trie for example filter set

0

k

h, i

b

00

1

1(4)

(2)

(1) (2)

(2)

(1)

(1)

0

Figure 4.11: Destination address trie for example filter set

We use a carving algorithm which is similar to the subtree-split algorithm

presented in [31]. The algorithm is run once for each of the two tries.

The carving algorithm performs a postorder traversal of the trie, considering

each node as a possible carving node. A carving node, in this case, is a node whose

count is at least dk/2e and whose nearest ancestor with greater count either has a

count greater than k or does not exist.

64

When a carving node p is found, the algorithm carves out filters contained in

the subtree rooted at p; the algorithm carves out as many filters as possible without

resulting in a block at half capacity or less (except when there are no other filters left

in the entire trie) and places those filters in TCAM blocks. The index entry for each

such TCAM block is set to a filter wildcarded in all fields except the field to which

the current trie corresponds; that field is set to the prefix which corresponds to the

node p. Any filters remaining (in cases that would have produced underfull blocks)

are stored at node p to be processed in further steps of the algorithm. Finally, the

count of each ancestor of p is updated by subtracting the number of filters that were

removed from the trie and placed into the TCAM.

The algorithm can be stated more formally as follows:

1: while there is a next node in post order do

2: p← next node in post order

3: anc← parent(p)

4: while anc 6= null and count(p) = count(anc) do

5: anc← parent(anc)

6: end while

7: if anc = null or (count(p) ≥ dk/2e and count(anc) > k) then

8: FList← CarveOut(p);

9: numToStore← |FList|
10: if count(p) mod k < dk/2e then

11: numToStore← numToStore - (count(p) mod k)

12: end if

13: Remove numToStore filters from FList and store in TCAM blocks

14: if FList 6= ∅ then

15: Store the filters remaining in FList at node p

16: end if

17: for each node u along path from root to p, inclusive do

18: count(u) ← count(u) - numToStore

19: if count(u) = 0 then

20: remove u

21: end if

22: end for

23: end if

24: end while

65

The CarveOut procedure, which is called by the carving algorithm, consists of the

following operations:

1: retval ← filters(n)

2: filters(n) ← ∅
3: if leftchild(n) 6= null then

4: retval ← retval ∪ CarveOut(leftchild(n))

5: delete leftchild(n)

6: end if

7: if rightchild(n) 6= null then

8: retval ← retval ∪ CarveOut(rightchild(n))

9: delete rightchild(n)

10: end if

11: return retval

This algorithm has a total complexity of O(N +NW/k) where N is the number

of filters, W is the maximum prefix length, and k is the filter storage block size. This

makes the trie-carving algorithm very appealing in terms of runtime.

l, m

0

j

e f, g c, d

a

0

0

1

1

1

1

(9)

(4)

(2) (2)

(3)

(2)

(1)

(1)

Figure 4.12: First carving step for source address trie

Let us apply this algorithm to the filters of Table 4.2, using left to right pos-

torder traversals to traverse the tries; in this example, let us use a TCAM block size

of three, i.e. k = 3. Figure 4.12 shows the first carving step applied to the source

66

address trie. As a result of this carving step, filters a and e are stored in a TCAM

block; that TCAM block’s index filter is then set to the filter (00*, *, *), i.e. all fields

wildcarded except source address, which is set to the prefix corresponding to the root

of the section carved out.

l, m

0

j

f, g c, d

1

1

1

(7)

(2)

(2)

(3)

(2)

Figure 4.13: Second carving step for source address trie

The second carving step performed on the source address trie is shown in

Figure 4.13. Here, filters f and g are placed in a new TCAM block, and its index

entry is set to the filter (01*, *, *).

l, m

j

c, d

1

1

(5)

(3)

(2)

Figure 4.14: Third carving step for source address trie

Figure 4.14 shows the third carving step on the source address trie. In this

step, filters c, d and j are stored in a new TCAM block; the index entry for the

block is set to the filter (1*, *, *). Note that the subtree-split algorithm of [31] would

perform the carving one level higher (at the node corresponding to 0* rather than

01*) in the trie. We shall say more about this in a moment.

67

l, m

(2)

Figure 4.15: Fourth carving step for source address trie

The final carving step applied to the source address trie is shown in Figure 4.15.

In this step, filters l and m are assigned to a new TCAM block, and the TCAM block’s

index entry is set to the filter (*, *, *).

Note that along any path through the original trie, we pass through nodes re-

quiring activation of a total of 2 TCAM blocks. If we had used the original subtree-split

algorithm for carving, a worst-case path through this trie would require activation of

3 TCAM blocks. The same groups of filters are produced, but by carving them lower

in the trie we can often reduce the total number of blocks activated for any given

search (thus lowering total power requirements).

0

k

h, i

b

00

1

1(4)

(2)

(1) (2)

(2)

(1)

(1)

0

Figure 4.16: First carving step for destination address trie

Now that we have carved out all the filters from the source address trie, we

shall process the destination address trie. The first carving step for the destination

address trie is depicted in Figure 4.16. Filters b and k are stored in a new TCAM

block, the index entry of which is set to the filter (*, 0*, *).

68

h, i

0

1(2)

(2)

(2)

Figure 4.17: Second carving step for destination address trie

Figure 4.17 shows the final carving step applied to the destination trie. In this

step filters h and i are placed in a new TCAM block with index filter set to (*, 1*,

*). At this point, the algorithm has finished grouping the filters, which results in the

Extended TCAM contents shown in Figure 4.18. The first four bits in each TCAM

entry are used for the source address; the next four are for the destination address,

and the last bit indicates the protocol (0=TCP, 1=UDP).

Unlike the IP lookup case, a query in the general multi-dimensional packet

classification problem must search all buckets along the query’s path in each trie;

this is because we can not simply store a single covering filter for each bucket (to

handle cases where the query matches a bucket but none of the filters in it) due to

the multidimensional nature of the problem.

Therefore, to accomplish this, for each bucket we allocate a TCAM block and

we store the bucket’s filters in that block; we then set the block’s index entry using the

bucket’s prefix (its location in its trie) in in the relevant field (source or destination

address) and wildcards in all other fields. The worst-case power fraction depends on

the maximum number of TCAM blocks activated for search, which equals the sum of

the maximum number of filters along a path in each trie.

We should note that, under this approach, all filters that are wildcarded in

both source and destination address are searched on all queries. While this is not

a problem on the real-world filter databases studied in this dissertation (where only

a limited number of filters are specified only on port and protocol information), it

can nonetheless be addressed by introducing additional tries (or other carvable data

structures) organized by the additional header fields.

69

0xxx 10xx x
xxxx 10xx 1

index filters:

filter blocks:

0010 1101 x
00xx 0xxx 1

01xx 10xx 0
01xx xxxx 0

11xx 10xx 0
11xx xxxx x
1xxx 0xxx x

xxxx xxxx 0
xxxx xxxx 1

10xx 0001 0
xxxx 0xxx 1

00xx xxxx x
01xx xxxx x
1xxx xxxx x
xxxx xxxx x
xxxx 0xxx x
xxxx 1xxx x

(a)
(e)

(f)
(g)

(b)
(k)

(h)
(i)

(c)
(d)
(j)

Figure 4.18: Extended TCAM contents for trie-carving example

4.2.4 Trie-Carving Results

We evaluate the Trie-Carving algorithm using the same performance metrics and

input filter databases used for the Region-Splitting study in Section 4.2.2. To properly

evaluate the Trie-Carving algorithm, we first determine how to select the block size.

Figure 4.19 shows the power fraction obtained with four databases (of size from 8,000

filters to 64,000 filters) when varying the storage block size. Again we see that an

excessively large or excessively small block size produces poor power fraction results,

and again the largest power of two smaller than 1
2

√
N (where N is the number of

filters) appears to be a good choice.

Power fraction results are shown in Figure 4.20. Again we see good results

even for the smaller filter databases (where power dissipation is less of a concern) and

excellent results for the larger databases. Despite this algorithm’s lesser sophistication

in grouping filters (i.e. that it only specifies one field in each index entry), its power

fraction results compare well with the Region Splitting algorithm’s results.

70

0

0.05

0.1

0.15

0.2

0.25

10 100 1000 10000

Filters Per Block

P
o

w
er

 F
ra

ct
io

n

64k filters32k16k8k

Figure 4.19: Power fraction results for different filter storage block sizes

Storage complexity results are presented in Figure 4.21; from this chart we can

see that the Trie-Carving algorithm is not as efficient as the Region-Splitting algo-

rithm in terms of filter storage needed. In fact it is because the Trie-Carving algorithm

is not as concerned about storage efficiency that it is sometimes able to achieve better

a power fraction than the more sophisticated Region-Splitting approach. But even

with its higher storage complexity, trie-carving is still attractive due to its simplicity

and running time.

71

0

0.05

0.1

0.15

0.2

0.25

2000 4000 8000 16000 32000 64000 128000

Number of Filters

T
C

A
M

 P
o

w
er

 F
ra

ct
io

n
acl1

fw1

ipc1

Figure 4.20: Power fraction results for trie-carving algorithm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2000 4000 8000 16000 32000 64000 128000

Number of Filters

T
C

A
M

 S
to

ra
g

e
C

o
m

p
le

xi
ty

acl1

fw1

ipc1

Figure 4.21: Storage complexity results for trie-carving algorithm

72

4.3 Range Check Hardware

In addition to the problem of high power consumption, TCAM-based packet classifiers

are further encumbered by serious inefficiencies in representing range matches. Ranges

are handled in a standard TCAM by replacing each filter with several filters, each

using a prefix match that covers a portion of the desired range. For example, in a

four bit wide field the range 2-10 can be expanded into the bit patterns 001*, 01*,

100* and 1010, which exactly cover that range.

In this manner, any sub-range of a k bit field can be represented as a set of

prefixes, requiring up to 2(k − 1) prefixes per sub-range. So, a 16-bit port field can

require as many as 30 distinct TCAM entries. But if ranges are present in both the

source and destination port fields, then we need a filter for each combination of the

sub-ranges for the two fields. Thus a single packet filter may require 900 TCAM

entries. In practice, real-world filter sets expand by a smaller yet still significant

factor of about two to six times.

Therefore, in this section we describe range check circuits which avoid the need

for rule replication. The most efficient of these designs allows classification on the

standard IPv4 5-tuple with a 46% increase in transistor count, by using range check

hardware for the port fields; this increase in transistor count, however, is more than

offset by the fact that rules are no longer expanded to multiple entries. Also, since

there is now a one-to-one correspondence between filters and TCAM entries, the range

check support greatly simplifies creation and maintenance of the TCAM contents.

This is accomplished by using standard TCAM logic for the source and des-

tination IP addresses, transport protocol number, and transport protocol flags, and

range match logic for the transport layer port numbers. E.g. each Extended TCAM

[42] word might have 88 bits of standard TCAM logic, and two 16-bit wide range

match fields. Using 44 transistors per bit of range match, and 16 per bit of standard

TCAM matching, this comes out to 2816 transistors per word vs. a standard TCAM’s

1920 transistors per word.

It is also worth noting that range matching can also be applied to other fields

in certain cases. For example, when using the third P 2C encoding scheme (see Sec-

tion 2.3), efficient range match hardware would eliminate the need for storing multiple

ternary match conditions per rule (i.e. rule replication), provided that the bits for

each field are allocated in a contiguous fashion.

73

The implementations described in this section operate by storing the lower and

upper bound for each range match, and using dedicated range check circuitry that

performs the comparison in a set of stages. The difference in each design lies in how

the range check sub-circuit is implemented.

Section 4.3.1 describes the most straightforward scheme, which uses four inter-

stage signals. A design using three inter-stage signals is given in Section 4.3.2; a more

efficient refinement of this design is described in Section 4.3.3. Finally, in Section 4.3.4

we show how to construct a more versatile device using range-check sub-fields that

can be chained together as needed.

4.3.1 Implementation with four inter-stage signals

The first circuit presented is the most straightforward of the three designs. This

circuit consists of a separate stage for each bit, and the comparison proceeds from

the most significant bits to the least significant bits.

... ...
lehi+1

hii+1

loi+1

leli+1

qi+1

gehi+1

geli+1

lehi

hii

loi

leli

qi

gehi

geli

lehi-1

hii-1

loi-1

leli-1

qi-1

gehi-1

geli-1

Figure 4.22: Iterative structure of range check circuit

The iterative structure of the circuit is shown in Figure 4.22, where hii, loi,

and qi represent bit i of the stored upper bound, the stored lower bound, and the

query value, respectively. The four inter-stage signals gehi, lehi, geli, and leli are

used to represent the following, where W is the width of a word:

gehi: The quantity represented by the first W−i bits of the query (i.e. qW−1 through

qi) is greater than or equal to the quantity represented by the first W − i bits

of the stored upper bound hi.

lehi: The quantity represented by the first W − i bits of the query is less than or

equal to the quantity represented by the first W − i bits of the stored upper

bound hi.

74

geli: The quantity represented by the first W − i bits of the query is greater than

or equal to the quantity represented by the first W − i bits of the stored lower

bound lo.

leli: The quantity represented by the first W − i bits of the query is less than or

equal to the quantity represented by the first W − i bits of the stored lower

bound lo.

The names are abbreviations indicating that, up to bit i, the query is greater (less)

than or equal to hi (lo).

The signals gehW , lehW , gelW , and lelW , which are inputs to the first stage,

are always asserted. At that point, we can think of it as having compared the first

zero digits (i.e. an empty string) from the query against the first zero digits of the

upper and lower bounds (also empty strings.) The empty strings are equal; therefore

those four signals are asserted.

The assertion of both leh0 and gel0 at the same time happens if and only if the

query value q is within the range defined by hi and lo, inclusive; therefore, a “query

is in range” signal can be formed by taking the logical AND of signals leh0 and gel0.

lehi+1

gehi

lehi

gehi+1

qi

hi i’

qi’

hi i

Figure 4.23: Range-check sub-circuit
for upper bound comparison

leli+1

geli

leli

geli+1

qi

loi’

qi’

loi

Figure 4.24: Range-check sub-circuit
for lower bound comparison

The logic for the upper bound check of one stage is shown in Figure 4.23. If

the query bits before this stage are greater than hi (i.e. lehi+1 is not asserted), then

the query value is still greater than hi once this stage is included as well; therefore

we ensure in this case that lehi is not asserted. If, on the other hand, the query bits

before this stage are not greater than hi, then there is only one condition under which

the query value including this bit can be greater than hi. That condition is that the

75

previous query bits equal hi (implied by gehi+1 and leh′
i+1, but we can omit leh′

i+1

since that case already causes us to assert leh′
i), qi is 1, and hii is 0; therefore in this

other case we also ensure lehi is not asserted. In all other cases we assert lehi.

