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Although many algorithms and architectures have been proposed, the design of ef-
ficient packet classification systems remains a challenging problem. The diversity of
filter specifications, the scale of filter sets, and the throughput requirements of high-
speed networks all contribute to the difficulty. We need to review the algorithms from
a high-level point-of-view in order to advance the study. This level of understanding
can lead to significant performance improvements. In this dissertation, we evaluate
several existing algorithms and present several new algorithms as well.

The previous evaluation results for existing algorithms are not convincing because
they have not been done in a consistent way. To resolve this issue, an objective
evaluation platform needs to be developed. We implement and evaluate several repre-
sentative algorithms with uniform criteria. The source code and the evaluation results
are both published on a web-site to provide the research community a benchmark for
impartial and thorough algorithm evaluations.

We propose several new algorithms to deal with the different variations of the packet
classification problem. They are: (1) the Shape Shifting Trie algorithm for longest
prefix matching, used in IP lookups or as a building block for general packet clas-
sification algorithms; (2) the Fast Hash Table lookup algorithm used for exact flow
match; (3) the longest prefix matching algorithm using hash tables and tries, used in
IP lookups or packet classification algorithms;(4) the 2D coarse-grained tuple-space



search algorithm with controlled filter expansion, used for two-dimensional packet
classification or as a building block for general packet classification algorithms; (5)
the Adaptive Binary Cutting algorithm used for general multi-dimensional packet
classification. In addition to the algorithmic solutions, we also consider the TCAM
hardware solution. In particular, we address the TCAM filter update problem for
general packet classification and provide an efficient algorithm. Building upon the
previous work, these algorithms significantly improve the performance of packet
classification systems and set a solid foundation for further study.
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Chapter 1

Introduction

1.1 Packet Classification

Packet classification enables network routers to provide advanced network services,

e.g. network security, QoS routing, and resource reservation. There is increasing

industrial and academic interest in algorithms and systems for efficient packet clas-

sification. On the one hand, network security and QoS have become urgent driving

factors requiring large-scale packet classification. Currently the largest packet filter

sets in use contain thousands of filters and each filter involves five or more header

fields. Tens of thousands of filters in a filter set are expected in the future. On

the other hand, increasing network traffic poses greater challenges than ever for the

application of large-scale packet classification. As of 2005, OC-192 (10 Gbps) connec-

tions have become common in backbone networks. Although the use of OC-768 (40

Gbps) connections is still rare, widespread adoption is expected. To support OC-192

wire-speed processing, more than 30 million packets need to be classified in a second

in the worst case. i.e. the systems are required to provide a classification result every

32 ns. This daunting task is made more difficult when we think of the advent of ter-

abit networks. For these reasons, packet classification is still an open and challenging

problem demanding continuing investigations.

The function of the packet classification system is to match packet headers against a

set of pre-defined filters. The relevant packet header fields usually include the source

IP address, the destination IP address, the transport protocol, the source port, and

the destination port. Other header fields, e.g. the TCP flags, can also be matched.
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Formally, a filter set consists of a finite set of n filters, R1, R2 ... Rn. Each filter

is a combination of k header field specifications, H1, H2 ... Hk. Each header field

specifies one of four kinds of matches: exact match, prefix match, range match, or

masked-bitmap match. A packet P is said to match a filter Ri if and only if the header

fields, H1, H2 ... Hk, match the corresponding fields in Ri in the specified way. Each

filter Ri has an associated action Acti that determines how a packet P is handled if

P matches Ri. Filters can overlap; hence, a packet can match multiple filters. In the

single match variation of the problem, the one with the highest priority among all the

matching filters is chosen as the best matching filter. Usually, the filter’s position in

an ordered list of filters defines its priority.

A linear search of the filter set, although simple and allowing the most compact

storage, is too slow for large filter sets. Instead, more sophisticated algorithms or

Ternary Content Addressable Memory (TCAM) hardware are used to attack the

problem. Both of these approaches have their own advantages and disadvantages in

terms of performance, economics, ease of implementation, and scalability. Hybrid

architectures which leverage these two approaches are also possible.

1.2 Algorithmic Solutions

Algorithmic solutions use commodity memory to minimize the storage cost. We

can map the packet classification problem to the point location problem in a multi-

dimensional space where each header field is treated as a dimension. In the space,

filters define hyper-cubes and a packet defines a point. The goal is to determine the

highest priority hyper-cube covering a given point. Point location in computational

geometry has proven to be difficult. Assuming there are n filters and F dimensions,

[49] shows that in order to achieve O(log n) lookup time, the required storage can be

as large as O(nF ); if the storage is limited to O(n), a lookup may take O(logF−1 n)

time to finish. Both extremes are unacceptable in practice. Fortunately, real filter

sets often exhibit structure that allows packets to be classified using more efficient

heuristic algorithms.
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1.2.1 High-level Review

An excellent survey of packet classification techniques can be found in [69]. In this

section, we identify certain high level characteristics of algorithmic approaches, with

the objective of developing insights that can lead to fundamental improvements.

One theme - space and time tradeoff

Well-designed algorithms exhibit a clear tradeoff between storage and throughput.

Algorithms without tunable parameters often perform poorly. For example, the cross-

producting algorithm [65] builds the direct cross-producting lookup table and suffers

from poor storage efficiency, so it fails to scale to even moderate sized filter sets.

The Recursive Flow Classification (RFC) algorithm [33], a variation of the cross-

producting algorithm in essence, trades off throughput in order to reduce storage

to some extent. However, the storage efficiency of RFC remains low and hence the

scalability of RFC remains poor. This suggests that additional tradeoffs need to be

considered to obtain better performance.

Two techniques - cutting and projection

The geometric view of packet classification reveals some basic ideas on how to con-

struct the data structures and to represent packet filters. In the geometric view, many

algorithms adopt either cutting or projection in multi-dimensional space to prepro-

cess filter sets. Figure 1.1 illustrates both on a 2D plane. The cutting technique

slices the space at selected vantage points into smaller subregions. Each subregion

therefore contains fewer filters. This process helps narrow the search scope. The

second technique projects the end-points of ranges to each dimensional axis. Two

adjacent points define an elementary interval that is fully covered by a unique subset

of the filters. Identifying the elementary intervals that a packet belongs to also helps

narrow the search scope. Projection has finer granularity than cutting so it can better

differentiate filters; however, locating an elementary interval from projection is more

difficult than locating a subregion from cutting.
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Figure 1.1: Cutting and Projection

The decision tree-based algorithms usually apply the cutting technique and the decomposition-

based algorithms often apply the projection technique.

Three Approaches - splitting, intersecting, and grouping

The goal of packet classification is to find the best matching filter for a given packet

header. The initial set is too large to be handled efficiently in terms of restricted

space or time, so the basic strategy is nothing more than “divide and conquer.” We

achieve the filter set reduction by “eliminating” the filters that are not needed for

identifying the final match.

The first approach is filter set splitting. It uses a few header bits to split the filter

set into smaller subsets. Some other header bits are then used to continue splitting

each subset. A decision tree is formed from this recursive process. Algorithms using

this approach include Woo’s modular packet classification [78], Hierarchical Intelli-

gent Cuttings (HiCuts) [32], Multidimensional Cuttings (HyperCuts) [56], and our

Adaptive Binary Cutting algorithm discussed in Chapter 7 .

The second approach is filter set intersecting. The key idea of this technique is that

it is easier to match a partial filter than to match the entire filter at one time. If

we split the packet header into a set of substrings, then each substring can match
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a subset of filters. The intersection of these subsets is exactly the filters matching

the entire packet header. Intersection can be implemented with different tradeoffs

of storage and throughput. For example, we can intersect all subsets obtained from

the substring lookups in a single step. The Bit Vector (BV) algorithm [39] and

the Aggregated Bit Vector (ABV) algorithm [10] explicitly represent the subset of

filters for each partial match by using bit vectors. On the other hand, the cross-

producting algorithm [65] implicitly encodes the subsets of filters into indices that

are used to form the keys to the cross-product table. These algorithms are fast and

their throughput mainly depends on the partial header lookup speed; However, they

can consume excessive amounts of memory. On the contrary, The RFC algorithm

[33] and the Distributed Cross-producting of Field Labels (DCFL) algorithm [68]

provide a nice tradeoff of storage and throughput by recursively performing parallel

set intersections in multiple steps. The Fat Inverted Segment Trees (FIST) algorithm

[30] uses a similar approach but performs the intersections in sequence. The partial

header lookup can be done using different methods. The fastest method is to use a

direct lookup table, yet it also consumes the most storage. We can also use any single

field lookup technique, such as binary search and longest prefix matching. Our SST

algorithm discussed in Chapter 3 is perfect for this purpose.

The last and least used approach is filter set grouping. Filters in a set are regrouped

into disjoint subsets according to certain common features. Lookups can be performed

on each of these smaller subsets in parallel. The best match is determined from the

results of all the lookups. Tuple Space Search [63], in which filters are grouped based

on a tuple specification, belongs in this category. Lookups in each tuple can be

conducted through a simple hash table. Our 2D Compressed Tuple Space Search

algorithm discussed in Chapter 6 also takes this basic approach.

Each of the approaches has its own limitations. It appears that to achieve consis-

tently good performance, one needs to combine the best characteristics of different

approaches and make good use of time-space tradeoffs. While attempts to find new

algorithms from a totally different perspective seem unlikely, a systematic analysis

of the existing algorithms can lead to significant improvements. For instance, one

problem with filter set splitting is that some filters are too similar to be efficiently

separated. But one can use filter set grouping to group the filters based on some

sort of “similarity” measure so that the filters in a single subset exhibit maximum
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dissimilarity. For each subset, filter set splitting may be more efficient. The problem

of filter set intersecting is its excessive memory consumption which is partially due to

a large number of elementary intervals [30] or equivalence classes [33]. We can reduce

the number by aggregating elementary intervals. This coarser granularity leads to

much smaller cross-product tables and can also speed up the single field lookups at

the cost of a small linear search in the final intersection step. In the RFC algorithm,

the first level lookup tables take very large amounts of space. By slightly sacrificing

the throughput, one can construct a more efficient data structure to reduce the table

size significantly. To summarize, there are still many opportunities to improve the

algorithm performance once existing algorithms are fully understood.

1.3 TCAM Solution

TCAMs are widely deployed in high performance network routers for packet clas-

sification because of their unmatched lookup throughput and generality. A TCAM

is a special memory device which can store ternary bit strings and perform parallel

searches on all of its entries simultaneously. In TCAMs, packet filters are represented

as ternary bit strings and stored in decreasing priority order. Given a packet header,

the search for the best matching filter with the highest priority is performed on all

the entries in parallel. The index of the first matching filter is then used to access a

memory to retrieve the associated data for the matching filter. This elegant archi-

tecture allows classifying packets at very high throughput. A commercially available

TCAM chip can store more than 100K ternary filters, which is more than enough for

even the largest filter set applied today. It can classify 250 million packets per second,

which satisfies the throughput demands of all the existing networks today [3]. The

room for algorithmic solutions to compete with TCAMs seems very narrow.

While TCAMs remain the most popular choice for high performance packet classi-

fication in network routers, it is generally agreed that they are not preferred for IP

lookups. At the same time, the research on algorithmic alternatives for general packet

classification is still going on because of the following drawbacks of TCAM devices.
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• Low Density & High Cost. A TCAM device requires up to 16 transistors for

a bit while SRAM requires six and SDRAM just one. Consequently, the stor-

age density of a TCAM is significantly lower than that of commodity memory

technologies. Moreover, the relatively small market for TCAMs makes them

relatively expensive, with a cost per bit that is roughly 20 times that of SRAM

and hundreds of times that of SDRAM.

• High Power Consumption. Because they search all entries in parallel on every

packet, TCAMs consume a lot of power. 25 Watts is a fairly typical power

budget for a TCAM device in a high performance application. Modern TCAMs

do allow entries to be grouped into segments, that can be selectively searched

in order to reduce power usage. When filters are partitioned among segments

appropriately, it can significantly reduce power consumption [82, 62, 83]. How-

ever, these hybrid solutions actually lower the system throughput and impair

the generality of TCAMs.

• Poor Arbitrary Range Support. TCAMs naturally support searches on ternary

bit strings. This is not ideal for packet filters that include arbitrary ranges

for some of their fields. The standard way to solve this problem is to convert

filters with ranges into sets of filters defined by bit strings. But this can lead

to significant expansion in the space required to represent a filter (as much

as 900x expansion in the worst case) [62]. This observation has triggered the

development of new methods that combine single field searches with encoded

range values [44, 40, 46] and proposals for direct hardware support of range

lookups [62]. Again, these hybrid solutions tend to lower the system throughput

and impair the generality of TCAMs.

• Poor Multiple-Match Support. Recent network security applications, such as

network intrusion detection and prevention, require all the matching filters to

be reported, not just the first one. Conventional TCAMs can only output the

matching filter with the smallest index. It seems likely that future TCAMs,

driven by new application requirements, will be designed to support multiple

matches efficiently. Currently, the approaches for dealing with this problem are

discussed in [80, 81, 60, 40]. On the other hand, almost all the algorithmic

solutions naturally support multiple-match applications.
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In addition to these issues, the problem of filter update in TCAM deserves more at-

tention. A close examination of this issue shows that updates can have a significant

performance impact on TCAM-based lookups. Chapter 8 studies this issue and pro-

poses possible solutions.

Our research focuses primarily on algorithmic solutions to packet classification, aiming

to promote better design and evaluation standards for packet classification systems.

As the first step of this effort, in this chapter we survey the existing algorithms from

a high-level perspective, trying to extract basic ideas and inherent links. Better algo-

rithms can sometimes be obtained by relaxing restrictions or introducing more degrees

of freedom. Indeed, this systematic analysis has led to the new algorithms discussed

in Chapter 3 through Chapter 8. The literature survey also shows the status of al-

gorithm evaluation is far from acceptable. The research community urgently needs a

more systematic evaluation of existing algorithms to enable consistent performance

comparisons. Our efforts include implementing some representative algorithms and

evaluating them under uniform criteria. This project is described in Chapter 2. In

Chapters 3, 4, 5, 6, and 7, we present several new algorithms which solve different

variations of the packet classification problem, from one dimension to multiple dimen-

sions, from exact match to general match. Chapter 9 summarizes our contributions

and discusses the future work.
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Chapter 2

Algorithm Evaluation

2.1 Motivation

Although many packet classification algorithms and architectures have been proposed

and research is ongoing, researchers and technology adopters find it is difficult to

choose an appropriate algorithm for application and to evaluate new algorithms ob-

jectively. Before exploring new possibilities, it is imperative to understand existing

algorithms under uniform test conditions and a common set of benchmark criteria.

Unfortunately, the existing algorithm evaluation is hardly persuasive for the following

reasons:

2.1.1 Incommensurable Evaluation Results

First, evaluations by different authors are not based on the same filter sets. Re-

searchers have limited accessibility to real-world filter sets. Sometimes they have

to use randomly generated filter sets for evaluations. However, the performance of

many packet classification algorithms is very sensitive to the structure of the filter

sets. Second, the evaluations are not based on common implementation assumption.

They do not share a common implementation model. Some algorithms assume a

software-based implementation and the others assume a hardware-based implemen-

tation. Different assumptions on implementation architectures and platforms can

lead to very different performance evaluation results. Third, there is an absence of

evaluation tools, benchmarks, and publicly accepted measurements. Different people
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have their own understanding of the evaluation criteria. Some criteria are unrealistic

and make it hard to determine the actual performance one might expect in practice.

This makes it difficult to understand and compare the evaluation results.

2.1.2 Irreproducible Implementations and Evaluation Results

Researchers rarely provide enough details to allow readers to exactly reproduce the

work reported in their research papers. Either some key points of the algorithm

description are missing or the test conditions, such as parameter settings and the filter

sets used, are undisclosed. These situations cause confusion and create unnecessary

hurdles for others trying to understand the algorithms and advance the research.

2.1.3 Incomplete Evaluation and Unconvincing Results

Packet classification algorithms often involve some tradeoffs, heuristics, and optimiza-

tions. Tunable parameters may have subtle effects on algorithm performance. It is

important to isolate them and evaluate their behavior carefully in order to clarify their

impact on the algorithm. However, some evaluations fail to identify the performance

impact of individual parameters.

Moreover, some researchers boast about some aspects of their algorithms while un-

derplaying their drawbacks. Researchers sometimes make claims without sufficient

proof. Some assumptions and prerequisites are impractical or invalid. The ambigu-

ities in algorithm descriptions and evaluations are too confusing to allow readers to

make valid judgments

2.1.4 Inadequate Insights

Some research papers focus on the algorithm details and lack high-level insights which

reveal the inherent and intrinsic principles that underlie the algorithms. Proposed

algorithms become more and more complex without convincing benefits. Deeper
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understanding of the problem is needed to enable more effective algorithm design

efforts.

2.2 Approach

Ideally, the evaluation should cover the criteria of throughput, storage, incremental

update support, preprocessing time, scalability to the size of filter sets, adaptability

to the structure of filter sets, implementation cost, and power dissipation. All the

evaluation results should be normalized in a directly comparable way. In different

applications, some criteria may be more important than others, but the evaluation

should provide information without preference and let readers make their own judge-

ments. While asymptotic analysis of timing and storage complexity is a useful metric,

the evaluation should not be limited by it. Because packet classification algorithms

are mostly based on heuristics, different filter sets with different structures and sizes

tend to give very different results. The performance of the algorithm on real filter

sets is the decisive factor in any realistic evaluation.

By identifying the problems in algorithm evaluations for packet classification, we

establish a standard procedure of algorithm description and evaluation. In particular,

we provide the research community an objective and “advocacy-free” evaluation of a

suite of packet classification algorithms. A summary of our approach follows:

2.2.1 Documentation of Method

First, we provide a complete description of the key data structures and all the tunable

parameters. Second, we provide a detailed description of the algorithm preprocessing

and lookup process along with step-by-step illustrations using an example. Third, we

provide the source code for an actual implementation.

We assume that a simple hardware-based model or a network processor-based model

is used in our implementation, which includes multiple on-chip lookup engines or
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threads, a memory interface, and a commodity off-chip memory. All data are re-

trieved from the off-chip memory. The lookup for one packet is conducted by a

sequence of dependent memory accesses. The memory bandwidth is shared by mul-

tiple independent lookup engines or threads. The on-chip resource usage is small

relative to filter set size, so we ignore the cost of it in our evaluation. To save mem-

ory bandwidth and improve performance, the implementations are supposed to use

efficient methods to compress data structure representation.

We also try to categorize the algorithms based on their high-level ideas and provide

insights to help improve the algorithm performance or design better algorithms.

2.2.2 Documentation of Filter Set

The open-source ClassBench [70] is used to generate synthetic filter sets with different

scales and structures. We provide the parameters used for filter set generation. We

also generate a packet header trace using ClassBench for each filter set for implemen-

tation verification and algorithm evaluation. The size of a trace is about 10 times

that of the corresponding filter set.

We provide the original filter sets that are used as seeds for the synthetic filter sets.

The statistics files extracted from the original filter sets can be downloaded from the

ClassBench website.

2.2.3 Metrics for Evaluation

For objective and meaningful algorithm evaluation, we measure the storage efficiency

of an algorithm using the average number of bytes consumed per filter. We measure

the throughput of an algorithm using the memory bandwidth consumption: the num-

ber of bytes per memory access and the number of dependent memory accesses per

packet lookup. The memory bandwidth consumption is evaluated in both worst and

average case.
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Figure 2.1: Presentation of Evaluation Results

We will use three figures like those shown in Figure 2.1 to present the results. The

overall data structure size is the product of the memory consumption per filter and

the number of filters. The overall throughput can be calculated by dividing the total

memory bandwidth by the memory bandwidth consumed per packet lookup.

2.2.4 Sensitivity Study

We determine how each individual parameter influences the overall performance quan-

titatively in the algorithm evaluation. For each tunable parameter, we produce some

figures like that shown in Figure 2.2. Each figure use a different scaled filter set. The

sensitivity study will clarify issues often left unresolved in the original papers. It will

also help users to determine the optimal design parameters for a given filter set.
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Figure 2.2: Effect of Parameter Settings
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The documentation of the algorithm evaluation results are posted on a publicly ac-

cessible website:

www.arl.wustl.edu/~hs1/PClassEval.html

Note that our implementations are only for the purpose of simulation and evaluation,

thus the source code is not optimized for software execution and the implementations

do not directly map to either hardware or network processor. In addition, we do

not consider preprocessing cost, incremental update cost or power dissipation. These

factors are left for future studies. Our effort will help promote better understanding

of some representative algorithms, promote the standard for algorithm evaluation,

ease the research curve, and encourage contributions from the research community to

make it better.

2.3 Summary

2.3.1 Evaluated Algorithms

Six representative algorithms have been evaluated. They are HiCuts [32], Hyper-

Cuts [56], Woo’s Modular Packet Classification [78], RFC [33], BV [39], and the

Tuple Space Search Algorithm [63]. They cover all the basic approaches we have

discussed in Chapter 1.

The difficulty we encountered during the algorithm implementation mainly results

from the ambiguous and incomplete algorithm descriptions in the original papers.

The authors failed to provide deterministic algorithm descriptions. The likely reason

for that is that the algorithms depend heavily on heuristics, and the performance of

the heuristics is very sensitive to the filter set structure. Some algorithms include

several options or only high level guidelines for implementing the algorithm details.

It is up to the user to determine appropriate implementations so trial and error is

needed. During implementation, we found that sometimes the details are actually

very tricky and getting the details right is crucial for the overall performance. This

unfortunate situation reveals serious problems with the algorithm design and demands

more attention from the algorithm designers.
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For example, when implementing the HiCuts algorithm [32], we were confused by

the heuristic for choosing the dimension to cut. Although the authors listed four

possible strategies, it is unclear which one is actually used in their performance eval-

uation. Our experiments shows this decision is crucial. A careless choice may cause

poor performance or incorrect operation. For example, the option of choosing the

dimension that maximizes the entropy of rule distribution does not work in the case

when all the remaining rules span the entire region on some dimensions. No matter

how many cuts are performed on these dimensions, they always return the maximum

entropy, but by choosing one of these dimensions, the cuttings are useless: the only

effect is to duplicate the same set of rules into multiple subregions. Similar problems

arise in other papers. The algorithm description of the HyperCuts algorithm [56] is

particularly confusing. While the dimension selection strategy is clear, the decisions

about the number of cuts and their distribution among the chosen dimensions are

very ambiguous. The algorithm description of RFC [33] does not tell how exactly the

reduction tree should be organized, which can significantly bias the memory efficiency.

Such ambiguity and uncertainty in algorithm description can seriously damage an

algorithm’s credibility. We believe that in any case the algorithm description should

be thorough and deterministic, without any ambiguity. Further investigation and

thoughtful design can help avoid this situation, giving an algorithm a more forcible

standing.

2.3.2 Filter Sets

In our evaluation, we use three parameter files to generate the synthetic rule sets with

variable size of 100 to 10K. The parameter files are:

• acl1 : extracted from an Access Control List (ACL) rule set with 733 rules.

In this rule set, the source and destination IP prefix specifications are quite

specific. The destination port specification can be exact value (in most cases),

arbitrary range or wildcard. All the source port specifications are wildcard. So

the filters can be seen as four dimensional.
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• ipc1 : extracted form an IP Chain (IPC) rule set with 1702 filters. The rule set

structure is similar to the ACL rule set except that the source ports also have

exact value or arbitrary range specifications.

• fw1 : extracted from a Firewall rule set with 283 filters. In this rule set, all

fields have many wildcard specifications.

The detailed characteristics of these parameter files can be found in [6].

2.3.3 Sample Results — the HiCuts Algorithm

Here we give the evaluation results of HiCuts [32] as an example. Please refer to the

project website [7] for more information and results.

HiCuts is the first decision tree-based packet classification algorithm. It takes the

geometric view of the packet classification problem. We consider a k-dimensional

space where k is the number of header fields involved in packet filters. Each filter

defines a hypercube in this space and each packet header defines a point. The decision-

tree construction algorithm recursively cuts the space into smaller sub-regions, one

dimension per step. Each sub-region contains fewer overlapped hypercubes than its

parent sub-region. The construction algorithm stops dividing nodes when the number

of contained hypercubes is small enough for a linear search to be acceptably fast. The

lookup algorithm is straightforward. Based on the value of the packet header, the

algorithm follows the cutting sequence to locate the target sub-region (i.e. a leaf

node in the decision tree) and then performs a linear search on the hyper cubes that

overlap this sub-region.

Figure 2.3 illustrates the decision-tree construction for a 2-dimensional filter set. On

the plane are five rectangles, each representing a filter. At the first step, we cut

along the x-axis to generate four sub-regions. At the following steps, we choose two

of these sub-regions to cut along the y-axis and x-axis, respectively. Now each sub-

region overlaps ≤ 2 rectangles. If we decide it is affordable to do a linear search on

at most two filters, we can stop cutting the space further. The resulting decision tree

is also shown in Figure 2.3.
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Figure 2.3: HiCuts Illustration

The number of decision tree nodes and the number of stored filters determine the space

required by the algorithm data structure, and the depth of the decision tree and the

number of filters in the leaf nodes determine the worst-case lookup throughput. It

is difficult to find the globally optimal decision tree, so in practice the construction

algorithm uses some heuristics to make optimal local decisions and trade off storage

and throughput. Now we introduce the configurable parameters used to control the

tradeoff.

Configurable Parameters

The Number of Cuts: Intuitively, the more cuts are made at each step, the fatter

and shorter the resulting decision tree will be. However, a large number of cuts

may lead to excessive duplication of filters. Therefore, we choose a suitable
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number of cuts np at each intermediate decision tree node r. np is dynamically

determined by the local cutting situation and a global configurable space mea-

sure factor, spmf. We choose the largest possible np as long as the following

inequation is satisfied and it doesn’t exceed the design limitation:

spmf ∗ number-of-filters-at-r ≥
∑

number-of-filters-at-each-child-of-r + np

For convenience of implementation, the chosen value of np is always a power of

2. Different configurations of spmf need to be tested to determine the best one.

The Dimension Chosen to Cut: Apart from the number of cuts, the dimension

to cut along at each intermediate decision tree node r is also critical to the

algorithm performance. The algorithm gives four options. Neither one is con-

sistently better than the others for different filter sets. Experiments are needed

to determine their effectiveness.

• option 0 : Find the largest number of filters ni in one child node for each

field. Choose the dimension that gives the smallest ni.

• option 1 : Assume node r contain n filters and a child node of r contains

ni filters. Let ni/n be a probability distribution of np elements. Choose

the dimension that gives the largest entropy of this distribution.

• option 2 : Choose the dimension that results in the smallest

∑
number-of-filters-at-each-child-of-r + np

• option 3 : Choose the dimension that has the largest number of distinct

range specifications of filters.

The Bucket Size: The maximum number of filters allowed in a leaf node. This is

used to determine when we terminate the decision tree construction. A larger

bucket size can help reduce the size and depth of a decision tree, but can yield

a longer linear search time. A smaller bucket size has the opposite effects.

Experiments are needed to select the proper bucket size.
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Algorithm Optimizations

Child Node Reuse: After a number of cuts are performed along a dimension, many

child nodes may contain an identical set of filters. In such a case, we can avoid

storing these child nodes individually. Instead, we use a pointer to point to a

common child node which is shared by all such child nodes. This optimization

has two implications. First, a pointer must be maintained for each potential

child node. Second, each node must keep its region boundary explicitly.

R1

R2

R3

r0 r1 r2 r3

R1, R2, R3

R1, R2 R3R2

r0
r1 r2

r3

Figure 2.4: Child Node Reuse Optimization

In Figure 2.4, the first two sub-regions r0 and r1 have the same set of filters,

{R1, R2}, so only one child node is generated.

Redundancy Elimination: After a sequence of cuttings is performed, the portion

of a hypercube in a sub-region might be fully covered by another hypercube

with a higher priority. The corresponding filter at this decision tree node is

therefore redundant and can be removed to save storage.

In Figure 2.5, if the filter R1 has higher priority than R3, then in the sub-region

r1, R3 becomes redundant and can be removed. However, R1 and R3 should

coexist in the sub-region r0 since they are only partially overlapped.

Storage Efficiency and Scalability of Storage and Throughput

In the simulation, we set the bucket size to 16, the space measure factor to 2, and

the dimension selection option to 3. Figure 2.6 shows the results. The acl1 filter sets
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Figure 2.5: Redundancy Elimination Optimization
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Figure 2.6: HiCuts Performance Evaluation

consistently demonstrate better performance and scalability. The fw1 filter sets give

the poorest overall performance. When the number of filters exceeds 1K for fw1 or

5K for ipc1, the performance becomes unacceptable, so the data points are not shown

in the figure.

Sensitivity Study

We use the acl1-10K, ipc1-1K, and fw1-100 filter sets to evaluate the algorithm sen-

sitivity to the configurable parameters.

Sensitivity to the Space Measure Factor In this simulation, we set the bucket

size to 16, the dimension selection option to 3. The results are shown in Fig-

ure 2.7. A larger space measure factor means larger storage and better perfor-

mance. acl1-10K and ipc1-5K show similar performance while fw1-100 is much
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worse in terms of the storage, even though there are only about 100 filters in

the filter set.
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Figure 2.7: Sensitivity to Space Measure Factor

Sensitivity to the Bucket Size In the simulation, we set the space measure factor

to 2, the dimension selection option to 3. The results are shown in Figure 2.8.

The storage decreases monotonically when the bucket size increases. Generally

a larger bucket size means a worse lookup throughput but this is not always

true.
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Figure 2.8: Sensitivity to Bucket Size

2.3.4 Observations

The overall evaluation results are consistent with our expectations. However, some

interesting behaviors do stand out, which are not stressed in the published papers.

First, the performance of packet classification on firewall filter sets is generally poor,

even for moderate sized filter sets. This is especially true for decision tree-based

algorithms. For example, given a firewall filter set with only 100 filters, the HiCuts
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algorithm [32] uses more than 1,000 bytes to store a filter on the average and needs

to access about 500 bytes to classify a packet in the worst case. The main reason is

that each field of the filter tends to cover a wide range of values, and in consequence

the filters are heavily overlapped and less distinguishable. Fortunately, the number of

unique ranges or prefixes on each field is not necessarily large so the decomposition-

based algorithms such as RFC [33] and BV [39] work relatively better.

