
Reconfigurable Content-based Router using
Hardware-Accelerated Language Parser

JAMES MOSCOLA and JOHN W. LOCKWOOD

Washington University in St. Louis

and

YOUNG H. CHO

Open Acceleration Systems Research

This paper presents a dense logic design for matching multiple regular expressions with a field

programmable gate array (FPGA) at 10+ Gbps. It leverages on the design techniques that enforce
the shortest critical path on most FPGA architectures while optimizing the circuit size. The

architecture is capable of supporting a maximum throughput of 12.90 Gbps on a Xilinx Virtex

4 LX200 and its performance is linearly scalable with size. Additionally, this paper presents
techniques for parsing data streams to provide semantic information for patterns found within

a data stream. We illustrate how a content-based router can be implemented with our parsing

techniques using an XML parser as an example. The content-based router presented was designed,
implemented, and tested in a Xilinx Virtex XCV2000E FPGA on the FPX platform. It is capable

of processing 32-bits of data per clock cycle and runs at 100 MHz. This allows the system to

process and route XML messages at 3.2 Gbps.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:

General Terms: Pattern Matching, Parser, Content-based Routing, XML

Additional Key Words and Phrases: Parsing, Regular Expressions, Pattern Matching, Parser

Hardware, Content-based Routing, XML

1. INTRODUCTION

With emerging new research efforts in biotechnology and computer networks, we
foresee the increased need for fast and flexible pattern matchers. Recently, there
has been a lot of research into leveraging reconfigurable hardware technologies for
obtaining compact and fast pattern matching engines. However, much of the pre-
vious work focused mainly on the performance and size of the pattern matcher;
often sacrificing the degree of expressive power of the matchers. In this paper,
we attempt to address this issue by introducing a fully scalable regular expression
pattern matcher.

This research was sponsored by the Air Force Research Laboratory, Air Force Materiel Command,

USAF, under Contract number MDA972-03-9-0001. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of AFRL or the U.S. Government.

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 1084-4309/2007/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007, Pages 1–25.



2 · Moscola, Cho, Lockwood

Additionally, all of these pattern matchers simply determine if a given pattern
is present in a packet without considering the context of the pattern in the data
stream. Without contextual information, the identified information has limited use.
Therefore, we present parsing techniques to enable a higher level of understanding of
data streams. These techniques are then utilized in the design and implementation
of a content-based router.

1.1 Contributions

This paper makes several contributions in the areas of high-speed pattern matching
and parsing. In the area of pattern matching, we present a new high-speed archi-
tecture that is both scalable and capable of searching for regular expressions. In the
area of parsing, we present a technique for mapping regular grammars directly onto
FPGA hardware. Finally, we utilize these techniques to develop a content-based
router that is capable of multi-gigabit speeds.

1.2 Overview

The paper is organized as follows. Section 2 discussed related work in the areas of
high-speed pattern matching and hardware-accelerated parsing. Section 3 presents
two prominent logic-based pattern matching architectures developed by the FPGA
research community. This section also describes how these architectures can be
combined to create a new scalable architecture for matching regular expression
patterns. In section 4, we describe an architecture for parsing regular languages.
Finally, section 5 describes how our pattern matching and parsing techniques were
used to develop a content-based router. The paper concludes in section 6.

2. RELATED WORK

This section discussed related work in the areas of hardware-accelerated pattern
matching and parsing.