Each AND gate and OR gate pairing in the sub-circuit can be implemented as

a compound gate using 8 transistors. Each inverter requires 2 transistors. Thus this

part of the sub-circuit requires 20 transistors.

The logic for the lower bound check is shown in Figure 4.24; its operation is the

same as the upper bound check, except that it uses loi (bit ith of the lower bound)

instead of hii (bit i of the upper bound.) This part of the sub-circuit also requires 20

transistors.

Each stage requires an upper bound check (20 transistors), a lower bound check

(20 transistors), and two SRAM storage cells (6 transistors each) for storing hii and

loi. Thus 52 transistors are required for each bit in the query, using this design. The

bounds checking logic for the first stage can actually be simplified somewhat, since

gehW , lehW , gelW , and lelW are always asserted. Similarly, the final stage does not

need to generate the signals geh0 and lel0. This can reduce the transistor count of

those particular stages, but the middle stages still need 52 transistors each.

4.3.2 Implementation with three inter-stage signals

Using three inter-stage signals instead of four can allow us to reduce the transistor

count, if we are sufficiently careful. This circuit also consists of a separate stage for

each bit, similar to the previous circuit. The overall structure of the new circuit is

shown in Figure 4.25.

ehi+1

hii+1

loi+1

eli+1

qi+1

oori+1

ehi

hii

loi

eli

qi

oori

ehi-1

hii-1

loi-1

eli-1

qi-1

oori-1

... ...

Figure 4.25: Iterative structure of range check circuit

76

The three inter-stage signals are:

ehi: The quantity represented by the first W − i bits of the query (i.e. qW−1 through

qi) is equal to the quantity represented by the first W − i bits of the stored

upper bound hi.

eli: The quantity represented by the first W − i bits of the query is equal to the

quantity represented by the first W − i bits of the stored lower bound lo.

oori: The quantity represented by the first W − i bits of the query is out of range

(i.e. is above hi or below lo.)

The names are abbreviations indicating that, up to bit i, the query is equal to hi,

equal to lo, or out of range.

Logic expressions for each inter-stage signal can be written as follows:

ehi ≡ ehi+1 ∧ (qi = hii)

eli ≡ eli+1 ∧ (qi = loi)

oori ≡ oori+1 ∨ (ehi+1 ∧ hi′i ∧ qi) ∨ (eli+1 ∧ loi ∧ q′i)

And we use as initial conditions that ehW and elW are asserted, and oorW is not.

The final answer is determined simply by looking at the value of oor0. This

signal is asserted if and only if the query is out of range.

A circuit for generating the inter-stage signals is shown in Figure 4.26. This

is the result of pulling out common subexpressions in the circuit, after rewriting the

logic expressions as follows:

ehi ≡ ehi+1 ∧ (qi = hii) ≡ ehi+1 ∧ ((qi ∧ hii) ∨ (q′i ∧ hi′i))

eli ≡ eli+1 ∧ (qi = loi) ≡ eli+1 ∧ ((qi ∧ loi) ∨ (q′i ∧ lo′i))

Thus, this subcircuit requires only 36 transistors, including 6 for the inverters

to generate eh′
i+1, el′i+1, and oor′i+1. Adding in the 12 transistors for the two SRAM

storage cells (for storing hii and loi) brings the total to 48 transistors per bit. As

before, the first stage circuitry can be somewhat simplified, given that the values of

ehW , elW , and oorW are fixed. And the last stage can be simplified, because the

signals eh0 and el0 need not be generated.

77

ehi+1’

qi’

hii

qi

hii hii’

oori+1’

eli+1’

loi’

qi qi’

loi

qi

ehi+1’
qi

hii’ hii

qi’

eli+1’

ehi+1’

hii

loi’ qi

qi’ eli+1’
qi

loi’ loi

qi’

oori+1’

eliehi

oori

Figure 4.26: Range-check sub-circuit using three inter-stage signals

4.3.3 Revised implementation with three inter-stage signals

We can reduce the transistor count further by relaxing the constraints used to define

two of the inter-stage signals in the previous circuit. The top-level structure of the

new circuit, shown in Figure 4.27, is the same except for the labels of the inter-stage

signals.

ehiii+1

hii+1

loi+1

eliii+1

qi+1

oori+1

ehiii

hii

loi

eliii

qi

oori

ehiii-1

hii-1

loi-1

eliii-1

qi-1

oori-1

... ...

Figure 4.27: Iterative structure of revised range check circuit

The basic idea is this: once the query value is determined to be out of range,

we no longer need the “equals hi” or “equals lo” signals. We can relax the constraints

78

on the signals accordingly, as follows:

ehiii ≡

0 if, up to and including bit i, q is less than hi

1 if, up to and including bit i, q is equal to hi

undefined if, up to and including bit i, q is greater than hi

eliii ≡

0 if, up to and including bit i, q is greater than lo

1 if, up to and including bit i, q is equal to lo

undefined if, up to and including bit i, q is less than lo

oori ≡

0 if, up to and including bit i, q is neither above hi nor below lo

1 if, up to and including bit i, q is either above hi or below lo

The inter-stage signal names are abbreviations as in Section 4.3.2, except eh and el

have the string ii appended as a reminder that those signals are only valid if the

query is in range. We use as initial conditions that ehiiW and eliiW are asserted, and

oorW is not.

As before, the final answer is determined simply by looking at the value of

oor0. This signal is asserted if and only if the query is out of range.

Since ehiii and eliii are undefined in some cases, we have more freedom in

the implementation of this circuit than the previous one. The following set of logic

expressions, for example, can be used:

ehiii ≡ ehiii+1 ∧ (qi ∨ hi′i)

eliii ≡ eliii+1 ∧ (q′i ∨ loi)

oori ≡ oori+1 ∨ (ehi+1 ∧ hi′i ∧ qi) ∨ (eli+1 ∧ loi ∧ q′i)

The expression defining ehiii differs from the Section 4.3.2 definition of ehi by re-

placing the quantity (qi = hii) with the quantity (qi ∨ hii). The value of these

quantities differ only when qi = 1 and hii = 0, and this difference is only relevant

when ehiii+1 = 1. But in that case, the query will be out of range (as detected by

oori), which means that ehiii is undefined. Thus a value of 1 under those conditions

is acceptable. A similar analysis applies to the expression for eliii.

A circuit for generating oori is shown in Figure 4.28; it is essentially the portion

of the previous design (Figure 4.26) that computes oori. This requires 14 transistors,

plus 6 for the inverters used to generate ehii′i+1, elii′i+1, and oor′i+1. Figure 4.29 shows

79

the logic required to generate ehiii, which requires 6 transistors. Figure 4.30 shows

the logic required to generate eliii, which also requires 6 transistors. Adding the 12

transistors for the two SRAM storage cells (for hii and loi) brings the total to 44

transistors per bit, using this design.

ehiii+1’

qi’

hii

oori+1’

eliii+1’

loi’

qi

eliii+1’

ehiii+1’ hii

loi’ qi

qi’

oori+1’

oori

Figure 4.28: Sub-circuit for out-of-range signal

As in the previous design, the first stage circuitry can be simplified, given that

the values of ehiiW , eliiW , and oorW are fixed. The last stage can also be simplified,

because the signals ehii0 and elii0 need not be generated.

4.3.4 Subfield Chaining

The aforementioned range match circuits are a good choice for a device that targets

a particular application, where the number and width of range fields are known in

advance. For situations where the manufacturer of a classification device does not

know those parameters in advance, it would be nice to have some flexibility. One

approach to this is to implement range matching via a set of smaller fields, chaining

80

ehiii+1’

hii

ehiii+1’

hii

ehiii

qi’

qi’

eliii+1’

loi’

eliii+1’

loi’

eliii

qi

qi

Figure 4.29: Sub-circuit for equals-hi-if-in-range signal

ehiii+1’

hii

ehiii+1’

hii

ehiii

qi’

qi’

eliii+1’

loi’

eliii+1’

loi’

eliii

qi

qi

Figure 4.30: Sub-circuit for equals-lo-if-in-range signal

them together as needed. For example, if a device is built with subfields of 8 bits

in width, then two such subfields can be chained together to perform a 16-bit range

match, three can be chained to perform a 24-bit match, and so on.

This can be accomplished as follows: Consider a device with j subfields, each

of width s and numbered j − 1 through 0. Let the signal chi denote whether subfield

i is chained to subfield i− 1. Chaining subfield i involves an interaction between the

81

stage for the least significant bit of subfield i and the stage for the most significant

bit of subfield i− 1. To accomplish this, each stage si− 1 (for each integer i, where

1 ≤ i ≤ j) uses signal chi to determine whether to use the inter-stage signals from

stage si as inputs or not; if not, then the normal initial conditions are used (e.g. for

the design in Section 4.3.3, use 1 in place of ehiisi and eliisi, and 0 in place of oorsi.)

An example of logic for generating oorsi for stage si − 1 is shown in Figure 4.31.

Figure 4.32 and figure 4.33 show the logic for ehiisi and eliisi respectively.

ehiisi’

qsi-1’

hisi-1

oorsi’

eliisi’

losi-1’

qsi-1

eliisi’

ehiisi’ hisi-1

losi-1’ qsi-1

qsi-1’

oorsi’

oorsi-1

chi’

chi’

Figure 4.31: Sub-circuit for out-of-range signal for input to stage si− 1

Whether all of the range fields in a word match can be determined by examining

the oor signals for all subfields (i.e. oorsi for all integers i where 0 ≤ i < j), regardless

of how the subfields are chained. A match is indicated when none of those signals are

asserted. This works because, in a multi-subfield match, the first s bits must match,

the first 2s bits, and so on, if the entire quantity matches.

82

ehiisi’

hisi-1

ehiisi’

hisi-1

ehiisi-1

qsi-1’

qsi-1’

chi

chi

Figure 4.32: Sub-circuit for equals-hi-if-in-range signal for input to stage si− 1

eliisi’

losi-1’

eliisi’

losi-1’

eliisi-1

qsi-1

qsi-1

chi

chi

Figure 4.33: Sub-circuit for equals-lo-if-in-range signal for input to stage si− 1

There is a tradeoff between subfield width and versatility of the range match-

ing device. A smaller subfield requires more overhead (for the additional “chaining

enable” signals and logic), but results in finer granularity with respect to allocation

of bits for range match fields; this can result in more efficient use of the available bits.

In the extreme case where subfield width equals one, range match fields can be

created of any arbitrary width without wasting bits. Also in that case, range match

bits can perform the same type of matching as standard TCAM bits, thus providing

83

even greater flexibility. This style of matching is accomplished by using fields of width

1 and using lower and upper bounds of (0, 0) to represent 0, (1, 1) to represent 1,

and (0, 1) to represent “don’t care.”

4.3.5 Summary of Range Check Hardware

In this section we have described three CMOS implementations of a range check

circuit, the most efficient of which requires 44 transistors per bit. For a typical IPv4

application, this means a 46% increase in transistor count per word, but for typical

filter databases it also means using a sixth to half as many words; in those cases,

overall transistor count required is only 24% to 78% of the standard TCAM design,

and power dissipation is reduced similarly. Also, the range check support greatly

simplifies creation and maintenance of the TCAM contents, since there is now a one-

to-one correspondence between filters and TCAM entries. In addition, we describe a

means of chaining small range match subfields together; thus a range matching device

can be configured for various numbers and sizes of range match fields, by chaining

subfields as needed. In the most extreme case where subfields are one bit wide, the

range match portion of a device can also perform standard TCAM-style matching.

4.4 Combined Results

Partitioning the TCAM results in greatly reduced power consumption, and using

range-match hardware typically reduces both power consumption and overall storage

complexity. In this section we show the results of using both extensions at the same

time.

Figure 4.34 shows the power fraction obtained when using both extensions on

the same input databases as before, for both the region-splitting (RS) and trie-carving

(Trie) algorithms. In all cases the power fraction is below 20%, which is an excellent

result; for larger databases, where power is of particular concern, we do even better,

having power fraction in the one or two percent range. And, for databases beyond

a certain size, the simpler and faster trie-carving algorithm produces power fraction

results quite competitive with the region-splitting algorithm

Figure 4.35 shows the storage complexity results on the same databases. The

storage complexity results depend very strongly on the database being used; the

databases derived from fw1, for example, contain extensive use of port ranges and

84

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2000 4000 8000 16000 32000 64000 128000

Number of Filters

T
C

A
M

 P
o

w
er

 F
ra

ct
io

n
acl1 - RS

acl1 - Trie

fw1 - RS

fw1 - Trie

ipc1 - RS

ipc1 - Trie

Figure 4.34: Power fraction results, including effects of range support

thus benefit greatly from the range checking hardware. The region-splitting cases

with 2,000 and 4,000 filters derived from acl1, as noted before, have poor storage

complexity which can be relieved by allowing the algorithm to run for another phase.

85

0

0.5

1

1.5

2

2.5

2000 4000 8000 16000 32000 64000 128000

Number of Filters

T
C

A
M

 S
to

ra
g

e
C

o
m

p
le

xi
ty

acl1 - RS

acl1 - Trie

fw1 - RS

fw1 - Trie

ipc1 - RS

ipc1 - Trie

Figure 4.35: Storage complexity results, including effects of range support

86

4.5 Handling Filter Updates

In many packet classification applications, it is necessary to add or delete filters from

the classifier, while maintaining high throughput in terms of packets classified per

second; and we expect dynamic updates to be of particular importance to classifiers

with truly large numbers of rules, since those are quite unlikely to be purely static

filter databases. Thus it is highly desirable to devise methods for adding and removing

filters from the Extended TCAM classifier efficiently.

Handling incremental updates is not a trivial thing in many of the modern

high-performance classification schemes. HyperCuts, for example, does not at this

time include an incremental update procedure. Woo’s modular approach to packet

classification [55] mentions that incremental updates are possible, but does not go

into detail on the subject; furthermore, it turns out that it requires rebuilding the

entire data structure in the worst case anyway.

If updates occur infrequently, and they need not be effected immediately, then

it may be acceptable to recompute the entire data structure (TCAM entries, index

entries, and the relationships created by the filter grouping algorithm). But, since

the computation can take several seconds, this will not meet the performance needs

of the more demanding packet classification applications. Also, it either precludes

classification while the new data structure is loaded into the TCAM, or it requires

a larger TCAM (to hold both new and old data) and a means of switching on the

fly which data structure is used for classification. The latter approach could be

accomplished by adding logic to the index entries, such that each index filter is also

associated with either the new or the old data structure, and is enabled for search

only when appropriate.