Second, although the decomposition-based algorithms can be very fast, their memory

efficiency is poor. We observe an excessive memory consumption for moderate sized

filter sets. For example, given a IPC filter set with about 1,000 filters, the RFC

algorithm [33] needs 40,000 bytes to store a filter on the average. The algorithm can

even exhaust the system memory when working on the filter sets with a few thousands

of filters.

Third, although the decision tree-based algorithms allow a nice tradeoff between

storage and throughput, their overall performance is rather disappointing. Not only

can neither the storage nor the throughput be predetermined due to the limited

control mechanisms, but also either end of the performance is barely satisfactory for

use in high performance environments. This point is hard to see in the original papers.

We will address these problems further and propose a better algorithm in Chapter 7.
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Chapter 3

Shape Shifting Tries

3.1 Introduction

The growth of Internet traffic and the growing complexity of packet processing are

placing extreme demands on the design of high performance routers. More flexible

and efficient methods are needed to perform high performance packet classification

and route lookup.

Longest Prefix Matching (LPM) is now a well-understood problem, for which there

is a variety of effective high performance algorithmic solutions [64, 42, 26, 74]. How-

ever, the expected deployment of IPv6, and the use of LPM as a component within

more general packet classification mechanisms [39, 10, 46, 68] creates new challenges,

justifying continuing efforts to improve the performance of LPM algorithms.

Some of the most successful methods for LPM are essentially high performance vari-

ants of the basic binary trie. The simplest variant of the binary trie is a multibit

trie, in which binary nodes are replaced with d-ary nodes for values of d > 2. This

can dramatically reduce the number of memory accesses required at the cost of less

efficient use of memory. The tree bitmap algorithm (TBM) [26] can be viewed as a

clever encoding of a multibit trie that dramatically reduces the memory penalty asso-

ciated with a naive implementation. For each node in a multibit trie, the tree bitmap

algorithm uses a pair of bit vectors to represent the subset of the “potential children”

that are actually present and the prefixes associated with the given node. Children

of a node are stored in consecutive memory locations, allowing each node to use just

a single child pointer. Similarly, the next hop information associated with a node is
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stored in a group of consecutive memory locations, allowing use of a single pointer

to reference the next hop information. This representation allows every node in the

multibit trie to be represented with a small, constant-size record. A tree bitmap al-

gorithm implementation with an initial on-chip table of 8K entries (covering the first

13 bits of the IP address) and a stride of five needs just four off-chip memory accesses

to traverse an IPv4 trie, with one or two additional accesses needed to retrieve the

next-hop information.

Unfortunately, the time needed for trie-based lookup mechanisms grows linearly in

the address length, making them less attractive for IPv6. Reference [74] describes

an algorithm whose complexity grows logarithmically in the prefix length, making

it much more attractive for IPv6. However, the algorithm is relatively complex to

implement and its use of pre-computed markers to guide the search makes it difficult

to support incremental update. An alternative approach is to extend trie-based al-

gorithms to make them more efficient for longer address fields. The key observation

needed to enable this is that as address lengths grow, the structure of the underlying

binary trie intrinsically becomes much more sparse. This provides an opportunity

to use alternate encodings that better match the structure of the binary trie. The

Shape-Shifting Trie (SST) developed in this chapter is constructed from nodes that

correspond to arbitrarily shaped subtrees of the underlying binary trie. This allows

the SST to conform to the structure of the underlying binary trie, significantly re-

ducing the number of SST nodes that must be traversed to perform a lookup.

General packet classification can also benefit from the SST. The decomposition-based

packet classification algorithms decompose the problem into a series of single field

lookups which are often conducted using LPM. Even when the filter set is very large,

the number of unique prefixes on each header field is typically very small, which leads

to very sparse binary tries.

In this chapter, we introduce the concept of shape shifting tries and the correspond-

ing algorithms for high performance LPM. Sections 3.2 and Section 3.3 discuss the

SST coding scheme and lookup algorithm, respectively. Section 3.4 describes the SST

construction algorithms. An improved hybrid algorithm is introduced in Section 3.5.

We describe a reference implementation of the algorithms in Section 3.6. The algo-

rithm performance is evaluated for both IPv4 and IPv6 table lookups in Section 3.7.
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Incremental update of SST is discussed in Section 3.8. In Section 3.9, we present

several algorithm optimizations to further improve the performance. Section 3.10

summarizes the related work and Section 3.11 concludes the chapter.

3.2 SST Representation

All SST nodes have the same size (i.e. use the same amount of storage). The size

determines the capacity of the SST node. The nodes of an SST correspond to subtrees

of the underlying binary trie, with up to K nodes, where K is a parameter of the

data structure. Since these subtrees can have an arbitrary shape, each SST node

includes a shape bitmap (SBM ) that represents the subtree’s shape. The encoding

we use was described by Jacobson [37]. To encode a tree, we first augment the tree

with additional dummy nodes. Each original node with no children, gets two dummy

children. Each original node with one child gets one dummy child. We then associate

a bit with each node in the augmented tree. The value of this bit is ‘1’ for each of

the original nodes and ‘0’ for each of the dummy nodes. The shape bitmap consists

of this set of bits, listed in breadth-first order. We omit the bit corresponding to the

root, since this bit is always ‘1’. The shape bitmap for a tree with K original nodes

has 2K bits and any tree with up to K nodes can be represented by a shape bitmap

with 2K bits. We can also view the shape bitmap as associating two bits with each

original node. These bits indicate which of the node’s potential children are present

in the tree. In our illustrations, we typically adopt this viewpoint to avoid showing

dummy nodes explicitly.

In addition to the shape bitmap, an SST node includes an internal bitmap with K

bits. This identifies which of the binary trie nodes has an associated prefix. An

SST node also includes an external bitmap with K + 1 bits that identifies which of

the potential “exit points” from the subtree corresponds to an actual node in the

underlying binary trie. The bits of the internal and external bitmaps are listed in

breadth-first order of the corresponding nodes.

Each SST node also includes two pointers. The child pointer points to the first SST

node that is a child of the given SST node. The next hop pointer points to the next
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hop information for the first binary trie node in the SST node for which there is a

prefix. The children of a given SST node are stored in sequential memory locations,

allowing us to access any of the children using the child pointer. Similarly, the next

hop information for all the nodes is stored in sequential locations, allowing us to

access the next hop information for any binary node using the next hop pointer.

Figure 3.1 shows a binary trie that has been divided into subtrees of size less than or

equal to three (K=3), along with the corresponding shape-shifting trie. In the figure,

the darker binary trie nodes indicate valid prefixes.
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Figure 3.1: An SST and the Corresponding Data Structure

3.3 Lookup in an SST

The lookup process in an SST is similar to the lookup process for the tree bitmap

algorithm [26]. The search proceeds recursively, starting from the root. At each step,

we use bits from the address prefix to move through the subtree of the binary trie

represented by the current SST node. We use the shape bitmap and the external

bitmap to determine if the search terminates at this node or continues to one of its

children. If it does continue to a child, we find the bit in the external bitmap that

corresponds to the child and count the number of ‘1’s in the bitmap that precede

this bit. We then use this number as an offset to the child node of interest, from

the array of children starting at the location specified by the child pointer. An
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example illustrating this process is shown in Figure 3.2. Assuming the IP address

being looked up is “1100”, the first SST node lookup returns the child pointer and the

best matching prefix so far; the second SST node lookup returns the best matching

prefix.
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Figure 3.2: A Lookup Example Using SST

The basic step in the search algorithm requires decoding the shape bitmap. The key

step is to find the bits in the shape bitmap that correspond to nodes in the path

traversed by a search using bits from the IP address prefix. We start by defining ni

to be the number of nodes at distance i from the root of the augmented version of the

subtree represented by the SST node (including dummy nodes). We let fi denote the

position of the bit in the shape bitmap that corresponds to the first node at distance

i from the root. Note that n1 = 2, f1 = 0 (since we omit from the shape bitmap the

bit corresponding to the root) and fi = fi−1 + ni−1. We define ones(i, j) to be the

number of ones in the shape bitmap in the range of bits from i through j, and note

that ni = 2× ones(fi−1, fi − 1).

Next, we let ai be the i-th bit of the IP address that is relevant to the node currently

being decoded (so a1 selects a child of the root of the subtree represented by the

current node). We also let pi be the index in the shape bitmap corresponding to the

node on the path specified by the IP address that is at distance i from the root of the

subtree. With these definitions, p1 = a1 and for i > 1, pi = fi + 2× ones(fi−1, pi−1 −
1) + ai.
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Now, if i is the smallest integer for which the shape bitmap at position pi is zero,

then pi corresponds to the point where the search on the IP address leaves the subtree

represented by the current SST node. To determine if the search continues to another

SST node, we need to consult the external bitmap. The position in the external

bitmap that must be checked is the one with index equal to zeros(0, pi − 1) where

zeros(i, j) is defined to be the number of zeros in the shape bitmap in the range of

bits from i through j. If x is the index of the proper bit in the external bitmap, and

if bit x of the external bitmap is equal to ‘1’, then the search continues at a child

of the current SST node. To find the next SST node, we add an offset to the child

pointer. This offset is equal to the number of ones in the external bitmap preceding

bit x.

Consider the example shown in Figure 3.2. In the root SST node, we find n1 = n2 =

n3 = 2, f1 = 0, f2 = 2, f3 = 4, p1 = 1, p2 = 3, p3 = 4. Since bit p3 of the shape

bitmap is the first of the pi bits that equals zero, we count the number of zeros in

the shape bitmap preceding position 4. Since there are two zeros, we consult position

2 in the external bitmap to determine if the search continue to another SST node.

Since bit 2 of the external bitmap is 1, there is an extending path. Also, since there

is a single 1 in the external bitmap before bit 2, we add 1 to the child pointer to find

the next SST node.

There are several ways to implement the lookup process for a single SST node. One

conceptually simple approach is to use the equations derived above to define a com-

binational circuit that computes the values of pi for 1 ≤ i ≤ K. This is fast, but

it does require a relatively large amount of circuitry. A simpler alternative is to use

a sequential circuit that for i ≥ 1, computes values of ni, fi and pi iteratively on

successive clock ticks, terminating as soon as the shape bitmap at position pi is equal

to zero. This takes up to K clock ticks in the worst case, plus another clock or two

to decode the external bitmap and add the offset to the child pointer for the next

memory access.

While the time needed to decode an SST node sequentially can be fairly long, note that

the overall time to perform a lookup is essentially one clock tick per address bit, plus

one memory access time per SST node searched. Since the lookup process does not

change the SST, we can have multiple lookup engines operating in parallel on different
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packets, with their memory accesses interleaved. Thus, the time to do a lookup at

a single node only affects the number of engines required, not the throughput. The

throughput is only a function of the memory bandwidth and the number of memory

accesses needed per lookup. See [67] for a description of how this technique is used

with the TBM algorithm of [26].

3.4 Constructing Optimal SSTs

A given binary trie can be represented by many different SSTs, depending on how the

binary trie is partitioned. Since our primary concern is to minimize the search time,

we focus on SSTs that have minimum height, where the height of a tree is defined as

the length of the longest path from the root of the tree to a leaf.

However, we start by considering how to find an SST with a minimum number of

nodes, ignoring the question of height. This can be done using a post-order traversal

of the binary trie, pruning off subtrees to form SST nodes. Let s(x) be the number

of nodes in the subtree of the binary trie with root x. When we visit node x in a

post-order traversal, we perform the following step.

1. if s(x) = K prune the subtree at x and assign all of its nodes to a new SST

node.

2. otherwise, if s(x) > K and x has children a and b with s(a) ≥ s(b), prune the

subtree at a and assign its nodes to a new SST node.

We call this the Post-Order Pruning (POP) algorithm. Figure 3.3(a) shows an ex-

ample of the partitioning produced by the POP algorithm for K = 3. Figure 3.3(b)

also shows a minimum height partitioning. Notice that the minimum height partition

has a height of one and yields five SST nodes, while the minimum size partition has a

height of three and yields four SST nodes. The example makes it clear that a single

SST cannot be optimal with respect to both criteria.

Theorem 1 The SST constructed by the POP algorithm for a given binary trie has

the minimum number of nodes.
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(a) (b)

Figure 3.3: Minimum Size and Height Partitions of a Binary Tree

We sketch the proof of the optimality of the POP algorithm. We claim that the

algorithm maintains the following invariant.

• Invariant:after every step, there is some minimum sized SST that includes all

the nodes formed so far.

This is clearly true when the algorithm starts and if it is held to be true when the

algorithm completes, then the constructed SST must be optimal. So, it suffices to

show that the pruning rules maintain the invariant. Consider an application of the

first pruning rule and let T be a minimum size SST that includes the nodes formed

so far. If T does not include a node for the entire subtree at x, then at least one

descendant of x must be in a different SST node than x is. This SST node cannot

contain any nodes that are not descendants of x. Consequently, we can modify T so

that it does form a single node from the subtree at x. The partition that T imposes

on the rest of the binary trie remains unchanged. This SST cannot have any more

nodes than T has.

Now, consider the second pruning rule. Again, let T be a minimum size SST that

includes the nodes formed so far. Note that due to the post-order traversal, K >

s(a) ≥ s(b). Because s(x) > K, T cannot form a single node from the subtree at
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x. Any subtree that is pruned from the subtree at x leaves behind at least 1 + s(b)

nodes. Consequently, we can modify T so that it includes a node for the subtree at

a, but is otherwise unchanged. This modified SST cannot have any more nodes than

T . So far the optimality of the POP algorithm is proved.

We now turn our attention to constructing minimum height SSTs. This requires a

somewhat more complicated method that we call the Breadth-First Pruning (BFP)

algorithm. BFP operates in multiple passes, successively pruning off subtrees with at

most K nodes. It starts by computing s(x), the number of descendants of node x in

the binary trie, for each binary trie node x. It then repeats the following step until

there is nothing left of the binary trie.

• Scan the current pruned binary trie in breadth-first order. Whenever a binary

trie node y with s(y) ≤ K is found, prune y and its descendants from the trie

and assign them to a new SST node. For all ancestors x of y, subtract s(y)

from s(x).

The BFP algorithm can be implemented to run in O(n2) time, where n is the number

of nodes in the underlying binary trie. We now show that it does produce minimum

height SSTs.

3.4.1 Optimality of BFP

Consider any minimum height SST for a given binary trie. We say that a binary trie

node u “belongs” to an SST node x, if u is in the subtree corresponding to x. We

assign each binary trie node u a label h(u) equal to the height of the SST node it

belongs to. To establish the optimality of the BFP algorithm we first prove a few

properties concerning these labels.

Lemma 1 For any node u, the number of descendants v of u (including u itself) with

h(v) = h(u) is at most K.

Proof: Let S be the set of descendants v of u with h(v) = h(u). Assume that S

contains more than K nodes and note that, they cannot all belong to the same SST
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node. If U is the SST node that u belongs to, there must be some node v in S

that belongs to a child V of U . But the height of U cannot equal the height of V ,

contradicting the assumption that S contains more than K nodes. 2

We call each of the steps performed by the BFP algorithm a pass.

Lemma 2 After i passes of the BFP algorithm, the binary trie contains no nodes u

with h(u) ≤ i− 1.

Proof: Proof by induction. The basis (i = 0) is trivially satisfied, since h(u) ≥ 0 for

all u.

For the inductive step, assume that at the beginning of pass i, the trie contains no

nodes u with h(u) ≤ i − 2. Suppose that at the end of pass i, there is some node

u with h(u) = i − 1. Since u was not removed from the trie, it must have been

considered in the breadth-first scan performed by the BFP algorithm. Since it was

not removed from the trie, it must have had more than K descendants at the time it

was considered. But since all of its descendants v have h(v) = i− 1, this contradicts

Lemma 1. 2

Lemma 3 Let x and y are two SST nodes formed by the BFP algorithm in the same

pass, then neither is an ancestor of the other.

Proof: The BFP algorithm scans the underlying binary trie in breadth-first order. In

one pass, if a node is pruned, all of its ancestors have already been scanned and will

not be touched again in the same pass. 2

With these lemmas, we are now prepared to show that the BFP algorithm produces

minimum height SSTs.

Theorem 2 The SST constructed by the BFP algorithm for a given binary trie has

the minimum height. The height is one less than the number of passes performed by

BFP.
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Proof: Let r be the root of the binary trie and let T be the SST constructed by BFP.

By Lemma 2, the SST node containing r is formed by the end of pass h(r) + 1. By

Lemma 3, no path from the root of T to one of its descendants passes through more

than one node formed in the same pass. Hence, the height of T is at most h(r). Since

h(r) was defined relative to a minimum height SST, it follows that T has minimum

height also. 2

3.4.2 Effectiveness of Shape Shifting Trie

The shape shifting trie method for longest prefix matching is a generalization of the

Tree Bitmap algorithm (TBM) [26]. In both algorithms, the data structure node

includes an internal bitmap, an external bitmap, a single child pointer and a single

next hop pointer. However, SST also requires a shape bitmap that must be taken

into account when comparing the two.

If we let K = 2S be the SST node size, then an SST node needs 4K + 1 bits for its

three bitmaps. A TBM node can use these bits to implement a multibit trie node

with a stride of S + 1, corresponding to a subtree of the binary trie with 2K − 1

nodes. So, if the underlying binary trie is dense, the TBM data structure can be

more space-efficient than the SST. But if the binary trie is sparse (fewer than half

the “potential” nodes are actually present), the SST is more space-efficient. Because

such sparse subtrees are very common in the tries that represent large routing tables,

SST is typically more space-efficient than TBM.

The most important advantage of SST is its potential to reduce the trie height. In

the extreme case of a trie that consists of one long path with m nodes, a TBM data

structure has a height of approximately m/(S + 1), while a comparable SST has

a height of m/2S. For S = 4, this is more than a three-to-one improvement. In

practice we don’t expect such dramatic gains, but we do find improvements as high

as two-to-one for IPv6 in Section 3.7.
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3.5 A Hybrid Algorithm

The discussion of the last subsection suggests that it may be worthwhile to use a

hybrid approach in which TBM nodes are used to represent dense parts of the trie,

while SST nodes are used to represent sparse parts. We use a bit in the node data

structure to identify the format used for the current node. If the bit specifies a TBM

node, we use 2K bits for the external bitmap, and 2K−1 bits for the internal bitmap.

If the bit specifies an SST node, we use 2K bits for the shape bitmap, K + 1 bits for

the external bitmap and K bits for the internal bitmap.

When building a hybrid trie, we must decide which node type to use. We modify

the BFP algorithm to take this into account. During each breadth-first scan, when

we encounter a node u, we first check to see if the number of nodes in the subtree

is small enough to fit into a single SST node. If so, we prune the subtree and form

an SST-type node. Otherwise, we check to see (1) if the height of the subtree with

root u is small enough to fit into a TBM-type node, and (2) if there is no extending

path from the subtree nodes other than those with the largest stride. When both

are satisfied, we prune the subtree and form a TBM-type node. Note that whenever

we encounter a node in a breadth-first scan, we know that the height of its parent is

too large for a TBM node and the size of its parent’s subtree is too large for an SST

node. Also, note that the height of the hybrid data structure cannot be any larger

than the height of an optimal SST. On the contrary, the hybrid data structure can

potentially reduce the trie height further.

3.6 Reference Implementations

The performance evaluation to follow, is based on reference implementations of the

TBM, SST and hybrid algorithms. We assume that in all three cases, the lookup

data structure is stored in a 200MHz QDRII SRAM with a 36-bit wide data interface.

These devices have a minimum burst size of two words, which can be read and written

in a single clock cycle. In our reference implementations, the nodes for each data

structure are stored in three words. For the TBM data structure (and for TBM

nodes in the hybrid data structure), this allows us to implement a stride of 5 (32 bits
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for the external bit map and 31 bits for the internal bitmap). For SST nodes, there

is enough space for K = 16.

All three algorithms use a variation of the prefix bit optimization described in ref-

erences [26, 67]. This optimization reduces the number of off-chip memory accesses

substantially. It’s based on the observation that we don’t really need to look at the

next hop pointer and the internal bitmap for most nodes visited during a search. We

only need to examine these fields for the node corresponding to the longest prefix.

The prefix bit optimization allows us to identify this node without looking at the next

hop pointer and internal bitmap fields of all but two nodes visited. The optimization

is implemented using an extra bit in each data structure node. This bit is set to ‘1’

if the portion of the underlying binary trie corresponding to the parent node has a

prefix that is relevant to the child’s subtree. During the search, we remember the

parent of the most recently visited node whose prefix bit was set. At the end of the

search, we examine the next hop pointer and internal bitmap of this parent node. We

also examine the next hop pointer and internal bitmap of the node where the search

terminates. If all but the next hop pointer and internal bitmap are placed in the

first two words of the three words used to store a data structure node, we only need

to do one two-word access per data structure node visited, plus one or two more to

retrieve the best matching next hop. Thus, if the data structure has a height of H,

the worst-case number of memory accesses is H + 3.

These considerations lead to the node formats shown in Figure 3.4. In all cases, the

third word contains the internal bitmap. For the SST node format it also contains

the next hop pointer. Because the parameter K for an SST node does not have to

be a power of two, one can increase the SST node size at the expense of reducing the

number of bits in the child pointer. The child pointer size is then set to 20. This

allows us to have up to a million SST nodes. We allocate 20 bits to the next hop

pointer, allowing for up to a million prefixes. Since the largest IPv4 prefix tables

currently contain fewer than 200,000 prefixes, this seems more than adequate.
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Figure 3.4: Data Structure Node Formats

3.7 Performance Evaluation

Using our reference implementations, we performed simulations on real and synthetic

IP route lookup tables to examine the performance of our algorithms in terms of tree

height and tree size, which determines the worst-case lookup throughput and memory

consumption. Specifically, we compared three different algorithms: the tree bitmap

algorithm, the original BFP SST algorithm and the BFP hybrid algorithm. We also

provide the statistics of the underlying binary trie for reference. The parameter

settings are illustrated in Figure 3.4.

3.7.1 Performance on IPv4 Route Lookup

To start, we simulated the algorithms for IPv4 lookup tables. We expect the largest

performance improvement on small tables since we can expect the prefix tree to be

sparse and contain a lot of long and skinny paths. However, we are particularly

interested in the algorithm performance on very large IP lookup tables. We used a

recent snapshot of the AS1221 BGP table from [1] for analysis. This table contains

about 184K prefixes and has the prefix length distribution shown in Figure 3.5.

The prefixes lengths are distributed from 8 to 32. Almost half of the prefixes have

length 24. Table 3.1 shows the test results.

In summary, the BFP Hybrid algorithm improves the trie height by 17% and improves

the trie size by 46% over the tree bitmap algorithm. The BFP SST algorithm reaches

the optimal trie depth while the multibit trie is one layer deeper. On the other
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Figure 3.5: Prefix Length Distribution of the IPv4 BGP Table

Table 3.1: Performance on IPv4 BGP Table

Trie # of Worst Case Memory
Depth Nodes Throughput (Bytes)

Underlying Binary Trie 32 487,696 - -
Tree Bitmap 6 64,245 22.2M pkts/s 845.0K
BFP SST 5 49,177 25.0M pkts/s 648.3K
BFP Hybrid 5 34,515 25.0M pkts/s 455.0K
SST Optimal Bound 5 37,760 25.0M pkts/s 497.8K

hand, the BFP algorithms decrease the total number of nodes significantly compared

with the tree bitmap algorithm. Surprisingly, the size of the trie generated by the

BFP Hybrid algorithm is even lower than the pure SST optimal bound. In all cases,

the data structures are small enough to fit in a single SRAM chip (4 MB chips are

currently available).

Assuming we fully utilize the memory bandwidth by deploying multiple lookup en-

gines and interleaving the memory accesses, the BFP hybrid algorithm needs only 8

memory accesses in the worst case, per route lookup. Since the QDRII SRAM can

perform 200 million two-word accesses per second, it can sustain a throughput of 25

million packets per second. Assuming a worst-case packet size of 40 bytes, the system

can support 8 Gbps throughput, which is close to the OC-192 link rate.
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3.7.2 Performance on IPv6 Route Lookup

Evaluation is somewhat more difficult for IPv6, as there are no large real-world IPv6

routing tables available for analysis. We start with an available IPv6 BGP table

from [1]. This table has fewer than 900 prefixes, with the prefix length distribution

shown in Figure 3.6.
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Figure 3.6: Prefix Length Distribution of the IPv6 BGP Table

In this table, prefixes with length 32, 48 and 64 dominate and only a few prefixes

have length of 112, 126 and 128 bits. Table 3.2 shows the test results. Actually, if

we only support this size of table, 10 bits are enough for the Child Pointer since the

test result shows that there are at most 1,013 nodes in the multibit trie and even

fewer in the SST. Thus using our node format layout, we can support K = 19 and

S = 5. Clearly, this will make the performance of our algorithms even better while

the performance of the tree bitmap algorithm stays the same. Even though we still

use the same parameters, the BFP SST and the BFP hybrid algorithms yield a trie

height less than one third that required by the tree bitmap algorithm. This allows

them to sustain a throughput that is almost three times higher.

We see a dramatic 68% reduction on the trie depth in our algorithms as well as a 52%

reduction on the number of trie nodes, compared with the tree bitmap algorithm.
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Table 3.2: Performance on IPv6 BGP Table

Trie # of Worst Case Memory
Depth Nodes Throughput (Bytes)

Underlying Binary Trie 128 5,415 - -
Tree Bitmap 25 1,013 7.14M pkts/s 13.4K
BFP SST 8 530 18.2M pkts/s 7.0K
BFP Hybrid 8 493 18.2M pkts/s 6.5K
SST Optimal Bound 8 413 18.2M pkts/s 5.4K

Less than 7K bytes are needed to store the data structure except for the next hop

information.

One can argue that this comparison is unrealistic, since current IPv6 address alloca-

tion schemes [4] use the lower half of the 128-bit IPv6 address for an interface ID.

This makes it unnecessary to store more than the first 64 bits of the IP address prefix

in the trie. To correct for this, we do a second comparison in which all prefixes with

length longer than 64 have been removed. Table 3.3 summarizes the results. In this

case, the BFP SST and BFP hybrid algorithms still provide more than a 2:1 reduction

in the trie height and nearly a 2:1 reduction in the trie size, when compared to the

tree bitmap algorithm.

Table 3.3: Performance on Trimmed IPv6 BGP Table

Trie # of Worst Case Memory
Depth Nodes Throughput (Bytes)

Underlying Binary Trie 64 5,015 - -
Tree Bitmap 12 934 13.3M pkts/s 12.3K
BFP SST 5 498 25.0M pkts/s 6.6K
BFP Hybrid 5 459 25.0M pkts/s 6.1K
SST Optimal Bound 5 386 25.0M pkts/s 5.1K

To more fully evaluate our algorithms for the IPv6 case, we resort to synthetic IPv6

prefix sets, since there are no large real-world IPv6 tables available yet. We adopt

the methodology developed in [75]. The authors observe that while it is difficult to

predict the structure of future large scale IPv6 route lookup tables, it’s possible to use

the IPv6 address allocation schemes and the characteristics of current IPv4 tables to

infer information that can be used to generate realistic IPv6 tables. For evaluation,



40

we generate an IPv6 table with about 200K prefixes using the method proposed in

[75]. The prefix length distribution of this table is shown in Figure 3.7.
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Figure 3.7: Prefix Length Distribution of the Synthetic IPv6 Table

All the prefixes in this table are for global unicast addresses, which start with the first

three bits of “001”. The prefix length also retains some statistical characteristics of

the IPv4 BGP table used in our earlier experiments, but scaled to IPv6. For example,

the ratio of the number of even length prefixes to the number of odd length prefixes is

3 : 1. A large portion of the prefixes have length of 32, 48 and 64. This characteristic is

also consistent with the IPv6 address allocation schemes and seems likely to hold true

in the future IPv6 route lookup tables. Each address prefix is generated by starting

with the three bit prefix 001, appending a 13 bit random number, then appending

an IPv4 prefix, and finally appending some additional random bits whose length is

selected to produce the desired prefix length distribution. The IPv4 prefixes were

selected from the BGP table used in our earlier experiment. Figure 3.8 illustrates the

prefix value distribution at each bit position.

The simulation results on this synthetic route lookup table are summarized in Ta-

ble 3.4. The trie height for the BFP hybrid algorithm is about half that of the tree

bitmap algorithm, and the memory required is about 40% of that required by the tree

bitmap algorithm. The pure BFP SST algorithm is only slightly less efficient than

the BFP hybrid algorithm.
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Figure 3.8: Bit Value Distribution of the Synthetic IPv6 Table

Table 3.4: Performance on the Synthetic IPv6 Table

Trie # of Worst Case Memory
Depth Nodes Throughput (Bytes)

Underlying Binary Trie 64 4,565,260 - -
Tree Bitmap 12 892111 13.3M pkts/s 11.8M
BFP SST 7 345,222 20.0M pkts/s 4.55M
BFP Hybrid 6 345,166 22.2M pkts/s 4.55M
SST Optimal Bound 7 312,132 20.0M pkts/s 4.12M

With similar numbers of prefixes, the binary tries for IPv6 route lookup tables are

sparser than those for IPv4. Comparing the simulation results for the IPv4 and IPv6

route lookup tables, we note that the BFP hybrid algorithm makes a bigger difference

in the space efficiency for the IPv4 case, apparently due to the greater density in the

underlying trie.

For this scale of route lookup tables, we can do 22.2 million route lookups per second.

Assuming the worst-case IPv6 packet size to be 60 bytes, a single SRAM chip can

sustain 10.7 Gbps link speed.

While the height of trie-based data structures with a fixed stride length grows in

proportion to the underlying binary trie height, we find that the SST height increases
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only by two as we go from IPv4 to IPv6. The number of memory accesses needed

is actually comparable to the number of hash table probes needed for the method

described in scheme [74]. The method of [74] requires log2 n hash probes, where n is

the address length, which is 64 for IPv6.

3.7.3 Scaling Characteristics of SST

We performed some additional experiments to show how the performance of SST

improves as more bits are available for the per node bit maps. We used the synthetic

IPv6 BGP table used in our earlier experiment and varied the total number of bits

available for the bitmaps from 16 to 128. The results are summarized in Figure 3.9.