2.1 Hardware-Accelerated Pattern Matchers

In recent years, a great deal of work has been done in the field of high-speed
hardware-accelerated pattern matchers. In 2001, Sidhu and Prasanna presented
a method for mapping regular expressions into nondeterministic finite automata
(NFA) that could then be mapped onto FPGA hardware [R. Sidhu and V. K.
Prasanna 2001]. In [Franklin et al. 2002] Franklin et al. illustrated how this tech-
nique can be used to map the patterns found in the Snort [Roesch 1999] database
onto an FPGA. An additional pattern matching architecture for Network Intrusion
Detection Systems (NIDS) was presented by Cho in [Cho et al. 2002]. In [Moscola
et al. 2003] regular expression patterns were converted into deterministic finite au-
tomata (DFA) and mapped onto an FPGA. In [Clark and Schimmel 2003], Clark
and Schimmel introduced the idea of pre-decoding input characters into single bit
lines to reduce the number of comparators required for matching patterns. Sour-
dis presented the idea of using a pipelined comparator for matching patterns in
[Sourdis and Pnevmatikatos 2003]. In [Baker and Prasanna 2004], Baker presented
an architecture where all string comparators are connected to a single pipeline of
decoded characters. In other work, Baker combines a small microcontroller with
a bit-split architecture to create a high-speed regular expression matcher with the
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 3

flexibility to modify the pattern set on-the-fly [Baker and Hong-Jip Jung 2006].
Work by Bispo expanded on Sidhu’s work in [R. Sidhu and V. K. Prasanna 2001]
by adding support for Perl-compatible regular expressions [Bispo et al. 2006].

2.2 Hardware-Accelerated Parsers

Hardware-accelerated parsing has not been an extensively studied problem. How-
ever, there does exist a small amount of previous work. In [Ciressan et al. 2000;
Cristian-Raul et al. 2001], hardware-based parsers were implemented using the
Cocke-Younger-Kasami (CYK) algorithm . While these implementations do man-
age to decrease the O(n3) time complexity of the CYK algorithm down to O(n2),
the space required by the algorithm remains unchanged at O(n2), where n is the
length of the input string. Such a large space requirement makes the CYK algorithm
unsuitable for network applications that need to maintain parsing information for
millions of network flows simultaneously.

Other previous work includes a hardware-based implementation of an Early
parser [Koulouris et al. 1998]. Again, the space requirements for this table driven
parsing algorithm make it unsuitable for network applications.

More recently, work by Cho in [Cho and Mangione-Smith 2005] presents two
architectures, one for an LL(1) parser and another for an LR(1) parser. Both
architecture take an approach similar to their software counterparts using table
lookups in conjunction with a stack to parse the input.

3. HARDWARE-ACCELERATED PATTERN MATCHING

The regular expression pattern matching architecture presented in section 3.4 of
this paper is the result of studying several fast FPGA based pattern matchers.
These pattern matchers and their key concepts are described sections 3.1, 3.2 and
3.3.

3.1 Pre-decoded Character Bits

Common among many of the FPGA based pattern matchers is the idea of pre-
decoding characters. Since the regular expression patterns contain a fixed set of
characters, we can use a pre-decoder to efficiently reduce the amount of space
required by the design [Clark and Schimmel 2003]. The decoder logic is an 8-bit
input AND gate with inversion of the bits needed to identify each character. Each
letter used in the pattern is decoded uniquely to assert a single bit. The conversion
from 8-bits per character to a single bit per character significantly reduces the
amount of logic and routing required by the design. Since there is a relatively small
penalty for a large fanout in FPGA, the pre-decoders are used in most of the recent
pattern matching architectures.

3.2 Pipelined Regular Expression Chain

The pipelined regular expression chain is a technique for mapping regular expres-
sions into a hardware representation of an NFA as described in [R. Sidhu and V. K.
Prasanna 2001]. It can be thought of as a pipeline of AND gates as shown in figure
1a. At each stage of the pipeline, the output is asserted when the decoded character
bit and the output of the previous stage are both asserted. Such a chain is capable
of detecting specified strings in data streams. For this method, each character of

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



4 · Moscola, Cho, Lockwood

the pattern requires a single AND gate followed by a D-flip flop (DFF). The ele-
mentary functional unit in most FPGAs consists of one 4-bit input look-up-table
(LUT) followed by a DFF. Therefore, the number of functional units for the above
method corresponds to the total number of characters in the pattern set.