A slight improvement over the above is to reserve a few blocks of the TCAM

for adding filters between recomputation of the data structure. Filter updates can

then be effected immediately, either by removing the filter from the TCAM, or by

adding it to the reserved blocks. Periodic rebuilding of the data structure can then

clean out the reserved blocks for use later.

Unfortunately, that still requires either blocking all classification queries during

update time, or the use of a TCAM large enough to hold both the old and new data

structures at the same time. Those constraints are not acceptable for all applications,

so we seek to develop a more dynamic update processing technique.

87

4.5.1 Trie-Carving Update Algorithm

We choose the Trie-Carving algorithm as a basis for supporting dynamic filter up-

dates, due to the simplicity of the data structures used for Trie-Carving.

A naive approach could work as follows: filters are deleted simply by removing

them from the TCAM, with no other updates made; filters are inserted either by

placing them in a non-full block along the path for that filter in one of the tries, or in

a newly allocated block if no non-full blocks are found. Such an approach is reasonable

for a small number of updates; after a large number of updates, however, the filter

grouping can become quite inefficient. There is nothing to ensure the TCAM blocks

are used efficiently, or that the number of blocks searched on a worst-case query is

kept small.

To address that problem, we would like to maintain the following invariants:

1. Filters are pushed down (moved from one block to another, towards the leaves)

in the trie as far as is possible; filters more specific (in the dimension corre-

sponding to the trie containing them) are swapped with filters that are less

specific.

2. Filter storage blocks are pushed down in the trie (moved from one node to

another) as much as possible, given the filters that they contain.

3. In each trie, there is at most one filter storage block containing fewer than dk/2e
filters.

Invariant 2 aims to keep the power fraction low, by reducing the number of blocks

searched along the worst-case path through each trie. Invariant 1 assists in this

process by putting the most specific filters in the blocks which are farthest down.

Invariant 3 is designed to keep the storage complexity low, by ensuring that the filter

storage blocks are kept mostly full.

We define a set of procedures which are used to maintain the three invariants.

The FilterPushdown operation, which helps maintain invariant 1, is defined as follows

when performed on a node n:

for each filter f stored in a block of the node n do

traverse the path for filter f within the descendants of n, looking for an empty

slot or a less-specific filter

if an empty slot s was found then

move f to slot s

88

else if a less-specific filter f ′ was found then

swap f with f ′

end if

end for

perform FilterPushdown on each child of n

The BlockPushdown operation, used to maintain invariant 2, is defined as follows

when performed on a node n:

if a single block b is stored at node n then

if all filters in b are compatible with the left child of n then

move b to the left child of n

perform a Consolidate operation on the left child of n, if needed

else if all filters in b are compatible with the right child of n then

move b to the right child of n

perform a Consolidate operation on the right child of n, if needed

end if

else if multiple blocks are stored at node n then

Rearrange the filters at n so as to maximize the number of blocks pushable to

the children of n

move as many blocks to n’s children as possible

if the rearrangement produced a block with dk/2e filters or fewer, and another

such block already exists then

Coalesce those two blocks

end if

if one more more blocks were moved to n’s left child, and it already had at least

one block then

Consolidate the blocks at n’s left child

end if

if one more more blocks were moved to n’s right child, and it already had at

least one block then

Consolidate the blocks at n’s right child

end if

end if

perform BlockPushdown on each child of n

89

The Coalesce operation maintains invariant 3. When we have two blocks with

dk/2e or fewer filters each, we merge the two together. The Coalesce operation is

defined as follows when performed on blocks b1 and b2:

move all filters from b1 to b2

move b2 to the nearest common ancestor of b1 and b2

delete b1

perform FilterPushdown on the node now containing b2

perform BlockPushdown on the same node

The Consolidate operation mentioned in the above procedures compacts the i

filters stored at a node into di/ke blocks, in the event that the node should happen

to have more than di/ke blocks.

Now that we have defined the basic operations for maintaining the invariants,

we can describe how to insert and delete filters.

To insert a filter f into a trie, we perform the following actions:

traverse the trie along the path corresponding to filter f

let b be the last non-full block found along that path

if b 6= null then

insert f into b

perform FilterPushdown on the entire trie (*)

else

create a new block b1 at the end of the path traversed

insert f into b1

if another block b2 exists having dk/2e filters or fewer then

Coalesce b1 and b2

end if

end if

In practice, performing the FilterPushdown operation on the entire trie is not a trivial

operation. Good results are still obtained with lower computational cost if we only

perform the FilterPushdown every k times that section of the Insert routine is reached,

where k is the filter storage block size. Thus, for the rest of this section, we use that

approach.

To minimize the number of TCAM writes required to perform an insertion,

we assume the use of a weighted TCAM. In a weighted TCAM, each entry has an

associated weight which indicates its priority. Thus we can insert filters into any

90

empty slot, rather than needing to move several filters (up to the number of disinct

priority levels needed to disambiguate all filters in the database) to keep the block’s

contents in priority order.

To remove a filter from the trie, we perform these actions:

traverse the trie to find the block b which contains filter f

remove f from b

if b is now empty then

delete b

else

let n be the node containing b

let i be the number of filters stored at n

let j be the number of blocks stored at n

if j > di/ke then

Consolidate the blocks at n

else if i ≤ dk/2e then

if another block b′ exists with at most dk/2e filters then

Coalesce blocks b and b′

else

Perform BlockPushdown at node n

end if

else

Perform BlockPushdown at node n

end if

end if

4.5.2 Results

Since the characteristics of typical filter database updates are not known, we instead

use the following process to evaluate the effectiveness of our filter update procedure:

Given two filter databases (one called the initial filter set and the other called the

final filter set), each containing N filters, perform the following steps:

1. Run the Trie-Carving algorithm on the initial filter set

2. Repeat the following steps N times:

• Remove one randomly selected filter that was in the initial filter set

91

• Insert one randomly selected filter from the final filter set.

3. Compute the power fraction and storage complexity of the result.

This tests the update procedure’s ability to adapt the grouping structure to a com-

pletely different distribution of filters.

Before presenting the results, let us note a few things. The power fraction

and storage complexity of the initial grouping is simply the result of applying the

Trie-Carving algorithm; since these results are already presented in Section 4.2.3, we

do not present them here. The power fraction and storage complexity of the data

structures in between the initial and final states are also not presented here, since

the data structures at that point (containing subsets of two completely different filter

databases) do not reflect any meaningful real-world situation.

Also, it is important to note that the power fraction and storage complexity

results presented in this section are with respect to the partitioning only; these results

do not include the effects of adding range check support.

0

0.05

0.1

0.15

0.2

0.25

0.3

2000 4000 8000 16000 32000 64000

Number of Filters

P
o

w
er

 F
ra

ct
io

n

acl1->fw1

acl1->ipc1

fw1->acl1

fw1->ipc1

ipc1->acl1

ipc1->fw1

Figure 4.36: Power fraction after switching to the final filter set

92

Power fraction results for the data structures holding the final filter set are

shown in Figure 4.36. These results are not quite as good as applying the static

Trie-Carving algorithm directly on the final filter set, but the results still represent a

substantial improvement in power usage relative to a standard TCAM solution.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2000 4000 8000 16000 32000 64000

Number of Filters

S
to

ra
g

e
C

o
m

p
le

xi
ty

acl1->fw1

acl1->ipc1

fw1->acl1

fw1->ipc1

ipc1->acl1

ipc1->fw1

Figure 4.37: Storage complexity after switching to the final filter set

The TCAM storage complexity for the data structures holding the final filter

set are shown in Figure 4.37. These results are quite good; in fact they are better

than the results obtained by applying the static Trie-Carving algorithm directly to

the final filter set.

The filter update procedure is not a completely trivial operation, so in Fig-

ure 4.38 we present for reference the average rate of update processing on a 700MHz

Pentium III. Not all packet classification applications will have that much processing

power available, and in those cases the sustainable update rates would be lower. But,

for high performance routers that perform classification using the same rulesets on

multiple ports, adding a single 35 watt CPU to the entire system makes much more

sense than using a 20 or 30 watt TCAM on each port.

93

100

1000

10000

100000

2000 4000 8000 16000 32000 64000

Number of Filters

U
p

d
at

es
 p

er
 S

ec
o

n
d

acl1->fw1
acl1->ipc1
fw1->acl1
fw1->ipc1
ipc1->acl1
ipc1->fw1

Figure 4.38: Average rate of update processing in software on 700 MHz Pentium III

One thing to note from Figure 4.38 is that, as the number of filters in the trie

increases, the rate at which updates can be processed decreases. We can support high

update rates by limiting the number of filters in each trie, since there is no reason why

one cannot have multiple Source Address tries and/or multiple Destination Address

tries. The only disadvantage is that the power fraction tends to be higher when the

tries have fewer filters; thus there is a tradeoff between update performance and power

efficiency.

Figure 4.39 shows the average number of TCAM writes needed per update,

assuming the TCAM can be locked in such a fashion that two TCAM writes can be

performed as an atomic operation; without such a capability, extra TCAM writes

would be necessary in order to keep the TCAM contents consistent while lookups

are being performed. On average, only 3 to 8 TCAM writes are needed per update,

which is not bad.

In the worst case, however, an individual update may require more TCAM

writes; such a case can occur if the data structure reaches a point where a single

update can trigger pushdown operations on several blocks. Figure 4.40 shows the

94

0

1

2

3

4

5

6

7

8

9

2000 4000 8000 16000 32000 64000

Number of Filters

A
vg

. T
C

A
M

 W
ri

te
s

p
er

 U
p

d
at

e

acl1->fw1

acl1->ipc1

fw1->acl1

fw1->ipc1

ipc1->acl1

ipc1->fw1

Figure 4.39: Average number of TCAM writes needed per update

maximum number of TCAM writes needed for an update. Although these numbers

are much higher than the average number of writes needed per update, they are still

not bad; a TCAM supporting millions of updates per second would still only require

a few milliseconds to process the writes for one of these pathological updates.

Figure 4.41 shows a time history of performance for the case of starting with

the 2,000 filter database derived from acl1 and ending with the 2,000 filter database

derived from fw1. Neither the power fraction nor the storage complexity suffer any

dramatic increases, despite the fact that the database contents during the middle of

the experiment (i.e. half of one database and half of the other) does not reflect a

typical real-world scenario. And, as noted before, the number of TCAM writes to

effect an update is typically low, with the occasional spike.

95

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2000 4000 8000 16000 32000 64000

Number of Filters

M
ax

. T
C

A
M

 W
ri

te
s

p
er

 U
p

d
at

e acl1->fw1

acl1->ipc1

fw1->acl1

fw1->ipc1

ipc1->acl1

ipc1->fw1

Figure 4.40: Maximum number of TCAM writes needed for an update

96

0

0.05

0.1

0.15

0.2

0.25

0.3

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Update Number

P
o

w
er

 F
ra

ct
io

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Update Number

S
to

ra
g

e
C

o
m

p
le

xi
ty

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Update Number

T
C

A
M

 W
ri

te
s

Figure 4.41: Time history of performance for updating from 2,000 filter acl1 to fw1

97

4.6 Multilevel Indexing

Power requirements can be further reduced by using a multi-level indexing structure;

in a pipelined implementation this can be done with essentially no reduction in clas-

sifier throughput. In this section we explore the simplest case of multi-level indexing,

namely a two-level index. An example of an Extended TCAM with a two-level index

structure is shown in Figure 4.42.

index filters:

filter blocks:

.

.

.

.

.

.

.

.

.

meta-index:

Figure 4.42: Example of a two-level indexing structure

The benefit of a multi-level index comes from the fact that, thanks to the

meta-index, we only need to search a subset of the index for any given query. This im-

provement is particularly beneficial when using smaller block sizes, because a smaller

block size means more blocks are required and thus more index entries are required.

98

A fairly straightforward way to group filters for an Extended TCAM with

multiple index levels is to first run a grouping algorithm on the filters to produce the

index entries, and then run the algorithm using the index filters as inputs to produce

the meta-index filters.

To evaluate this approach we can use the concepts of power fraction and storage

complexity discussed in Section 4.2.2. Note that the total number of TCAM bits

activated for search, which is used to compute power fraction, now includes meta-

index entries, index entries, and filter block entries. Power fraction can now be

computed using the expression (bix + (six + sfs)k)/N , where bix is the number of

blocks in the index level (and thus the number of entries in the meta-index level), six

is the maximum number of index blocks searched on any given query, and sfs is the

maximum number of filter storage blocks searched on any query. Storage complexity

can be computed via the expression (bix + (bix + bfs)k)/N , where bfs is the number

of blocks in the filter storage level.

4.6.1 Using Region-Splitting Algorithm

As before, we begin our analysis with a study of the effects of choosing different block

sizes. The results of this study are shown in Figure 4.43. Intuitively we expect that

the best choice for block size is proportional to 3
√

N , where N is the number of filters.

The data appear to support that, and lead us to select a block size of 2i where i is

the result of rounding log2(
3
√

N) to the nearest integer.

For some of the smaller filter databases, this would mean using a block size

which may not be practical to implement in the real world (due to the overhead

involved in partitioning the TCAM). For that reason we exclude the smaller filter

databases from this experiment, and include some 256,000 filter databases instead to

ensure we still have a reasonable number of data points. We use a block size of 32

for the 16,000 filter databases, 32,000 filter databases and 64,000 filter databases; we

use a block size of 64 for the 128,000 filter databases and 256,000 filter databases.

The power fraction obtained from region splitting with a two-level index is

shown in Figure 4.44. In all cases, the power fraction is below 4.5%, which is a very

positive result. In fact, for the largest databases in this study the power fraction is

below 1%, which is extremely good.

99

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10 100 1000

Filters Per Block

P
o

w
er

 F
ra

ct
io

n

16k

32k

64k

 128k
filters

Figure 4.43: Effects of varying storage block size, for region-splitting with a two-level
index

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

16000 32000 64000 128000 256000

Number of Filters

T
C

A
M

 P
o

w
er

 F
ra

ct
io

n

acl1

fw1

ipc1

Figure 4.44: Power fraction for region-
splitting with a two-level index

0

0.2

0.4

0.6

0.8

1

1.2

16000 32000 64000 128000 256000

Number of Filters

T
C

A
M

 S
to

ra
g

e
C

o
m

p
le

xi
ty

acl1

fw1

ipc1

Figure 4.45: Storage complexity for
region-splitting with a two-level index

The storage complexity for region-splitting with a two-level index is shown in

Figure 4.45. In all cases the additional storage cost of using region-splitting parti-

tioning is below 20% which is very acceptable considering the magnitude of power

savings provided.