At most of the data points, the SST algorithm shows substantial advantages over the

tree bitmap algorithm.
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Figure 3.9: Effects of the Bit Assignment

3.8 Updating an SST

Because an SST is essentially an encoding of a binary trie, it is relatively easy to add

and remove prefixes. Prefixes that convert a non-prefix node in the underlying binary

trie to a prefix node are trivial to handle. It’s also easy to add binary trie nodes to
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SST nodes that are not yet “full”. In some cases, this may require restructuring an

SST node, but so long as this restructuring does not change the set of child nodes of

the SST node being restructured, it affects only the one SST node. Adding new SST

nodes is also straightforward, as is removing SST nodes that are no longer needed.

However, incremental modifications to an SST can result in poor performance. In

particular, one can construct a sequence of insertions and deletions that results in

an SST with nodes that all have depth log2 K. This can lead to worst-case perfor-

mance that is worse than that of the tree bitmap algorithm. One can avoid this

by restructuring the SST occasionally, should the height exceed some target bound.

Determining the frequency with which such restructuring should be done is left as a

subject for future study.

3.9 SST Optimizations

Given a fixed SST node size, we have three approaches to further optimize the SST

algorithm. First, compress the underlying binary trie by removing the redundancies.

Second, increase the SST node capacity by removing the nonessential information.

Third, come up with a better SST node encoding technique by exploiting the under-

lying trie structure. We explore the first two approaches in this section and leave the

last one as future work.

3.9.1 Compressing the Underlying Binary Trie

Since the size of the underlying binary trie correlates directly with the size of the

SST, a smaller underlying trie is preferred to reduce memory usage. The real route

lookup tables contain some kinds of redundancies that can be exploited to compress

the underlying binary trie. We present two simple techniques called child promotion

and nearest ancestor collapse to remove the redundancies.

Figure 3.10 illustrates an example to perform the child promotion. The darker nodes

represent the valid prefixes. If two child nodes of a binary trie node both represent the
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valid prefixes, we can use a one-bit shorter prefix to replace one of these two longer

prefixes without changing the LPM lookup results. If this promoted child node is a

leaf node, we can safely delete this child node after the promotion. In this example,

we promote the prefix A in the first step and C in second step.
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Figure 3.10: Child Promotion Optimization

To perform this optimization, after building the binary prefix trie, we traverse the

trie in postorder. If the two child nodes of a binary trie node are valid prefixes, we

promote one of them to be the parent node. If either node is also a leaf node, we

promote it in order to delete the redundant node after the promotion.

In practice, this optimization works very well. It deletes 5.23% (5,426) of the tree

nodes and promotes 7,179 prefixes for the Mae-West route lookup table. For the much

larger IPv4 BGP table, It deletes 10.78% (52,585) tree nodes and promotes 74,804

prefixes.

Our second optimization is based on the fact that for route lookups, it does not

matter which prefixes are matched so long as the next hop information is correct.

The number of next hops or forwarding ports is limited and typically small in a

router. So if the next hop of the longest matching prefixes is same as the next hop

of the second longest matching prefixes for an IP address, then the longer prefix is

redundant and the search for it is fruitless. We can safely collapse this prefix to the

shorter one. Figure 3.11 illustrates the nearest ancestor collapse optimization. The

darker nodes represent the valid prefixes and the number in the nodes indicates the

next hop.
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To perform this optimization, we traverse the binary trie in postorder. For each valid

prefix, we examine its nearest ancestor that is also a valid prefix and compare their

next hops. If they are same, we delete the next hop information in the longer prefix

and invalidate this prefix. If this prefix node happens to be a leaf node, we recursively

delete the nodes upwards until we meet its nearest ancestor or a tree branch.

This optimization decreases the number of binary trie nodes as well as the valid

prefixes. Liu uses similar technique to compress the route lookup tables and shows

that the number of valid prefixes can be reduced up to 26.6% [45].

When both of the optimizations help to produce a better SST, we note that they do

not help to improve the multi-bit trie. Actually, one multi-bit trie implementation [64]

has to apply opposing mechanisms such as the prefix expansion in order to work.

3.9.2 Increasing SST Node Capacity

We consider alternate node representations that allocate a larger share of the node

space to the SBM. Given a fixed SST node size, every two more bits assigned to the

SBM can increase the node capacity by one. First, we can eliminate the EBM and

assign the saved bits to the SBM. Although this scheme requires allocating space for

all potential children of an SST node even some of which may not be present at all,

it can increase the maximum node capacity by 50%. We gain some extra throughput

through this arrangement. Moreover, the reduction of the total number of SST nodes
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can compensate for the extra memory consumption for the empty nodes. To further

compress the SST node, we can remove the IBM from the SST nodes and store it

with the next hop array instead. This costs an extra memory access to retrieve the

next hop, but does not affect the worst-case number of accesses.

Assume we can read three 36-bit words per clock cycle and the basic BFP SST

algorithm uses the node format shown in Figure 3.4. We then remove the EBM,

IBM, and both from the SST node, respectively. Table 3.5 and Table 3.6 shows the

performance comparison for the IPv4 BGP table and the synthetic IPv6 table. The

throughput estimation is based on a clock frequency of 200MHz.

Table 3.5: Performance Optimization on IPv4 BGP Table

K Trie # of Worst Case Memory
Depth Nodes Throughput (Bytes)

BFP SST 16 5 49,177 33.3M pkts/s 648.3K
- EBM 22 4 42,519 40.0M pkts/s 560.6K
- IBM 22 4 37,413 33.3M pkts/s 493.2K
- EBM - IBM 34 4 26,878 33.3M pkts/s 354.3K

Table 3.6: Performance Optimization on Synthetic IPv6 Table

K Trie # of Worst Case Memory
Depth Nodes Throughput (Bytes)

BFP SST 16 7 345,222 25.0M pkts/s 4.55M
- EBM 22 6 1,209,595 28.6M pkts/s 15.57M
- IBM 22 6 252,845 25.0M pkts/s 3.26M
- EBM - IBM 34 4 445,631 33.33M pkts/s 5.74K

For sparser underlying trie as in the IPv6 case, more empty nodes are included into the

data structure, so the storage may become less efficient. However, the throughput gain

becomes more significant. On the other hand, when the underlying trie is relatively

dense as in the IPv4 case, the storage saving is dominant.
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3.10 Related Work

IP route lookup is a well-studied problem. The algorithmic approaches organize the

prefixes using some sophisticated data structure and store them in memories. The

lookup is conducted by a series of memory accesses. The multibit trie is the best

representative of this type of technique. Another type of technique directly uses the

brute-force parallel search in hardware, like TCAMs. Since our algorithm can easily

support an OC-192 throughput in the worst case with extremely efficient memory

usage (several bytes per prefix), there is no point using expensive and power-hungry

TCAM devices for the job. Simulations in [48] also show that the multibit tries

scale better than TCAMs with increasing routing table sizes in terms of the number

of transistors. The disparity increases with the increased use of multi-homing and

load-balancing.

For trie-based IP lookup, some techniques have been developed to improve the lookup

efficiency by exploiting the structure characteristics of the prefix tree. The original

binary trie can have long sequence of one-child nodes. The path compression tech-

nique [57] collapses the one-way branch nodes. Additional information must be kept

in remaining nodes so that a search operation can be performed correctly. Specifi-

cally, a compressed tree node contains a variable-length bit string which records the

address prefix at this point, the next hop information if a valid prefix is present, a bit

position field which tells the address bit to be checked, as well as two child pointers.

The lookup procedure can be described like this: Descend in the trie to the node

indicated by the bit position field. If the node is marked as a valid prefix, compare

the current IP fragment with the bit string which decompress as the path. If the

comparison returns a match, the next hop information is kept as a best match so far.

The procedure ends when finding a mismatch or reaching a leaf node. The best match

kept is returned as the longest prefix match. The algorithm can decrease the storage

requirement and potentially increase the lookup speed, but it is hard to implement

in hardware and the effect is not so significant if the prefix tree is dense. The SST

data structure can be viewed as a generalization of this approach.
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The multibit trie is the more common technique to accelerate the IP route lookup

speed. In this scheme, multiple bits are inspected simultaneously, so that the through-

put is improved in proportion to the stride. One way to implement it is through prefix

expansion: arbitrary prefix lengths are transformed into an equivalent set with the

prefix length allowed by the new structure. Specifically, if the stride is S, the prefix

lengths that are not a multiple of S need to be expanded to make the lengths equal to

the nearest multiple of S. The prefix expansion increases the memory consumption

if a fixed stride is used.

The multibit trie algorithm is generalized to enable a different stride at each trie

level. Given the IP route lookup table and a desired number of memory accesses in

the worst case, the selection of the stride size is implemented by controlled prefix

expansion [64]. A dynamic programming algorithm is used to compute the optimal

sequence of strides that minimizes the storage requirements. The algorithm is further

improved by providing alternative dynamic programming formulations for both fixed

and variable-stride tries [52]. The disadvantages of the controlled prefix expansion

are two-fold: the update is slow and leads to sub-optimality; the hardware implemen-

tation is difficult due to the variable trie node size. Moreover, the storage optimality

is only under the worst-case throughput constraints. The prefix expansion tends to

increase the memory consumption anyway. For example, the memory usage of our

data structure on the BGP table is roughly equal to the memory usage of the multibit

trie with the controlled prefix expansion on the MaeEast table, when their worst-case

tree depths are both five [64]. However, the BGP table is about five times larger

than the MaeEast table. Clearly, our algorithm scales with the route table size much

better.

The breakthrough to enable fast hardware implementation and eliminate prefix ex-

pansion was the tree bitmap algorithm [26]. The major idea of tree bitmap also forms

the foundation of our work. A coding scheme is used to effectively compress the node

size and enable fast lookup. Another similar node coding scheme can be found in [72]:

A depth-1 trie numbering scheme is actually a combination of the SBM and the IBM,

while the EBM is implied by the trie scanning order. However, the major concern

in that paper is to compress the trie representation. Though the data structure also

supports multiple bit search in one memory access, it only uses naive trie partition

and does not provide an optimal trie in terms of either trie depth or trie size. Besides,



49

the algorithm does not consider the case when the compression actually turns out to

be more inefficient than the simple tree bitmap representation as addressed by our

hybrid algorithm.

In [22], the underlying binary trie is also partitioned to build the FSMs using the

hardware logics for IP route lookups, where the partitioning is only aimed to reduce

the overall number of FSMs. We also find the similarity of the SST construction

problem with the technology mapping problem in the reconfigurable logic technology.

Many algorithms have been proposed to optimize the depth and size of the partitions

over the underlying binary tree, separately or simultaneously [31, 19]. Actually, the

SST construction can be considered as a special and the simplest case of this problem,

hence these algorithms can be applied to our problem with corresponding modifica-

tions. Likewise, the BFP SST algorithm, which is simple and optimal in terms of trie

depth, can also be used in technology mapping scenarios.

3.11 Conclusion

We present a novel data structure, the shape shifting trie and a corresponding LPM

algorithm in this chapter. The algorithm outperforms the classical tree bitmap al-

gorithm and can be used in high performance routers to perform IP route lookup at

even higher line speed. The algorithm also scales well to fast growing route lookup

tables and is especially attractive for IPv6 route lookups, by taking advantage of the

sparsity of the prefix tree. The efficient SST node coding and the SST construction

algorithm both contribute to a faster LPM solution. We prove that our algorithm

achieves the optimal bound on the SST depth and is close to the optimal bound of

the SST size through analysis and simulations. A hybrid algorithm which leverages

the benefits of both the tree bitmap algorithm and the SST algorithm can even beat

the bounds and achieves better performance.

We show that using a single QDRII SRAM chip, in the worst case, the hardware

implementation of the algorithm can perform large scale IPv6 route lookups at the

wire-speed of OC-192. By deploying more QDRII SRAM chips, we can scale the

throughput to OC-768. Based on the fact that the underlying binary tree appears to
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be much denser when close to the root, we may also borrow the idea in [42] to build a

jump table using some number of prefix bits of the IP address, then build an SST for

each table entry. Each SST will then be considerably shorter so that the worst-case

number of memory accesses per lookup is further reduced.

We have mentioned that some underlying trie structure can be used to improve the

algorithm performance. For a sparse portion of the underlying binary tree which con-

tains only a few branches, another shape encoding scheme may be more efficient. For

example, using an “up/down counts” scheme as illustrated in Figure 3.12, we can di-

rectly describe the paths and their relationships in a subtree so that the subtree shape

can be easily recovered with fewer bits. In the example, the up and down counters

count the lengths of path segments. Paths are listed in depth-first order. This scheme

needs 19 bits to encode the subtree shape while the breadth-first encoding needs 24

bits. Though this scheme makes the decoding process more complex, it may generate

a more efficient SST. We consider applying this in the hybrid algorithm in future

work to evaluate its impact to the SST construction algorithm, the implementation

cost, and the performance gain.
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Figure 3.12: Up Down Counts Shape Encoding
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Chapter 4

Fast Hash Table

4.1 Introduction

A hash table is a versatile data structure for performing fast associative lookups,

which requires O(1) average memory accesses per lookup. Due to its wide application

in network packet processing, including IP lookup, packet classification, and per-

flow state management, some modern network processors even provide built-in hash

units [36]. The applications using hash tables typically appear in the data-path of

high-speed network devices. Hence, they must be able to process packets at line

speed, which makes it imperative for the underlying hash tables to deliver good

lookup performance.

4.1.1 Hash Tables for Packet Processing

Following is a short discussion of how various network processing applications use

hash tables and why their lookup performance is important.

IP Route Lookup

Efficient hash tables are crucial for some IP routing lookup algorithms. In particular,

the Binary Search on Prefix Lengths [74] algorithm, which has the best theoretical

performance of any sequential algorithm for the best-prefix matching problem, uses
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hash tables. The algorithm described in [23] uses parallel lookups of on-chip Bloom

filters to identify which off-chip hash tables must be searched to find the best matching

prefix for a given packet.

In [74], prefixes are grouped according to their lengths and stored in a set of hash

tables. A binary search on these tables is performed to find the matching prefixes of

the destination IP address. Each search step probes a corresponding hash table to

find a match. By storing extra information along with the member prefixes in hash

tables, a match in a given table implies that the longest matching prefix is at least

as long as the length of prefixes in the table, whereas a failure to match implies the

longest matching prefix is shorter. If there are W different possible prefix lengths, the

search requires at most log W probes of the hash tables. For IPv4 lookup, this means

we need to perform lookups in five hash tables in the worst case. Even with the use

of controlled prefix expansion [64] we need multiple hash table lookups depending

on the resulting number of unique prefix lengths. This algorithm critically demands

better hash table lookup performance to preserve the performance gained by binary

search.

Reference [23] presents a hardware based LPM algorithm for IP lookups. The tech-

nique improves the performance of a regular hash table using Bloom filters. When

unsuccessful searches in a hash table are dominant, most of them can be avoided

by first filtering them through a Bloom filter. In this algorithm, prefixes are also

grouped by length. The prefixes in each group are programmed in a Bloom filter and

stored in a separate hash table as well. The Bloom filters are maintained in high-

bandwidth and small on-chip memory while the hash table resides in the slow and

high-volume off-chip memory. Before a search is initiated in the off-chip hash table,

the on-chip Bloom filter is probed to check if the item has been programmed. This

typically allows one to just probe a single off-chip hash table. However, if the probe

of the off-chip hash table requires multiple memory accesses, the performance of the

algorithm suffers.

The BART scheme [47] also uses hash tables for routing table lookup. It constructs

simple hash functions by picking a few bits in the IP address. To bound the collisions

in a hash bucket, it selects the bits for use in the hash function based on an exhaustive
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search of the space of possible bit sets. This makes the configuration of the lookup

engine for a particular set of address prefixes less flexible and time-consuming.

Packet Classification

Hash tables are also used for some packet classification algorithms. Fundamentally,

many packet classification algorithms first perform lookups on each individual header

field and then leverage the results to narrow down the search to a smaller subset of

filters [39, 10, 46, 30]. Since the lookups on an individual header field can also be

performed using one of the hash table-based algorithms, improving the hash table

performance also benefits these packet classification algorithms.

Some packet classification algorithms directly apply hash tables. The tuple space

search algorithm [63] groups the rules into a set of “tuples” according to their prefix

lengths specified for different header fields. Each group is then stored in a hash table.

The packet classification performs exact match operations in all the hash tables.

While the algorithm analysis in [63] centers on the number of distinct tuples, the

hash table lookup performance also directly affects the classification throughput.

Exact flow matching is an important subproblem of the general packet classifica-

tion, where the lookup performs an exact match on the packet 5-tuple header fields.

In [66], exact filters are used for flows with reserved bandwidth and multicast in high

performance routers as an auxiliary component to general packet classification. The

search technique employs a hash table with chaining to resolve collisions. A hash

key based on the low-order bits of the source and destination addresses is used to

probe an on-chip hash table containing “valid” bits. For a packet under lookup, if

the corresponding “valid” bit is set, the hash key is then used to index another hash

table in off-chip SRAM. This architecture resembles our schemes with only a single

hash function. It has the limited ability to filter out some of the unnecessary off-chip

hash table queries, but in essence, this is still a naive hash table implementation. The

hash collisions directly impact the system throughput.

General packet classification is a difficult problem and tends to be more time consum-

ing. Fortunately, the network flow temporal locality can be exploited to improve the
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system throughput through caching. Since the header fields used to identify a flow

contain more than a hundred bits, caching the whole string uses excessive resources.

Reference [16] presents a scheme using a multi-predictive Bloom filter to save memory

usage while maintaining high hit rate. However, this scheme can cause misclassifi-

cation and only supports a few actions. We believe that by using our fast hashing

scheme, we can achieve precise matching and impose no limitation on the number of

actions.

Maintaining Per-flow Context

One of the most important applications of hash tables in network processing is in the

context of maintaining connection records or per-flow state. Per-flow state is useful in

providing QoS, flow measurements and monitoring, and payload analysis for Network

Intrusion Detection Systems (NIDS).

For example, the network intrusion detection systems such as Bro [50] and Snort [5]

maintain a hash table of connection records for active TCP connections. A record is

created and accessed by computing a hash over the 5-tuple of the TCP/IP header.

This record contains certain information describing the connection state and is up-

dated upon the arrival of each packet of that connection. Efforts have been made

to implement intrusion detection systems in hardware for line speed packet process-

ing [54, 25]. In these implementations, connection records are maintained in DRAM

due to their vast size. Similarly, hardware-based network monitoring systems such as

NetFlow [2] or Adaptive NetFlow [28] maintain a hash table of connection records in

DRAM.

In these applications, it is crucial to be able to keep up with the pace of accessing the

records for the back-to-back minimum sized packets in order to maintain wire-speed

throughput. Unfortunately, in a naive hash table there are always collisions which

force multiple connection records to be in the same hash bucket. In the worst case,

back-to-back packets can access the same connection record which is at the end of

the record list in a bucket. This is undesirable for a system with a little or no buffer

at all.
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The above discussion illustrates the role of hash tables in a variety of network packet

processing applications and clearly states their direct impact on performance.

4.1.2 Related Work

A hash table lookup involves hash computation followed by memory accesses. While

memory accesses due to collisions can be moderately reduced by using sophisticated

cryptographic hash functions such as MD5 or SHA-1, they are difficult to compute

quickly. In the context of high-speed packet processing devices, even with special-

ized hardware, such hash functions can take quite a few clock cycles to produce an

output. For instance, some of the existing hardware implementations of the hash

cores consume more than 64 clock cycles [35], which exceeds the budget of minimum

packet time. Moreover, the performance of such hash functions is no better than the

theoretical performance with the assumption of uniform random hashing. Hence, we

are forced to use simple and practical hash functions which, unfortunately, may suffer

from high collision rates.

Another avenue to improve the hash table performance would be to devise a perfect

hash function based on the items to be hashed. While this would deliver the best

performance, searching for a suitable hash function can be a slow process and needs

to be repeated whenever the set of items undergoes changes. Moreover, when a new

hash function is computed, all the existing entries in the table need to be re-hashed

for correct search. This impedes the normal operations on the hash table making

it impractical in high-speed packet processing. Some applications instead settle on

using a “semi-perfect” hash function which can tolerate a predetermined collision

bound. However, even searching for such a hash function requires time in the order

of minutes [64, 47].

Multiple hash functions are known to perform better than a single hash function [12].

With multiple hash tables, each having a different hash function, the items colliding

in one table are hashed into the other tables. Each table has smaller size and all

hash functions can be computed in parallel. Another multi-hashing algorithm, the

d-random scheme, uses only one hash table but d hash functions [8]. Each item is

hashed by d independent hash functions, and the item is stored into the least loaded
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bucket. A search needs to examine d buckets but the bucket’s average load is greatly

reduced. A simple variation of d-random, the d-left scheme, is proposed to improve IP

lookups [13]; this approach generalizes the 2-left scheme in [73]. In this scheme, the

buckets are partitioned into d sections, each time a new item needs to be inserted,

it is inserted into the least loaded bucket (left-most in case of a tie). Simulation

and analysis show the performance is better than d-random. While these ideas are

similar to our fast hash table algorithm, our approach uses an on-chip Bloom filter

to eliminate the need to search multiple buckets in the off-chip memory.

A Bloom filter [11] can be considered a form of multi-hashing. The Counting Bloom

Filter [29] extends the simple binary Bloom filter by replacing each bit in the filter with

a counter, which counts the number of items that is hashed to each bucket. This makes

it possible to implement a deletion operation on the set represented by the Bloom

filter. Some lookup schemes also use Bloom filters to avoid unnecessary searches of

an off-chip hash table [23, 24]. However, they do nothing to reduce the time needed

to search the off-chip table, so the lookup performance can still be unpredictable.

In contrast, our fast hash table lookup algorithm fully uses the information gained

from the front-end Bloom filter to optimize the following exact match lookup in the

off-chip memory.

4.1.3 Scope for Improvement

From a theoretical perspective, hash tables are among the most extensively studied

data structures. From an engineering perspective, designing a good hash table can still

be a challenging task with potential for several improvements. The main engineering

aspect that differentiates our hash table design from the rest is the innovative use

of the advanced embedded memory technology in hardware. Today it is possible

to integrate a few megabits of SRAM into a fairly small amount of chip area. For

instance, some modern FPGA devices contain hundreds of embedded SRAM blocks

with two read/write ports, totaling over 10 Mbits [79]. We exploit the high lookup

capacity offered by such memory blocks to implement more efficient hash tables.

At the same time it is important to note that embedded memory on its own is not

sufficient to build a good hash table when we need to maintain a large number of
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items. For instance, we cannot squeeze 100,000 TCP connection records each of

32 bytes into a hash table built with only 5 Mbits of on-chip memory. Thus, we

must resort to using the commodity memory such as SDRAM to store the items in

the hash table. Since SDRAM is inherently slow, we have to reduce the off-chip

memory accesses resulting either from hash collisions or unsuccessful searches for

efficient processing. This leads us to the question: Can we make use of the small but

high bandwidth on-chip memory to improve the lookup performance of an off-chip

hash table? The answer to this question forms the basis of our algorithm. We show

that a small amount of on-chip memory can be used effectively to avoid unsuccessful

searches in the off-chip hash table as well as to reduce the hash collisions by orders

of magnitudes.

We start from the well-known Bloom filter data structure [11] and extend it to support

hash table lookups with reduced lookup time. We use a small amount of on-chip

multi-port SRAM to realize a counting-Bloom-filter-like data structure such that it

not only answers the membership query on the search items but also helps us reduce

the search time in the off-chip hash table.

The rest of this chapter is organized as follows. Section 4.2 introduces our fast hash

table data structure and lookup algorithm. Section 4.3 provides a detailed mathe-

matical analysis of the proposed hash table algorithm. Sections 4.3 and 4.4 provide

comparisons on the average search time and the expected collision list length of the

naive hash table and our fast hash table, theoretically and experimentally. Section 4.5

briefly discusses some implementation considerations and Section 4.6 concludes the

chapter.

4.2 Fast Hash Table and Lookup Algorithm

For the purpose of clarity, we develop our algorithm and hash table architecture

incrementally starting from a naive hash table (NHT). We consider the hash table

algorithm in which collisions are resolved by chaining since it has better performance

than open addressing schemes and is one of the most popular methods [20].
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Figure 4.1: A Naive Hash Table

An NHT consists of an array of m buckets with each bucket pointing to the list of

items hashed to it. We denote by X the set of items to be inserted into the table.

Further, let X i be the list of items hashed to bucket i and X i
j the jth item in this list.

Thus,

Xi = {Xi
1, X

i
2, X

i
3, ..., X

i
ai
}

X =
L⋃

i=1

Xi

where ai is the total number of items in the bucket i and L is the total number of

lists present in the table. In the Figure 4.1, X3
1 = z, X3

2 = w, a3 = 2 and L = 3.

The insertion, search and deletion algorithms are straight-forward:

InsertItemNHT (x)

1. Xh(x) = Xh(x) ∪ x

SearchItemNHT (x)

1. if (x ∈ Xh(x)) return true
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2. else return false

DeleteItemNHT (x)

1. Xh(x) = Xh(x) − x

where h() is the hash function based on uniform random hashing.

4.2.1 Basic Fast Hash Table

We now present our Fast Hash Table (FHT) algorithm. First we present the basic

form of our algorithm which we call Basic Fast Hash Table (BFHT) and then we

improve upon it.

We begin with the description of the Bloom filter which is at the core of our algo-

rithms. A Bloom filter is a hash-based data structure to store a set of items compactly.

To insert an item in a Bloom filter, we compute k hash functions on each item, each

of which returns an address of a bit in a bitmap of length m. All the k bits chosen

by the hash values in the bitmap are set to ‘1’. By doing this, we essentially program

the filter with a signature of the item. By repeating the same procedure for all the

input items, the Bloom filter can be programmed to contain a summary of all the

items. This filter can be queried to check if a given item is programmed in it. The

query procedure is similar—the same k hash functions are calculated over the input

and the corresponding k bits in the bitmap are probed. If all the bits are set then the

item is said to be present, otherwise it is absent. However, since the bit-patterns of

multiple items can overlap within the bitmap, the Bloom filter can give false-positive

results.

For the ensuing discussion, we use a variant of Bloom filter called Counting Bloom

Filter [29] in which each bit of the filter is replaced by a counter. Upon the insertion

of an item, each counter indexed by the corresponding hash value is incremented.

Therefore, a counter in this filter essentially gives us the number of items hashed to
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that position. We will show how this information can be used to minimize the search

time in an associated hash table.

We maintain an array C of m counters where each counter Ci is associated with a

bucket i of the hash table. We compute k hash functions h1(), ..., hk() over an input

item and increment the corresponding k counters indexed by these hash values. Then,

we store the item in the lists associated with the k buckets. Thus, a single item is

stored k times in the off-chip memory. The following algorithm describes the insertion

of an item in the table.

InsertItemBFHT (x)

1. for (i = 1 to k)

2. if (hi(x) 6= hj(x) ∀j < i)

3. Chi(x)++

4. Xhi(x) = Xhi(x) ∪ x

Note that if more than one hash function maps to the same address then we increment

the counter only once and store just one copy of the item in that bucket. To check

if the hash values conflict, we keep all the previously computed hash values for that

item in registers and compare the new hash value against all of them (line 2).

The insertion procedure is illustrated in the Figure 4.2. In this figure, four different

items, x, y, z, and w are shown to have been sequentially inserted into the data

structure. Each of the items is replicated in k = 3 different buckets and the counter

value associated with the bucket reflects the number of items hashed in it.

The search procedure is similar to the insertion procedure: given an item x to be

searched, we compute k hash values and read the corresponding counters. When all

the counters are non-zero, the filter indicates the presence of the input item in the

table. We then proceed to verify it in the off-chip table by comparing it with each

item in the linked list associated with one of the buckets. If the counters are kept

in the fast on-chip memory such that all of the k counters associated with the item

can be checked in parallel, then in almost all cases we avoid an off-chip access if any

bucket counter checked is zero. Given the recent advances in the embedded memory



61

y w

y

z

w

z

w

1
X

3
X

6
X

8
X

11
X

4
X

9
X

y

z

x

w

3

2

0

2

1

1

1

0

0

2

0

0

x

x

y

x

z

Figure 4.2: Basic Fast Hash Table (BFHT)

technologies, it is feasible to implement these counters in a high speed multi-port

on-chip memory.

Secondly, the choice of the linked list to be inspected is critical since the list traversal

time depends on the length of the linked list. Hence, we choose the list associated

with the counter with the smallest value to reduce the off-chip memory accesses. The

speedup of our algorithm comes from the fact that it can choose the smallest list to

search while an NHT does not have any choice but to trace only one linked list which

can potentially have several items in it.

As will be shown later, in most cases, for a carefully chosen value of the number

of buckets, the minimum valued counter has a value of one requiring just a single

memory access to the off-chip memory. In our example shown in Figure 4.2, if item

y is queried, we need to access only the list X11, rather than X3 or X6 which are

longer than X11, according to the bucket counters.

When multiple counters indexed by the input item have the same minimum value then

somehow the tie must be broken. We break the tie by simply picking the minimum

valued counter with the smallest index. For example, in Figure 4.2, item x has two

bucket counters set to 2, which is also the smallest value. In this case, we always

access the bucket X1. This step turns out to be critical to enable some further

optimizations.
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Finally, if the input item is not present in the item list, then clearly it is a false

positive match indicated by the CBF.

The following pseudo-code summarizes the search algorithm of BFHT.

SearchItemBFHT (x)

1. Cmin = min{Ch1(x), ..., Chk(x)}
2. if (Cmin == 0)

3. return false

4. else

5. i = SmallestIndexOf(Cmin)

6. if (x ∈ Xi) return true

7. else return false

With the data structure above, deletion of an existing item is easy. We simply

decrement the counters associated with the item and delete all the copies from the

corresponding lists. The following pseudo-code summarizes the deletion algorithm of

BFHT.