This fixed string matching architecture can easily be extended to recognize a
richer set of patterns with functions such as not, or, one-or-none, one-or-more, and
zero-or-more. These functions are represented as logic primitives in figure 1. One
can instantiate combinations of these elementary logic templates to build a full set
of regular expression detectors.

a

b

Regex = a.b Regex = !a

a

Regex = a+

a

Regex = a*

a

Regex = a|b
(a) Sequential (b) Not (c) Or / One-or-None (d) One-or-More / Zero-or-More

b

Regex = a?

Fig. 1. Constructing regular expressions

3.3 Pipelined Character Grid

An architecture by Baker attempts to optimize the use of logic by buffering the
pre-decoded characters into a pipelined grid structure [Baker and Prasanna 2004].
Given such a grid of decoded characters, one can detect string patterns by ANDing
all the corresponding decoded bits from different stages of the pipeline as shown in
figure 2. Therefore, the pattern length must be less than or equal to the length of
the pipeline. Since similar patterns tend to reuse the decoded outputs, the size of
the grid is relatively constant. Therefore, the DFF resource requirement for this
method is proportional to the number of patterns instead of characters. Given four
input LUTs, the number of LUTs for long patterns can be reduced to a quarter of
the pipelined chain method.

The pipelined character grid can also be scaled by widening the input width.
Since patterns can begin at any given alignment, a duplicate copy of the character
decoder must be instantiated for each input byte alignment. For each pattern,
its corresponding AND gate that detects a pattern must be replicated for each
alignment. Then the outputs of the gates need to be ORed together to detect a
match. Due to logic reuse, this architecture tends to yield denser designs for a
larger pattern set. However, this logic compression is enabled by sacrificing the
ability to match regular expressions.
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 5

a

b

c

321
b

0 4

321
c

0 4

a
3

a
2

a
1

a
0

a
4

b

c

b

c

b

c

b

c
Decdata

"cbc"

Pattern 2: "cbc" = c
2
 
.

 b
1
 
.

 c
0

"abc"

Pattern 1: "abc" = a
2
 
.

 b
1
 
.

 c
0

Fig. 2. Simple example of pattern matcher using pipelined character grid

3.4 Timed Segment Matching

In studying the above techniques, we discovered that we can merge ideas from
both architectures to create an even more space efficient regular expression pattern
matcher [Moscola et al. 2006b]. The new architecture consists of a pipeline of
decoded characters in conjunction with primitives similar to those used by the
regular expression chain. This technique allows efficient use of FPGA resources
while still being scalable and capable of matching regular expressions.

A pattern matcher in Baker’s pipelined character grid detects an entire pattern
at one instance by simply connecting all the corresponding decoded bits to a single
AND gate [Baker and Prasanna 2004]. While examining such a design, we saw
the opportunity to compress the size of the pipeline by matching small segments
of the pattern at a time. By matching small segments of a pattern on subsequent
clock cycles, some of the pipeline stages are reused allowing the grid structure to
be compressed. While formulating the general effect of this, we found that the
change was equivalent to combining the pipelined chain with the character grid
architecture. Another way to express the approach is to combine four consecutive
characters from a pipelined regular expression chain into a single LUT/DFF pair.
In order to accomplish this, incoming characters are buffered using a pipelined
character grid whose registers are reused for each of the patterns in the pattern set.
We refer to this matching method as Timed Segment Matching (TSM).