Figure 4.46 shows power fraction results which include the effects of range

match circuitry, and Figure 4.47 shows storage complexity results which include the

effects of range match circuitry. As noted before, the precise effect of using hardware

100

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

16000 32000 64000 128000 256000

Number of Filters

T
C

A
M

 P
o

w
er

 F
ra

ct
io

n
acl1

fw1

ipc1

Figure 4.46: Power fraction for region-
splitting with a two-level index, in-
cluding effects of range-check circuit

0

0.2

0.4

0.6

0.8

1

1.2

1.4

16000 32000 64000 128000 256000

Number of Filters

T
C

A
M

 S
to

ra
g

e
C

o
m

p
le

xi
ty

acl1
fw1
ipc1

Figure 4.47: Storage complexity for
region-splitting with a two-level index,
including effects of range-check circuit

range-check support depends strongly on the nature of the database used. The firewall

databases, for example, use port ranges often and thus benefit greatly from range-

check support; with other databases the difference is smaller.

101

4.6.2 Using Trie-Carving Algorithm

We begin the analysis of the two-level trie-carving approach by determining how to

choose the storage block sizes for this algorithm. Power fraction results with various

storage block sizes are shown in Figure 4.48. From this we can see that the storage

block selections proposed for the two-level region splitting case will work well here

also. Thus for the remaining analysis of the two-level trie-carving approach we use

the same block sizes as in Section 4.6.1.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10 100 1000

Filters Per Block

P
o

w
er

 F
ra

ct
io

n

128k
filters

64k32k16k

Figure 4.48: Effects of varying storage block size, for trie-carving with a two-level
index

The power fraction obtained from trie-carving with a two-level index is shown

in Figure 4.49. In all cases the power fraction is below 5% and for the larger filter

databases it is below 1.5%, which is an extremely positive result. In terms of power

fraction, trie-carving with a two-level index outperforms both one-level approaches

and is competitive with the two-level region-splitting results.

The storage complexity for trie-carving with a two-level index is shown in

Figure 4.50. This is where one pays a price for the simplicity and speed of the

trie-carving algorithm. Still, in all cases the additional storage cost of using trie-

carving partitioning is below 60%, which may be a very worthwhile tradeoff for many

applications.

102

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

16000 32000 64000 128000 256000

Number of Filters

T
C

A
M

 P
o

w
er

 F
ra

ct
io

n
acl1

fw1

ipc1

Figure 4.49: Power fraction for trie-
carving with a two-level index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

16000 32000 64000 128000 256000

Number of Filters

T
C

A
M

 S
to

ra
g

e
C

o
m

p
le

xi
ty

acl1

fw1

ipc1

Figure 4.50: Storage complexity for
trie-carving with a two-level index

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

16000 32000 64000 128000 256000

Number of Filters

T
C

A
M

 P
o

w
er

 F
ra

ct
io

n

acl1

fw1

ipc1

Figure 4.51: Power fraction for trie-
carving with a two-level index, includ-
ing effects of range-check circuit

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

16000 32000 64000 128000 256000

Number of Filters

T
C

A
M

 S
to

ra
g

e
C

o
m

p
le

xi
ty

acl1
fw1
ipc1

Figure 4.52: Storage complexity for
trie-carving with a two-level index, in-
cluding effects of range-check circuit

Figure 4.51 shows power fraction results which include the effects of range

match circuitry, and figure 4.52 shows storage complexity results which include the

effects of range match circuitry. As noted before, the precise effect of using hardware

range-check support depends strongly on the nature of the database used. The firewall

databases, for example, use port ranges often and thus benefit greatly from range-

check support; the rules derived from the IP Chains database, on the other hand, use

too few range specifications to make the range check circuitry worthwhile.

103

4.7 Summary

High-performance packet classification is crucial to the deployment of many advanced

network services. Although the most popular approach in use is the TCAM, TCAM’s

usefulness is limited by their high power consumption and inefficient representation

of range match fields.

Extended TCAMs provide the performance needed, while scaling up to hun-

dreds of thousands of filters. Extended TCAMs allow classification at the same speed

as TCAMs, usually with less than 5% of the power usage of a standard TCAM;

they also avoid the storage efficiency problem that TCAMs have with range-match

fields such as transport layer port numbers. These properties are achieved by using

a partitioned TCAM and having hardware support for range matching.

Efficient use of a partitioned TCAM requires grouping filters into blocks such

that only a small number of blocks need to be searched for any given query. One

method to accomplish this is the region-splitting algorithm which has excellent power

dissipation results (less than 5% of a standard TCAM for 32,000 filters or more) and

very reasonable storage complexity (less than 10% more than standard TCAM in

most cases). Another technique is the trie-carving algorithm, which is faster than

region-splitting and produces competitive power fraction results at a small cost in

terms of storage efficiency.

The range matching support can be implemented in CMOS using 44 transistors

per bit; for a typical IPv4 application this means a 46% increase in transistor count

per word, instead of a 2-6x increase in word count needed. This improves both power

requirements and storage efficiency.

Dynamic filter updates can be supported using the Trie-Carving data struc-

tures. There is a tradeoff between update complexity and the power fraction obtained.

For the databases studied in our experiments, it is possible to obtain a power fraction

of 10% and support hundreds or thousands of updates per second by limiting trie

sizes to 8,000 filters each.

For filter partitioning using either the Region-Splitting algorithm or the Trie-

Carving algorithm, a multilevel indexing technique allows power requirements of large

filter sets to be further reduced. for large databases this can result in power fractions

below 1%.

104

Chapter 5

Partitioned Encoded Search of

TCAMs

The ideas from Extended TCAMs (Chapter 4) can be combined with ideas from

P2C [53] to perform high speed packet classification even more efficiently. In this chap-

ter we introduce a packet classification method called Partitioned Encoded Search of

TCAMs (PEST). This technique is a novel combination of ideas from Parallel Packet

Classification (P2C) [53] and Extended TCAMS [42] with a modified partitioning

algorithm. We also describe an update mechanism which can be used to eliminate

fragmentation of the primitive range identifiers in P2C-style encoding.

This chapter is organized as follows: Section 5.1 describes the PEST archi-

tecture, including a description of the encoding scheme and the use of partitioned

TCAM. Section 5.2 describes the aforementioned TCAM update technique. An eval-

uation of the PEST system with experimental results is presented in Section 5.3. To

help interpret the results, some lower bounds on the encoding width are derived in

Section 5.4.

5.1 PEST Architecture

In this section we describe a classification scheme called Partitioned Encoded Search of

TCAMs (PEST). This packet classification technique seeks to leverage the strengths

of the P2C approach and Extended TCAMs, by combining them and adapting them

when appropriate. The result is a high speed packet classification method with lower

power requirements than P2C or Extended TCAMs alone. In the following subsections

we describe the techniques used and walk through a simple example.

105

For understanding how the pieces of PEST fit together into the whole, the

lookup architecture is shown in Figure 5.1. A packet classification query is first

converted to an encoded form (using the P2C encoding process); this encoded form

is used to consult an index table and perform a lookup in the encoded filter storage

blocks. As in Extended TCAMs, a final priority resolution stage is needed to handle

cases where matches are found in more than one block.

Packet Header
Fields

Encode field values
independently (as

in P2C)

Encoded query

Result

.

.

.

TCAM
Index
Block

.

.

.

Encoded Filter Blocks

Priority
Resolution

.

.

.

Figure 5.1: PEST lookup architecture.

So, the packet header values for a query are first converted to an encoded

representation, and then this encoded form is used to query a partitioned TCAM. The

encoding system is described in Section 5.1.1 in detail; the use of a partitioned TCAM

(and modifications to the Extended TCAMs partitioning algorithm) are described in

section 5.1.2.

106

5.1.1 Encoding of Field Values

Field values are encoded as in the P2C [53] approach. To reduce the complexity

of creating and updating data structures, we choose to use the first encoding style

exclusively.

The use of encoding significantly reduces the width required of the TCAM;

in fact, it is typically more effective than the dedicated range check hardware with

respect to reducing power consumption and number of transistors required (dedicated

range check hardware, however, still has merit if one does not wish to use this means

of encoding.) We expect encoding to be even more useful for IPv6 [13] applications,

which could otherwise require TCAM search keys exceeding 300 bits in width.

Another consequence of the encoding is that we must convert query values

into encoded search keys in order to perform classification. The modified BART

scheme described in [53] appears to be an excellent choice for this, since it performs

the encoding quickly and does so with very modest SRAM requirements. Other

techniques, such as a modified version of the approach in [14], are also possible.

Filter Source Address Destination Address
f1 0100* 0100*
f2 0100* 0111*
f3 0111* 0100*
f4 0100* 10*
f5 0111* *
f6 * 0111*
f7 0011* 01000101
f8 1* 11010001-11011010
f9 * 0100*
f10 * 11010001-11011010
f11 0100* *
f12 1* 10*

Table 5.1: Example set of filters

Consider as an example the set of filters shown in Table 5.1. Recall from

Chapter 2 that the P2C encodings are created by taking the set of primitive ranges

used in the filters, grouping those primitive ranges into layers, and assigning labels to

the ranges. The primitive ranges used in the source address field in our example are

the prefixes 0011*, 0100*, 0111* and 1*, and the wildcard value of *. Since none of

these primitive ranges overlap, they can all coexist in the same layer. Each range in

107

the layer is assigned a label as indicated in Table 5.2. This layer requires three bits

in the encoded representation.

Source Address Encoded Representation
* xxx

0100* 001
0111* 010

1* 011
0011* 100

Table 5.2: Encoding for source addresses in example rules

The primitive ranges used in the destination address field are 0100*, 01000101,

0111*, 10*, and 11010001-11011010, in addition to the * wildcard. Since the primitive

ranges 0100* and 01000101 overlap, they must be stored in different layers; suppose

we use the primitive range hierarchy shown in Figure 5.2. An assignment of Layer 1

requires three bits in the encoded representation, and layer 2 requires one bit; encoded

representations are shown in Table 5.3.

Layer 1

1
Layer 2

001 011

0x00 0xFF0x40 0x45 0x4F 0x70
0x80

0xBF 0xD1 0xDA

010 100

0x7F

Figure 5.2: Destination address primitive range hierarchy from example

Destination Address Encoded Representation
* xxx x

0100* 001 x
0111* 010 x
10* 011 x

11010001-11011010 100 x
01000101 xxx 1

Table 5.3: Encoding for destination addresses in example rules

The encoded representation of a rule or query in this example requires seven

bits total. In this example, we choose to concatenate the layers together in order (for

108

the sake of readability). In practice, the bits used for a layer need not be contiguous

in the encoded representation; this flexibility can simplify the update process, in

situations where adding a range to a layer causes it to require another bit for its

identifiers.

Filters are encoded using the identifiers for the primitive ranges in the filter

in their respective bit positions, and wildcard bits in all other bit positions. A fully

wildcarded field is encoded as wildcard bits in all layers for that field. For example,

filter f1 uses source address prefix 0100* (identifier 001 in the source address layer)

and destination address prefix 0100* (identifier 010 in destination address layer 1),

so it is encoded as 001 001 x (spaces included for the sake of readability.) In this

manner, we can produce the encoded representation of filters as shown in Table 5.4.

Filter Encoded Representation
f1 001 001 x
f2 001 010 x
f3 010 001 x
f4 001 011 x
f5 010 xxx x
f6 xxx 010 x
f7 100 xxx 1
f8 011 100 x
f9 xxx 001 x
f10 xxx 100 x
f11 001 xxx x
f12 011 011 x

Table 5.4: Encoded representation of example filters

Search queries are encoded using the identifiers for the query value in each

layer; if the query value does not fall within any primitive ranges in a particular

layer, then the identifier 0 is used for that layer. For example, the (source address,

destination address) query (01010101, 01000101) is encoded as 000 001 1, and the

query (10101010, 01110101) is encoded as 011 010 0. Efficient encoding of search

keys can be done via a modified version of the BART [52] scheme.

5.1.2 Partitioning of TCAM

Power consumption is further reduced by the use of a partitioned TCAM. As described

in Chapter 4, a partitioned TCAM consists of a TCAM divided into blocks of k entries

109

each, and a set of index filters (one per block). When a query is processed, it is first

compared against the index filters; in the next step, the blocks whose index filters

matched are searched. This reduces power requirements by reducing the number of

TCAM entries searched.

PEST uses a similar partitioning algorithm to the Extended TCAMs approach,

but there are no range match fields involved at the partitioning step. That is, the

encoding step transforms range match fields into bitmask fields. The partitioning

algorithm runs on the encoded representations of the filters, and therefore only deals

with bitmask fields.

The PEST partitioning algorithm runs in a series of phases. In each phase, a

partitioning is made of the entire classification space. Each phase consists of a series

of steps; in each step, one region in the space is selected and split into two parts.

At the end of each phase, the partitioning is used to assign encoded filters to

blocks in the partitioned TCAM. There is one block corresponding to each region. Up

to k encoded filters contained within a region are stored in the corresponding block,

and removed from consideration in further phases; if the region contained more than k

encoded filters, then we select the k encoded filters that have the most wildcard bits.

The index entry for a block is set to correspond to the range of encoded classification

space covered by that block’s region; that way, any query that would match one of

those encoded filters will activate the block during a search.

To help build intuition, consider the set of filters in Table 5.5. A two-dimension-

al representation of this set of filters is shown in Figure 5.3. In this simple example,

let us pretend we would like to partition these filters into blocks with no more than

2 filters per block (i.e. k = 2).

Source Destination
Address Address

a 110x xxxx

b 0110 1110

c x0xx 110x

d 1001 x0xx

e 0xxx 1000

f xx1x 0101

g 00xx 001x

h 0101 00xx

Table 5.5: Filters for partitioning example

110

122 14108640

12

2

14

10

8

6

4

0

a

d

d

g
h

ff f f

e

c

b

c

Figure 5.3: Filters for partitioning example

The algorithm starts with one region, spanning the entire classification space.

For the sake of example, suppose it decides to split the region as shown in Figure 5.4.

Now the algorithm has two regions. The right most of the two regions completely

contains filters a and d, so, perhaps we don’t want to split that region any more.

In the next step, suppose the algorithm splits the leftmost of the two regions

as shown in Figure 5.5; there are now three regions. The upper left region completely

contains filters b and e, and the lower left region contains filters g and h; this is

probably a good place to stop the first phase, so, let’s assume the algorithm does

that.