DeleteItemBFHT (x)

1. for (i = 1 to k)

2. if (hi(x) 6= hj(x) ∀j < i)

3. Chi(x) −−
4. Xhi(x) = Xhi(x) − x

4.2.2 Pruned Fast Hash Table (PFHT)

In BFHT, we need to maintain up to k copies of each item which requires k times

more external memory compared to NHT. However, it can be observed that in a

BFHT only one copy of each item, i.e., the copy associated with the first minimum

valued counter, is accessed when the table is probed. The remaining (k − 1) copies

of the item are therefore redundant. This observation offers us the first opportunity
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to optimize the memory usage: all the other copies of an item except the one that

is accessed during the search can now be deleted. After this pruning procedure, we

have exactly one copy of the item which makes the memory consumption the same as

that of NHT. We name the resulting hash table a Pruned Fast Hash Table (PFHT).

The following pseudo-code summarizes the pruning algorithm.

PruneSet(X)

1. for (each x ∈ X)

2. Cmin = min{Ch1(x), ..., Chk(x)}
3. i = SmallestIndexOf(Cmin)

4. for (l = 1 to k)

5. if (hl(x) 6= i) Xhl(x) = Xhl(x) − x
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Figure 4.3: Pruned Fast Hash Table (PFHT)

The pruning procedure is illustrated in Figure 4.3. It is important to note that during

the pruning procedure, the counter values are not changed. Hence, after the pruning is

completed, the counter value no longer reflects the number of items actually present

in the associated linked list and is usually greater than it. However, for a given

item, the bucket with the smallest counter value always contains it. This property

ensures the correctness of the search results. Another property of pruning is that it is

independent of the order in which the items are pruned since it depends just on the
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counter values, which are not altered. Hence, pruning in sequence x-y-z-w will yield

the same result as pruning it in z-y-x-w.

A limitation of the pruning procedure is that now the incremental updates to the

hash table are difficult to perform. Since counter values no longer reflect the number

of items in the associated list, if counters are incremented or decremented for any

new insertion or deletion, then it can disturb the counter values corresponding to

the existing items in the bucket which in turn will result in incorrect lookups. For

example, in Figure 4.3, the item y maps to the lists {X3, X6, X11} with counter values

{3, 2, 1} respectively. If a new item, say v, is inserted which also happens to share the

bucket 11 then the counter will be incremented to 2. Hence, the minimum counter

valued bucket with the smallest index associated with y is no longer bucket 11 but

bucket 6 which does not contain y at all. Therefore, a search on y will result in an

incorrect result. With this limitation, new insertions and deletions may require us to

reconstruct the data structure from scratch which makes this algorithm impractical

for dynamic item sets.

We now describe a version of InsertItem and DeleteItem algorithms which can be

performed incrementally. The basic idea used in these functions is to maintain the

invariant that out of the k buckets indexed by an item, the item should always be

placed in a bucket with the smallest counter value. In case of a tie, it should be

placed in the one with the smallest index. If this invariant is maintained at every

point then the resulting hash table configuration will always be the same irrespective

of the order in which the items are inserted.

In order to insert an item, we first increment the corresponding k counters. If there are

any items already present in those buckets then their corresponding smallest counter

might be altered. However, the counter increments do not affect all the other items.

Hence, each of these items must be relocated to another bucket that satisfies the

invariant. In other words, for inserting one item, we need to reconsider all and only

the items existing in the chosen k buckets.

The following pseudo-code describes the insertion algorithm.

InsertItemPFHT (x)

1. Y = x
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2. for (i = 1 to k)

3. if (hi(x) 6= hj(x) ∀j < i)

4. Y = Y
⋃

Xhi(x)

5. Xhi(x) = φ

6. Chi(x)++

7. for (each y ∈ Y )

8. i = argmin{Ch1(y), ..., Chk(y)}
9. Xi = Xi ∪ y

In the pseudo-code above, Y denotes the list of items to be considered for insertion.

It is first initialized to x since that is definitely the item we want to insert (line 1).

Then for each bucket x mapped to, if the bucket was not already considered (line 3),

we increment the counter (line 6), collect the list of items associated with it (line 4)

since now all of them must be considered for relocation. We also delete the items

from the bucket (line 5). Finally, all the collected items are re-inserted (lines 8-9).

Note that we do not need to increment the counters while re-inserting them since the

items were already inserted earlier.

The data structure has n items stored in m buckets, so the average number of items

per bucket is n/m. Hence the total number of items read from buckets is nk/m

requiring as many memory accesses. Finally 1 + nk/m items are inserted in the

table which again requires as many memory accesses. Hence the insertion procedure

has an expected complexity of the order O(1 + 2nk/m) operations totally. Since for

an optimal Bloom filter configuration, k = m ln 2/n, the overall memory accesses

required for insertion are only 1 + 2 ln 2 ≈ 2.44.

Unfortunately, incremental deletion is not as straight-forward as incremental inser-

tion. When we delete an item, we also need to decrement the corresponding counters.

This might cause these counters to be eligible as the smallest counter for some items

which are hashed to them but stored in other buckets. However, now that we keep

just one copy of each item, we cannot tell which items hash to a given bucket if they

are not in that bucket. This information can be acquired from the pre-pruning data

structure i.e. BFHT in which an item is inserted in all the k buckets. Therefore, in

order to perform an incremental deletion, we must maintain an off-line BFHT like
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the one shown in Figure 4.2. This shadow copy need not contain any actual data but

must allow each item to be unambiguously identified. Such a data structure can be

maintained in the system management software which is responsible for updating the

hash table.

In order to differentiate between the off-line BFHT and the on-line PFHT we denote

the off-line lists by χ and the corresponding counter by ζ. Thus, χi denotes the list

of items associated with bucket i, χi
j the jth item in χi, and ζi the corresponding

counter. The following pseudo-code describes the deletion algorithm.

DeleteItemPFHT (x)

1. Y = φ

2. for (i = 1 to k)

3. if (hi(x) 6= hj(x) ∀j < i)

4. ζhi(x) −−
5. χhi(x) = χhi(x) − x

6. Y = Y
⋃

χhi(x)

7. Chi(x) −−
8. Xhi(x) = φ

9. for (each y ∈ Y )

10. Cmin = min{Ch1(y), ..., Chk(y)}
11. i= SmallestIndexOf(Cmin)

12. Xi = Xi ∪ y

When deleting an item is desired, we first perform the deletion operation on the off-

line data structure using the DeleteItemBFHT algorithm (lines 2-5). Then we collect

all the items in all the affected buckets (buckets whose counters are decremented)

of BFHT for relocation. At the same time, we delete the list of items associated

with each bucket from the PFHT since each of them now must be reinserted (lines

7-8). Finally, for each item in the list of collected items, we re-insert it (lines 9-12)

just as we did in InsertItemPFHT . Notice the resemblance between the lines 6-12

of DeleteItemPFHT with lines 4-10 of InsertItemPFHT . The only difference is that

in DeleteItemPFHT , we collect the items to be re-inserted from the BFHT and we

decrement the counter rather than incrementing it.
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Before we derive the expression for the complexity of DeleteItem algorithm, we notice

that we have two types of operations involved: on the BFHT and on the PFHT. We

derive the complexity for only the PFHT operations since the BFHT operations can

be performed in the background without impeding the normal operations of PFHT.

With this consideration, we note that the number of items per non-empty bucket

in BFHT is 2nk/m since only half of the buckets in the optimal configuration are

non-empty (see Section 4.3). Because we collect the items from k buckets, we have

totally 2nk2/m items to be relocated in the loop of line 9. For relocation, we need to

read as well as write each item. Hence the overall expected complexity of the deletion

operation is 4nk2/m. With the optimal configuration of the fast hash table it boils

down to 4k ln 2 ≈ 2.8k.

4.2.3 PFHT List-balancing Heuristic

After the pruning procedure, more than one item can still reside in one bucket. We

show a heuristic list-balancing scheme to further balance the bucket load by manipu-

lating the counters and a few items. The reason that a bucket contains more than one

items is because this bucket is the first least loaded bucket indicated by the counter

values for the stored items in this bucket. Based on this observation, if we artificially

increment this counter, all the involved items will be forced to reconsider their desti-

nation buckets to maintain the correctness of the algorithm. There is a chance that

by relocating these items, each of them can be put into an actually empty bucket.

The feasibility is based on two facts: First, analysis and simulations show that for

an optimal configuration of Bloom filter, there are very few collisions and even fewer

collisions involving more than two items. Each items has k possible destination buck-

ets and in most cases the colliding bucket is the only one they share. The sparsity of

the table provides a good opportunity to resolve the collisions by simply giving those

items a second choice. Second, this process does not affect any other items, we need

to only pay attention to the involved items in the colliding buckets.

However, incrementing the counter and relocating the items may potentially create

other collisions. So we need to be careful when using this heuristic. Before we

increment a counter, we first test the consequence. We perform this optimization
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Figure 4.4: PFHT List-balancing

only if it does not result in any other collision. The algorithm scans the colliding

buckets for several rounds and terminates if no more progress can be made or the

involved counters are saturated. We will show that this heuristic is quite effective and

in our simulations all collisions are resolved so that each non-empty bucket contains

exactly one item. Figure 4.4 illustrates the list balancing optimization. By simply

incrementing the counter in bucket X1 and relocating the involved items x and w, we

resolve the collision and now the lookups to this table always give the best possible

performance.

4.2.4 Shared-node Fast Hash Table (SFHT)

In the previous section, we see that in order to perform incremental updates, we need

an off-line BFHT. With the assumption that the updates are relatively infrequent

compared to the query procedure, we can afford to maintain such a data structure

in the control software which performs updates on the internal data structure (which

is slow) and later update the pruned data structure accordingly. However, some

applications involve time critical updates which must be performed as quickly as

possible. An example is the TCP/IP connection context table where connections are

set up and broken frequently and the time for hash table query is comparable to the

time for addition/deletion operations of connection records [25].
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We present an alternative scheme which allows easy incremental updates at the cost of

a little more memory than that required for PFHT but significantly less than that of

BFHT. The basic idea is to allow the multiple instances of the items to share the same

item node using pointers. We name the resulting fast hash table Shared-node Fast

Hash Table (SFHT). The lookup performance of SFHT is the same as that of BFHT

but slightly worse than PFHT. Moreover, with the reduced memory requirement, this

data structure can be kept on-line. The new algorithm is illustrated in Figure 4.5.
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Figure 4.5: Shared-node Fast Hash Table (SFHT)

We start with an empty table and insert items one by one. When the first item, x,

is inserted we just create one node for the item. Instead of inserting a copy in each

of the lists corresponding to the k hashed buckets, we simply make the buckets point

to the item. This clearly results in a great deal of memory savings. When we insert

the next item y, we create the node and make the empty buckets point to the item

directly. However, two of the three buckets already have a pointer pointing to the

earlier item, x. Hence we make the item x point to the item y using the next pointer.
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Note that the counters are incremented at each insertion. More importantly, the

counter values may not reflect the physical length of the linked list associated with

a bucket. For example, the first bucket has a value of one but there are two items,

x and y in the linked list associated with this bucket. Nevertheless, it is guaranteed

that we will find a given item in a bucket associated with that item by inspecting the

number of items equal to the associated counter value. For example, when we wish

to locate x in the first bucket, it is guaranteed that we need to inspect only one item

in the list although there are two items. The reason that we have more items in the

linked list than indicated by the counter value is because multiple linked lists can get

merged as in the case of x and y.

The insertion of the item z is straightforward. However, an interesting situation

occurs when we insert the item w. Notice that w is inserted in bucket 1, 3, and 9. We

create a node for w, append it to the linked lists corresponding to the buckets and

increment the counters. For the 3rd and 9th bucket, w can be located exactly within

the number of items indicated by the corresponding counter value. However, for the

first bucket this is not true: while the counter indicates two items, we need to inspect

three in order to locate w. This inconsistency will go away if instead of appending the

item, we prepend it to the list. Therefore, if we want to insert w in the first bucket

and we find that the number of items in the list is 2 but the counter value is 1, we

prepend w to the list. This will require replication of the node. Once prepended, the

consistency is maintained. Both items logically stored in the first bucket list can be

located by inspecting at most two items as indicated by the counter value.

The following pseudo-code describes the insertion algorithm for SFHT.

InsertItemSFHT (x)

1. for (i = 1 to k)

2. if (hi(x) 6= hj(x) ∀j < i)

3. if (Chi(x) == 0)

4. Append(x,Xhi(x))

5. else

6. l← 0

7. while (l 6= Chi(x))

8. l++
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9. read X
hi(x)
l

10. if (Xhi(x)
l+1 6= NULL)

11. Prepend(x,Xhi(x))

12. else

13. Append(x,Xhi(x))

14. Chi(x)++

In the pseudo-code, l is used as a counter to track the number of items searched

in the list. We search up to Chi(x) items in the list. If the list does not end after

Chi(x) items (line 10) then we prepend the new item to the list otherwise we append

it. Note that prepending and appending simply involves scanning the list for at the

most Chi(x) items. Hence the cost of insertion depends on the counter value and not

on the actual linked list length. In SFHT, we have nk items stored in m buckets

giving us an average counter value nk/m. We walk through nk/m items of each of

the k lists and finally append or prepend the new item. Hence the complexity of

the insertion is of the order O(nk2/m + k). For an optimal counting Bloom filter

configuration where k = mln2/n (see Section 4.3), the memory accesses for deletion

are proportional to k.

The item node replication causes the memory requirement to be slightly more than

what we need in NHT or PFHT where each item is stored just once. The simulation

results presented in Section 4.3.4 show that the memory consumption is typically just

one to three times that of NHT (or PFHT). This is significantly smaller than that of

BFHT.

The pseudo-code for deletion on SFHT is as shown below. We delete an item from

all the lists by tracing each list. However, since the same item node is shared among

multiple lists, after deleting a copy we might not find that item again by tracing

another list which was sharing it. In any case we do not need to trace a list to the

end but only need to consider the number of items equal to the counter value. If the

list is actually shorter than the counter value, we simply start with the next list (line

4). The deletion operation has similar cost as the insertion operation.
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DeleteItemSFHT (x)

1. for (i = 1 to k)

2. if (hi(x) 6= hj(x) ∀j < i)

3. l← 1

4. while (l 6= Chi(x) AND X
hi(x)
l 6= NULL)

5. if (Xhi(x)
l == x)

6. Xhi(x) = Xhi(x) − x

7. break

8. l++

9. Chi(x) −−

4.2.5 Memory Compression

Our last optimization is aimed at reducing the memory usage for counters and initial

bucket pointers. After all member items are programmed, if the minimum linked list

length for each member item x is Cmin(x), a value B is maintained along with the

fast hash table, where

B = max{Cmin(x),∀ x ∈ X}

Based on B’s value, each Bloom filter bucket needs only b bits for a saturated counter

where

b = blog(B + 1)c+ 1

As our analysis will show, using the optimal configuration of a Bloom filter, the

counter value rarely exceeds 7. In practice, B is almost always less than 2. So three

bits are enough to represent the counter and differentiate useful scenarios: “000”

means no item is hashed to the bucket; “001” to “110” means one to six items are

hashed to the bucket; and at last, “111” means seven or more items are hashed to

the bucket. Thus, the counter value does not necessarily reflect the actual number of

items hashed to a bucket.

The value B also provides us another subtle improvement to the lookup performance:

whenever the Bloom filter reports a match but the minimum counter value is greater
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than B, we know immediately that this is a false positive so no extra memory access

is needed. This subtle arrangement allows us to avoid a pathological memory access

pattern in which the Bloom filter shows a false positive but the smallest counter

value is greater than the threshold B. In the absence of this arrangement, we need

to traverse the entire list with length greater than B just to figure out that the item

is not in the table. This is actually a great improvement for the worst-case scenario,

since we avoid some of the unnecessary memory accesses which are also the most

expensive.

It can be seen from Figure 4.3 that out of the 12 buckets only four are occupied. In

reality, it can be even sparser. We now describe a technique to exploit this sparsity

and reduce the memory requirement for maintaining buckets. Assume we have m

buckets of which only L are occupied. In order to compress this array, we first

maintain a bitmap l in which each bit li set to ‘1’ indicates that there is a list of items

associated with the corresponding bucket. Then we divide this bitmap into multiple

segments of g bits. Furthermore, we store the starting items of all the lists within

the same segment in consecutive slots in the off-chip memory. For each segment, we

now keep just one pointer pointing to the first list in that slot. This is illustrated in

Figure 4.6(A). As the figure shows, the bitmap is divided into three segments each

containing four bits. The pointer associated with the first segment points to the first

list in this segment which is the only list and contains only z. The third segment

has two lists. Their starting items, w and y, are kept in the consecutive slots in

the off-chip memory. Now we number all the lists within each segment, starting from

zero. The list {z} is numbered 0 in the first segment, {x} is numbered 0 in the second

segment, and {w} is numbered 0 and {y} is numbered 1 in the third segment. The

offset or the number of the list can be calculated by counting the number of ‘1’s up

to but not including the bit corresponding to the list in the segment bitmap. Now it

is easy to see that within a segment, if we want to access a particular list, we can first

read the base pointer to the set of lists of that segment and then add the number of

the list of interest. The memory layout of the scheme is shown in Figure 4.6(B).

With the optimization described above, the memory used by the initial pointers is for

the bitmap and the segment base pointers. For m buckets, we need dm/ge pointers

each with dlog ne bits. The segment size depends on how quickly we can compute

the number of ‘1’s within a segment. It is conceivable to construct a circuit that can
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Figure 4.6: Pointer Array Compression

compute the number of bits set to ‘1’ up to a given index, in a single clock cycle,

provided the segment size is small (say 64 bits). However, for a large segment size

the delay becomes large. On the other hand, pipelining this circuit will increase the

latency of the overall operation. More importantly, the computation requires reading

the bitmap of the entire segment. Hence, a larger segment requires more memory

bandwidth which will ultimately impose a limit on the usable segment size. It should

be noted that the use of such array compression scheme is not new. Similar techniques

have been used previously in space efficient IP Lookups like [21, 26, 58] and string

matching for network intrusion detection [71].

4.3 Analysis

We analyze and compare the FHT algorithm with NHT in terms of the expected

lookup time and the lookup time tail probability to demonstrate the merit of our

algorithm. We assume that NHT and all versions of FHT have the same number of

buckets, m. As we have seen, given same number of items, PFHT should consume

exactly the same amount of off-chip memory as NHT. SFHT consumes slightly more

memory due to the item replication. Therefore, the only extra cost of our algorithm

is the use of on-chip memory to store the bucket counters.
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The lookup performance of PFHT is difficult to analyze. Hence we analyze only the

performance of BFHT. It is important to note that PFHT will always have fewer

items in each bucket than BFHT. Hence the lookup time on PFHT will always be

shorter than that of BFHT or equal. We also note that SFHT has the same lookup

performance as BFHT.

4.3.1 Expected Linked List Length

Consider the lookups in an NHT when the linked list is not empty. Let Y be the

length of the searched bucket. We have:

Pr{Y = j|Y > 0} =
Pr{Y = j, Y > 0}

Pr{Y > 0}
=

 n

j

 (1/m)j(1− 1/m)n−j

1− (1− 1/m)n
(4.1)

Now we analyze the distribution of the linked list lengths of FHT. Recall that in order

to store n items in the table, the number of actual insertions being performed are nk

(or slightly less than that if same item could be hashed into same bucket by different

hash functions), each of which is independent of each other. Under the assumption

of simple uniform hashing, we can derive the average length of the list in any bucket.

With nk insertions in total, the probability that a bucket received exactly i insertions

can be expressed as:

fi =

 nk

i

( 1

m

)i (
1− 1

m

)(nk−i)

(4.2)

The question we try to answer is: when the Bloom filter reports a match for a given

query (i.e. all the k′ counters > 0, where k′ is the number of unique buckets for

an item calculated by k hash functions. We know that 1 ≤ k′ ≤ k), what is the

probability that the smallest value of the counter is j?
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Let X denote the value of the smallest counter value among k′ counter values corre-

sponding to a query item when all the counters are non-zero. Hence,

Pr{X = s} =
k∑

j=1

Pr{k′ = j} × Pr{X = s|k′ = j} (4.3)

Let d(j, r) be the probability that the first r hashes of an item produce exactly j

distinct values. To derive d(j, r), we know that if the first r − 1 hashes of an item

have already produced j distinct values, the rth hash has to produce one of the j

values with probability j/m. Otherwise, the first r − 1 hashes of an item must have

already produced j− 1 distinct values and the rth hash should produce a value which

is different from the j − 1 values. The probability of this is (m− (j − 1))/m. Hence,

d(j, r) =
j

m
d(j, r − 1) +

m− j + 1

m
d(j − 1, r − 1) (4.4)

with the boundary conditions d(j > r, r) = 0, d(0, 0) = 1, d(0, r > 0) = 0. So, based

on the fact that Pr(k′ = j) = d(j, k), now we can write

Pr{X = s} =
k∑

j=1

d(j, k)× Pr{X = s|k′ = j} (4.5)

Now, let

q(r, s, j) = Pr{smallest counter value in any r of the j buckets is s}

p(i, j) = Pr{a counter value in a set of j non-empty buckets is i}

Since there is at least one item in any non-empty bucket, j non-empty buckets contain

at least j items. We consider the probability to allocate the i−1 out of the remaining

nk − j items in one of the j buckets to make the bucket has exactly i items. Thus,

p(i, j) =

 nk − j

i− 1

 (1/m)(i−1) (1− 1/m)((nk−j)−(i−1)) (4.6)
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With these definitions, we can write

q(r, s, j) =
r∑

i=1

 r

i

 p(s, j)i ×
(

1−
s∑

h=1

p(h, j)

)r−i

(4.7)

This is because in r buckets we can have i buckets (1 ≤ i ≤ r) with counter value s

while all other r − i buckets have counter values greater than s. Q(r, s, j) is simply

the sum of the probabilities for each choice. The boundary conditions are q(1, s, j) =

p(s, j).

Putting things together we get:

Pr{X = s} =
k∑

j=1

d(j, k)× q(j, s, j) (4.8)

Based on Eq. 4.8, Figure 4.7 shows the linked list length comparisons of FHT and

NHT when n = 10, 000, m = 128K, and k = 10. The figure tells us once we do

need to search a non-empty linked list, what is the length distribution of these linked

lists. In the next section we use simulations to show how the pruning and balancing

optimizations improve the performance.

It is shown that given a probability of the inspected linked list length being within

a bound, the bound on NHT is always larger than the bound on FHT. For instance,

with a probability of 10−3, NHT have about 3 items in a list where as FHT have only

2, thus improving the performance of NHT by a factor of 1.5. The improvement of

the bound keeps getting better for smaller probabilities.

For NHT, the expected number of buckets that the attached linked list exceeds a

given length j, E>j, is expressed as:

E>j = m×B(n, 1/m, > j) (4.9)

Where B(n, 1/m, > j) is the the probability that a binomial random variable (or the

load of a bucket) is greater than j:
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Figure 4.7: Probability Distribution of Searched Linked-list Length

B(n, 1/m, > j) = 1−
j∑

i=0

 n

i

 (1/m)i(1− 1/m)n−i (4.10)

For NHT, if the expected number of buckets with linked list length j is i, we can

equivalently say that the expected number of items for which the bucket linked list

lengths are j is i × j. So the expected number of items for which the bucket linked

list length > j for an NHT, E ′
>j, can be expressed as:

E′
>j =

n∑
i=j

(i + 1)(E>i−E>i+1) = m
n∑

i=j

(i + 1)(B(n, 1/m,> i)−B(n, 1/m,> i + 1)) (4.11)

Now we derive E ′′
>j, the expected number of items in an FHT for which all buckets

have more than j items (before pruning and balancing), . We use an approximate

expression for this:
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E ′′
>j = n×B((n− 1)k, 1/m, > (j − 1))k (4.12)

The idea behind this is that, if we consider a single item that hashes to k distinct

buckets and a particular bucket for that item, the number of additional items that map

to the same bucket is given by the binomial distribution with (n− 1)k trials. We can

approximate the probability that all buckets for that item have > j items by raising

this probability to the k-th power. This is not quite precise, since the probabilities

for the sizes of the different buckets are not strictly independent. However, the

true probability is slightly smaller than what we get by multiplying probabilities,

so this gives us a conservative estimate. On the other hand, the expression is only

approximate, since it assumes that all n items are mapped by the k hash functions to

k distinct buckets. It’s likely that for a small number of items, this will not be true,

but we show through simulations that this does not have a significant impact on the

results.

Figure 4.8 shows the expected number comparisons of FHT and NHT when n =

10, 000, m = 128K, and k = 10. This expected number tells us the number of items

that are in linked lists with at least j entries.

The results show a definite advantage for FHT even before the pruning and balancing

optimizations. We can interpret that there are only two items in a billion for which the

smallest bucket has more than 3 entries. For NHT, there are about two items in ten

thousands for which the bucket has more than five entries. Also in this configuration,

only a few tens of items need more than one node access in FHT, but near 1000 items

need more than one node access in NHT.

4.3.2 Effect of the Number of Hash Functions

We know that for an ordinary Bloom filter, the optimal number of hash functions k

is related to the number of buckets m and the number of items n by the following

relation [29]
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Figure 4.8: Expected Items for Which the Searched Bucket Contains > j Items

k =
m

n
ln 2 (4.13)

Now we justify analytically why the same number of hash functions is also optimal for

the FHT’s lookup performance. From Equation 4.12, we know the expected number

of items for which each bucket has more than j items. It is desirable to have at least

one bucket with just one item in it. Hence we wish to minimize the probability of

all the buckets corresponding to an item having more than one item. This translates

into minimizing the following with respect to k.

B((n− 1)k, 1/m, > 0)k =

(
1−

(
1− 1

m

)(n−1)k
)k

(4.14)

This expression is the same as the expression for the false positive probability of the

ordinary Bloom filter containing n − 1 items in m buckets [29]. Hence, the optimal

number of hash functions for the counting Bloom filters is given by
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k =
m

n− 1
ln 2 ≈ m

n
ln 2 (4.15)

for a large number of items. Therefore, the optimal configuration of the ordinary

Bloom filter for minimizing the false positive probability is the same as the opti-

mal configuration of FHT for reducing the item access time. Figure 4.9 shows the

performance of FHT for different optimal configurations. In the figure, H(i, j) indi-

cates i = k and j = m/n. When i = 1, it implies an NHT. For a fixed number of

items n, we vary k and always ensure that m is optimally allocated for FHT. For

each configuration we use the same number of resulting buckets for NHT. The per-

formance is compared for FHT and NHT. We can make two observations from the

figure. First, the performance is always better if we have more buckets per item (i.e.

larger m/n). Secondly, the performance of FHT is always significantly better than

that of NHT. This can be observed by comparing the curves H(1, 3) and H(2, 3),

H(1, 6) and H(4, 6) and so on.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 2 3 4 5 6 7
j

E
x
p
e
c
te
d
 I
te
m
s
 f
o
r 
w
h
ic
h
 

b
u
c
k
e
t(
s
)
 h
a
v
e
 >
 j
 e
n
tr
ie
s

H(1,3)

H(1,6)

H(2,3)

H(1,12)

H(4,6)H(8,12)

Figure 4.9: The Effect of Optimal Configuration of FHT

We also plot the performance when we use fewer hash functions than the optimal,

and fix m and n. This is shown in Figure 4.10. The optimal number of hash functions

for the configuration used is 10. Although the performance degrades as we use less

than 10 hash functions, it is still significantly better than NHT (k = 1 curve). An
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advantage of having a smaller number of hash functions is that the incremental update

cost is reduced. Moreover, the associated hardware cost is also reduced.
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4.3.3 Average Access Time

The load factor of a hash table is defined as the average length of lists in the table [20].

For an NHT, the load factor α can be given as:

α = n/m (4.16)

Let T1, T s
1 and T u

1 denote the time for an average, successful and unsuccessful search

respectively (ignoring the hash computation time). For an NHT, the following can

be shown [20]:

T s
1 = 1 + α/2− 1/2m (4.17)

T u
1 = α (4.18)
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In order to evaluate the average search time, we need to introduce another parameter

ps which denotes the probability of a true positive, i.e., the frequency of searches which

are successful. Similarly, pu = 1 − ps denotes the frequency of issuing unsuccessful

searches.

With these notations, the average search time can be expressed as:

T1 = psT
s
1 + puT

u
1 = ps

(
1 +

n− 1

2m

)
+ (1− ps)

n

m
(4.19)

For FHT, let Ep be the expected length of linked list in FHT for a member item and

Ef be the expected length of linked list in FHT for a false positive match. Ep can

be derived form Equation (4.11) and Ef can be derived from Equation (4.8). So the

average search time T2 is:

T2 = psEp + pufEf = psEp + (1− ps)
(

1

2

)(m/n) ln 2

Ef (4.20)

We compare our algorithm with NHT by using the same set of configurations. Fig-

ure 4.11 shows the expected search time in terms of the number of off-chip memory

accesses for the two schemes under different successful search rates when m = 128K,

n = 10, 000, and k = 10.

We see that the lower the successful search rate, the better the performance of our

algorithm is. Note that this estimation is conservative for our algorithm. We do not

take into account the potential benefit of some optimizations such as pruning and

list-balancing.

4.3.4 Memory Usage

There are three distinct blocks in the FHT architecture which consume memory. The

first is the on-chip counting Bloom filter. Second is the hash table buckets and the

third being the actual item memory. In the analysis so far, we have always considered

the same number of buckets for both FHT and NHT. NHT does not require on-chip



84

0.001

0.01

0.1

1

10

0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

 s
ea

rc
h 

tim
e 

(m
em

or
y 

ac
ce

ss
es

)

Successful search probability (Ps)

NHT
FHT

Figure 4.11: Expected Search Time

memory though FHT needs a small amount of it. Finally, while NHT needs memory

for exactly n items, the different versions of FHT need different amounts of memory

depending on how many times an item is replicated. BFHT needs to store each

item k times and therefore needs a space of nk. PFHT keeps exactly one node for

each item and therefore the storage is same as NHT. SFHT trades off memory for

better incremental update support. We computed the memory requirement for SFHT

using simulations with m = 128K, n = 10, 000 and k = 10. Figure 4.12 shows the

memory consumption of all the three schemes. The results show that for the chosen

configuration, SFHT uses 1 to 3 times more memory than NHT or PFHT, which is

much less than BFHT memory requirement.

We now elaborate on the memory usage for on-chip counters. The memory consump-

tion for the counter array depends on the number of counters and the width of each

counter. While the number of counters is decided by Equation 4.13, the counter width

depends on how many items can get hashed to a counter. The worst case when all

the nk items land up in the same bucket is highly improbable. We calculate how

many items can get hashed in a bucket on an average and choose a counter width to

support it. For any counter that overflows by chance, we make a special arrangement
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Figure 4.12: Item Memory Usage of Different Schemes

for it. We simply keep the counter on the chip and attach the index of the counter in

a small Content Addressable Memory (CAM) with just a few entries. When we want

to address a counter, we check to see if it is one of the “oversize” counters and access

it from the special hardware. Otherwise, the normal operations proceed. Given the

optimal configuration of counting Bloom filters (i.e. m ln 2/n = k) and m = 128K, we

can show that the probability of a counter being > 8 is 1.4× 10−6, which is negligible

for our purpose. In other words, one in a million counters can overflow when we have

only 128K counters. Hence, we can comfortably choose the counter width of three

bits and this consumes less than 400K bits of on-chip memory.

4.4 Simulations

We simulate the FHT lookup algorithm using different configurations and compare

the performance with NHT under the condition that each scheme has the same num-

ber of buckets. First, we need to choose a set of “good” hash functions. Even with a

set of simple hash functions, we show that our algorithm demonstrates a compelling
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lookup performance that is much better than NHT. In the optimal case, our algo-

rithm’s successful lookup time is exactly 1, and the average unsuccessful lookup time

is determined by the false positive rate of the Bloom filter.

A class of universal hash functions described in [15] are suitable for hardware imple-

mentation [51]. For any member item X with b-bit representation

X = 〈x1, x2, x3, . . . , xb〉

the ith hash function over X, hi(x), is calculated as:

hi(X) = (di1 × x1)⊕ (di2 × x2)⊕ (di3 × x3)⊕ . . .⊕ (dib × xb)

where ‘×’ is a multiplication operator and ‘⊕’ is a bitwise XOR operator. dij is a

predetermined random number in the range [0 . . . m − 1]. For the NHT simulation,

one of such hash functions is used.

We simulate the tail distribution of the expected number of items in a non-empty

bucket which needs to be searched. The simulation was run 1,000,000 times with

different seeds. In Table 4.1, we list both the analysis results and the simulation

results.

Table 4.1: Expected # of Items for Which All Buckets Have > j Entries

j Fast Hash Table Naive Hash Table
Analysis Simulation Analysis Simulation

basic pruning balancing
1 19.8 18.8 5.60× 10−2 0 740.32 734.45
2 3.60× 10−4 4.30× 10−4 0 0 28.10 27.66
3 2.21× 10−10 0 0 0 0.72 0.70
4 1.00× 10−17 0 0 0 1.37× 10−2 1.31× 10−2

5 5.64× 10−26 0 0 0 2.10× 10−4 1.63× 10−4

6 5.55× 10−35 0 0 0 2.29× 10−6 7× 10−6

From the table, we can see that our analysis of FHT and NHT is quite precise. The

simulation results are very close to the analytical results and confirm the accuracy of

our approximate analysis. More importantly, while BFHT has already demonstrated

its advantages over NHT, after the pruning and list-balancing, the results are even
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better: each non-empty bucket contains exactly one item. This means, in the worst

case, only one off-chip memory access is needed for a lookup.

4.5 Implementation

Front End

Counting

Bloom Filter

Compressed

TableArray

Pointer
Element

Figure 4.13: Hierarchical Structure of Fast Hash Table

We briefly discuss the implementation of our fast hash table. The memory and

associate logic can be partitioned into a 3-level hierarchical structure as shown in

Figure 4.13. The front end counting bloom filter supports k parallel lookup and

counter comparisons. The index for the bucket of the smallest counter is fed into

the compressed pointer array and the element’s absolute address is calculated in this

block. The address is used to retrieve the items in the associated item table.

The implementation of the counting Bloom filter takes advantage of the fast multi-

port on-chip memory in FPGAs or ASICs. A modern FPGA chip can contain more

than 10 Mbits SRAM in a single chip and can be configured in many different sizes

and widths [79]. In the case there are only two-port SRAM available, each SRAM

block can support two hash functions and the hash keys are restricted only to this

memory block. Several SRAM blocks can work in parallel, each with different set of

hash functions. Analysis shows this architecture can achieve equivalent performance

as the strict Bloom Filter implementation.

Note that except the front-end counting Bloom filter, other memory blocks are all

single port memory and are not necessarily restricted to be on-chip or off-chip. The

decision is totally an engineering consideration and depends on the design criteria

and memory availability. Using this memory hierarchy, lookups can be pipelined to

further improve the lookup performance. This regular and reconfigurable architecture



88

with tunable parameter settings can be implemented as a hardware core and used in

any occasion where fast hash table lookups are crucial to the system performance.

4.6 Conclusion

Hash tables are extensively used in several packet processing applications such as IP

route lookup, packet classification, per-flow state management, and network traffic

monitoring. Since these applications are often used as components in the data-path

of a high-speed router, they can potentially create a performance bottleneck if the

underlying hash table is poorly designed. In the worst case, back-to-back packets

can access an item in the most loaded bucket of the hash table leading to several

sequential memory accesses, which in turn will deplete the system buffer and cause

packet drops.

Among the conventional avenues to improve hash table performance, using sophis-

ticated cryptographic hash functions such as MD5 does not help, because they are

too computationally intensive to be computed in a minimum packet-time budget

and the performance is still not good enough; Devising a perfect hash function by

preprocessing keys does not work for dynamic data sets and real-time processing;

Multiple-hashing techniques to reduce collisions demand multiple parallel memory

banks (requiring more pins, memory bandwidth, and power). Hence, engineering a

resource efficient and high-performance hash table is indeed a challenging task.

In this chapter, we present a novel hash table data structure and algorithm which

outperforms conventional hash table algorithms by providing better bounds on the

hash collisions and the memory accesses per lookup. Our hash table algorithm extends

the multi-hashing technique, the Bloom filter, to support the exact match. Unlike the

conventional multi-hashing schemes, it requires only one external memory for lookups.

Combined with the current advances in embedded fast memory technology, FHT

offers a promising approach to hardware-based hash table design to meet network

throughput demands by providing faster and more predictable lookup performance.
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Chapter 5

LPM using Hash Tables and Tries

5.1 Introduction

We show in Chapter 4 that we can take advantage of on-chip memory to improve

hash table lookup performance. Now we consider applying this technique to further

improve the LPM performance.

Using hash tables for LPM is not new. Dharmapurikar et. al. have presented a scheme

to assign each unique prefix length a Bloom filter [23]. The queries to the Bloom filters

are performed in parallel, and then the search for the longest matching prefix in an

off-chip hash table starts from the longest length for which the corresponding Bloom

filter reports a positive match. In case no false positive is present, only one hash table

query is needed to retrieve the best matching prefix.

However, LPM using Bloom filters has some disadvantages for IP lookups. Each

distinct prefix length requires a Bloom filter, so the total number of Bloom filters

might be too large. Although the total number of items programmed in these Bloom

filters is simply the number of prefixes in a table, the item distribution among these

Bloom filters is highly skewed. This makes engineering the system to best use the

on-chip memory resource a challenging problem. More important, a large number of

Bloom filters result in poor worst-case performance. In the worst case, if all the Bloom

filters show a false positive, we need as many hash table queries as the number of

Bloom filters for a packet lookup. Therefore, reducing the number of Bloom filters not

only lowers the system complexity and but also improves the worst-case performance.

To reduce the number of Bloom filters, the algorithm in [23] selects a few thresholds
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based on the prefix length distribution and expands the prefixes to their nearest

thresholds. Now we need only one Bloom filter for each threshold. However, the

prefix expansion increases the total number of prefixes in a route table a great deal.

The expanded prefix table increase the number of items that must be stored in both

the on-chip memory and the off-chip hash table.

In addition to increasing the memory required, prefix expansion also significantly

increases the incremental update cost. One single update might need a large number

of memory operations on both the Bloom filter and the associated hash table. In an

environment where the route table changes frequently, the update cost can become

prohibitively large.

On the other hand, we have mentioned in Chapter 3 that most successful IP lookup

algorithms are essentially variations of the basic binary trie that allow for examining

multiple bits per memory access. Smart encoding techniques such as Tree Bitmap [27]

and Shape Shifting Tries [58] avoid the prefix expansion, improving storage efficiency

and providing faster lookup throughput. However, searching in a trie always starts

from the root, so the worst-case performance of these algorithms is proportional to

the maximum trie depth [27] and is sensitive to the underlying trie structure [58].

Combining the hash table and trie data structures leads to a new LPM algorithm

which is presented in this chapter. It retains the memory efficiency of the trie-based

algorithm and meanwhile allows the search to bypass intermediate trie nodes with the

assistance of hash tables. The algorithm can be used in a high-performance IP lookup

engine, especially for IPv6. It is suitable for hardware implementation and can sustain

OC-192 and above line-speed processing by using only one commodity memory chip.

The algorithm exhibits a nice tradeoff between throughput and storage, which allows

system designers to decide the configurations based on the available on-chip and off-

chip memory resource and the desired lookup throughput. The algorithm can also be

used as a building block of packet classification algorithms.

The remainder of this chapter is organized as follows. The related work is discussed

in Section 5.2, the algorithm and its implementation are described in Sections 5.3 and

5.4. We evaluate the algorithm in Section 5.5 and conclude the chapter in Section 5.6.
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5.2 Related Work

Some LPM algorithms take advantage of the trie data structure to support a pipelined

architecture [34]. Ideally, pipelined lookups allow the completion of one packet lookup

per clock cycle. Unfortunately, this technique has serious problems. It consumes too

much memory bandwidth and the skewed storage requirement of the pipeline stages

makes engineering the system difficult and inefficient. Another technique interleaves

memory accesses from multiple parallel IP lookup engines [27, 58]. When these lookup

engines share the same memory interface, they try to fully utilize the available memory

bandwidth to gain a high aggregated lookup throughput. The bandwidth of a single

SRAM chip today can be higher than 14 Gbps. Current VLSI technology makes it

easy and low-cost to deploy multiple engines and synchronize their behavior. So the

core problem here is to lower the bandwidth share of each engine. In other words, we

should focus on reducing the number of off-chip memory accesses needed for a single

packet lookup in order to achieve a higher overall lookup throughput.

The central piece of our LPM algorithm is a set of on-chip Bloom filters. As discussed

in Chapter 4, Bloom filters have drawn significant attention in the networking research

community recently due to their efficient use of memory. Reference [23] discusses using

Bloom filters for IP lookups. Our work is built upon this algorithm and significantly

improves it.

Sangireddy et. al. present an Elevator-Stair algorithm that combines hash tables

and PATRICIA trees [53]. Hash tables are built on selected levels to indicate if there

are longer prefixes starting from these levels. However, as the name of algorithm

implies, the LPM starts from the tree root, searching the hash tables level by level

to determine where to find the potential longest matching prefix. While this is akin

to our algorithm, our algorithm supports directly jumping to the destination hash

table, resulting in a faster search speed. Their algorithm uses the PARTRICIA tree

for the second layer search. However, the PARTRICIA tree can only compress tree

paths without any branch. Hence it is not as effective as other encoded multibit trie

algorithms. Moreover, the algorithm does not use Bloom Filters to summarize the

items in hash tables, so the algorithm has to physically access many of the off-chip

hash tables.
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5.3 Algorithm

The easiest way to organize data for IP lookup is to group the prefixes based on

their lengths and store each group in a hash table. When lookups are performed in

software, the binary search on these hash tables based on the prefix lengths is the

best choice [74], resulting in the O(log W ) lookup time performance, where W is the

number of unique prefix lengths. When lookups are performed in hardware, however,

we can take advantage of the embedded fast memory and the parallel processing ca-

pability of hardware to use the brute force method. As proposed in [23], an on-chip

Bloom filter is used to summarize the items in each hash table. The lookup process

probes all the Bloom filters simultaneously and uses the output of the Bloom filters

to determine which hash table to query. In practice, the lookups can be very fast.

Unfortunately, due to the possibility of false positive in Bloom filters, the worst-case

lookup time performance is as poor as O(W ). When using the prefix expansion tech-

nique [64] to reduce W , i.e. the number of Bloom filters and hash tables, significantly

more storage is required.

The high level idea of our algorithm is simple: with the reduced number of Bloom

filters, instead of performing the prefix expansion, we encode the subtree between

two length thresholds using the TBM or SST encoding technique. In a sense our new

algorithm can be seen as a multi-bit trie algorithm with multilevel jump tables.

For example, assume we have a prefix table shown in Table 5.1. If we assign each

unique length a Bloom filter, we need at least five Bloom filters. Future updates can

drastically change the situation so more Bloom filters are expected. Here we get a

sense of the difficulty of engineering such a system. Now we assume the table is just

as it is. Six items are programmed in the Bloom filters and in the worst case we need

five hash table queries to find the best matching prefix when all the Bloom filters

show a false positive.

Now we want to use the prefix expansion technique to reduce the number of Bloom

filters to two. By carefully analyzing the prefix length distribution, we decide to set

the two length thresholds to 4 and 7. The expanded table is shown in Table 5.2.

The table size is doubled and 15 items need to be programmed in the two Bloom

filters. Although the worst-case number of hash table queries is reduced to only 2,
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Table 5.1: Prefix Table

ID Prefix

p0 *
p1 1*
p2 000*
p3 101*
p4 1000*
p5 10010*
p6 1001101*

the storage required is significantly increased. Moreover, if now we need to remove

the prefix p1, we need to remove five items from the on-chip Bloom filters and the

off-chip hash tables. This is a high update cost.

Table 5.2: Expanded Prefix Table

ID Prefix

p0 *
p2 0000*
p2 0001*
p4 1000*
p1 1001*
p3 1010*
p3 1011*
p1 1100*
p1 1101*
p1 1110*
p1 1111*
p5 1001000*
p5 1001001*
p5 1001010*
p5 1001011*
p6 1001101*

Rather than expanding the prefix table, our algorithm seeks to encode the prefixes

between the length thresholds using the trie data structure. As shown in Figure 5.1,

the binary trie nodes are grouped into subtrees and the subtrees are encoded using

either TBM or SST (Note that if the subtrees have only one layer of encoded nodes,

EBM and the child pointer are not required in the node data structure). Now in the
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first Bloom filter, we need to program only two items “10010” and “10011”, and in the

second Bloom filter, we need to program only one item “1001101”. The root nodes

of subtrees, associated with the items in the Bloom filters, are stored in the off-chip

hash tables. In addition, the best matching prefix so far for each item is also stored

along with the item in hash tables. For example, in the hash table entry associated

with the item “10010”, the best matching prefix so far is itself, “10010*”. However,

in the hash table entry associated with the item “10011*”, the best matching prefix

so far is p1 or “1*”. Now there are only three items in the Bloom filters. Compared

with the previous scheme, it is a huge saving.
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Figure 5.1: LPM Data Structure for the Example Table

There are some subtle points about this data structure. First, the items programmed

in the Bloom filters may not be the prefixes in the Table. Rather, they are the prefixes

of the paths that cross the length thresholds. See the path “1001101” in Figure 5.1
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for an example. Second, if a long path cross multiple thresholds, then the prefixes of

this path with different threshold lengths are programmed in multiple Bloom filters.

We created a sort of dependency among the Bloom filters. This feature can help filter

out certain false positive pattern. A match in a Bloom filter for a longer threshold can

be a true match only if all the Bloom filters for the shorter thresholds show matches

too. In other words, if any Bloom filter shows a mismatch, we know that the matches

in Bloom filters for longer thresholds are definitely false positive, so we do not need

to query their associated off-chip hash tables.

With this data structure, the LPM lookups are quite simple. Give an IP address, we

extract the prefixes according to the length thresholds of the Bloom filters and then

use these prefixes to query the Bloom filters in parallel. We then determine which

hash table to query based on the Bloom filter outputs. If a Bloom filter and all the

Bloom filters for shorter length thresholds report a match, we then query the hash

table for this Bloom filter to verify the match. If it turns out to be a true match,

then the best matching prefix is either the one stored in the hash table entry or a

longer prefix in the subtree. So we traverse the subtree to search for a longer prefix.

The best matching prefix is returned according to the search result. If the query to a

hash table shows that a match in a Bloom filter is a false positive, then we go ahead

to query the hash table for the Bloom filter with a shorter length threshold.

This architecture suggests that the worst-case lookup performance is determined by

the number of Bloom filters and the cost to traverse a subtree. In the example shown

in Figure 5.1, we can read a subtree in just one memory access, so in the worst

case, a packet lookup needs two hash table queries to retrieve a valid multibit trie

node and one extra memory access to retrieve the next hop per lookup. For this

example, the worst-case performance is identical to that of the original method with

prefix expansion. However, our algorithm uses much less memory and provides better

support of incremental updates.

Now we describe the algorithm formally. The data structure construction algorithm

starts from the binary prefix tree. The tree is partitioned into k segments at depth

d0, d1, d2, ..., dk, where 0 = d0 < d1 < d2 < ... < dk ≤ w. We then assign an on-chip

Bloom filter Bi and an off-chip hash table Hi for each depth di when i > 0. For any

path starting from the root with its length ≥ j, there is a record in each Bloom filters
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Br if dr ≤ j. In the Bloom filter Bi, the di-bit prefix of the path is programmed.

A unique path prefix is only programmed in a Bloom filter once. Since the prefixes

of a path with different lengths are present in a sequence of Bloom filters, we call

it Chained Path Bloom Filters (CPBF). All the paths ended in a segment (di, di+1)

forms a set of subtrees for which the roots are the tree nodes at the depth di. We

use either Tree Bitmap or Shape Shifting Tries to encode these subtrees. Each such

encoded subtree is called a Segment Multibit Trie (SMT). The stride or the node

capacity is determined by the word size of the off-chip memory. All the path prefixes

programmed in a Bloom filter Bi are also stored in the hash table Hi. Along with the

path prefixes, the hash table stores the corresponding SMT root node and the length

of the longest matching prefix of the root node.

The IP lookup process includes two steps. First, construct the Bloom Filter keys,

query the Bloom Filters, and use the outputs to determine which Hash Table to

search. Second, retrieve the best match so far and the SMT root from the Hash

Table, traverse the SMT, and determine the best match.

In the first step, we use the prefixes of the IP address with length d1, d2, ...dk as keys

to query the corresponding Bloom filters in parallel. We examine the match status

from B1 to Bk. If the first negative match is reported by Bj, then the length of the

longest matching prefix must be shorter than dj, even if some Bloom filters with index

greater than j report a positive match. The dependency of the CPBF is able to filter

out this kind of false positive without requiring any off-chip memory access. If j = 1,

we know the best match exists in the SMT between depth 0 and depth d1; otherwise,

we query the hash table Hj−1 to verify the match. If it turns out the match in Bj−1

is a false positive, we then back to query the hash table with smaller index and so

on. Finally, we can find exactly the segment which contains the best match. Once we

find a true match in a hash table, in the second step, we retrieve the associated SMT

root and traverse the SMT to find a longer matching prefix. The longest matching

prefix in this SMT is returned as the best match. If the search fails, the stored best

prefix is returned. The best matching prefix can then be used as a key to retrieve the

associated information, such as the next hop for IP lookups.
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CPBF provides a mechanism to fast jump the search to the target segment when doing

LPM. The encoded SMT efficiently uses the memory and supports fast lookups. The

combination of these two forms a more scalable and faster LPM algorithm.

5.4 Implementation

When designing the LPM system, we need to determine the number of Bloom filters

as well as the set of length thresholds. Our algorithm is very flexible: each segment

can have a different number of bits. We can optimize the segment partition to fit

different applications. When the algorithm is used for IP lookups, we can engineer

the design to gain the best throughput. For example, if we use TBM to encode the

SMTs and one memory word can encode a node with a stride of s, we can partition

the binary tree into dW/se segments, where W is the longest length of the prefixes in

a table. So bW/scs Bloom filters are needed to cover path lengths s, 2s, ... , bW/scs.
Since an SMT is encoded using a single memory word, one to bW/sc off-chip memory

accesses are needed to find the best matching prefix. Here we assume each hash table

query requires just one off-chip memory access, which is reasonable with the use of

FHT for implementing the hash tables.

If the on-chip memory resource becomes a concern, we can reduce the number of

Bloom filters by letting each segment cover αs bits. Now only bW/αsc Bloom filters

are needed and an SMT could have a depth of α. This means one to bW/αsc + α

memory accesses are required to find the best matching prefix. Our algorithm allows a

tradeoff between throughput and storage. This is especially attractive for IPv6, where

W is a large number. Assume the longest prefix length is 64 and the memory word

size supports TBM nodes with a stride of 5, Figure 5.2 shows the number of Bloom

filters required versus the worst-case number of memory accesses required for a packet

lookup when we vary the value of α. The upper curve shows the absolute worst-case

performance when Bloom filters can show false positives. If we assume there is no

false positive from the Bloom filters, the worst-case performance is determined by the

depth of SMTs, which is shown in the lower curve in Figure 5.2.
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Figure 5.2: The Worst-Case Performance vs the Number of Bloom Filters

When no Bloom filter is used, the performance is simply that of the multibit trie

algorithm. When just one Bloom filter is used, the performance improves almost

two times. While more Bloom filters tend to worsen the absolute worst-case perfor-

mance, the average-case performance and the usual performance are both improved

substantially.

Recall that in Chapter 3 we take advantage of the tree sparsity to encode the subtrees

using SST which can generally cover a larger stride per node. Similarly, we can expect

a better performance if SST can also be used to encode SMTs. We use the following

algorithm to partition the binary tree and construct the data structure dynamically.

Step 1 Traverse the binary tree and find the largest depth di such that every subtree

rooted at depth di can be encoded as an SMT of depth k, for some specified k.

The SMTs combine the TBM-type and SST-type nodes in order to minimize

di. If di > 0, go to the step 2. Otherwise, the binary tree root is reached, so

encode the subtree rooted at the binary tree root and halt.

Step 2 Build a Bloom filter for depth di. All the tree nodes at depth di have a record

in the Bloom filter. Encode the subtrees and store them in the associated hash

table. Store the best matching prefix so far for each item in the associated hash

table.
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Step 3 Prune the binary tree at depth di and repeat the previous steps on the

remainder tree.

Figure 5.3 shows an example of such a tree partition when k = 1. Assume an SST

node can encode five binary nodes and an TBM node can support a stride of 3. At

the first iteration, we get the threshold at the depth 4. At the second iteration, we get

the second threshold at the depth 1. The algorithm terminates at the third iteration.
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Figure 5.3: Tree Partition Example Using TBM and SST

Using this algorithm, the size of segments is not necessary to be the same, but adapts

to the structure of the binary tree. Hence, we can reduce the required number of

Bloom filters to the minimum. Note that we can also increase the desired SMT depth

to further reduce the number of Bloom filters required at the cost of a little lower

throughput.
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5.5 Evaluation

Assume there is no false positive from Bloom filters. Hence, traversing one SMT is

the only cost incurred to find the longest matching prefix. In the worst case when

all the k Bloom filters show a false positive, the extra cost is k hash queries. In this

case, the performance is the same as the worst-case performance of the multi-bit trie

algorithm.

Assume the best matching prefix is stored in Hi. Clearly, Bi should report a true

match. We need to access only one SMT if and only if Bi+1 does not show a false

positive, so the probability is (1 − f), where f is the false positive rate of a Bloom

Filter. Similarly, we need to access two SMTs if and only if Bi+1 shows a false positive

and Bi+2 does not show a false positive, so the probability is f(1− f). Therefore, the

average number of STMs accessed per packet lookup is:

(1− f) + 2f(1− f) + ... + (k − i)fk−i−1(1− f) + (k − i + 1)fk−i

f is typically a very small value, so we can let 1−f = 1. Assume for the lookups, the

best matching prefixes are evenly distributed in all the hash tables, then the average

number of STMs accessed per packet lookup is:

1 +
2(k − 1)

k
f +

3(k − 2)

k
f 2 + ... +

2(k − 1)

k
fk−2 + fk−1

A QDRII SRAM has an equivalent word size of 72 bits, which is sufficient to encode

a TBM node with a stride of 5 or an SST covering a 16-node binary subtree (see

Chapter 3)1. We use the largest available BGP route table to demonstrate our algo-

rithm’s performance. There are about 200K prefixes in this table, and the lengths

are distributed between 8 and 32. We evaluate our algorithm using only five Bloom

1When each SMT can be encoded using a single node, the node data structure does not need the
EBM and the child pointer fields. Therefore, the node can support a larger stride or can cover more
binary nodes. However, here we use the conservative numbers for evaluation
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filters for path lengths of 8, 13, 18, 23 and 28. This partition ensures that each SMT

contains a single TBM node.

Table 5.3: BGP Table Results I

Depth # SMTs # expanded prefixes

8 128 22
13 2,648 405
18 23,689 47,155
23 71,913 286,769
28 10,333 1,319,789
32 — 89,640

Total 108,711 1,743,780

As shown in Table 5.3, the number of SMTs defines the number of items that must be

stored in both the on-chip Bloom filters and the off-chip hash tables. If the original

method was used with Bloom filters for lengths 8, 13, 18, 23, 28, and 32, the number

of items stored corresponds to the number of expanded prefixes, shown in the right

column. Thus, our method reduces the storage required by more than an order of

magnitude.

We can reduce the number of Bloom filters further at the cost of one more memory

access per lookup. The results are shown in Table 5.4. By reducing the number of

Bloom filters, our algorithm needs fewer and fewer items in Bloom filters. However,

the prefix expansion scheme needs more and more items. By eliminating two Bloom

filters, now the prefix expansion scheme generates more than 50 expanded prefixes

per original prefix on average.

Table 5.4: BGP Table Results II

Depth # SMTs # SMT nodes # expanded prefixes

8 128 2,776 22
18 23,689 95,602 58,240
28 10,333 10,333 10,206,672
32 — — 89,640

Total 34,150 108,711 10,354,574

Figure 5.4 shows the worst-case number of memory accesses per packet lookup ver-

sus the number of items stored per original prefix, for our algorithm and the prefix
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expansion scheme. Our algorithm provides a good worst-case performance with very

low storage overhead. For the prefix expansion scheme to reach the similar worst-case

performance, significantly more storage is required.
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Figure 5.4: The Worst-Case Performance vs the Number of Items per Prefix

Finally, we investigate the effect of dynamically determining the segment sizes using

SST and TBM together on the synthetic IPv6 table we used in Chapter 3. There are

47 unique prefix lengths distributed from 18 to 64. If the naive Bloom filter scheme

is applied, up to 47 Bloom filters are required and the worst-case performance is 47

hash table queries per packet lookup. If TBM is used to encode the SMTs and the

memory word supports a stride of 5, then we can reduce the number of Bloom filters

to just 10 and the worst-case performance now is 10 hash table queries per packet

lookup. Table 5.5 summarizes the results. Because the binary trie is very sparse, the

number of SMTs exceeds the number of expanded prefixes, so we can see the storage

of our scheme is actually worse than that of the prefix expansion scheme. However,

if we reduce the number of Bloom filters further, the number of SMTs will decrease

and the number of expanded prefixes will increase.

By using SST and TBM together, an encoded SMT node can cover either 16 binary

tree nodes or support a stride of 5. Letting each SMT contain a single node, we

run the dynamic algorithm to determine the segment size and reduce the number

of Bloom filters to 7. Now in the worst case, we need just seven hash queries per

packet lookup to find the best matching prefix. Table 5.6 summarizes the results.

The table also shows when the prefix expansion is used to support these thresholds,
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Table 5.5: IPv6 BGP Table Results (Using TBM only)

Depth # SMTs # expanded prefixes

18 31,667 —
23 86,617 142
28 126,489 1,285
33 130,347 18,819
38 128,264 35,464
43 111,077 86,807
48 85,447 204,972
53 28,730 133,787
58 24,141 34,729
63 13,460 51,464
64 — 11,840

Total 766,239 579,309

the table size is expanded to almost 100 times larger, while in our scheme, the items

stored in Bloom filters are only 3.5 times more than the number of original prefixes.

When a single QDRII SRAM chip is used, our algorithm can perform lookups for

200 million packets per second in the usual case and 25 million packets per second

in the worst case. With a false positive rate of 0.008, our algorithm requires 12 Mb

on-chip memory when FHT is used to implement the Bloom filters and the associated

hash tables. On the other hand, the prefix expansion scheme requires 339 Mb on-chip

memory.

Table 5.6: IPv6 BGP Table Results (Using SST and TBM)

Depth # SMTs # expanded prefixes

18 31,667 —
21 56,935 24
26 116,436 632
31 132,874 3,667
36 130,320 99,013
41 117,051 73,021
49 38,465 1,083,665
64 — 16,515,728

Total 623,748 17,775,750
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We can see our new LPM algorithm has significant advantages over the previous

algorithms for IP lookups. In the next Chapter, we will examine its use in a 2D

packet classification algorithm.

5.6 Conclusion

High speed backbone routers running at OC-768 line speed need to find the routing

information for up to 125 million packets per second from a database with more than

200K IPv4 or IPv6 prefixes. This challenging task demands new research efforts to

provide better algorithms. System designers feel comfortable with a design only if it

can work in the worst-case scenarios. Although the LPM using Bloom filters provides

a compelling average-case lookup performance, its worst-case performance is poor due

to the possibility of false positive in Bloom filters.

In this chapter, we present a new LPM algorithm which can be used for fast IPv4 and

IPv6 lookups. Leveraging the state-of-art IP lookup algorithms and the availability

of fast on-chip memory, our new algorithm not only scales well to the prefix length

and the database size but also exhibits a desirable tradeoff between storage and

throughput.
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Chapter 6

2D Coarse-grained Tuple Space

Search

6.1 Introduction

Packet classification becomes difficult when more header fields are involved and more

general filters are specified. Although TCAMs can do the job easily, considering the

unparalleled advantages of commodity memory such as high density, low cost, and low

power consumption, we believe faster and scalable algorithms can still win the battle.

Coupled with efficient data structures, hardware-based algorithms can achieve high

throughput and low storage by taking advantage of parallel processing and pipelining

techniques. Moreover, today’s ASICs and FPGAs embed fast, multi-port on-chip

memory which can be used to buffer and store critical data. In computer systems,

a small amount of fast on-chip cache plays an important role in accelerating system

performance. Similarly, the smart use of embedded memory can make a significant

difference. The use of on-chip memory to build a small lookup cache while keeping the

major data structure off-chip and taking advantage of the temporal locality of packet

classification is reported in [17, 43]. However, systems relying only on the temporal

locality suffer from unpredictable performance degradation due to inevitable cache

misses. Alternatively, noticing that the off-chip memory access is still the system

performance bottleneck, one can implement a part of the algorithm using on-chip

memory, making it an integral part of the algorithm data structure so that the on-

chip memory can help reduce the number of off-chip memory accesses.
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The relatively small size of the on-chip memory requires us to use it efficiently.