At the end of the first phase, then, a TCAM block is allocated corresponding

to the upper left region; its index entry is set to 0xxx 1xxx (i.e. the region itself),

and filters b and e are placed in that block. Another TCAM block is allocated for the

lower left region; its index entry is set to 0xxx 0xxx and filters g and h are placed in

that block. One more TCAM block is allocated, this time for the rightmost region;

its index entry is set to 1xxx xxxx, and filters a and d are placed in that block.

Filters a, b, d, e, g and h have been stored in the TCAM, and are thus removed

from consideration in future phases. Thus we are left with the filters c and f , shown

in Figure 5.6.

111

122 14108640

12

2

14

10

8

6

4

0

a

d

d

g
h

ff f f

e

c

b

c

Figure 5.4: Partitioning after one step

122 14108640

12

2

14

10

8

6

4

0

a

d

d

g
h

ff f f

e

c

b

c

Figure 5.5: Partitioning after two steps

We begin the second phase of the algorithm with one region, spanning the

entire classification space. This region completely contains the two remaining filters

112

122 14108640

12

2

14

10

8

6

4

0

ff f f

c c

Figure 5.6: Partitioning during second phase

(c and f), so we can end the phase here. A TCAM block is allocated for this region;

its index entry is set to xxxx xxxx, and filters c and f are stored in that block.

All filters have been stored in TCAM blocks at this point, so, the algorithm

terminates; the contents of the Extended TCAM are shown in Figure 5.7.

Filter Blocks

0xxx 1xxx

0xxx 0xxx

1xxx xxxx

xxxx xxxx

0110 1110

0xxx 1000Index Filters

00xx 001x

0101 00xx

110x xxxx

1001 x0xx

x0xx 110x

xx1x 0101

Figure 5.7: Extended TCAM contents for simplified partitioning example

113

As noted before, in each step of the algorithm, a region r is selected and

cut into two sub-regions r1 and r2. Each region can be represented by the bitmask

specification that exactly covers that region; using this representation, a region is

cut by selecting one of the “don’t care” bits in its bitmask representation. In one

sub-region, we set that bit to 0, and in the other, we set it to 1. All other bits are

inherited from the original region r.

A step of the algorithm, then, can be expressed as follows. Let Fi be the set

of filters remaining to be processed at the start of phase i, and let Si be the set

of sub-regions created by the algorithm during phase i. At the start of phase i, Si

contains one region spanning the entire encoded classification space. Let σ(r) denote

the set of filters in Fi that lie entirely within r. In all but the last phase, we repeat

the following step, until no region r in Si can be split into two sub-regions containing

least k filters from Fi in each:

• Let r be a region, selected from Si, with |σ(r)| > k.

• Consider cuts that divide r into two sub-regions r1 and r2 that satisfy |σ(r1)| ≥ k

and |σ(r2)| ≥ k

• Among all such candidate cuts, select one that maximizes |σ(r1) ∪ σ(r2)|

• Remove r from Si, and replace it with r1 and r2.

If no candidate cuts are found for a region, it is not split, and is not considered again

in that phase. The phase terminates when no more candidate cuts can be found. At

the end of the phase, a storage block is allocated for each region, and up to k filters

from that region are placed in the block.

During the final phase of the algorithm, the encoded filters are allowed to span

more than one region; if a filter spans more than one region, it must be stored in

the blocks corresponding to each of those regions. This special handling in the last

phase is not absolutely necessary, but can often reduce the number of phases needed

(if there is a small set of hard-to-fit encoded filters left towards the end) at a small

cost of storage efficiency. Since a query will result in searching one block for each

phase, the best power efficiency is achieved when the number of phases is minimized.

In the final phase, we also allow a region to be split even if the sub-regions do

not contain at least k filters each. The basic step for the last phase can be expressed

as follows, letting χ(r) denote the set of filters in Fi that intersect with r but are not

completely contained within r:

114

• Let r be a region, selected from Si, with |σ(r) ∪ χ(r)| > k.

• Consider the cuts that divide r into two sub-regions r1 and r2.

• Among all such candidate cuts, select one that maximizes |σ(r1) ∪ σ(r2)|

• Remove r from Si, and replace it with r1 and r2.

The last phase terminates when, for every region r in Si, |σ(r) ∪ χ(r)| ≤ k, or when

a cut results in no decrease in |σ(r) ∪ χ(r)|. In the latter case, the final phase fails

to include all filters; the algorithm must be re-run, specifying more phases. The

algorithm can be re-run, increasing the number of phases each time until it complete

successfully; or, most of the redundant computation can be avoided by rolling back to

the start of the last phase, if it fails (or if storage efficiency in the last phase became

undesirably low). Alternately, the algorithm can be run without the special handling

of the last phase; this simplifies implementation, but the results in some cases are not

quite as good.

Within each block, filters are stored in order of priority; thus, the TCAM’s

priority resolution will find the best match within each block. A further priority

resolution stage is needed, of course, for cases where matching filters are found in

multiple blocks.

As a more concrete example of the partitioning algorithm in action, let us

continue the example from Section 5.1.1, and let us consider storing the encoded

filters in a partitioned TCAM with block size of 3. The encoding process tends to

result in a lot of noncontiguous bitmasks; this does not present a problem for the

partitioning algorithm, but it makes visual representation of the partitionings too

unwieldy to provide any intuition. We recommend that readers grit their teeth and

refer to the bitmask representations in Table 5.4 while walking through the following

example.

We begin the first phase with one region spanning the entire encoded classi-

fication space. We consider splitting this region on each bit in turn. If we split on

the first bit, we get sub-regions specified by 0xx xxx x (containing encoded filters f1,

f2, f3, f4, f5, f8, f11, f12) and 1xx xxx x (containing filter f7); the latter sub-region

does not contain enough encoded filters to fill a block, so this bit is not a candidate

for splitting. If, instead, we split on the second bit, we get sub-regions specified by

x0x xxx x (containing encoded filters f1, f2, f4, f7, f11) and x1x xxx x (containing

encoded filters f3, f5, f8, f12); each sub-region has enough encoded filters to fill a

115

block, so this bit is a candidate for splitting. The third, fifth, and sixth bits are also

also turn out to be candidates. The algorithm selects the one with the most filters

contained in the sub-regions; since there is a four way tie in this case, suppose we

break the tie by selecting the first candidate.

Thus, in the first step, we have split the region xxx xxx x into regions x0x xxx x

and x1x xxx x. We now consider splitting region x0x xxx x into subregions. Splitting

on the first bit would produce subregions 00x xxx x and 10x xxx x, which contain 3

encoded filters and 1 encoded filter respectively, i.e. it is not a candidate for splitting.

In fact, no split will meet the requirement that both sub-regions contain at least k

encoded filters, so we do not split region x0x xxx x.

Since region x1x xxx x also does not get split (for the same reason), we end

the first phase with regions x0x xxx x and x1x xxx x. A block of TCAM storage is

allocated for region x0x xxx x; we store encoded filters f1, f7, and f11 in that block,

and set its index entry to x0x xxx x. Another block is allocated, this time for region

x1x xxx x; we store encoded filters f3, f5, and f8 in that block, and set its index entry

to x1x xxx x.

We begin the second phase with a new region spanning the entire encoded

classification space. Again, we consider splitting this region on each bit in turn; the

best split found by the algorithm is a split on the sixth bit, producing region xxx xx0 x

(containing f2, f6, and f10) and region xxx xx1 x (containing f4, f9, and f12). The

algorithm considers splitting each of these into subregions, but finds no acceptable

choices in either case. Thus we end the second phase, assigning f2, f6, and f10 to a

block with index entry xxx xx0 x, and assigning f4, f9, and f12 to a block with index

entry xxx xx1 x.

At this point, all filters have been assigned to blocks, so the algorithm ter-

minates. The result is shown in Figure 5.8. Suppose a query arrives with header

value (00110011, 01000101). First, we create the encoded representation of the query,

which is 100 001 1. Then, this is compared against the index entries. The first and

fourth index entries match, so the first and fourth filter storage blocks are activated

for search. This results in a match for filter 100 xxx 1 (i.e. f7), which is the correct

answer.

Note that any search will match exactly two of the index filters, so, on any

query only half of the filter storage blocks need to be searched.

Note also that the partitioning is actually applied to the encoded representation

of the rules. The partitioning algorithm does not need to know anything about the

116
Filter Blocks

x0x xxx x

x1x xxx x

xxx xx0 x

xxx xx1 x

001 001 x

100 xxx 1

001 xxx x

010 001 x

010 xxx x

011 100 x

001 010 x

xxx 010 x

xxx 100 x

001 011 x

xxx 001 x

011 011 x

Index Filters

Figure 5.8: Extended TCAM contents for example

existence of layers or which bits are associated with which layers; it only needs to

know how wide the encoded search key is. This is because the partitioning algorithm

considers each bit in the search key as a candidate on which to split the regions;

therefore it does not need to know which bits represent which fields or anything of

that sort.

5.2 TCAM Update Technique

In this section we note that filter database update operations (insertion/deletion of a

filter) can cause fragmentation of the primitive range identifier space, which results in

encodings that are wasteful in terms of TCAM bits used for the encodings; following

that, we show a technique for changing an encoding scheme on the fly. Without such

a technique, a change to the encoding scheme would require blocking all queries to

the TCAM until every rule in the TCAM had been updated.

Insertion of a rule with a new primitive range requires either the creation of a

new layer in the primitive range hierarchy or the insertion of the new primitive range

117

into an existing layer. Creation of a new layer requires one more bit in the encoded

representation of filters. Insertion of a new primitive range into an existing layer can

also require an extra bit (e.g. if we add a new range into a layer with pre-existing

ranges labeled 01, 10, and 11, then we relabel those ranges as 001, 010, 011 and then

insert the new range as 100). When a new bit is required, it need not be contiguous

with the other bits for that field; thus allocation of a new bit is not difficult, as long

as a free bit exists (i.e. as long as the encoded width does not exceed the width of a

TCAM word).

Bits allocated in this fashion can be deallocated upon deletion of filters, if

certain conditions are met. When the last filter to use a particular primitive range

is deleted, that primitive range is removed from the primitive range hierarchy, and

its identifier is freed. This decreases the number of primitive range identifiers in use.

Ideally, a layer with r ranges should require dlog2(r + 1)e bits, but in practice we can

encounter fragmentation which results in wasteful allocation of TCAM bits.

For example, suppose we have a layer with range identifiers 01, 10, and 11. Now

suppose we insert a rule with a new range in that layer. We now have range identifiers

001, 010, 011, and 100. If a subsequent delete operation causes us to deallocate range

identifier 010, we are left with 001, 011, and 100. So we find ourselves using three

bits to represent a set of identifiers that should only require two bits.

Thus we propose the following extension which allows the encodings to be

changed without blocking queries to the TCAM. Updates to the encoding are not

expected to occur frequently, but when they occur, they require rewriting the en-

tire TCAM. Thus it is desirable to retain the ability to process lookups during the

transition from one encoding to another.

The extension works as follows: We use one bit in each TCAM entry as an

encoding version indicator; initially, TCAM entries are created with this bit set to

0. When the use of a new encoding scheme is desired (e.g. when defragmentation

of primitive range identifier space is desired), one simply rewrites the TCAM entries,

using the new encoding, and with the encoding version bit set to 1.

Classification of a packet during the encoding update requires two queries,

one in the old encoding (including the version bit being set to 0) and one in the

new encoding (with version bit set to 1); fortunately, TCAM search speeds are high

enough that this should not be a problem for most applications.

Applying this technique in a Extended TCAM requires that the index be kept

consistent with the TCAM block contents. One technique is to build an Extended

118

TCAM where each block has two index filters, either of which is capable of activating

the block.

A different approach would be to update one block at a time as follows: allocate

a new block; copy the filters from the source block (which uses the old encoding) into

the new block (using the new encoding); deallocate the old block when done. This

method requires having one extra block of TCAM space available, but avoids requiring

each block to have multiple index entries (and the corresponding increase in power

consumption and transistor count).

5.3 Evaluation and Results

To evaluate our packet classification scheme, we study its performance using a collec-

tion of synthetic filter sets of various sizes created by the ClassBench tool, described

in Section 2.5. The synthetic filter sets used in this study range in size from 2,000

filters to 128,000 filters, and are generated from the ClassBench parameter files acl1,

fw1, and ipc1. In generating these databases, we enabled address prefix scaling with

database size; smoothness, address scope, and port scope adjustments were set at 0.

In evaluating the results for this packet classification scheme, we are primarily

interested in two things: power consumption and storage efficiency. These are af-

fected by the reduction in TCAM word width due to encoding, by having an efficient

representation of range matches, and by the use of a partitioned TCAM.

First, let us consider the gain resulting solely from the reduction of the required

TCAM width due to encoding. Table 5.6 shows the number of bits needed to represent

each filter, for the various databases used in this study; these results are from the

use of P2C encoding style I. In this study, the encodings were created with all exact

match conditions in the first layer, and then adding all other match conditions in the

order in which they appear in the database, creating new layers as needed. In the

cases marked with an asterisk (*), one or more of the address fields required more

than 32 bits in encoded form; thus in those cases we use the unencoded address field

instead. An unencoded representation of the 5-tuple used in these databases requires

104 bits; by reducing it to 55 to 91 bits, we can reduce power consumption (and

storage complexity, in terms of silicon area or transistor count) to 53% to 88% of the

original requirements.

The results in Table 5.6 might not be as good as one would expect. To get

a better understanding of the results, let us consider the figures shown in Table 5.7;

119

Size acl1 fw1 ipc1
2,000 57 59 74
4,000 62 67 79*
8,000 70 47 86*
16,000 71 55 90*
32,000 62 60 91*
64,000 64 64 68
128,000 64 66* 90*

Table 5.6: TCAM width required, in bits

these figures indicate the minimum number of bits required to represent all ranges

in the primitive range hierarchies, assuming that none of them overlap (i.e. if all

primitive ranges can be placed in one layer). This lower bound on encoding width is

described in [53] (we will derive some improved lower bounds in Section 5.4). These

numbers are much lower than the actual number of bits required, so, the magnitude

of the numbers in Table 5.6 is not simply the result of having a large number of

primitive ranges.

Size acl1 fw1 ipc1

2,000 26 30 29

4,000 28 33 31

8,000 31 37 34

16,000 34 39 36

32,000 39 41 41

64,000 41 43 44

128,000 43 45 46

Table 5.7: Lower bound on TCAM width required

The difference between this lower bound and the actual number of bits required

results from needing multiple layers. The number of layers needed to encode each

field is shown in Table 5.8. Note that the PR column refers to encoding of both the

transport protocol number and protocol-specific information such as TCP flags and

ICMP message types.