Memory-efficient data structures, such as Bloom filters, are well-suited to on-chip

implementation. We have built the FHT data structure based on Bloom filters in

Chapter 4 and used it for a fast LPM algorithm in Chapter 5. In this chapter, we

present a new packet classification algorithm which uses hash tables as the underly-

ing data structure. Again, we can use the Bloom filter-based FHT to optimize the

on-chip memory usage and improve the system performance.

A special case of general packet classification, called 2D packet classification, takes

only the source and destination IP addresses into account. In 2D filter sets, each

filter specifies a pair of prefixes. 2D packet classification is widely used in basic

Access Control Lists (ACL) [18]. Moreover, EGT-PC [9] shows that it can also be

used in general packet classification with some extensions.

Some previous work addresses this problem. The AQT algorithm [14] applies the 2D

cutting technique. Its performance highly depends on the filter set structure. The

GOT [65] and EGT [9] algorithms are both trie-based, and have a worst-case lookup

performance of α × w, where w is the longest prefix length and α is some constant

factor. They traverse the prefix trees and jump between them to examine all possible

matches. Another type of algorithm uses the tuple space search technique. A tuple is

defined as a pair of unique prefix lengths (u, v). Filters belonging to the same tuple

are stored in one hash table. The lookups are conducted by querying the hash tables.

The storage and the lookup time depend on the number of tuples. The 2D tuple space

search requires w2 hash queries per lookup in the worst case. An enhanced version,

called rectangle search, reduces the number to 2w − 1, at the cost of preprocessing

and more storage [63]. However, this still requires up to 63 hash queries per lookup

for IPv4 in the worst case. Another algorithm [77] that operates on conflict-free filter

sets uses binary search to reduce the number of hash queries to log2 w, which is 25 for

IPv4. Unfortunately, most 2D filter sets are not conflict-free. Despite the differences,

the performance of the above algorithms depends on the prefix length w, which makes

these algorithms less attractive for the IPv6 case.

Our new 2D packet classification algorithm combines the tuple space search algo-

rithm [63] and the crossproducting algorithm [65] and overcomes their drawbacks.
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To classify a packet, it performs LPM on each field first and then combines the re-

sults to perform several hash table queries. The algorithm can be categorized as a

decomposition-based algorithm using the filter set grouping technique.

The remainder of this chapter is organized as follows. Since our algorithm is directly

derived from the tuple space search algorithm [63] and the crossproducting algo-

rithm [65], we discuss them briefly and suggest optimizations in Section 6.2. We de-

scribe the algorithm in Section 6.3 and discuss the tuple partition issues in Section 6.4.

We evaluate the algorithm performance using different filter sets in Section 6.5. We

conclude the chapter in Section 6.6

6.2 Related Work

6.2.1 Tuple Space Search

Each filter in a 2D filter set is specified as a pair of prefixes. We define the lengths

of these prefixes as a tuple, denoted as (i, j), where i is the length of the source IP

address prefix and j is the length of the destination IP address prefix. Hence, filters

can be grouped into different tuples. Filters in a tuple can be easily stored in a hash

table with the i-bit prefix of source IP address and the j-bit prefix of destination IP

address as the key. Figure 6.1 illustrates the idea, in which each grid represents a

tuple. Although there are 33 × 33 = 1089 tuples in total, it is possible that some

tuples contain no filter at all so we do not assign hash tables for these tuples. The

number of nonempty tuples in some ACL filter sets are reported in Table 6.1.

Table 6.1: Number of Nonempty Tuples in ACL Filter Sets

Filter Set # filters # tuples

ACL1 426 31
ACL2 527 50
ACL3 1,588 89
ACL-syn 6,826 31

When each nonempty tuple is assigned a hash table, the lookup can simply query

all the hash tables to find the best matching filter. However, we cannot afford to
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perform so many hash queries per lookup for high performance packet classification.

A simple optimization, called tuple pruning, can help reduce the number of hash

tables queried per lookup. It performs single field lookups first to determine a subset

of tuples for which there are matching filters. For example, assume there is a tuple

(i, j) and we perform the LPM on the source IP address to return the lengths of all

the matching prefixes. If none of these lengths equals i, we do not need to search

the tuple (i, j). If the cost of performing LPMs can be kept low, this optimization

can help improve the average-case performance. However, the worst-case performance

remains the same. Another optimization, called rectangle search, aims to improve the

worst-case performance. It uses the property that more specific filters have higher

priority than less specific filters. For example, in Figure 6.1, if we find a matching

filter in the tuple (20, 12), shown as the dark grid, then we do not need to search

the hash tables in the region A because they represent less specific tuples. With this

optimization, the worst-case number of hash table queries is just 2w − 1 as opposed

to w2 in the original scheme.
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While we also use the similar optimizations, we attack the problem from a different

angle. The problem with the tuple space search algorithm is that the number of

tuples is too large. We reduce this number by identifying groups of tuples that can

be searched efficiently using the crossproducting technique, which we discuss next.

This allows us to dramatically reduce the number of separate searches that must be

performed.

6.2.2 Crossproducting

The crossproducting algorithm is the most straightforward way to do packet classi-

fication. We assign each prefix on each field a unique ID. To classify a packet, the

crossproducting algorithm performs LPMs on both fields first. The resulting IDs are

combined to form an index, and then the index is used to retrieve the matching filter

from a direct lookup table. If the source IP address field has m unique prefixes and

the destination IP address field has n unique prefixes, the number of entries in the

direct lookup table is m × n. Although the lookup is very fast, the storage can be

excessively large.

In the direct lookup table, not all the entries contain original filters. There are many

“pseudo filters” that come from the cross-products of original filters. These pseudo

filters must be stored and significantly expand the space used to represent the filter

set. In Figure 6.2, A and C are nested prefixes in the source IP address field, as are

B and D in the destination IP address field. Assume the prefix pair (A, B) is an

original filter, R1. If the prefix pairs (A, D), (C, B), or (C, D) are not original filters,

we need to add pseudo filters for each to guarantee correct lookups. For example, if

the single field lookups return the matching prefixes C and D, the results imply a

match to the filter R1. Without the pseudo filter (C, D), we will miss this match.

The expanded filter set can be produced easily. Let s be any source prefix and d be

any destination prefix. If there is an original filter (si, di) such that si is a prefix of s,

and di is a prefix of d, then let (sj, dj) be the highest priority such prefix and include

an pseudo-filter (s, d) that maps to (sj, dj). We evaluate the filter set expansion effect

for some ACL filter sets. The expansion factors are shown in Table 6.2. The synthetic

ACL filter set is expanded by more than 500 times.
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Table 6.2: ACL Filter Set Expansion

Filter Set Original filters After Expansion Table Entries

ACL1 426 19,885 29,294
ACL2 527 37,624 70,798
ACL3 1,588 222,396 408,157
ACL-syn 6,826 3,511,456 26,404,362

We can also see form the last column of Table 6.2 that 32% to 87% of entries in the

direct lookup table actually do not contain any matching filter. Having the filters

(ps1, pd1) and (ps2, pd2) does not necessarily mean we need to have two pseudo filters

(ps1, pd2) and (ps2, pd1), because a match on (ps1, pd2) or (ps2, pd1) may not incur a

match on any original filters. The empty table entries waste memory resources. This

fact suggests that we use a hash table instead of a direct lookup table for better

storage efficiency. By using FHT to implement the hash tables, we can achieve the

similar lookup throughput as that of direct lookup tables.
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6.3 Combining Tuple Space Search and Cross Prod-

ucts

Using a hash table rather than a direct lookup table for the crossproducting algorithm

can significantly reduce the storage requirement. However, if we intend to keep all the

filters in a single hash table, the expanded filter set due to the pseudo filters may still

be too large. To mitigate the filter expansion effect, we split the filters into several

subsets and build a hash table for each of them. Now the pseudo filters are only from

the cross-products of the filters in each subset. Because the number of nested prefixes

on each field in each subset can be much smaller than that when all the filters are

put together, the overall number of expanded filters can be significantly reduced. As

a tradeoff, now we need to query multiple hash tables to find a matching filter.

Combining the above ideas with the coarse-grained tuple specification, our new algo-

rithm allows a nice throughput-storage tradeoff and therefore is fast and scalable.

We defer the discussion of the methods used to group tuples to Section 6.4. Now

assume we have partitioned the tuples into k groups. For each group, we store the

filters in a hash table, adding pseudo filters as needed to ensure that we can correctly

identify the matching filter. Figure 6.3 illustrates a tuple partition. There are nine

tuple sets from A to I in the figure. The tuple set I’s specification is ([8, 16], [9, 21]),

for instance.

The lookup process is described as follows. We perform single field LPMs for both

fields first. Since our coarse-grained tuples divide each IP address field into several

segments, the LPMs need to return the longest matching prefix in each segment1. We

use the results to determine the set of hash tables to query. Then we query these

hash tables from more specific tuples to less specific tuples and terminate the search

once the best matching filter is found. We use an example as shown in Figure 6.3

to illustrate the lookup algorithm. Suppose that for a given packet, the single field

lookups show its source IP address has a matching prefix in segments [0, 7] and [17, 32],

and its destination IP address has a matching prefix in segments [9, 21] and [22, 32].

1We can easily adapt our LPM algorithm discussed in Chapter 5 to support this. Through
preprocessing, we embed such information in each SMT root so that the LPM performance is not
affected.
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Figure 6.3: 2D Coarse-grained Tuple Space Partition

So the best matching filter can exist only in the hash tables for the tuple sets D, F ,

G, and I. Now the logical choice is to start the search from the tuple sets I, G, and

F , because if we find matching filters belonging to these tuple sets, we do not need

to search the tuple set D. If no match is found in these tables, we proceed to search

the tuple set D.

With the above mentioned tuple partition, each tuple set is mapped to a grid in the

2D plane as shown in Figure 6.3. Choosing the number of segments for each field

is a tradeoff of throughput and storage. At one extreme, when both fields have 33

segments, the algorithm regresses to a naive tuple space search algorithm. At another

extreme, when both fields have only one segment, the algorithm regresses to a naive

crossproducting algorithm.

We use the LPM algorithm discussed in Chapter 5 to perform LPM on each field and

the FHT data structure discussed in Chapter 4 to improve the hash query perfor-

mance. The architecture of the hardware implementation is similar to that discussed

in Chapter 5.
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6.4 Tuple Partition

If we visualize the tuple space in a 2D plane, the key for good performance of our

algorithm is to come up with effective tuple partitions. There are two dimensions to

approach this problem. First, if we are given the acceptable worst-case throughput,

we seek to minimize the storage. Second, if we are given the storage we can use, we

seek to maximize the throughput.

Now we consider the first approach. With the simple grid tuple definition, once the

worst-case number of hash queries is chosen, we need to determine how to assign the

number of segments and the boundary of each segment on each field. The goal is

to minimize the size of the expanded filter set. This optimization problem can be

achieved through dynamic programming. In practice, we need also to consider the

performance of LPM so it is better to have regular sized segments. Fortunately, we

find that the regular sized segments can result in good performance.

Besides the grid-based partition, it turns out that we can have arbitrary tuple par-

titions. Figure 6.4 shows a simple example. There are only three tuple sets. The

tuple set B can be represented as ([12, 23], [1, 25])∪ ([1, 11], [9, 25]), for instance. Note

that we have removed the tuple sets (0, 0), (0, [1, 32]), and ([1, 32], 0) from the tuple

space, because the filters in them can be handled by the LPMs on both fields so that

these filters do not need to be stored in any hash table. The lookup process for such

partitions is almost the same with a minor difference. It is possible we find in a tuple

we may have multiple prefix length combinations that we need to check. However,

we only need to check the most specific combinations, thanks to the “pseudo filters”.

Hence, the number of hash table queries is still bounded by the number of tuples.

We can preset the tuple partition in favor of the LPM implementation. In this case,

we have little control of the filter expansion but we can guarantee the worst-case

performance. On the other hand, we can dynamically determine the tuple partition

by constraining the filter set expansion so we can control the storage but not the worst-

case performance. For example, we may want the overall filter set expansion factor

to be no more than α. On way to achieve this is to partition the space incrementally.

If the expansion ratio for a particular tuple set is too high, we divide it into smaller

subsets.
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Figure 6.4: Another Tuple Partition Scheme

While simple tuple partitions seem to work well on current filter sets, it makes sense

to study better tuple partition algorithms for larger filter sets in the future. We

believe there are many opportunities for future work in this direction.

6.5 Evaluation

We first evaluate the grid tuple partition. We perform experiments on several ACL

filter sets and summarize the results in Table 6.3 and Figure 6.5. In the first row of

the table, α × β means that the source IP address field has α equal sized segments

and the destination IP address field has β equal sized segments. Therefore, the values

of α × β give the worst-case number of hash queries for a packet. In the figure, the

dotted lines indicate the original size of the filter sets. We can see that at the cost

of a very small number of hash queries, the size of the expanded filter set decreases

quickly to approach its original size.

We use the LPM algorithm discussed in Chapter 5 to perform single field lookups.

We assign Bloom filters at the same segment boundaries. Table 6.4 shows the total
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Table 6.3: Filter Set Expansion for Different Configurations

Filter Set # filters 1× 1 1× 2 2× 1 2× 2 2× 4 4× 2 3× 3

ACL1 426 19,885 2,851 997 472 445 472 445
ACL2 527 37,674 9,317 8,978 1,225 922 899 596
ACL3 1,588 222,396 55,046 28,537 3,212 3,160 1,779 1,737
ACL-syn 6,826 3,511,456 384,353 34,579 9,666 7,992 9,666 7,992
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Figure 6.5: Filter Set Expansion vs. Number of Hash Queries

number of items that need to be programmed into the Bloom filters for LPM. The

numbers are typically very small, which implies a small amount of on-chip memory

usage.

Table 6.4: Number of Items in Bloom Filters for LPM

Filter Set 1× 1 1× 2 2× 1 2× 2 2× 4 4× 2 3× 3

ACL1 0 61 3 64 184 72 120
ACL2 0 49 43 92 163 160 207
ACL3 0 59 57 116 368 310 385
ACL-syn 0 387 191 578 1,168 943 1,103

We evaluate the algorithm performance when using irregular tuple partitions as shown

in Figure 6.6. There are two to four tuple sets for different configurations. The tuple

sets are equalled spaced on each axis. The simulation results are shown in Table 6.5.

The size of the expanded filter sets is significantly reduced when a finer tuple partition

is used. Sometimes when a finer tuple partition is used, the overall number of filters



116

in the expanded filter set does not change. This is because some tuple sets do not

contain any filter at all. Actually, for these evaluated filters sets, at most two tuple

sets need to be searched even with the configuration (c) where there are four tuple

sets, so in the worst case, a packet lookup requires only two hash table queries.
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Figure 6.6: Experiments on Irregular Tuples

Table 6.5: # Filters for Different Tuple Configurations

Filter Set # filters Single Tuple Config. (a) Config. (b) Config. (c)

ACL1 426 1,004 1,004 1,004 542
ACL2 527 3,027 3,027 2,604 1,914
ACL3 1,588 174,561 6,730 6,730 6,692
ACL-syn 6,826 185,799 185,799 185,799 12,306

Finally, we dynamically determine the tuple partition by setting the filter set expan-

sion factor to 2. For ACL2 and ACL3, we cannot achieve this goal with the approach

shown in Figure 6.4. This means we need better tuple partition algorithms. For

ACL1 and ACL-syn, we get the tuple partition shown in Figure 6.7. The figure also

shows the number of filters before and after filter set expansion. The results show

that two tuple sets are enough to satisfy our storage constraint.

6.6 Conclusion

In this chapter we deal with a special case of the packet classification problem where

each filter is specified as two prefixes. We present a novel 2D packet classification
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Figure 6.7: Dynamic Tuple Partition

algorithm derived from the tuple space search algorithm and the crossproducting

algorithm. When implemented with our LPM and FHT techniques, the algorithm

performs much better than previous algorithms for 2D IPv4 packet classification. It

becomes even more attractive in IPv6 scenario, where the previous algorithms suffer

from the much longer prefixes. With a flexible tuple partition scheme, our algorithm

exhibits an attractive tradeoff between storage and throughput, which allows the

designer to control the system performance based on the available resource and the

desired classification throughput. Our algorithm is fast yet yields small on-chip and

off-chip memory consumption.
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Chapter 7

Adaptive Binary Cutting

7.1 Background

Designing a general packet classification system involves a lot of tradeoffs. It requires

significant engineering considerations. If an algorithmic solution can satisfy the worst-

case throughput performance with a reasonable amount of memory, it is not worth

investing in a TCAM chip to do the job. According to the size of the algorithm data

structure, different types of commodity memory, such as DRAMs, SRAMs, or on-chip

SRAMs, can be used. They all have different impacts on the system complexity and

the achievable performance. Generally, smaller storage allow us to use faster memory

devices. If we can squeeze everything on-chip and avoid any off-chip memory, the

system performance is maximized accordingly.

However, the storage used by the algorithms is often given little attention, as if the

memory components are free. To compete with TCAMs, the algorithms need to

ensure that their storage is more scalable than TCAMs. Although this is hard to

measure, we can still take some hints from the cell density and the manufacturing

cost. Typically, a TCAM component requires 14 to 16 transistors to store a bit, an

SRAM component requires six transistors, and an SDRAM component requires only

one transistor and a capacitor [48]. Taking the manufacturing cost into account, we

can reasonably assume that a bit in a TCAM component is worth about ten bits in an

SRAM component [3]. In other words, since a TCAM component usually consumes 18

bytes (144 bits) to store a filter, an SRAM-based algorithm should consume no more

than about 180 bytes per filter in order to compete with TCAM. Unfortunately, many
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well-known algorithms fail to satisfy this criterion. For example, the Recursive Flow

Classification (RFC) algorithm consumes more than 1,600 bytes per filter for a filter

set with only about 600 filters [33]. Similar inefficiencies arise with other algorithms,

such as the Cross-producting algorithm [65], the Bit Vector (BV) algorithm [39], and

the Aggregated Bit Vector (ABV) algorithm [10]. They all suffer a significant storage

penalty, even though their throughputs are comparable to TCAM. In such cases, we

need a better justification for applying these algorithms rather than directly using

TCAMs.

Decision tree-based algorithms [32, 56, 78] offer more flexible control over the storage.

A decision tree is built by splitting the filter set recursively using partial filter informa-

tion. We stop splitting a subset when it contains fewer filters than a predefined bucket

size. The filters stored in a decision tree node are organized in a list based on their

priorities. Note that it is computationally infeasible to accomplish a globally optimal

decision tree, so all these algorithms are based on some heuristics and try to achieve

local optimality. The packet classification is performed by traversing the tree and

linearly searching the stored filters. The search in a list stops once the first match-

ing filter is found. The decision tree-based algorithms are very easy to implement

but their performance also suffers from uncertainty. After making the fundamental

observations on these algorithms, we change the decision tree building philosophy to

better comply with the high level design goal and introduce extra degrees of freedom

to allow more intelligent decisions. The new algorithm comes with three variations

that are able to scale to large filter sets and provide sufficient throughput for OC-48

and faster networks.

The chapter is organized as follows. We first review the related work in Section 7.2.

We then analyze decision tree-based algorithms and make some observations in Sec-

tion 7.3. We provide a detailed algorithm description and implementation in Sec-

tion 7.4. We present several novel algorithm optimizations in Section 7.5. We evalu-

ate our algorithm and compare it with HiCuts, HyperCuts, and Woo’s algorithm in

Section 7.6. Finally, we conclude the chapter in Section 7.7.
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7.2 Related Work

The decision tree building process is all about splitting the filter set recursively using

partial header information. The keys are to limit the storage that is used to implement

the data structure as well as the effort required to traverse the tree in order to find

the best matching filter. When we build a decision tree (DT), a decision is made at

each step to split the filter set, S, into the subsets s1, s2, ...sn. Each subset represents

a child DT node. We know that

s1 ∪ s2 ∪ ... ∪ sn = S

If |si| > bucket size, we keep splitting si. Otherwise, the corresponding DT node

becomes a leaf node. It is common that si ∩ sj 6= ∅ and |si| 6= |sj| for some i and j,

which make the decision tree less efficient.

Woo proposed a generic approach to split the filter set [78]. At each node in the tree

we consider some header bit that was not examined in any of the ancestors of the

current node. The bit to be examined is chosen according to heuristic criteria that

seek to minimize tree depth and size. Filters are stored in one or both subsets of

a give node according to whether the selected bit for that node is ‘1’, ‘0’ or “don’t

care”. At each decision step, all the remaining filters are evaluated first to get the

statistic on the 1/0 distribution and the number of “don’t care” specifications for

every bit position. Then we choose the bit at the position where there are the fewest

“don’t care” specifications and the most uniform distribution of ‘1’s and ‘0’s to split

the set. One disadvantage of this algorithm is that it splits a filter set using only one

header bit per step. It is desirable to use more bits to make more subsets in order

to accelerate the search. However, evaluating the “entropy” of multiple bits among

100+ filter bits is time consuming. In addition, the algorithm does not work directly

on most real filter sets because of the prerequisite that the filters are represented as

ternary bit strings. Real filter sets typically specify the port fields as arbitrary ranges

that usually cannot be directly represented in the required format.

HiCuts [32] and HyperCuts [56] can generate multiple subsets per step and are prac-

tical for handling general filter sets. They both take the geometric viewpoint. A

space region is cut into some equal-sized subregions at each recursive cutting step.
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The corresponding subset contains all the filters that overlap the subregion. Locally

optimal cutting decisions are made to best reduce the size of subsets and avoid storage

expansion. The major difference between HiCuts and HyperCuts is that the latter

allows cutting along multiple dimensions simultaneously in one step.

These algorithms provide better controls on the throughput-storage tradeoff. They

can significantly affect the storage and the throughput by varying the tree branch fan

out and the bucket size of leaf nodes. However, under reasonable storage consumption

constraints, the throughput of these algorithms is often too poor to be useful; under

an acceptable throughput constraint, the storage becomes too large to be satisfactory.

There are some other drawbacks that we will discuss in the following section. Despite

these problems, the decision tree-based algorithms naturally support a pipelined de-

sign; hence, they can provide a very high throughput if the number of pipeline stages

is limited. Moreover, we can come up with very simple and efficient implementations

for them based on binary encoding techniques. These advantages make this kind of

algorithm attractive and motivate us to examine closely what causes the inefficiency

of the decision-tree construction process and how to overcome it.

7.3 Observations

A good decision tree should have the following properties: the tree consists of as few

nodes as possible, the path from the root to any leaf node is short, and the tree shape

is well balanced. For the previous algorithms, the filter distribution can affect the

resulting decision tree significantly.

The first problem, filter duplication (i.e. si ∩ sj 6= ∅), is caused by the fact that many

filters are weakly specified on some dimensions (i.e. They have wildcards or large

ranges in those dimensions). To reduce tree depth, we would like to make many cuts

at each tree node, but this exacerbates the duplication problem. As a tradeoff, the

previous algorithms typically set a space expansion factor to bound the number of

duplicated filters. Without exceeding the threshold, we make as many cuts as possible

at one step.
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Figure 7.1: Filter Distribution on the Value of First Header Field Byte

Our simulation profiles show that during the DT building process, bits from the

source or the destination IP address fields are chosen to split the filter set at about

80% of the DT nodes on the average. The filter distribution shown in Figure 7.1

implies this too. In these charts, the value on the y-axis is the number of filters that

match packets with a given value for a particular field. In the figure, the header

fields are the source IP address (SIP), the destination IP address (DIP), the source

port (SP), the destination port (DP), and the protocol (Proto). Real world firewall

filter sets typically contain many heavy wildcard filters; hence they suffer most from

the filter duplication effect. Figure 7.1(b) shows the filter distribution based on the

first byte of the IP header fields in a firewall filter set with only 269 filters. Any single

cut on an IP address field duplicates more than 50 filters. We want to separate the

filters concentrated in the spikes quickly. However, HiCuts and HyperCuts can only

approach the spikes through equal sized cuttings; thus a large number of duplications

are unavoidable. Woo’s algorithm tends to build a tall tree in this case because the

bit selected cannot separate the majority of the filters.

The second problem is skewed filter distribution (i.e. |si| � |sj| for some i and j).

Filter distribution in real filter sets is often very skewed. From a geometric view,

most filters are concentrated in a small region while a small number of filters are

distributed across larger regions. Figure 7.1(a) shows the filter distribution on the

first byte of the IP header fields in a real Access Control List (ACL) filter set with

752 filters. The filters are fairly specific on the IP address fields but the distribution

is highly skewed. HiCuts and HyperCuts can only make even-sized cuts per step so



123

the cuts containing more filters need more steps to split. For example, a firewall filter

set is used to protect a network in which most hosts own a class D IP address, for

which the first four bits are “1110”. If we use these four bits to split the filter set,

most filters drop into the 14th child DT node, so this step has little effect but to

duplicate some heavy wildcard filters.

We come to the conclusion that the filter distribution directly affects the DT efficiency.

Unfortunately, the cutting strategy of the previous algorithms fails to react to this

property. Actually, we can conceive a simple procedure like this: first we find the set

of optimal cutting points that maximize the uniform distribution of filters among the

cuts and minimize the filter duplication effect; then we sort and register these cutting

points. When a DT node is retrieved during the lookups, we can simply perform a

binary search on the point values. The search returns the pointer to the corresponding

child DT node. This method leads to a smaller and shorter decision tree intuitively.

One drawback is that the binary searching for the pointer can be slower than the

direct indexing in HiCuts and HyperCuts, which take constant time to get the child

pointer. Moreover, storing the cutting points consumes too much storage, which, in

turn, would consume too much memory bandwidth for lookups. Ideally, we need to

optimize the depth and size of the decision tree as well as the size of the DT node.

These insights lead us to propose the Adaptive Binary Cuttings (ABC) algorithm,

which actually includes three variations.

Exploiting the skewed distribution of filters, the key new idea of this algorithm is

to split the filter set based on the evenness of the filter distribution, rather than the

evenness of the cut volumes. Technically, we have developed three filter set splitting

strategies so that the algorithm is able to adapt to the filter distribution geometrically

or virtually. This additional degree of freedom leads to a more balanced tree and

reduces the filter duplication effect. We use an efficient binary encoding scheme

similar to the one used in the SST algorithm (see Chapter 3), which mimics the space

cutting and can directly map to the bit string of packet header fields. The encoding

scheme makes these strategies practical and easy to implement in both software and

hardware. A simple example is depicted in Figure 7.2 to show the flavor of our

algorithm, compared with the HiCuts and the Hypercuts algorithms. There are five

filters distributed in a 2-D plane. At one cutting step, our algorithm best splits the
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filters and avoids any filter duplication. Note that we cannot use the geometric view

to illustrate the third variation of the ABC algorithm or Woo’s algorithm.
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Figure 7.2: Cuttings on a DT Node for Different Algorithms

Another important observation concerning the previous algorithms is that their op-

timization criteria are weak. First, the HiCuts and HyperCuts algorithm both have

to set an expansion factor to control the number of child nodes produced per cutting

step, because although more equal-sized cuts can split the filter set better, they incur

a storage penalty. Hence each DT node may have different numbers of child nodes.

In a real design, it is convenient to make every DT node the same size. This causes

some nodes to be under-utilized. It is also difficult to determine the proper value for

the expansion factor, and a single expansion factor may not be suitable for all nodes.

Since our set splitting strategies adapt to the filter distribution, each cut counts and

will not negatively impact the storage efficiency. Therefore, our algorithm does not

need such a parameter. Given the DT node size, we can fully utilize the capacity by

making as many cuts as possible.

Second, all the previous algorithms stop splitting a set only if the number of filters

is smaller than the predefined bucket size. Such an arrangement cannot guarantee

either throughput or storage. Again, given a filter set it is difficult to determine the

proper value and to compare the performance of different algorithms on a fixed basis,

multiple runs of trial and error are required. Moreover, sticking with such a parameter

blindly can lead to worse performance in some cases. In our algorithm design, we

would like to answer the following questions: Given a fixed amount of storage, what

is the algorithms’ achievable throughput? In order to achieve a throughput, what is

the minimum amount of storage required? While these two questions are actually

interchangeable, the second question is a little harder to answer because without
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any prior knowledge, we might set a throughput that we can never achieve. On

the other hand, the first question is relatively easy to answer. We know that the

minimum storage requirement is simply the storage needed to list the filter set and if

we represent filters this way, the throughput is determined by the number of filters.

When more storage is given, we can build a decision tree to intelligently split the filter

set in order to achieve higher throughput. Clearly, each decision tree splitting step

will increase the storage monotonically. Our goal is to make the decisions that best

improve the throughput until the given storage is used up. Hence, we do not need

the bucket size parameter either. Since the actual performance can be guaranteed

only by the worst-case bound, we always try to improve the worst-case throughput

performance at each step. We achieve this by evaluating all the current DT branches

and the number of filters remaining in each current leaf node and then choosing the

branch that causes the current worst-case throughput to continue working on, if the

storage budget still allows us to do so.

Taking this into account, our algorithm is not only easy to understand but also easy

to evaluate. In addition to all the above improvements, we also introduce several new

algorithm refinements to further improve performance.

7.4 Algorithm

In essence, the decision-making processes use different degrees of freedom for HiCut,

HyperCuts and Woo’s algorithm. HiCuts chooses some number of prefix bits from

only one dimension to split the filter set at each step; HyperCuts chooses some num-

ber of prefix bits from multiple dimensions at each step; and Woo’s algorithm chooses

any single bit from any dimension per step. These have different implications on the

storage requirements of DT nodes. For example, if a filter involves D dimensions

and L bits, HiCuts needs log2 D bits to encode the cutting dimension at a DT node,

HyperCuts needs a D-bit bitmap to encode the cutting dimensions, and Woo’s algo-

rithm needs log2 L bits to encode the bit position. Moreover, with every additional

bit chosen, the number of child DT nodes is doubled. We will show that this effect

significantly affects the overall storage efficiency.
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Our new algorithm introduces more degrees of freedom. Not only can we choose bits

from any dimension or at any position to split the filter set, but also each resulting

subset may require the examination of a different number of filter bits. Basically, the

set splitting decision at each DT node can be represented as one or more full binary

Cutting Shape Trees (CST). We encode each CST with a Cutting Shape Bitmap (CSB)

which is essentially identical to the SBM in SST. The following pseudo code describes

the basic decision tree construction algorithm.

Build DT

1. while (current storage does not exceed the predefined storage limit &&

some current leaf DT node has > 3 filters)

2. let S3 = set of leaf nodes with > 3 filters;

3. select v ∈ S3 with largest required time to search;

4. split node v to produce the CSTs and the new child DT nodes;

A DT node is not worth splitting further if it contains ≤ 3 filters, because in the best

case, the resulting child DT nodes contain one or two filters each but the path is now

one layer deeper. The cost of decoding one more DT node is greater than simply

performing a linear search on the filters.

The chosen leaf node v identifies the current worst-case searching path. The current

worst-case searching path is determined by the maximum cost (i.e. the largest number

of bytes) for accessing a filter that is the last one in the list at a leaf DT node. Clearly,

it is a function of the leaf DT node depth, the DT node size, the number of filters

in the list, and the filter size. It is easy to find the current worst-case path if we

maintain a dynamic sorting data structure such as a heap that uses the cost as the

key. Each time we remove the highest cost path to process and then insert the new

paths generated into the data structure.

The critical part of the algorithm is how to split a DT node and produce the CSTs.

Here we derive three different approaches. We discuss them individually and then

compare them. Before that, we define an important parameter that is used as a

metric for the quality of a given cut. If a proposed cut divides the current filter set

into subsets of size r1, r2, ......, rk, we let:
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pref =

√√√√k−1∑
i=0

ri
2 (7.1)

For example, in Figure 7.2(a), the preference value is
√

32 + 32 + 12 + 12 = 2
√

5 and

in Figure 7.2(b-d), the preference values are 2
√

3,
√

5, and
√

5, respectively. The

best cut decision should minimize the preference value. This choice of metric can be

justified heuristically. Note that the preference value is smallest when the sets are

equal in size. It is also made smaller when the number of duplications is minimized.

Hence, it simultaneously seeks to optimize both of our high level criteria.

7.4.1 ABC Variation I

Producing and Encoding the CSTs

This variation produces a single CST at each DT node. Mapping each header field to

a space dimension, we perform multiple cuts per DT node. The maximum number

of cuts is determined by the DT node size. Each cutting step we choose one of the

cuts produced so far and split it into two equal sized cuts along a certain dimension

until we run out of space in the DT node. Actually, each of these cuttings resembles

a binary tree node splitting and each cut corresponds to a CST leaf node. Therefore,

we map the cutting sequence at a DT node to a full binary tree with k leaf nodes.

Figure 7.3 shows an example on a 2D plane. Assume the DT node size allows us to

split the region into eight cuts and we end up with the cuts as shown in the figure.

The binary tree in the figure uniquely describes the cutting process: we cut the region

on the x-axis first; then we cut the left sub-region on the x-axis, and cut the right

sub-region on the y-axis, and so on. All information for reconstructing the cutting

process is embedded in this tree: the number of cuts (i.e. k), the cutting sequence,

and the cutting shape. Of course, we also need to associate the cutting dimension for

each CST node, which needs dlog2 De bits if the filter involves D fields.

We encode the CST with a CSB. The encoding scheme is identical to the SBM used

in the SST algorithm. We associate a bit with each CST node. The bit value ‘0’ is
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Figure 7.3: ABC-I: Cuts and Lookup on a DT Node

assigned to the leaf nodes and ‘1’ is assigned to all the other nodes. The CSB consists

of this set of bits, which are listed in the breadth-first order. Since the CST root

must have two child nodes and the bit associated with it is always ‘1’, we omit this

bit and effectively use only 2 × (K − 1) bits to encode the CST if there are K leaf

nodes. In the example shown in Figure 7.3, we encode the CST with the CSB “11 10

11 10 00 00 00”. The potential child DT nodes (the leaf CST nodes) are indexed in

breadth first order.

Note that each internal CST node must store the information for the splitting dimen-

sion, which is encoded as the Cut Dim vector as shown in Figure 7.3. The Cut Dim

vector is collected from the CST in breadth first order too. For a D-dimensional filter

set, it is often the case that some dimensions are never used in a particular CST. We

can include a D-bit vector in each DT node with a bit per dimension. A bit will be

set if there is some CST node splitting on the corresponding dimension. Then, if only
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two bits in the bit vector are set, we only need one extra bit per internal CST node.

This optimization can save bits to allow more cuts per DT node.

After performing the cuttings at a DT node, each cut (i.e. each CST leaf node)

represents a potential child DT node, depending on whether any filter remains in its

set. Typically, not all of the possible child DT nodes are present, so it is inefficient

to keep a pointer for each of them. Instead, as in the Tree Bitmap algorithm [27], an

Extending Path Bitmap (EPB) of K bits is used to indicate the presence of child DT

nodes. Bit i of the EPB equals ‘1’ if a child DT node corresponding to the cut i is

present. The pointer to the first child DT node and the EPB are sufficient to address

any child DT node, as long as the child DT nodes are stored in consecutive memory

locations and have the same size. Therefore, our algorithm avoids the necessity of

recording the boundaries of the cuts and provides a very compact node representation.

We have shown how to encode a DT node with arbitrary K cuts using the compact

data structure. Now we explain how to come up with the optimal CST at a DT node.

Starting from a single CST root, which represents the whole region covered by the

current DT node, we need to figure out the CST leaf node to cut and the dimension

to cut on at each cutting step. There are different ways to do this. For example,

we can decide the CST leaf node first and then decide the dimension to cut on the

node. In our implementation, we determine the two factors jointly. A new cut on

each CST leaf node and on each dimension is evaluated. The CST leaf node and

the cutting dimension that can minimize the preference value are chosen to grow the

CST. Although this method is a little slow, it results in the best performance.

Formally, the current CST divides filters into sets of size r1, r2, ......rk. If we split

the node i on the dimension d, ri is replaced with ri,d,l and ri,d,r. We want to find

the node i and the dimension d that can minimize the preference value prefi,d. From

Equation 7.1, we have

prefi,d =
√

r2
1 + ... + r2

i,d,l + r2
i,d,r + ... + r2

k =
√

pref 2 + r2
i,d,l + r2

i,d,r − r2
i (7.2)

Hence, to find the minimum prefi,d, we only need to evaluate each of the current CST

leaf nodes to find the i and d that minimize r2
i,d,l + r2

i,d,r − r2
i .
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Decoding the CST

The lookup process traverses the decision tree and compares the packet header with

the filters stored in the leaf DT node (or internal DT nodes in some cases). For each

DT node, a CSB needs to be decoded to determine the child DT node to follow.

The CSB decoding algorithm is similar to the SBM decoding algorithm for SST. In

the CSB, each ‘0’ corresponds to a cut; each ‘1’ corresponds to a splitting decision

except the first one. The goal is to locate the index of the child DT node, for which

the corresponding cut covers the packet header. To achieve this, we label the bits in

the CSB with 0, 1, ..., 2(K − 1)− 1, from left to right, and then perform the following

step recursively starting from bit 0 until we find a bit position bearing the value ‘0’,

which means a cut on this DT node has been reached.

• Let the current bit position be i and the value of the next prefix bit from

the dimension d under examination be x (x could be either ‘1’ or ‘0’). Let

Ones(r, s) be the number of ‘1’s in the CSB between the bit position r and

s. In particular, Ones(0, 0) = 0. Then the next bit position j needs to be

examined is 2×Ones(0, i) + x.

We let Zeros(r, s) be the number of ‘0’s in the CSB between the bit position r and

(s− 1). Once we quit the loop at the bit position t, the index of the child DT node

is simply Zeros(0, t). A node decoding example is illustrated in Figure 7.3, where a

packet drops in the subregion with the child DT node ID 3.

During the DT traversal, the number of prefix bits for each dimension that has already

been examined is implied by the DT node traversal and decoding history, so we do

not need to maintain them explicitly.
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7.4.2 ABC Variation II

Producing and Encoding the CSTs

In this variation, a DT node is also cut on multiple dimensions. The difference is

that the cutting can end up with 1 to D separate CSTs, each for a chosen dimension.

Assume our cutting strategy on a 2D plane ends up with the cuts in Figure 7.4. The

x-dimension is split into six cuts and a 10-bit CSB is used to describe the cutting

shape: “11 00 10 01 00”. Likewise, the y-dimension is split into four cuts and the

corresponding CSB is “01 01 00”. Overall 6 × 4 = 24 cuts are produced by the

two-dimensional cuttings.
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Figure 7.4: ABC-II: a DT Node and Decoding Example

To index these cuts, we incrementally label the leaf nodes of each CST starting from

zero in breadth first order. This label, named as Cutting Label, uniquely identifies a

cut on that dimension. Let the number of cuts on each dimension be K1, K2, ..., KD.
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Let the Cutting Labels on each dimension be l1, l2, ..., lD. The cut index CI can be

calculated as:

CI =
D∑

i=1

(li
D∏

j=i+1

Kj) (7.3)

Figure 7.4 shows the index of the cuts. Each cut represents a potential child DT

node, depending on whether any filter remains in its set. Again, we use an EPB of

K =
∏D

i=1 Ki bits to indicate the presence of child DT nodes.

In this variation, there is no need to maintain the cutting dimension for each CST

node; hence more CST nodes are allowed, given the same storage space. Moreover,

the total number of potential child DT nodes are now determined by the product of

the number of leaf nodes of all the CSTs. Assume we have n CSTs and each CST has

Ki leaf nodes. If we use a CSB to encode a CST, the overall storage consumption for

the CSTs is

2
n∑

i=1

(Ki − 1) +
n∏

i=1

Ki

and the cuttings result in K =
∏n

i=1 Ki cuts.

To produce the CSTs at a DT node, we start with D CSTs each for a dimension and

with a single root node that represents the current range on that dimension. At each

following step, a leaf node on a CST that minimizes the preference value is chosen

to split, which resembles a range to be cut into two equal subranges. The process

terminates when the assigned N bits are used up for encoding the CSTs. When we

finish the process for a DT node, some dimensions may never be chosen for splitting.

In order to avoid representing the CSTs only with a root node in the lookup data

structure, we include a D-bit vector with one bit per dimension to indicate which

dimensions are chosen to split at each DT node.

The naive computation of the preference value requires evaluation of all the current

leaf CST nodes in each step, which is relatively expensive, although for a DT node,

the total number of evaluations T is bounded by:
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T = D + (D + 1) + ... + (
D∑

i=1

Ki − 1) =
D∑

i=1

Ki(
D∑

i=1

Ki − 1)/2−D(D − 1)/2 (7.4)

We can perform the similar transformation as in Equation 7.2 to avoid the redundant

computations. For example, in Figure 7.4, we want to evaluate the new preference

value if we cut the left most range on the dimension x. Since only the cut 0, 1, 2,

and 3 will be split, we can only evaluate their effect to the resulting preference value.

Decoding the CSTs

The lookup process is similar as in the ABC-I, except now we need to decode multiple

CSBs and the EPB to figure out the child DT node index. Equivalently, in each

DT node decoding step some variable number of prefix bits of the selected packet

header fields are examined and used to traverse the decision tree, narrowing down

the searching scope. A DT node decoding example is shown in Figure 7.4, where a

packet drops in the subregion with the index 14.

7.4.3 ABC Variation III

Producing and Encoding the CST

This variation produces only a single CST at each DT node. Unlike the first variation

where each filter field is seen as a dimension, here the filter is treated as a ternary bit

string and any bit can be chosen to split the filter set. For this reason, we cannot map

it geometrically. It also implies we have to first convert the port ranges to prefixes.

This step expands the filter set. This method is similar to Woo’s algorithm but there

are some significant differences. First, as we have discussed, the high level decision

tree building approaches are different. Second, our algorithm encodes multiple filter

bits per DT node. Third, the algorithms use different preferences to choose the bit to

split the filter set. Based on simulations, our preference leads to better performance.
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Table 7.1: Bit Consumption of CSBs and EPB

Variation # Bits

ABC-I (2 + dlog2 De)(K − 1) + K

ABC-II D +
∑D

i=1 2(Ki − 1) +
∏D

i=1 Ki

ABC-III (2 + dlog2 Le)(K − 1) + K

To produce the CST at a DT node, we start from a root node and keep splitting some

leaf node using a bit from the filter string until we run out of space. At each step,

we examine the new preference value for all the leaf nodes if any of the filter bits

was chosen to split it. The leaf node and the filter bit that minimize the preference

value are actually used to grow the CST. The final CST is encoded with a CSB. Each

internal CST node also needs to record the bit used to split the node, which takes

dlog2 Le bits if the filter is L bits long. We use an EPB of K bits to indicate the

presence of child DT nodes, where K is the number of leaf nodes in the final CST.

Decoding the CST

The CST decoding algorithm is similar to that in the first variation.

7.4.4 Comparison

DT Node Capacity

The DT node size is fixed in real implementations. In addition to all the other

common information held in a DT node, we have fixed N -bits to realize the CSBs

and the EPB. Table 7.1 summarize the bits used by the CSB and the EPB for the

three algorithm variations. Note that for the algorithm variation I, we assume no

encoding optimization is used.

The performance is better if more cuts can be produced at each DT node. Assume

128 bits are assigned for encoding the CSBs and the EPB and each filter consists of

five fields (D = 5) and 104 bits (L = 104), from Table 7.1, ABC-I supports at most 22

cuts per DT node and ABC-III supports at most 13 cuts per DT node. For ABC-II,
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the maximum number of cuts per DT node is variable, but generally it can produce

more cuts per DT node than the other two variations.

Implementation Complexity

The second difference affects the implementation. Since ABC-I and ABC-III generate

a single CST per DT node and the CST can be very tall, the DT node processing

latency is typically larger than for ABC-II, in which all the CSTs can be decoded in

parallel. In case a pipeline or multiple lookup engines are needed to fill the memory

bandwidth, ABC-II has smaller system complexity. However, the preprocessing time

of ABC-II is the largest because it requires more evaluations per DT node.

7.4.5 Implementation
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The hardware or network processor-based multi-threaded software implementations

are more promising for meeting the throughput demands than conventional software-

based implementations. Multiple lookup engines can work on different packets in

parallel to fill the available memory bandwidth. The core component of the lookup

engine is the CSB decoding logic. A simple hardware implementation of the CSB

decoding uses a sequential circuit that computes values of Ones(0, i), Zeros(0, i),

and the new bit position iteratively on successive clock cycles, terminating as soon

as the position j of the CSB is equal to zero. For ABC-I and ABC-III, this takes up

to K − 1 clock cycles. For ABC-II, multiple instantiations of the circuit can work in

parallel, each for a CSB of a selected dimension. This takes up to maxi(Ki) clock

cycles. We need another one or two clock cycles to calculate the child DT node index

and add the offset to the base pointer for the next memory access. The time to do a

lookup at a single DT node only affects the number of lookup engines required, but

not the throughput. The throughput is merely a function of the memory bandwidth

and the number of memory accesses needed per packet lookup. A diagram of the DT

node decoding circuit is shown in Figure 7.5. Note that only one CSB decoding block

is required for ABC-I and ABC-III.

The data structure for the algorithm implementation is illustrated in Figure 7.6. Note

that the internal DT node may also hold some filters due an optimization we adopt.

Each filter is only stored once. When a filter must be duplicated, we only duplicate

pointers to the filter. Since the size of a pointer is much smaller than that of a filter,

this arrangement saves on overall storage. We also attach the priority value of each

filter to each pointer so that in some cases a lookup can determine if a filter needs

to be compared without actually reading the filter. For example, if we have had

a matching filter with the priority value i and the current filter in the list has the

priority value j > i, we know the new filter and all the following filters in the list

cannot lead to a better match, so we can avoid reading the filter and stop searching

the list.

Table 7.2 shows the DT node encoding scheme of a reference design in which each

DT node consumes 16 bytes, each filter pointer consumes 2 bytes, and each 5-tuple

filter consumes 18 bytes.
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Figure 7.6: Data Structure of the Algorithm Implementations.

Note that for the ABC-II, 86 bits are left for the CSBs and the EPB. The assignment

of these bits is dynamically determined by the number of CSTs and the size of each

CST, according to Table 7.1.

7.5 Optimizations

The redundant filter removal optimization introduced in HiCuts [32] and Hyper-

Cuts [56] is embedded in the ABC algorithm by default. See Chapter 2 for a descrip-

tion of this optimization. Other optimizations are either inapplicable or improved.

We will discuss them in later sections. This section discusses several new optimiza-

tions that improve the basic ABC algorithm.



138

Table 7.2: ABC DT Node Encoding Scheme(# Bits)

ABC-I ABC-II ABC-III

isLeaf 1 1 1
Cut Dimension Bitmap N/A 5 N/A
CSB(s) 75 variable 81
EPB (i.e. K) 16 variable 10
Child Base Pointer 18 18 18
Filter Base Pointer 18 18 18

7.5.1 Reduce Filters Using Hash Table

More filters in a filter set often mean larger storage and slower lookup throughput.

Since hash tables allow fast lookups, we can use a hash table to handle a portion of

the filters so that only the remaining filters participate in the DT construction. To

build the hash table, we consider only the source IP and destination IP addresses

for two reasons. First, when more fields are considered, the preprocessing time is

significant. Second, the other fields in a filter are not specified as prefixes, so they are

not easy to incorporate in a hash table. For the two IP address fields, we evaluate all

the tuples (i, j), where 0 ≤ i ≤ 32 and 0 ≤ j ≤ 32. A filter belongs to a tuple (i, j) if

the length of its source IP prefix specification is ≥ i and the length of its destination

IP prefix specification is ≥ j. We can build a hash table for each tuple by hashing

on the first i bits of the source IP prefixes and the first j bits of the destination IP

prefixes. Since many filters can share the same value on these selected bits, they will

collide within the hash table. In order to bound the lookup time, we allow a hash

table bucket to hold at most T filters. Here we assume for a tuple (i, j), any two

filters with different i-bit source IP prefix and j-bit destination IP address prefix do

not drop in the same bucket. We can achieve this using the FHT (see Chapter 4).

We select the top tuple (i, j) that maximize the number of filters in the hash table

without exceeding the bucket threshold T . These filters are removed from the filter

set and inserted into a hash table. The hash table guarantees that in the worst case,

at most T memory lookups are required to find a match. We evaluate some real filter

sets as shown in Figure 7.7 and find that 18% to 44% of filters can be removed by

setting the threshold to only one.
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Figure 7.7: Effect of Filter Reduction by Using a Hash Table

The lookup process needs to search the hash table first. If a matching filter is found,

the filter’s priority value can be used to guide the search in the decision tree. For this

reason, if more than T candidate filters are for the same hash bucket, we choose the

T filters with higher priority (i.e. smaller priority values).

7.5.2 Filter Partition on the Protocol Field

The cutting or bit choosing method does not work well on the protocol field because

the protocol values are not optimized for the purpose of decision tree building. This

8-bit field is used to encode only a few protocol values. In 10 real filter sets, only

three to six protocol values are in use and all filter sets together use only eight unique

protocol values. On average, 13% of the filters have a wildcard protocol specification.

We need to examine five bits of the protocol field, accounting for 32 cuts, before we

can separate the TCP (0x06) and the ICMP (0x01) protocol. This causes too many

duplications of the filters with the wildcard protocol specification. A solution is to

re-encode the protocol field or simply use the entire protocol field as the decision tree

root.
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Because re-encoding requires an extra decoding step, our implementation takes the

latter method. We build a 256-entry table. Each entry stores a pointer to a decision

tree. The table index is the protocol value. Each specified protocol value points

to a unique tree; all unspecified protocol values point to a common tree. This step

partitions the filters into a minimum number of subsets. Filters with the wildcard

protocol specification are duplicated in each subset. The lookups first use the protocol

field value to retrieve a tree’s root, and then traverse the tree as usual. The data

structure is shown in Figure 7.8. The example filter set only specifies the TCP, UDP,

and ICMP protocols.
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Figure 7.8: Protocol Pointer Table Structure

This simple optimization reduces the number of dimensions that need to be considered

in the following steps. Therefore, some node bits can be saved to allow more cuts

to be encoded. For example, in ABC-I, each CST node now needs only two bits to

encode the cutting dimension information. Therefore, in the reference design shown

in Table 7.2, a DT node can support a K of 19 rather than 16. Even if we do not

change the DT node format, this optimization can still reduce the memory storage

and increase the lookup throughput to some extent.
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Since the third algorithm variation takes a unified view of the filter bits, we do not

need to apply this optimization to this variation.

7.5.3 Partition Filters Based on Duplication Factor

1

2001

4001

6001

8001

0 1000 2000 3000 4000 5000

1

2001

4001

6001

8001

0 1000 2000 3000 4000 5000

Filter ID

ipc1-5K

D
u
p
lic
a
ti
o
n
 F
a
c
to
r

Filter ID

D
u
p
lic
a
ti
o
n
 F
a
c
to
r

acl1-5K

Figure 7.9: Filter Duplication Factor Distribution I
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Figure 7.10: Filter Duplication Factor Distribution II

The cutting dimensions and the cutting shape are chosen in favor of the majority

filters at a DT node. This causes some filters to suffer more duplications. We profile

the duplication numbers of each individual filter for two filter sets when running

ABC-II and depict the results in Figure 7.9 and 7.10. First, most of the filters receive
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no or very few duplications while a relatively small fraction of filters account for a

very large number of duplications. Second, higher-priority filters tend to receive fewer

duplications than lower-priority filters. The results imply that some “spoiler” filters

contribute significantly to the storage expansion and they should be handled in other

ways.

We remove a few “spoiler” filters that cause excessive duplications from the filter set

and then evaluate the algorithm performance on the remaining filters. The “spoiler”

filters can be handled by a small on-chip TCAM. Our simulation shows that this op-

timization significantly improve the throughput performance, given the same storage

budget.

7.5.4 Hold Filters Internally and Reverse Search Order

The HyperCuts algorithm [56] introduces an optimization called filter pushing up,

which can reduce the filter duplications but cannot change the tree size and the

throughput. We perform this optimization in a forward manner. At a DT node, if a

filter would otherwise be duplicated into all the child DT nodes, we keep it in the cur-

rent DT node to avoid duplications. Although storage efficient, this method actually

can worsen the throughput performance, since the lookups also need to search the fil-

ters stored in internal DT nodes. We consider improving the throughput performance

while retaining the gain on the storage efficiency.

Figure 7.9 tells us that the lower-priority filters tend to receive a larger number of

duplications. The large number of duplications is directly due to the fact that these

filters are less specific; hence, if we enable the rule pushing optimization, these filters

are more likely to be held internally. The less specific the filters are, the more likely

they are held closer to the tree root. However, since our search order is from the

root to a leaf, even if we find a match at an internal DT node, we cannot avoid the

searches on other filter lists in the deeper tree nodes. Indeed, we have a good chance

to find a better match. This is the major reason for the performance deterioration.

This observation suggests that we should search the filter lists using the bottom-up

order, and yet still traverse the tree from the root. When we find a stored filter list,
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we do not start searching it right away. Instead, we put the pointer to the list into a

stack. We begin to pop the pointers in the stack and search the filter lists only when

we reach a leaf node. Using this order, we are more likely to search the filters in their

natural priority order, resulting in early search termination.

7.6 Evaluation

We are concerned with the two most important performance characteristics of the

ABC algorithm: storage efficiency and throughput. The storage is made up of two

parts: the decision tree and the filters. The storage of the decision tree is determined

by the number of DT nodes and the size of a DT node. The storage of the filters is

determined by the number of original filters and the total number of duplicated filters

(recall that each duplicated filter only consumes a pointer). The storage efficiency

and scalability are evaluated by the number of bytes consumed per filter. As for

the throughput performance, the depth of a DT branch and the number of filters

stored along this branch determine the worst-case performance on the branch. We

also need to take into account the cost of retrieving a DT node or a filter. We

use the total number of memory bytes required per packet lookup to evaluate the

throughput performance. Both the overall worst-case throughput performance and

the average-case throughput performance are provided.

We use a suite of synthetic filter sets generated by ClassBench [6]. For each filter set,

we also generate a packet header trace in which the number of packets is then times

the number of filters. We run the lookup algorithm on these traces to collect the

average number of bytes retrieved per packet lookup. This number roughly reflects

the average-case throughput performance.
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7.6.1 Comparison of ABC Variations

Scalability to Filter Set Size

First, we assume all the above mentioned algorithm optimizations are used when

applicable, with the exception of the “spoiler” filter removal optimization. The hash

table bucket size is set to one.

The size of the filter sets ranges from about 100 to about 10,000 filters. They are

synthesized from an Access Control List (ACL) seed filter set, an IP Chain (IPC) seed

filter set, and a firewall (FW) seed filter set. Because the ClassBench tool removes a

few redundant filters after synthesizing the filter set, the actual filter size is slightly

smaller than the target size. The simulation allows the storage of 100 bytes per filter

on the average. Figure 7.11 shows the results.
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Figure 7.11: Algorithm Scalability on Filter Set Size

It is interesting to note that although we assign a storage budget of 100 bytes per filter,

for the ACL filter sets, the algorithm ends up using much less storage. This implies

the algorithm works best on the ACL filter sets. This also implies we have already
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reached the limitation of the algorithm. More storage does not help to improve the

algorithm performance further.

The worst-case performance is two to four times worse than the average-case per-

formance. This is mainly because the imbalance of the decision tree, although our

algorithm has tried the best to adapt the decision tree shape to the skewness of the

filter distribution.

The performance is worst for the FW filter sets because they contain too many filters

with lots of wildcards specified. The results confirm our previous analysis.

ABC-I and ABC-II show comparable performance. If we optimize the DT node

encoding scheme for ABC-I to allow more cuts, ABC-I will outperform ABC-II. The

performance of ABC-III is only acceptable for the ACL and IPC filter sets. This is

because ABC-III gives the lowest DT node capacity and requires filter set expansion.

For example, a FW filter set with 9,311 filters is expanded to having 32,136 filters.

Another interesting point is that the algorithm performance for the FW filter set with

about 10K filters is better than that for the FW filter sets with 1K to 5K filters. This

is due to the ClassBench tool. For a filter set with a larger size, it tends to generate

it with more structured and specific filters.

To interpret the throughput performance, we consider a single 200 MHz QDR-II

SRAM chip. It provides a memory bandwidth of 200 MHz × 9 Bytes = 1.8 GB/s.

For the ACL filter set with about 10,000 filters, a packet lookup needs to retrieve 125

bytes on the average. So we can classify 1.8 GB / 125 Bytes = 14.4 million packets per

second. In the worst case, when all the packets are just 40 bytes in size, a fully-loaded

OC-48 link requires processing 7.8 million packets per second and a fully-loaded OC-

192 link requires processing 30 million packets per second. The performance of our

algorithm is sufficient for two OC-48 links but is not enough for an OC-192 link when

a single memory device is used.
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Throughput and Storage Tradeoff

In this simulation, we vary the storage to examine its effect on the achievable lookup

throughput. The simulation runs on the synthetic IPC filter set with 10,000 filters.

We disable the filter reduction optimization. Figure 7.12 shows the results.
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Figure 7.12: The Tradeoff of the Storage and the Throughput

When more storage is granted, the lookup performance steadily becomes better. All

three variations have the similar average-case lookup performance, but there are sig-

nificant differences in the worst-case lookup performance. ABC-I gives the overall

best performance.

Sensitivity to Optimizations

Now we examine the algorithm sensitivity to different optimizations. In the simula-

tions we use the synthetic ACL filter set with 10,000 filters and allow 50 bytes used

per filter on the average. To isolate the effect of different optimizations, we turn them

on one by one to compare with the bare algorithm without any optimization.

Figure 7.13 shows the effect of the filter reduction using a Hash Table. This optimiza-

tion can significantly improve the worst-case performance (almost 2x for ABC-II) but

only moderately for the average-case performance.

Figure 7.14 shows the effect of performing the protocol field lookup first. Note that

this optimization is only applied to the first two algorithm variations.
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Figure 7.13: The Effect of Filter Reduction Using a Hash Table
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Figure 7.14: The Effect of Looking Up on Protocol Field First

Figure 7.15 shows the effect of holding filters internally and reversing the search

order. We see this algorithm refinement actually only helps improve the first two

variations of the ABC algorithm and it also has the best effect compared with the

other optimizations. The performance of ABC-III gets worse. This is because its

performance is near optimal. Holding filters internally increases the overhead of filter

lookups.

Finally, we examine the effect of removing some highly duplicated filters from the

filter sets. The duplication statistics are collected from an implementation of the

HyperCuts algorithm. Only three to 14 filters (0.1% to 0.3%) are removed from the

three filter sets. However, from Figure 7.16 we can see a significant performance

improvement. This fact suggests that we should differentiate the filters that produce

a large amount of duplications and use another method, such as a small on-chip

TCAM, to deal with them.
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Figure 7.15: The Effect of Holding Filters Internally and Reversing Search Order
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Figure 7.16: The Effect of Removing Highly Duplicated Filters

Effect of DT Node Capacity

The above evaluations are based on our reference design. Now we examine the al-

gorithm performance when different DT node sizes are used. We evaluate five cases

with DT node sizes 8, 12, 16, 20, and 24 bytes, respectively. We assume the size

only affects the DT node capacity (i.e. the CSBs and the EPB). We turn off all the

optimizations and allow 50 bytes per filter. The ACL filter set with 10,000 filters is

used for the simulation.

As Figure 7.17 shows, in most of the cases, increasing the DT node size actually

decreases the throughput performance. This is because under the same storage re-

striction, larger node size implies fewer DT nodes. Larger DT node size can gives
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Figure 7.17: The Effect of Changing DT Node Size

better performance only when we increase the storage budget accordingly. This is

another tradeoff that needs to be considered in the actual implementation.

7.6.2 Comparison with Other DT-based Algorithms

Implementation

We have shown how we can use CSB and EPB to efficiently encode a DT node.

The HiCuts and the HyperCuts algorithms also support the similar binary-encoded

implementation if the number of cuts on a dimension is limited to a power of two.