Indeed, most of the databases studied in fact required multiple layers for most

fields. It is not unexpected that the cases with 13 and 14 layers did not fit within

32 bits, but the cases where 3 layers do not fit are more of a surprise. These cases

result when databases have a large number of primitive ranges, especially when the

120

additional layers contain more than just a few ranges each. For example, the fw1-

derived database with 128,000 entries has 50,374 primitive ranges in the source address

field; the first layer has 49,722 (requiring 16 bits), the second has 472 (requiring 9

bits) and the third has 180 (requiring 8 bits).

Seed Size SA DA SP DP PR

acl1 2,000 3 5 0 4 3

acl1 4,000 3 5 0 4 3

acl1 8,000 3 6 0 4 3

acl1 16,000 3 5 0 4 3

acl1 32,000 2 5 0 4 3

acl1 64,000 2 4 0 4 3

acl1 128,000 2 3 0 4 3

fw1 2,000 3 3 2 2 4

fw1 4,000 3 3 2 2 4

fw1 8,000 2 1 2 2 4

fw1 16,000 3 1 2 2 4

fw1 32,000 3 1 2 2 4

fw1 64,000 3 1 2 2 4

fw1 128,000 3* 1 2 2 4

ipc1 2,000 3 5 2 4 6

ipc1 4,000 3 4* 3 4 6

ipc1 8,000 3 5* 3 4 6

ipc1 16,000 3 5* 3 4 6

ipc1 32,000 3* 5* 3 4 6

ipc1 64,000 2 2 3 4 6

ipc1 128,000 3* 2 3 4 6

Table 5.8: Layers required for encoding fields

Further savings are obtained by eliminating the need to expand range-match

entries into multiple prefix entries in the TCAM. As noted before, this could be done

via hardware support for range checking [40] but that is not necessary when using

the P2C encoding scheme. P2C encoding style I requires one TCAM entry per rule;

by comparison, the standard approach of expanding ranges into prefixes typically

requires many more entries than rules, as shown in Table 5.9. The ACL and IP

Chains databases did not expand by as much as the databases in [42], since the ACL

and IP Chains databases have less frequent use of range matches; on the databases

used in [42] we would expect PEST to produce even better results.

The greatest power savings, however, come from the partitioning of the TCAM;

as noted earlier, the power reduction thus derived comes at a small cost of storage

121

Seed Number of Filters TCAM Entries
acl1 2,000 2,902
acl1 4,000 5,669
acl1 8,000 11,267
acl1 16,000 22,096
acl1 32,000 44,054
acl1 64,000 86,714
acl1 128,000 174,523
fw1 2,000 7,335
fw1 4,000 13,345
fw1 8,000 24,900
fw1 16,000 53,795
fw1 32,000 110,620
fw1 64,000 223,615
fw1 128,000 444,815
ipc1 2,000 2,827
ipc1 4,000 5,673
ipc1 8,000 10,927
ipc1 16,000 22,088
ipc1 32,000 44,149
ipc1 64,000 87,923
ipc1 128,000 175,737

Table 5.9: Results of expanding ranges for standard TCAM representation

efficiency. To measure power efficiency, we again use the TCAM power fraction,

defined as the ratio of TCAM bits searched using a partitioned TCAM to the number

of TCAM bits searched using a nonpartitioned TCAM; for this metric, lower is better.

To measure storage efficiency, we use the TCAM storage complexity, defined as the

ratio of TCAM storage bits required, using a partitioned TCAM, to the number of

TCAM storage bits required for a nonpartitioned TCAM; for this metric also, lower

is better. In the case of the partitioned TCAM, index entries are to be included in

these calculations, as well as the unused entries in any storage blocks only partially

filled.

In Chapter 4, we observe that a TCAM block size of the largest power of two

smaller than (1/2)N 1/2 appears to be the best choice. However, as the filter block

size becomes smaller and smaller, the overhead involved in the partitioning of the

device becomes significant. Thus we use slightly larger block sizes in this study, as

indicated in Table 5.10.

122

Number of Filters Block Size
2,000 64
4,000 64
8,000 128
16,000 128
32,000 256
64,000 256
128,000 512

Table 5.10: Block sizes used for partitioned TCAM

The power fraction resulting from the use of a partitioned TCAM, then, is

w(b + sk)/wN , where b is the number of storage blocks used by the partitioning

algorithm, s is the number of phases used by the partitioning algorithm (and thus

the number of blocks that must be searched for any packet), k is the storage block

size (in TCAM entries), w is the width of an encoded filter (in bits), and N is the

number of filters in the database. Results for the databases studied are shown in

Figure 5.9. The power fraction resulting from partitioning ranges from 1.5%, which

is extremely good, to 21%, which is still substantial. Also, note that the greatest

power reductions occur with the larger databases, which tend to be the cases where

power reduction is of particular importance.

0

0.05

0.1

0.15

0.2

0.25

20
00

40
00

80
00

16
00

0

32
00

0

64
00

0

12
80

00

Number of Filters

T
C

A
M

 P
o

w
er

 F
ra

ct
io

n

acl1

fw1

ipc1

Figure 5.9: TCAM power fraction resulting from partitioning

123

The storage complexity of using the partitioned TCAM is w(b+bk)/wN ; results

for the databases studied are shown in Figure 5.10. The partitioned TCAM results in

an increase in storage complexity, due to the need for index entries, and due to any

storage blocks that are not entirely full. This increase, however, is fairly small (2%

to 33% for the databases studied) compared to the improvement in power fraction;

furthermore, it will be more than offset by the gains from encoding and the use of an

efficient range representation, as we see in the following metric.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2000 4000 8000 16000 32000 64000 128000
Number of Filters

T
C

A
M

 S
to

ra
g

e
C

o
m

p
le

xi
ty

acl1

fw1

ipc1

Figure 5.10: Storage complexity factor resulting from partitioning

To evaluate the overall efficiency of packet classification via Partitioned En-

coded Search of TCAMs, we use the same power fraction and storage complexity

measures, relative to the use of a standard TCAM implementation. Thus, the overall

power fraction is w(b + sk)/(104Ne), where Ne is the number of TCAM entries re-

quired after expanding ranges into prefixes (Table 5.9) and 104 is the number of bits

required to represent the header fields of the 5-tuple in unencoded form. The over-

all TCAM power fractions, shown in Figure 5.11, range from 0.33% to 8.9%, which

represents a substantial reduction in power consumption.

The overall TCAM storage complexity is w(b+bk)/(104Ne). Figure 5.12 shows

the results for the databases used in this study. The overall TCAM storage complexity

for these databases ranges from 16% to 74%, which is quite good.

Of course, this approach requires the use of a lookup mechanism such as BART

to convert classification queries into their encoded forms. This lookup mechanism

124

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

20
00

40
00

80
00

16
00

0

32
00

0

64
00

0

12
80

00

Number of Filters

T
C

A
M

 P
o

w
er

 F
ra

ct
io

n

acl1

fw1

ipc1

Figure 5.11: Overall TCAM power fraction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20
00

40
00

80
00

16
00

0

32
00

0

64
00

0

12
80

00

Number of Filters

T
C

A
M

 S
to

ra
g

e
C

o
m

p
le

xi
ty

acl1

fw1

ipc1

Figure 5.12: Overall TCAM storage complexity

will add its own cost (e.g. SRAM storage and accesses to SRAM), but, in the case

of BART, these costs are quite low [53]. And, if the encoding steps are pipelined, it

comes at little or no cost in terms of classifier throughput.

125

5.4 Lower Bounds on Encoding Width

The previously mentioned lower bounds (calculated as described in [53]) are some-

what far away from the encoding width results in the experiment; this brings up the

question of whether this discrepancy is due to a loose lower bound or if our encoding

implementation is simply not performing well. To answer this question, we derive

some improved lower bounds on the encoding width requirements.

5.4.1 Initial Lower Bounds on P2C Encoding Widths

Here we examine two initial lower bounds for the encoding width. Not only do these

serve as lower bounds, but also their derivation will build intuition to guide us towards

a more generalized lower bound discussed later.

In the first lower bound, we consider only that there are n intervals and they

are assigned to k layers; for this simplified problem we do not require overlapping

intervals to be assigned to different layers. Note that any solution to a real P2C

encoding must also be a valid solution to the greatly simplified problem, described

below.

Simplified Layer Assignment Problem: Assign n intervals to exactly k layers,

such that the total encoding width (i.e.
∑k

i=1dlog2(|Li| + 1)e, where Li is the set of

intervals assigned to layer i) is minimized.

Solution: An optimal assignment (i.e. assignment requiring the fewest bits) to the

Simplified Layer Assignment Problem exists with n−(k−1) intervals in the first layer,

and 1 interval in each of the remaining layers; a proof is presented below. Therefore,

the number of bits needed for a Simplified Layer Assignment grouping of n intervals

in k layers is at least blog2(n− (k − 1) + 1)c+ (k − 1). This is a lower bound on the

number of bits needed for a P2C encoding of n intervals in k layers, since all valid P2C

encodings also fit the Simplified Layer Assignment Problem. After simplification, this

bound becomes: blog2(n− k + 2)c+ k − 1

Furthermore, such an optimal solution to the Simplified Layer Assignment

Problem with n intervals and i layers has a bit width equal or less than an optimal

solution with n intervals and i + 1 layers, since we can simply take the interval from

layer i+1 and insert it into layer 1. This eliminates the bit needed for layer i+1, and

increases the number of bits needed for layer 1 by at most one. Repeated application

126

of this implies that blog2(n− k + 2)c+ k − 1 is also a lower bound on bit widths for

Simplified Layer Assignment Problem solutions and P2C encodings of n intervals in

more than k layers.

Proof: Each of the k layers must contain at least one interval (see definition of k).

Furthermore, a total of n intervals must be assigned to the various layers (definition

of n).

Let Gi represent an optimal grouping of intervals into layers, with i of the k

layers having more than one interval each. For simplicity, let us order the layers in

decreasing order of size, i.e. Gi = {L1, L2, ...Lk} where Lm < Ln where m < n. In

this case, Li is the smallest layer containing more than one interval.

For any Gi where i > 2, we can create a grouping Gi−1 with equal or smaller

coding width (and i− 1 of the k layers containing more than one interval) as follows:

Begin with the grouping Gi, but move |Li| − 1 intervals from Li into L1. This results

in layer 1’s encoding increasing in size by at most one bit (since L1 already has at

least |Li| items, adding one extra bit to its encoding size allows at least an extra

|Li| + 1 items to fit), and the encoding for layer i decreasing in size by at least one

bit. Since i − 1 of its k layers contain more than one interval each, we can call it

Gi−1. And, because Gi−1 requires the same or fewer number of bits for its encoded

representation, Gi−1 is also an optimal solution to the Simplified Layer Assignment

Problem.

By applying this repeatedly to an optimal solution Gi, we eventually obtain an

optimal solution G1 with one interval in each of layers 2 through k, and the remaining

n− (k − 1) intervals in the first layer.

Improving the initial lower bound: The act of assigning n intervals to k layers

can be compared to the act of k-coloring n vertices in a graph (i.e. assigning one of

k possible colors to each vertex, such that no pair of vertices connected by an edge

are assigned the same color), where an edge between two vertices exists if and only if

the primitive ranges corresponding to those vertices overlap. As a first step towards

a more general approach, we use the size of the largest 1-colorable subgraph to create

a tighter bound than the first bound.

• Let ni = size of largest i-colorable subgraph.

• Let n = number of intervals.

127

• Let k = minimum number of colors needed to color all n intervals.

Note that n − n1 ≥ k − 1, because if a layer contains n1 intervals, we still need at

least k − 1 layers which must contain at least one interval each.

Refined Assignment Problem: Assign n intervals to exactly k layers, with no

layer containing more than n1 intervals, and such that the encoding width (i.e.
∑k

i=1dlog2(|Li|+1)e, where Li is the set of intervals assigned to layer i) is minimized.

Lower Bound: An optimal solution to the Refined Assignment Problem requires

at least blog2(n1 +1)c+blog2(n−n1− (k−2)+1)c+k−2 bits, which is also a lower

bound on the number of bits for a P2C encoding of n intervals into k layers where ni

is the size of the largest i-colorable subgraph.

Proof: First let us show that an optimal solution to the Refined Assignment Prob-

lem exists with at least one layer requiring at least blog2(n1 + 1)c bits. If an optimal

solution exists with none of its layers requiring that many bits, we can transform it

into a solution (of equal or better optimality) with a layer requiring blog2(n1 + 1)c
bits as follows:

Suppose we have an optimal solution where the largest layer contains i inter-

vals. If 2i + 1 ≤ n1, then we can move i + 1 more intervals from other layers into

the largest layer, increasing its encoding size by 1 bit. Let L represent a layer (other

than the largest one) which, prior to the move, contains more than one interval; let j

denote the number of intervals it contains. In the step of moving the i+1 intervals to

the largest layer, if we select those intervals such that j−1 of them are removed from

L, then we shrink the encoded size of L by at least one bit. Thus the new solution

has equal or lesser encoding length, and its largest field requires one more bit for

encoding than the previous solution.

We can repeat this step until 2i + 1 > n1; at that point, the encoded repre-

sentation for the largest layer requires dlog2(i + 1)e bits. Since 2i + 1 > n1 implies

i > n1−1
2

, we can say log2(i+1) > log2(
n1−1

2
+1) = log2(

n1+1
2

) = log2(n1 +1)−1; Since

log2(i + 1) is strictly greater than log2(n1 + 1)− 1, we can conclude that the encoded

representation for the largest layer in fact requires at least blog2(n1 + 1)c bits.

Thus, an optimal solution exists requiring blog2(n1+1)c bits for one of its layers,

with at most n1 intervals in that layer. At least n− n1 intervals must be assigned to

the remaining k − 1 layers; thanks to our study of the Simplified Layer Assignment

128

Problem, we know that this takes at least blog2((n− n1)− (k− 1) + 2)c+ (k− 1)− 1

bits. Therefore, our lower bound on the total number of bits needed for the Refined

Assignment Problem is blog2(n1 + 1)c+ blog2((n− n1)− (k − 1) + 2)c+ (k − 1)− 1.

After simplification, this becomes: blog2(n1 + 1)c+ blog2((n− n1)− k + 3)c+ k − 2.

In fact, this lower bound also applies when more than k layers are used, since

the lower bound for the Simplified Layer Assignment Problem applies in those cases

as well.

5.4.2 Generalized Lower Bound

In this section we generalize the lower bound to include constraints on the maximum

size i-colorable subsets. To establish the lower bound, let us first define a generalized

version of the interval assignment problem as follows.

Generalized Assignment Problem with C-Colorability Constraint: Assign

n intervals to exactly k layers, where for each integer i from 1 to C, no i layers contain

more than ni intervals, and such that the encoding width (i.e.
∑k

i=1d|Li|+ 1e, where

Li is the set of intervals assigned to layer i) is minimized.

In this section we show that the encoding representation requires at least a

number of bits equal to the expression

blog2(n1 + 1)c+
i

∑

j=2

blog2(nj − nj−1 + 1)c+ blog2(n− ni − (k − i))c + k − i− 1

Proof: This is an inductive proof; we begin by showing that the bound holds for

the base case of C = 1, and then show inductively that it holds for each integer C

greater than that.

Base Case: In the case of the Generalized Assignment Problem with C = 1, i.e.

only the 1-colorability constraint, the problem is equivalent to the Refined Assignment

Problem. From Section 5.4.1 we know that blog2(n1 +1)c+ blog2((n−n1)−k +3)c+
k− 2. is a lower bound on the number of bits needed for the encoded representation,

which is actually a slightly tighter lower bound than the blog2(n1 + 1)c + blog2(n −
n1 − k + 1)c+ k − 2 which we needed to prove for this step.

129

Inductive Step: Here we show that, if our lower bound holds for Generalized

Assignment Problem with (i − 1)-Colorability Constraint, it also holds for the Gen-

eralized Assignment Problem with i-Colorbility Constraint, where i ≥ 2.

First let us show that at least one optimal solution to the Generalized Assign-

ment Problem with i-Colorability Constraint contains a layer L1 requiring at least

blog2(n1 + 1)c bits for its encoded representation. If an optimal solution exists with

none of its layers requiring that many bits, we can transform it into a solution with

a layer requiring blog2(n1 + 1)c bits as follows:

Suppose we have an optimal solution where the largest layer contains j inter-

vals. If 2j + 1 ≤ n1, then we can move j + 1 more intervals from other layers into

the largest layer, increasing its encoding size by 1 bit. Let L represent a layer (other

than the largest one) which, prior to the move, contains more than one interval; let l

denote the number of intervals it contains. In the step of moving the j + 1 intervals

to the largest layer, if we select those intervals such that l − 1 of them are removed

from L, then we shrink the encoded size of L by at least one bit. Thus the new

solution has equal or lesser encoding length, and its largest field requires one more

bit for encoding than the previous solution.

We can repeat this step until 2j + 1 > n1; at that point, the encoded repre-

sentation for the largest layer requires dlog2(j + 1)e bits. Since 2j + 1 > n1 implies

j > n1−1
2

, we can say log2(j + 1) > log2(
n1−1

2
+ 1) = log2(

n1+1
2

) = log2(n1 + 1) − 1;

Since log2(j + 1) is strictly greater than log2(n1 + 1) − 1, we can conclude that the

encoded representation for the largest layer in fact requires at least blog2(n1 + 1)c
bits.

For a lower bound on the number of bits needed to encode the remaining

layers, we can consider the problem of assigning n− n1 of the remaining intervals in

an instance of Generalized Assignment Problem with (C−1)-Colorability Constraints.

We set up the sub-problem as follows:

• The number of intervals to be assigned in the subproblem is n − n1. In cases

where fewer than n1 intervals were assigned to L1, combining L1 with the results

of the subproblem will not yield a correct solution to the original problem; this

is acceptable because we are merely looking for a lower bound on the encoding

width.

• The i-coloring set size constraints n′
i for the subproblem are defined in terms of

the ni constraints from the original problem as follows: n′
i = ni+1 − n1. This

130

ensures that the original problem’s constraints (i.e. that no i layers contain

more than ni intervals) will still be met, when we consider the subproblem and

plus the layer L1.

• The number of layers in the subproblem definition is k − 1.

In the inductive step, we’re given that the expression holds for the previous step, i.e.

that our lower bound expression is correct for the Generalized Assignment Problem

with (C − 1)-Colorability Constraints. Thus we can use that expression to write a

lower bound of

blog2(n
′
1 + 1)c+

(i−1)
∑

j′=2

blog2(n
′
j′ − n′

j′−1 + 1)c

+ blog2((n− n1)− n′
i−1 − ((k − 1)− (i− 1)))c+ (k − 1)− (i− 1)− 1

on the number of bits required for the encoded representation of the subproblem. By

substituting for the n′
i constraints, it can be rewritten as

blog2(n2 − n1 + 1)c+
(i−1)
∑

j′=2

blog2((nj′+1 − n1)− (nj′−1+1 − n1) + 1)c

+ blog2((n− n1)− (ni−1+1 − n1)− ((k − 1)− (i− 1)))c+ (k − 1)− (i− 1)− 1

By simplifying, and rewriting the summation in terms of j where j = j ′ + 1, we get

blog2(n2 − n1 + 1)c+
i

∑

j=3

blog2(nj − nj−1 + 1)c + blog2(n− ni − (k − i))c + k − i− 1

The first term can now be folded into the summation, yielding the expression

i
∑

j=2

blog2(nj − nj−1 + 1)c + blog2(n− ni − (k − i))c + k − i− 1

Adding in the blog2(n1 + 1)c bits for L1 gives us a final result of

blog2(n1 + 1)c+
i

∑

j=2

blog2(nj − nj−1 + 1)c+ blog2(n− ni − (k − i))c + k − i− 1

as a lower bound on the number of bits required, which completes the proof.

131

This lower bound on the number of bits required for the Generalized Assign-

ment Problem is also a lower bound on the number of bits required for a P2C encoding

of n intervals with the ni colorability constraints.

Finding Maximal i-Colorable Sets: Here we discuss an approach for finding the

ni values.

The basic idea is that we sort the intervals in increasing order of right endpoint,

and then process intervals one at a time. We use variables ej to denote the endpoint

of the interval most recently added to layer j; initially, each ej can be considered to be

set to -1, or any other value less than the minimum left endpoint of all the intervals.

When an interval (a, b) is considered, we look for layers that can accommodate

that interval. If a ≤ ej for all j, then the interval can not be added to any of the

layers, so we skip it. Otherwise, for each interval j with ej > a, we select the layer m

with maximum ej, and place the interval (a, b) in that layer and update em by setting

it to b.

After all intervals have been processed, ni can be determined by summing the

sizes of all layers. Alternatively, the program can keep a running total of layers added,

rather than actually inserting intervals into layers.

Proof: This is a greedy algorithm, so we begin by showing that an initial greedy

choice is correct. Then we show that, once the greedy choice is made, the remaining

solution is an optimal solution to an instance of the problem with the remaining

intervals. Therefore, by induction on the number of choices made, making the greedy

choice at every step results in an optimal solution.

First let us show that the choice to add interval (a, b) is correct, given that it

fits into at least one layer. Suppose we have an an optimal solution which does not

use (a, b); the next interval it includes, when sorted by right endpoint, is instead some

interval (c, d), where d ≥ b. This interval can be swapped with (a, b), while keeping

the rest of the solution the same, to produce an optimal solution containing (a, b).

Next let us show that adding (a, b) to the layer with maximum ej (out of those

with ej > a) is correct. Suppose we have an optimal solution which puts (a, b) in

some other layer l, rather than layer m which has maximum ej of those with ej > a;

let us use (c, d) to represent the next layer which this optimal solution places in layer

m (and if there is no such interval, the remainder of the proof becomes trivial). Note

that d > b since (c, d) occurs later in the sorted order than (a, b). We can swap (a, b)

132

and all the intervals following it in layer l with (c, d) and all intervals following it in

layer m, because we already know that a > em, and because el < em and em < c.

This results in an optimal solution where (a, b) is in the layer with maximum ej, out

of those with ej > a.

Now we extend our proof beyond the first greedy choice. We will show that

the solution to the remaining problem is an optimal solution; thus, by induction on

the number of choices made, making the greedy choice at every step will produce

an optimal solution. First we consider the case where the greedy choice was to skip

interval (a, b); then we consider the case where interval (a, b) in included.

If S is an optimal solution to finding the maximum i-colorable subset of the

set I of intervals, given initial constraints e1, e2, ...ei, and the initial greedy choice was

that interval (a, b) is not added, then S must be an optimal solution to the remaining

problem consisting of I intervals with the same set of initial constraints. Proof by

contradiction: Suppose instead there is a solution S2 containing more intervals than

S; S2 would also be a valid solution to the original problem, and it contains more

intervals than S, thereby contradicting the optimality of S with respect to the original

problem.

Let us now consider the case where the initial greedy choice was to add interval

(a, b) to some layer m. If S is an optimal solution to the original problem, then S ′

is an optimal solution to the maximal i-coloring problem with the set I ′ = I − (a, b)

intervals and initial constraints e′j = ej for all j 6= m and em = b. Again, we use

a proof by contradiction. Suppose instead there is a solution S2 containing more

intervals than S and meeting the same constraints; if that were true, we could take

that solution and add interval (a, b) to produce a valid solution to the original problem

with more intervals than S contains, thus contradicting the optimality of S regarding

the original problem.

5.4.3 Evaluation of P2C Encoding Results

Armed with the lower bounds and an algorithm for finding ni values, we can now

compute some lower bound figures for various filter databases. These numbers allow

us to evaluate the efficiency of our P2C encoding algorithm, in terms of bits required

for the encoded representations.

Table 5.11 shows results for encoding the Source Address field of a set of

synthetic databases. “Encoding Size” refers to the number of bits actually used by

133

Database Database Encoding Lower Lower
Seed Size Size Bound 1 Bound 2
acl1 2,000 15 13 13
acl1 4,000 21 17 18
acl1 8,000 28 21 25
acl1 16,000 30 25 28
acl1 32,000 21 20 20
acl1 64,000 23 22 22
acl1 128,000 24 23 23
fw1 2,000 22 16 20
fw1 4,000 26 20 24
fw1 8,000 17 16 16
fw1 16,000 24 20 22
fw1 32,000 28 22 26
fw1 64,000 31 24 29
fw1 128,000 (33) 26 31
ipc1 2,000 18 14 17
ipc1 4,000 22 16 19
ipc1 8,000 27 20 24
ipc1 16,000 31 23 29
ipc1 32,000 (39) 28 37
ipc1 64,000 24 23 23
ipc1 128,000 (35) 30 33

Table 5.11: Encoding width results for Source Address field

the encoding algorithm, whereas “Lower Bound 1” and “Lower Bound 2” refer to the

lower bounds based on n1, and on n1 and n2, respectively.

Table 5.12 shows results for encoding the Destination Address field of a set of

synthetic databases. Again, “Encoding Size” refers to the number of bits actually

used by the encoding algorithm. “Lower Bound i” refers to the lower bound based

on colorability constraints n1 through ni; an entry of “n/a” indicates a case where

i > k and thus that particular lower bound does not apply.

Overall it appears that the majority of the bits used by our encoding imple-

mentation are actually necessary, based on the lower bounds found in this study.

We expect, however, encoding of databases using IPv6 addresses to be much

more efficient. Encoding inefficiencies result from address intervals that overlap (and

thus can not be put in the same layer). IPv6 addresses are four times the width of

IPv4 addresses, but we do not expect to have a proportional increase in the maximum

134

Database Database Encoding Lower Lower Lower Lower
Seed Size Size Bound 1 Bound 2 Bound 3 Bound 4
acl1 2,000 24 18 20 20 19
acl1 4,000 23 17 19 19 19
acl1 8,000 24 19 20 20 20
acl1 16,000 23 20 20 19 20
acl1 32,000 23 21 21 22 22
acl1 64,000 24 20 20 19 20
acl1 128,000 24 20 19 20 n/a
fw1 2,000 20 15 17 18 n/a
fw1 4,000 24 19 22 22 n/a
fw1 8,000 13 13 13 n/a n/a
fw1 16,000 14 14 14 n/a n/a
fw1 32,000 15 15 15 n/a n/a
fw1 64,000 16 16 16 n/a n/a
fw1 128,000 17 17 17 n/a n/a
ipc1 2,000 31 20 25 28 28
ipc1 4,000 (33) 20 25 30 30
ipc1 8,000 (39) 23 29 35 35
ipc1 16,000 (44) 25 33 39 40
ipc1 32,000 (51) 29 39 48 48
ipc1 64,000 17 17 17 17 n/a
ipc1 128,000 31 30 30 30 n/a

Table 5.12: Encoding width results for Destination Address field

depth of address prefix nesting (and thus the number of layers needed). We there-

fore expect the encoding efficiency (relative to the number of bits in the unencoded

representation) to improve significantly.

5.5 Summary

By combining ideas from P2C and Extended TCAMs, we can build a new packet

classification technique which is more power-efficient than either P2C or Extended

TCAMs alone. This new classification technique reduces the power requirements by

a factor of ten to a hundred, while simultaneously reducing the amount of TCAM

storage needed; this all comes at the small cost of the encoding as noted in [53]. With

its low power consumption and high throughput (with pipelined encoding stages), this

scheme appears to be a promising solution for high performance packet classification.

135

Additional research contributions in this chapter include a means for defrag-

menting the primitive range identifiers space without the need to block lookups while

rewriting the entire TCAM, and improved lower bounds on encoding width require-

ments.

136

Chapter 6

Conclusion

High-performance packet classification is crucial to the deployment of several emerg-

ing network services; as network speeds and the number of flows to be classified

increase, it only becomes more difficult to solve. This dissertation makes several con-

tributions to the field, as summarized below, and also provides interesting directions

for future work.

6.1 Contributions

This dissertation describes several advances made in the field of high performance

packet classification. These include: a means of reducing data structure size in RFC,

which has the fastest and most deterministic lookup performance of all software-based

schemes; a new TCAM architecture which retains the high lookup rate of TCAM while

greatly reducing the power requirements; and a new classification method leveraging

some of the strengths of both Extended TCAMs and P2C.

Chapter 3 describes ways to reduce the size of data structures used in Recursive

Flow Classification. A simple compression technique reduces storage requirements

for the classifier’s crossproduct tables by 37% on average in the cases studied, and it

appears that larger classifiers are more compressible. Efficiency of the compression can

be improved by a heuristic which rearranges the tables in accordance with the solution

to a traveling salesman problem; this reduces storage requirements by 54% on average

in those experiments. But the most benefit, in terms of reducing storage requirements,

comes from proper selection of the RFC reduction tree. Optimal reduction tree

selection reduces the storage requirements by 74% compared to the average size in the

137

experiments conducted. A dynamic programming algorithm is presented for selecting

an optimal reduction tree.

A new TCAM architecture is presented in Chapter 4. This design solves the

two main scalability problems with TCAMs (currently the most popular method

for high performance packet classification) by using a partitioned TCAM (to reduce

power requirements) and by adding hardware support for range-matching; this allows

classification at the high rates achievable by TCAMs, while scaling up to hundreds

of thousands of filters.