In such a case, the geometric cutting process is actually identical to the process of

examining several prefix bits on some fields in sequence. Since the cuts are regular,

no CSB is needed and we only need to record which dimensions to choose and how

many prefix bits on these dimensions to be examined at each DT node (For Woo’s

algorithm, things are even simpler. We only need to record which filter bit to choose

per DT node). If r bits are examined, we concatenate these r bits and use the value

of the string as the index of the corresponding child DT node. As long as the 2r child

DT nodes are stored in the order of their index values, they can be directly addressed.

Unfortunately, certain optimizations, like region compaction [56] and node merg-

ing [32], can no longer be applied because they require the DT nodes to explicitly
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store the end points of each cut. The region compaction optimization can be applied

when the actual region covered by the filters is smaller than the current cut. The

border of the cut is trimmed off to make the filters fill the new compact cut. Now the

child DT node’s index can only be calculated using the number of cuts and the cut

boundary. Storing the boundary of one dimension uses up to eight bytes of memory.

The node merging optimization requires a 2r array per DT node to store the pointers

to child DT nodes. Explicit pointers increase the DT node size significantly when the

number of cuts is large. Basically, such optimizations require huge DT nodes which

impact both the storage and the throughput; hence, their benefit on the reduction

of the DT size and the DT depth is compromised. In addition, these optimizations

need significant preprocessing time and the resulting data structure eliminates the

possibility for incremental updates at all. Therefore, we propose a simplified imple-

mentation. Note that the overlapped filter redundancy removal [32] and the filter

pushing [56] optimizations can still be applied.

In order to compare with the ABC algorithm, we layout the DT node format that also

consumes four 32-bit memory words for the HiCuts and the HyperCuts algorithms.

A DT node in Woo’s algorithm requires only two 32-bit memory words. Just as in the

ABC algorithm, after cutting a node in HiCuts and HyperCuts, some cuts contain

no filter at all. Creating empty DT nodes wastes a lot of memory. Again, we store

an 18-bit base child node pointer and an EPB at each DT node for these algorithms.

Non-empty child nodes of a DT node are stored in consecutive memory locations so

that they can be addressed by the base pointer and the EPB. Note that when the

number of cuts per DT node in HiCuts and HyperCuts is increased at a factor of two,

so does the number of bits of the EPB. Hence, a DT node allows at most 64 cuts for

HiCuts and HyperCuts, which means at most six bits can be examined at each DT

node.

For HiCuts and HyperCuts, a 5-bit bitmap indicates which dimensions are chosen to

cut and each selected dimension is assigned three bits to indicate how many prefix

bits are examined (our assignment allows up to six prefix bits to be examined per

step). The DT node encoding scheme is summarized in Table 7.3.
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Table 7.3: DT Node Encoding Scheme for Other Algorithms(# Bits)

HiCuts HyperCuts Woo’s

isLeaf 1 1 1
Cut Dimension(s) (Bitmap) 5 5 N/A
# of prefix bits (Binary Encoded) 3 5*3 N/A
Bit Selection (Binary Encoded) N/A N/A 7
Child Base Pointer 18 18 18
Filter Base Pointer 18 18 18
EPB 64 64 2
Total (bits) 109 121 46

Comparison

Recall that the previous decision tree-based algorithms terminate the DT construction

algorithm only if all the leaf nodes contain fewer filters than a predefined threshold,

which results that neither the storage nor the throughput can be determined before

the simulation. To set a basis for comparison with our algorithm, we run the simula-

tion with different parameters. To make the comparison fair, we also apply the same

set of algorithm optimizations to all the implementations. Figure 7.18 illustrates the

results on three different filter sets. The x-axis stands for the storage and the y-axis

stands for the average lookup throughput performance. Since ABC-I has the best

overall performance, we only show the curve for ABC-I. The closer the data point

is to the left-bottom corner, the better the overall performance. Clearly, the ABC

algorithm significantly outperforms all the other algorithms.
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7.6.3 Incremental Updates

Generally, the decision tree data structure does not support incremental updates very

well. The major reason is filter duplication. To insert a new filter, we may need to

push a filter to many leaf nodes. Deletion requires a similar amount of work. More

important, insertion and deletion may lead to suboptimal performance of the data

structure, so we have to rebuild the decision tree from scratch at some point.

When using certain optimizations like region compaction and node merging proposed

in [32, 56], the HiCuts and HyperCuts algorithms actually disable this kind of incre-

mental updates. Our implementation helps regain the capability. Moreover, since the

filter can also be stored in the internal tree nodes, we can use this feature to reduce

the number of duplications made when inserting a new filter without degrading the

throughput performance too much: if pushing a filter down to the leaf nodes makes

too many duplications, we simply store it in some internal nodes with a restricted

number of duplications.

7.7 Conclusion

A branch of packet classification algorithms is based on the decision tree data struc-

ture. Some of these algorithms build the decision tree through geometric cuts, but the

cuttings are performed in favor of the evenness of the cut size rather than the even-

ness of the filter distribution. Due to the skewness of the filter distribution found in

real filter sets, this approach exaggerates the effect of filter duplications, and in turn,

results in a poor decision tree. Woo’s algorithm aims to split the filter set more evenly

and keep the filter duplication to a minimum. However, it only produces a binary

decision tree. The algorithm cannot fully utilize the available memory bandwidth so

the throughput suffers. Moreover, all these algorithms use some unnatural criteria to

control the decision-tree building process, which make the algorithm evaluation and

implementation very difficult. The merits of the heuristics are hard to justify and

both the throughput and the storage are unknown before the experiments.
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We introduce a new degree of freedom to enable variable sized cuts per decision step

in order to make the filter distribution more even, resulting in a much better decision

tree. A simple and compact encoding scheme makes this feasible. Since our algorithm

guarantees that each micro cut counts, it ensures that each DT node can have the same

size and be fully utilized. Furthermore, a more natural and implementation-oriented

decision making process is applied. We can predetermine the storage budget to get

the best achievable throughput, which allows better observability and controllability

over the algorithm. Based on the similar idea, three variations are derived.

We also propose hardware-oriented implementations for the other decision tree-based

algorithms: HiCuts, HyperCuts and Woo’s. We compare the ABC algorithm with

them through simulations. The ABC algorithm significantly improves the storage

and throughput performance of the previous algorithms and is scalable to large filter

sets. Although it is difficult to push the algorithm’s performance to work on OC-192

networks with a single SRAM chip, it is still quite attractive for OC-48 networks. The

simple implementation and its efficient use of memories make it a better candidate

than TCAMs and other algorithms in such environments.
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Chapter 8

Fast TCAM Filter Updates

8.1 Introduction

TCAMs are widely deployed in high performance network routers for packet clas-

sification because of their unmatched lookup throughput, and their generality. In

TCAMs, packet filters are represented as ternary bit strings and stored in decreasing

priority order. Given a packet header, the search for the best matching filter with

the highest priority is performed on all the entries in parallel. The index of the first

matching filter is then used to access an associated data memory to retrieve the data

associated with the matching filter. This elegant architecture allows classification of

packets in just a single clock cycle, allowing a state-of-art TCAM chip to support a

sustained search rate of 250 million packets per second [3]. Even for backbone net-

work routers supporting OC-192 (10Gbps) links, the peak packet rate in the worst

case is no more than 30M packets per second, far less than the search capability that

a TCAM provides.

In this chapter, we focus on TCAM filter set management, a problem that has received

relatively little attention in the research literature. In an operating router, filter sets

must change over time, in response to changes in network management policies and

link availability. New filters may be inserted and existing ones deleted or modified.

Because TCAMs return only the first matching filter, based on storage position within

the TCAM, insertion of a new filter can require many other filters to be moved in

order to place the new filter at the appropriate position in the filter set. In the

worst case, a large fraction of the filters in a filter set may need to be moved for
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each insertion. While many filter deletion and modification operations can be done

without moving filters (using ”lazy deletion” and in-place modification), in the worst

case these operations can also require large numbers of filters to be moved.

While the rate at which filters are updated is much smaller than the rate at which

lookups are processed, filter updates can have a significant impact on lookup rate,

since updates must be suspended while a control processor makes the changes needed

to complete a TCAM update. Wang et. al. show that the movement of just 16

TCAM entries in an OC-192 router can trigger the dropping of 18 packets [76]. As

applications requiring more frequent updates emerge, the impact of updates on lookup

performance may becomes much worse.

As we have mentioned, the lookup throughput of TCAMs actually exceed the re-

quirements in typical applications. This suggests the possibility of trading off lookup

throughput for more efficient filter updates. We show that this trade-off can be ex-

ploited to good effect, by encoding the priority as a field in the TCAM and using

multiple lookups to identify the matching filter with the highest priority. The result-

ing system can sustain worst-case lookup rates of more than 65 million packets per

second, and average rates of more than 80 million packets per second.

The remainder of this chapter is organized as follows. Section 8.2 discusses the related

work. Section 8.3 presents our new algorithm and Section 8.4 evaluates it. Section 8.5

concludes the chapter.

8.2 Related Work

When TCAM is used for longest prefix matching (LPM), updates can be performed

efficiently, using at most W moves to insert a new prefix, where W is the number of

unique prefix lengths [55]. Because for any packets, there is at most one matching

prefix among prefixes of the same length and we prefer the longest matching prefix,

prefixes can be placed in the TCAM in decreasing order of their lengths. This ensures

the correct IP lookup result and makes it relatively easy to update an entry. The

update algorithm uses the property that changing the relative order of prefixes of

the same length does not affect the lookup result, so one can insert a new prefix
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by moving at most one prefix for every distinct prefix length. Since there are only

W ≤ 32 distinct prefix lengths, the update time is bounded and reasonably small.

One can do even better by storing prefixes in chain-ancestor order [55]. In this case an

update requires at most D moves for an insertion, where D is the longest prefix chain

comprising the updated prefix. Carefully refining the memory layout can further

reduce the total number of entry moves. Unfortunately, as will be explained in the

next section, this approach cannot be directly used for general packet classification.

Rererence [76] is one of the few prior studies of the TCAM update problem for packet

classification. The authors of [76] focus on how to maintain consistent filter table

lookup throughput during the update process. They show that TCAM locking can

be avoided by carefully managing the update process so that correct filter matches

are ensured, even while the filter update is in progress. However, their method signifi-

cantly increases the number of moves required, and while they do not lock up lookups

during the update process, the filter moves do still consume TCAM bandwidth. In

addition, the filter set management process is relatively complex and introduces a

significant latency, which delays the time for an update to take effect.

A typical TCAM component provides 144 bits for matching a packet header. In IPv4

applications, some of these bits are not needed because the standard 5-tuple packet

header contains only 104 bits. These otherwise unused bits can be used for other

purposes. The MUD algorithm uses these bits to attach a filter index to each filter

in order to support multi-match classification [40]. In this algorithm, the filters are

stored in incremental index order. If the first lookup returns a matching filter with

index j, then in the subsequent lookups, we only need to search the filters with index

greater than j. This is achieved by converting the range “> j” into a set of subranges

(e.g. prefixes) that can be represented by ternary bit strings. These subranges are

then used to configure the TCAM’s Global Mask Registers. Each subsequent lookup

uses the key plus one of the Global Mask Registers to search for a matching filter

among the filters whose index is in a given range. Our algorithm is similar to the

MUD algorithm in the sense that it also encodes additional information in the TCAM

entries. However, the information that we add is different and, we use it to improve

the efficiency of filter set updates rather than to enable multi-match classification.
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8.3 Algorithm

If enough empty entries are allocated between any two filters in a TCAM, then to

insert a new filter, we can simply insert it in an appropriate empty entry, without

moving any other filters. Although this is a tempting solution, there are two problems

with it. First, in order to reduce TCAM power consumption, we prefer to store the

filter set in as few TCAM segments as possible. Allocating empty entries between

filters, makes it necessary to search more segments for a given filter set, increasing the

power consumption. Second, because we cannot predict future updates, we cannot

guarantee that there will always be an empty position in the TCAM where we need

one. When there is no empty entry available, filter moves become necessary.

From this discussion, we identify two important objectives. First, we would like to

store the filter set in a TCAM compactly without allocating empty entries between

filters. This allows a linear growth of occupied entries and segments as the size of the

filter set grows, reducing the power required for lookups. Second, we would like to

minimize the movement of entries, so as to reduce the amount of work that must be

done for each update and to minimize the impact of updates on lookup throughput.

8.3.1 Real Filter Priority

A filter’s order in a filter set naturally reflects its priority, so the filter index can be

used as its priority value. In fact, only overlapping filters need to be ordered relative

to one another, in order to ensure the correctness of lookup results. Therefore, filters

can be divided into groups in such a way that filters in the same group can exchange

their order at will, without affecting the lookup results. The order of the groups,

however, cannot be exchanged. To be specific, each group is assigned a priority

value. The group of filters with a higher priority (i.e. a smaller priority value) must

be stored in a lower address region of a TCAM than the group of filters with a lower

priority (i.e. a larger priority value).

The algorithm for grouping the filters and assigning the priority values can be de-

scribed as follows. We start from a graph in which each vertex denotes a filter.
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For each filter, ri, we examine all the other filters, rj, which overlap with ri (i.e.

ri ∩ rj 6= ∅). If i > j, we create a directed edge from rj to ri; otherwise, we create

a directed edge from ri to rj. This step generates a directed acyclic graph. The

topological order of the vertices in this graph reflects the relative priorities of filters.

In the second step, we assign priority values to filters. Each vertex with no predeces-

sors is assigned a priority value of zero. Other vertices are assigned a priority value

only after all their predecessors have been assigned a priority value. The priority

value assigned to a vertex is one plus the largest priority value assigned to any of its

predecessors. An example of this process is shown in Figure 8.1.
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Figure 8.1: Grouping and Priority Value Assignment

We have evaluated real world filter sets and found that the number of distinct pri-

ority values needed is typically much smaller than the number of filters, as shown

in Table 8.1. We have also evaluated large synthetic filter sets generated using the

ClassBench [70] tool and found that the number of priority levels is insensitive to the

number of filters. Even for filter sets with 10 thousand filters, the number of priority

levels is less than 64. This property implies that if filters are updated based on their

priority values, significantly less work needs to be done than if they are updated using

their absolute position in the TCAM.
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Table 8.1: Real Priority Levels in Real Filter Sets

filter set # filters # priorities

acl1 814 40
acl2 623 35
acl3 2,400 22
acl4 3,061 22
acl5 4,557 13
fw1 283 53
fw2 184 55
fw3 160 49
ipc1 1,702 42
ipc2 192 42

The filter grouping is analogous to the prefix grouping by the prefix lengths or the

chain-ancestor ordering for LPM [55], but updating filters for general packet classi-

fication is much more complex than updating prefixes for LPM. First, the number

of priority levels in filter sets for general packet classification is much more than the

number of unique prefix lengths in prefix sets for IP lookup. Second, updating a prefix

in a prefix length group does not affect any other prefixes. Therefore, the number of

entry moves required is bounded by the number of unique prefix lengths. However,

for general packet classification, updating a filter may change multiple filters’ priority

values. Figure 8.2 illustrates the grouping result after a new filter R, which has an

index between r1 and r2, is inserted into the set. Notice that r4, r5, and r6 all have

to change their priority values. This implies that after a new filter is inserted, the

priority values of several others need to be adjusted to maintain a correct topological

priority order. Similar actions need to be taken after a filter is removed or modified

in the filter set.

If we apply the similar update algorithm used for LPM for packet classification, it

can cause too many TCAM entry moves and the associated data memory updates. In

the worst case, all filters need to change their priority values. Fortunately, in reality

this is unlikely to happen. We will show this point through analysis and simulation.
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Figure 8.2: Effect of Inserting a New Filter R

8.3.2 Using Extended Filter

We have shown that a typical TCAM entry configuration results in some unused bits.

Using a few of these unused bits, we attach the real priority value to each filter. Now

if the packet classification always looks up the extended filters, the filters need not

be stored in their priority order in a TCAM. Actually, a new filter can be written in

any empty entry in a TCAM and no other filter needs to be moved. Clearly, now

the search key has to also include the priority value. The lookup process is no longer

looking for the matching filter with the minimum TCAM index but the matching

filter with the minimum attached priority value. Without the prior knowledge of the

priority, multiple lookup attempts are needed to figure out the best matching filter

with the minimum priority value.

A linear search on the priority values does not scale to large filter sets with many

priority levels. Fortunately, TCAMs have a set of reconfigurable Global Mask Reg-

isters (GMR) which can selectively mask out any bits in all entries as “don’t care”.
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Each filter has a priority value with all bits enabled. By configuring GMR bits, we

can determine which bits of the priority value should be considered as if each GMR

enables a range of priority values. Each TCAM lookup therefore designates one of the

preset GMRs to search only a range of priority values. The result narrows down the

search range for the next lookup, and eventually identifies the best match. Typically,

a TCAM has up to 64 GMRs. They are more than enough for our purpose.

Figure 8.3 illustrates an example where there are at most 32 priority values in the

filter set. We only show the priority level, a part of the key, in the figure for simplicity.

The binary decision tree is traversed based on the search result of the previous lookup.

If the TCAM reports a match, we follow the upper branch of the tree; otherwise, we

follow the lower branch of the tree. For example, given a packet header, we first

search any matching filter with the priority value between zero and 15. If the result is

positive, we then search any matching filter with the priority value between zero and

seven; otherwise, we search the range eight to 11, and so forth. Since each lookup step

halves the searched priority range, this scheme needs only log N lookups per packet

to find the best matching filter, where N is the number of unique priority values.
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Figure 8.3: Searching for the Filter with the Minimum Priority Value

Note that in this scheme, the only information used is whether or not the TCAM

reports a match. If we also know the matching filter’s priority value, we can accelerate
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the search. For example, if in the first attempt, we find a matching filter with a priority

value of zero, then there is no further search needed. Even when the priority value

is not zero, we can use the value to advance the search range quickly in the decision

tree. For example, if the first search in the range of zero to 15 returns a match with

the priority value of two, then in the next step we can directly search the range zero

to one rather than zero to seven.

To achieve this, we store the filter’s priority value in the associated data memory as

a part of the filter’s associated data. Each lookup step reads this value if there is a

match in the TCAM. The control logic then uses this information to choose another

GMR for the next lookup or terminates the lookup. Accessing the associated data

memory is pipelined with the TCAM lookups, so the TCAM throughput is unchanged.

We also use another TCAM feature to help improve the lookup performance. Along

with the matching filter index, the TCAM also has a multi-match output signal

indicating if there is more than one matching filter for the given key. Since our search

order is in favor of the higher priority filters, during the search, if the multi-match

signal shows only one single match for the given key, the filter is guaranteed to be

the best matching one. In such a case, no further search is needed.

8.3.3 Lookup

The lookup of a filter (SearchTCAM[key]) involves a sequence of recursive calls to the

sub-procedure (SearchPriorityRange[key, low, high]) that searches a range of priority

values using a GMR. In the following pseudo code, IsMultiMatch is asserted by the

TCAM if more than one filters are matched. Priority(i) is filter i’s priority value

acquired from the associated data memory. Low and high define the priority value

range which can be represented with a prefix string.

SearchTCAM [key]

1. low = 0

2. high = 2dlog2 MaxPrioritye − 1

3. SearchPriorityRange [key, low, high]
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SearchPriorityRange [key, low, high]

1. get filter index i

2. if (i 6= NULL)

3. if (priority(i) = low OR ! IsMultiMatch)

4. return i as the best match

5. else if (priority(i) 6= low AND IsMultiMatch)

6. high = low + 2blog2(priority(i)−low)c − 1

7. regi = i

8. SearchPriorityRange [key, low, high]

9. else

10. if (is the first TCAM lookup)

11. return NULL

12. else if (low = high OR priority(regi) = high + 1)

13. return regi as the best match

14. else

15. low = high + 1

16. high = low + 2blog2(priority(regi)−low)c − 1

17. SearchPriorityRange [key, low, high]

8.3.4 Update

The update process includes inserting, deleting, and modifying filters. All of these

may result in multiple filters changing their priority values. Inserting a filter implies

some filters need to increase their priority value, deleting a filter implies some filters

need to decrease their priority value, and modifying a filter can do both. The analysis

can be done through the DAG we built in Section 8.3.1.

An update involves a sequence of accesses in the TCAM and the associated data

memory. By performing accesses in the proper order, we can do an update using the

spare TCAM cycles without blocking the normal lookups. For example, to insert a

new filter, we first get the set of filters that need to increase their priority value. We

sort these filters in decreasing priority value order and then increase their priority

value in turn. At last, we insert the new filter in any empty entry. Of course, for

a better lookup performance, we should choose the best available entry for the new
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filter. Ideally, among all the filters that overlap the new filter, those with smaller

priority values should be located in the small indexed entries and those with larger

priority values should be located in the large indexed entries.

8.4 Evaluation

8.4.1 Filter Distribution

The efficiency of our algorithm highly depends on the filter distributions. We have

shown that even for very large filter sets, the number of unique priority values, which

determines the worst-case performance bound, is small. We also examine the filter

distributions in different priority value groups. An example is shown in Figure 8.4.

We found that the majority of filters are concentrated in groups with small priority

values. This fact has two favorable implications. First, it benefits the lookup process

since a packet has a higher possibility to match a filter with small priority value and

our search starts from the filters with small priority values. Second, it implies the

long dependent chains comprise only a few filters; hence our update process will not

affect too many filters.
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Indeed, the priority dependency is a result of filter overlaps. If the maximum number

of overlapped filters that a packet can match is small, our lookup and update algo-

rithms both work better. In [40], 112 real filter sets are analyzed. In only one filter

set does a packet match as many as eight filters. In the majority of filter sets, no

packet matches more than five filters.

8.4.2 Lookup Throughput Performance

For each filter set, we generate a packet header trace using the ClassBench tools [70]

to evaluate the lookup performance. We evaluate the worst-case lookup performance

by storing all the filters in a TCAM in decreasing priority value order. The best

case lookup performance happens when the filters are stored in increasing priority

value order and the average case performance happens when the filters are randomly

permuted in TCAM entries.

The simulation results for some filter sets are shown in Table 8.2. In the simulation,

we assume that the TCAM runs at 250MHz clock rate. Note that for any case, a

packet needs at most six TCAM accesses to find the best matching filter, so in the

absolute worst case, the TCAM can still classify 42 million packets per second, which

is sufficient for the OC-192 link speed.

Table 8.2: Lookup Throughput Performance

# accesses throughput (Mpkt/s)
filter set best average worst best average worst

acl1 (814 filters) 1.38 2.65 3.20 181 94 78
fw1 (283 filters) 2.18 2.68 2.90 115 93 86
ipc1 (1,702 filters) 3.23 4.14 5.37 77 60 47
acl1 syn (4,415 filters) 2.08 2.97 4.66 120 84 54

8.4.3 Update Performance

The update performance is determined by the number of TCAM entry writes needed

when inserting, deleting or modifying a filter. The worst-case update performance
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happens when we insert the filters in the reversed priority order or delete the filters

in priority order. To evaluate the worst-case update performance, we first reverse

the filters’ order as they appear in the original filter set, and then we insert the

filters into the TCAM one by one. After each filter is inserted, we reevaluate all the

filters’ current priority value and count the number of filters that need to update their

priority values. This number plus one more TCAM write that actually inserts the

new filter is the overall number of TCAM writes needed for an update.

In Table 8.3, we show the average number of TCAM writes and the maximum number

of TCAM writes needed after all the filters are inserted into a TCAM. We can see

the average number of TCAM writes is small but the maximum number of TCAM

writes can be very large. Figure 8.5 shows the cumulative distribution of the TCAM

write numbers.

Table 8.3: The Worst-Case Update Performance

filter set average # TCAM writes maximum # TCAM writes

acl1 (814 filters) 3.2 110
fw1 (283 filters) 10.8 239
ipc1 (1,702 filters) 12.3 1,099
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Figure 8.5: The Worst-Case Distribution of TCAM Accesses

These results further affirm us that the similar update algorithm used for LPM is

not applicable for the general packet classification since too large number of memory
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moves can be involved. On the other hand, our algorithm needs only to rewrite the

portion of the extended filters that holds the priority value, which can be done very

fast in general and does not need to block the normal lookup process.

8.5 Conclusion

In this chapter we present an algorithm that trades off the surplus search capability

of TCAMs for efficient filter set updates for the general packet classification problem.

The real priority values of filters are derived and attached to the filters. Using the

binary search on the priority values and some other common features of TCAMs,

the algorithm maintains a lookup throughput that is sufficient for backbone routers

running at OC-192+ speeds. At the same time, that algorithm greatly reduces the

work required for filter set management thus it is quite suitable for the dynamic

environment where filter updates occur frequently.
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Chapter 9

Summary

The work described in this dissertation focuses on the design and evaluation of high

performance packet classification systems, which are needed to allow tomorrow’s

routers and switching systems to meet QoS and security challenges in a high speed

environment.

9.1 Contributions

Since many surveys on existing packet classification algorithms are available today,

in this dissertation we do not repeat the descriptions of the previous work. Instead,

in Chapter 1 we summarize the previous work from a high level perspective and try

to categorize the algorithms according to their basic approaches. This method has a

clear advantage to help the researchers and designers avoid digging into the algorithm

details while not losing sight of the big picture. Understanding the problem from a

high level also provides insights that can lead to further improvements in the state of

the art.

It is also important to understand the technical merit of each algorithm. We are

often in a situation to ask which algorithm is indeed better or if we can use one for

a particular application with reasonable confidence. Unfortunately, such questions

are difficult to answer just based on published results. In Chapter 2, we describe an

open-source project to address this problem. Most of the representative algorithms

are actually implemented under uniform conditions and assumptions. The free avail-

able implementations allow others to easily adapt them for different scenarios. We
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also enforce more consistent criteria for the algorithm evaluation so that their perfor-

mance and potential are directly comparable. This project relieves researchers and

designers from duplicating the previous work and helps them quickly evaluate algo-

rithms for any application. We also encourage external contributions of new algorithm

implementations and evaluations that can be incrementally added to the library in

the same framework. We believe this will benefit the research and design community

as a whole.

Based on the insights gained from the previous work, we design several new algorithms

to tackle different variations of the packet classification algorithms.

The Shape Shifting Tries (SST) presented in Chapter 3 is a trie-based Longest Prefix

Matching (LPM) algorithm. The algorithm takes full advantage of the sparsity of

the underlying binary trie and uses an efficient encoding technique. It outperforms

the well-known Tree Bitmap algorithm and is particularly attractive for IPv6 route

lookup and for use as a building block in general packet classification algorithms.

Chapter 4 presents a special hash data structure, Fast Hash Table (FHT), and the

associated maintenance and search algorithms. The FHT extends the classical Bloom

Filter data structure to support exact match. In addition to playing its original role as

a match filter, the front-end Bloom Filter also acts as as a multi-hash load-balancing

mechanism, which is proved to be able to lower the hash collision probability by

orders of magnitude. The FHT is ideal for use in exact match packet classification

where high throughput and predicability are crucial.

Combining the trie-based and the hash-based LPM algorithms and applying the tech-

niques developed in the previous two chapters, we derive a flexible and high perfor-

mance LPM algorithm in Chapter 5. The algorithm allows a tradeoff between stor-

age and throughput. It can support very fast lookups on average and meanwhile the

worst-case performance is no worse than the trie-based algorithms.

2D packet classification is a special case of general packet classification where each

filter is defined as a prefix pair. Chapter 6 presents a new way to solve this problem.

It can be seen as a tradeoff between the Tuple Space Searching algorithm, which

is slow but memory efficient, and the Cross-producting algorithm, which is fast but
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memory inefficient. The essence of the idea can be used to extend the algorithm to

general packet classification.

Chapter 7 presents a decision-tree based algorithm, the Adaptive Binary Cuttings

(ABC), for general packet classification. The ABC algorithm takes the filter distri-

bution into account when constructing the decision tree and realizes the decision tree

using a technique similar to the one used in the SST algorithm. Following the same

central idea, the algorithm comes with three different styles, each with its own advan-

tages and disadvantages. The ABC algorithm significantly outperforms the previous

decision-tree based algorithms, such as HiCuts, HyperCuts, and Woo’s algorithm.

TCAMs are widely used in packet classification systems. However, TCAM also faces

a lot of challenges when used for general packet classification. Chapter 8 contributes

to this field by tackling the little studied researched problem of dynamic filter set

management. We trade off the surplus search capability of the TCAM for a fast and

simple filter set update process, which is suitable for a highly dynamic environment.

9.2 Future Directions

It is generally believed that packet classification is a well understood and researched

problem. The vast body of previous work is a dauntingly high hurdle for anyone who

wants to address it. However, as the Internet keeps evolving, one thing is known for

sure: we are still far from a point when we can label the packet classification problem

as “solved”.

Fortunately, through the course of our study and beyond the attainment we have

accomplished, we can still spot plenty of opportunities to push the research forward.

For example, our algorithm evaluation is incomplete in some sense. It is not an

exhaustive collection of all known algorithms. So far the implementations provided are

only behavior models for the purpose of simulation. We prefer “real” implementations

that can be directly implanted into ASICs, FPGAs, and network processors for real

performance evaluation and direct application. Moreover, we expect to acquire more

real filter sets from industry and refine the ClassBench tool to better predict the

future evolution of large scale filter sets for all kinds of applications.
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For the development of new algorithms, in addition to making continuing efforts to

understand the existing algorithms, we should start to closely examine the filter sets

and try to answer the question: What factors contribute to the deterioration of algo-

rithm performance and how can we avoid their effects? For example, in the decision

tree-based algorithms, we find that a very small fraction of the filters contribute sig-

nificantly to the memory consumption, so it is reasonable to use a hybrid algorithm

to handle these filters separately. A related question from another perspective is: Can

we construct the filter set in a more structured way so we can make the algorithms

perform better? This is a question that needs to be answered by network operators

and system designers together.

Based on our observation of the existing algorithms, we find that a single algorithm

can never handle all the scenarios equally well. In addition to making more tradeoffs

and introducing more degrees of freedom as we have presented in this dissertation, it

makes sense to develop some hybrid algorithms that leverage the strength of different

approaches.

It is our intent to provide a solid foundation to encourage further investigations on

design and evaluation of packet classification systems. All our efforts lead to this

direction and we expect the next breakthrough is on the horizon.
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