Efficient use of a partitioned TCAM requires grouping filters into blocks such

that only a small number of blocks need to be searched for any given query; we present

two algorithms which accomplish this: Region-Splitting, which achieves excellent

power dissipation results (less than 5% of a standard TCAM for 32,000 filters or more)

and very reasonable storage complexity (less than 10% more than standard TCAM

in most cases), and Trie-Carving, which is faster than region-splitting and produces

competitive power fraction results at a small cost in terms of storage efficiency.

We describe an implementation of hardware hange matching support in CMOS

using 44 transistors per bit; for a typical IPv4 application this means a 46% increase

in transistor count per word, instead of a 2-6x increase in word count needed. This

improves both power requirements and storage efficiency.

Additionally, we describe a means of supporting dynamic filter updates using

the Trie-Carving data structures. There is a tradeoff between update complexity

and the power fraction obtained. For the databases studied in our experiments, it

is possible to obtain a power fraction of 10% and support hundreds or thousands of

updates per second by limiting trie sizes to 8,000 filters each.

Additionally, we demonstrate a means of further reducing the power require-

ments by using a multilevel indexing technique; this technique works with any filter

grouping algorithm, and for large databases it can result in power fractions well below

1%.

Chapter 5 introduced a novel packet classification technique which combines

ideas from P2C and Extended TCAMs to produce something which is more power-

efficient than either P2C or Extended TCAMs alone. In addition, we present a means

for on-the-fly defragmentation of the primitive range identifier space and some im-

proved lower bounds on the encoding width requirements, both of which can be

applied to P2C as well. The new classification technique reduces the power require-

ments by a factor of ten to a hundred, while simultaneously reducing the amount of

138

TCAM storage needed. With its low power consumption and high throughput (with

pipelined encoding stages), this scheme is a promising solution for high performance

packet classification. Also, due to its use of encoded field representations, this tech-

nique becomes much more attractive (in terms of power requirements) with the use

of larger search keys, such as those obtained from IPv6 headers.

6.2 Future Directions

While this dissertation presents advancements in the field of packet classification, it

also opens promising opportunities for future research.

One such opportunity is the development of filter grouping algorithms for Ex-

tended TCAMs and PEST with different strengths. The current algorithms represent

a particular compromise between algorithm execution speed, TCAM power efficiency,

and TCAM storage complexity; other algorithms may seek to lean more towards one

of those goals, perhaps at the expense of the others. Bounds on how well an algo-

rithm can perform, in terms of power fraction, are not even known at this time; thus

that in itself is an opportunity for research. Another area for future work is further

refinement of filter update handling in Extended TCAMs and PEST.

Also, it may be possible to apply some of the ideas from Extended TCAMs

and PEST to other classification frameworks. With the properties of modern DRAM,

a very low power classifier could be built with each row of DRAM corresponding to

a filter storage block; the indexing mechanism itself can still be TCAM, and when

filters are retrieved from DRAM, they can be subjected to a linear search or fed into

a single dedicated filter comparator circuit. But this is meant merely as an example;

there are many other possibilities in this area.

139

References

[1] ClassBench web site. <http://www.arl.wustl.edu/˜det3/ClassBench/>.

[2] Packet classification repository. <http://www.ial.ucsd.edu/classification>.

[3] F. Baboescu, S. Singh, and G. Varghese. Packet classification for core routers: Is

there an alternative to cams? In Proc. of IEEE INFOCOM 2003, San Francisco,

CA, 2003.

[4] F. Baboescu and G. Varghese. Scalable packet classification. In Proc. of ACM

SIGCOMM 2001, San Diego, CA, August 2001.

[5] S. Blake, D. Black, M. Carlson, E. Davies, and Z. Wang. An architecture for

Differentiated Services. RFC 2475, December 1998.

[6] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Archi-

tecture: an overview. RFC 1633, June 1994.

[7] A. Brodnik, S. Carlsson, M.Degemark, and S. Pink. Small forwarding tables for

fast routing lookups. In Proc. of ACM SIGCOMM 97, Cannes, France, August

1997.

[8] M. Buddhikot, S. Suri, and M. Waldvogel. Space decomposition techniques for

fast layer-4 switching. In Proc. of Protocols for High-Speed Networks 99, Salem,

MA, August 1999.

[9] A. Campbell, H. De Meer, M. Kounavis, K. Miki, J. Vicente, and D. Villela. A

survey of programmable networks. Computer Communication Review, 29(2):7–

23, April 1999.

[10] N. Christofides. Worst-case analysis of a new heuristic for the travelling sales-

man problem. Technical report, Graduate School of Industrial Administration,

Carnegie-Mellon University, Pittsburgh, PA, 1976.

140

[11] P. Crowley, M. Franklin, H. Hadimioglu, and P. Onufryk. Network Processor

Design: Issues and Practices. Morgan Kaufmann.

[12] D. Decasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf, and B. Plattner. A

scalable, high performance active network node. IEEE Network, January 1999.

[13] S. Deering and R. Hinden. Internet Protocol version 6 (IPv6) specification. RFC

2460, December 1998.

[14] W. Eatherton. Hardware-based internet protocol prefix lookups. Master’s thesis,

Washington University in St. Louis, May 1999.

[15] K. Egevang and P. Francis. The IP network address translator (NAT). RFC

1631, May 1994.

[16] A. Feldman and S. Muthukrishnan. Tradeoffs for packet classification. In Proc.

of IEEE INFOCOM 2000, Tel Aviv, Israel, March 2000.

[17] G. Gibson, F. Shafai, and J. Podaima. Content addressable memory storage

device. United States Patent #6,044,005, March 2000.

[18] P. Gupta, S. Lin, and N. McKeown. Routing lookups in hardware at memory

access speeds. In Proc. of IEEE INFOCOM 98, San Francisco, CA, April 1998.

[19] P. Gupta and N. McKeown. Packet classification on multiple fields. In Proc. of

ACM SIGCOMM 99, Cambridge, MA, September 1999.

[20] P. Gupta and N. McKeown. Packet classification using hierarchical intelligent

cuttings. In Proc. of Hot Interconnects 1999, Stanford, August 1999.

[21] R. Kempke and A. McAuley. Ternary CAM memory architecture and method-

ology. United States Patent #5,841,874, November 1998.

[22] M. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. Campbell. Directions in

packet classification for network processors. In Second Workshop on Network

Processors (NP2), February 2003.

[23] T. V. Lakshman and D. Stidialis. High speed policy-based packet forwarding

using efficient multi-dimensional range matching. In Proc. of ACM SIGCOMM

98, Vancouver, BC, September 1998.

141

[24] B. Lampson, V. Srinivasan, and G. Varghese. IP lookups using multiway and

multicolumn search. In Proc. of IEEE INFOCOM 98, San Francisco, CA, April

1998.

[25] C. Matsumoto. Netlogic takes narrow lead with 18-mbit cam shipment. EE

Times, May 2002.

[26] A. McAulay and P. Francis. Fast routing table lookups using CAMs. In Proc.

of IEEE INFOCOM 93, San Francisco, Canada, March 1993.

[27] Micron Technology Inc. 36Mb DDR SIO SRAM 2-Word Burst. Datasheet. De-

cember 2002.

[28] Micron Technology Inc. Harmony TCAM 1Mb and 2Mb. Datasheet. January

2003.

[29] J. Mogul. Simple and flexible datagram access controls for unix-based gateways.

In USENIX Conference Proceedings, Baltimore, MD, June 1989.

[30] R. Montoye. Apparatus for storing don’t care in a content addressable memory

cell. United States Patent #5,319,590, June 1994.

[31] G. Narlikar, A. Basu, and F. Zane. Coolcams: Power-efficient tcams for forward-

ing engines. In Proc. of IEEE INFOCOM 2003, San Francisco, CA, 2003.

[32] J. Postel. User Datagram Protocol. RFC 768, August 1980.

[33] J. Postel. Internet Control Message Protocol - DARPA Internet Program Pro-

tocol Specification. RFC 792, September 1981.

[34] J. Postel (ed.). Internet Protocol - DARPA Internet Program Protocol Specifi-

cation. RFC 791, September 1981.

[35] J. Postel (ed.). Transmission Control Protocol - DARPA Internet Program Pro-

tocol Specification. RFC 793, September 1981.

[36] N. Shah. Understanding network processors. Technical report, University of

California, Berkeley, September 2001.

[37] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification using

multidimensional cutting. In Proc. of ACM SIGCOMM 2003, Karlsruhe, Ger-

many, August 2003.

142

[38] H. Song and J. Lockwood. Efficient packet classification for network intrusion

detection using FPGA. In International Symposium on Field-Programmable Gate

Arrays (FPGA’05), Monterey, CA, February 2005.

[39] E. Spitznagel. Compressed data structures for recursive flow classification. Tech-

nical Report WUCSE-2003-65, Department of Computer Science and Engineer-

ing, Washington University in St. Louis, May 2003.

[40] E. Spitznagel. Cmos implementations of a range check circuit. Technical Report

WUCSE-2004-39, Department of Computer Science and Engineering, Washing-

ton University in St. Louis, July 2004.

[41] E. Spitznagel and D. Taylor. On using content addressable memory for packet

classification. Technical Report WUCSE-2005-9, Department of Computer Sci-

ence and Engineering, Washington University in St. Louis, March 2005.

[42] E. Spitznagel, D. Taylor, and J. Turner. Packet classification using Extended

TCAMs. In Proc. of ICNP 2003, Atlanta, GA, November 2003.

[43] V. Srinivasan. A packet classification and filter management system. In Proc. of

IEEE INFOCOM 2000, Anchorage, AK, April 2001.

[44] V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple space

search. In Proc. of ACM SIGCOMM 99, Cambridge, MA, September 1999.

[45] V. Srinivasan and G. Varghese. Fast IP lookups using controlled prefix expansion.

In Proc. of ACM SIGMETRICS, June 1998.

[46] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable layer

4 switching. In Proc. of ACM SIGCOMM 98, Vancouver, BC, September 1998.

[47] D. Taylor. Models, Algorithms, and Architectures for Scalable Packet Classifica-

tion. PhD thesis, Washington University in St. Louis, August 2004.

[48] D. Taylor. Survey & taxonomy of packet classification techniques. Technical

Report WUCSE-2004-24, Department of Computer Science and Engineering,

Washington University in St. Louis, May 2004.

[49] D. Taylor and J. Turner. ClassBench: A packet classification benchmark. Techni-

cal Report WUCSE-2004-28, Department of Computer Science and Engineering,

Washington University in St. Louis, May 2004.

143

[50] D. Taylor and J. Turner. Scalable packet classification using distributed crosspro-

ducting of field labels. Technical Report WUCSE-2004-38, Department of Com-

puter Science and Engineering, Washington University in St. Louis, June 2004.

[51] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden. A

survey of active network research. IEEE Communications Magazine, 35(1):80–

86, January 1997.

[52] J. van Lunteren. Searching very large routing tables in wide embedded memory.

In Proc. of IEEE GLOBECOM 2003, San Francisco, CA, December 2003.

[53] J. van Lunteren and T. Engberson. Fast and scalable packet classification. IEEE

Journal on Selected Areas of Communication, 21(4):560–571, May 2003.

[54] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high-speed IP

routing lookups. In Proc. of ACM SIGCOMM 98, Vancouver, BC, September

1998.

[55] T. Woo. A modular approach to packet classification: Algorithms and results.

In Proc. of IEEE INFOCOM 2000, Tel Aviv, Israel, March 2000.

144

Vita
Edward W. Spitznagel

Date of Birth January 5, 1974

Place of Birth Saint Louis, Missouri

Degrees Washington University in Saint Louis

B.S. Electrical Engineering, August 1996

M.S. Computer Science, August 2003

D.Sc. Computer Science, anticipated December 2005

Experience Applied Research Laboratory, Washington University in St.

Louis (1998–2005)

Microsoft Corporation (1996–1997)

Medical Informatics, Washington University in St.

Louis (1993–1995)

Scholarships

and Awards

Research Assistantship (1998–2005)

ACM International Collegiate Programming Contest: 18th

place team (1995)

Missouri Higher Education Scholarship (1992 – 1996)

National Merit Scholarship (1992)

Publications E. Spitznagel, D. Taylor and J. Turner. Packet classification

using Extended TCAMs. In Proc. of ICNP 2003, Atlanta,

GA, November 2003.

S. Choi, J. DeHart, R. Keller, F. Kuhns, J. Lockwood, P.

Pappu, J. Parwatikar, W. D. Richard, E. Spitznagel, D. Tay-

lor, J. Turner and K. Wong. Design of a High Performance

Dynamically Extensible Router. In Proc. of the DARPA Ac-

tive Networks Conference and Exposition, May 2002.

Technical

Reports

E. Spitznagel and D. Taylor. On Using Content Addressable

Memory for Packet Classification. Technical Report WUCSE-

2005-9, Department of Computer Science and Engineering,

Washington University in St. Louis, March, 2005.

145

E. Spitznagel. CMOS Implementations of a Range Check

Circuit. Technical Report WUCSE-2004-39, Department of

Computer Science and Engineering, Washington University

in St. Louis, July, 2004.

E. Spitznagel. High Performance Packet Classification. Tech-

nical Report WUCSE-2004-14, Department of Computer Sci-

ence and Engineering, Washington University in

St. Louis, March, 2004.

E. Spitznagel. Compressed Data Structures for Recursive

Flow Classification. Technical Report WUCSE-2003-65, De-

partment of Computer Science and Engineering, Washington

University in St. Louis, May, 2003.

F. Kuhns, J. DeHart, R. Keller, J. Lockwood, P. Pappu,

J. Parwatikar, W. D. Richard, E. Spitznagel, D. Taylor, J.

Turner and K. Wong. Implementation of an Open Multi-

Service Router. Technical Report WUCSE-2001-20, Depart-

ment of Computer Science and Engineering, Washington Uni-

versity in St. Louis, August, 2001.

J. DeHart, W. D. Richard, E. Spitznagel and D. Taylor. The

Smart Port Card: An Embedded Unix Processor Architecture

for Network Management and Active Networking. Technical

Report WUCSE-2001-18, Department of Computer Science

and Engineering, Washington University in St. Louis, August,

2001.

M. Franklin, E. Spitznagel and T. Wolf. Design Tradeoffs for

Embedded Network Processors. Technical Report WUCSE-

2000-24, Department of Computer Science and Engineering,

Washington University in St. Louis, July, 2000.

December 2005