In most FPGAs, a basic block consists of a 4-input look up table (LUT) followed
by a D-flip flop (DFF) and other supporting discrete gates. The design with shortest
critical path would be the one where each pipeline stage would consist of only one
level of basic blocks. With such a design criterion, the string comparator to match
an N character pattern with AND gates, as shown in figure 3a, takes a minimum
of Σdlog4Ne

i=1 dN
4i e gates. Note that this number does not include the logic required

by the decoded character pipeline. By connecting the AND gates in a tree-like
structure, the minimum latency is dlog4Ne stages. In addition to pipelined stages
of AND gates, one must consider detection latency to indicate where the pattern
starts or ends. Since pattern lengths can vary in practice, detection signals of
shorter patterns must be delayed by (S−1)−u clock cycles, where S is the number

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



6 · Moscola, Cho, Lockwood

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0
decoderdata

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0

c0

c1

c2

b2

b3

b4

a4

a5

a6

7

Z

a

unused

c0

1c
c2

b3

b4

5b
a6

a7

a8

9a

unused

Z

unused

AND

TS

(a)

(b)

Pipelined Character Grid

Fig. 3. Fast FPGA pattern matchers for “aaaabbbccc” using pipelined character grid; (a) ZAND

uses AND gate matching and (b) ZTS uses timed segment matching method.

of stages in the longest pattern in the patten set and u is the number of stages
in the short pattern of interest. This delay ensures that patterns are detected in
the order in which they appear in the data stream and that short patterns cannot
indicate a match prior to longer patterns that preceded them in the data stream.

On the other hand, the logic architecture for the TSM method is simpler. The
TSM architecture starts with a character pipeline similar to the one used in the
pipelined character grid architecture. String comparators, similar to the regular
expression chains in Sidhu’s architecture, are used to detect each pattern in the
pattern set (figure 3b). However, unlike Sidhu’s architecture, the TSM architecture
utilizes the character pipeline to buffer characters so that multiple characters can be
matched by each AND gate. This allows more efficient use of logic resources. String
comparators, like the one shown in figure 3b are generated by chaining together
enough 4-input AND gates for the pattern of interest. The first AND gate in the
chain is used to match the first four characters of the pattern. Subsequent AND
gates in the chain only match 3 characters each since they must also include the
result of the previous AND gate. Pseudocode for generating a string comparator
for the TSM architecture is shown in figure 4.

Matching an N character pattern using the TSM method yields a minimum of
dN−1

3 e logic blocks with a latency that is directly proportional to the length of the
string. Through simple analytical observations, we find that Σdlog4Ne

i=1 dN
4i e ≥ dN−1

3 e
for N > 0. This indicates that the logic requirements for string comparators in our
TSM architecture are less than or equal to logic requirements of string comparators
in the pipelined character grid. More interesting, is that this is achieved while
simultaneously creating an architecture that is capable of matching both strings and
regular expression patterns. Another positive consequence of this method is that
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 7

Fig. 4. Pseudocode to generate a string comparator for the TSM architecture

information about a match is carried through the pipeline allowing the architecture
to keep track of partial matches as they occur. This allows the TSM architecture
to indicate that a match has occurred immediately after the last character of a
pattern enters the pipeline, regardless of the length of the pattern.

3.4.1 Regular Expression Pattern Detection. Simple AND gate based detection
requires a pipelined character grid where the number of pipeline stages is greater
than or equal to the longest pattern. Since regular expressions can represent pat-
terns that are infinitely long, it is impossible for the simple AND gate matcher and
character grid to match all regular expressions. However, TSM modifies the detec-
tion method by adding a structure similar to pipelined regular expression chain.
Given such a pattern matching structure, we are able to adapt the primitives for the
pipelined regular expression chain for use in the TSM architecture. We illustrate
the basic regular expression operations through examples shown in figure 5. The
regular expression operations (e.g. zero-or-more) are shown in the shaded regions.
The operations are shown as part of larger patterns to better illustrate how they
are used.

Both the zero-or-more operation (figure 5a) and the one-or-more operation (fig-
ure 5b) require a feedback path that allows the chain to iteratively match repeating
substrings. Additionally, these two operations require that additional registers be
placed in that feedback path. The additional registers ensure that the pipelined
character grid has enough time to receive the characters required for the next iter-
ation of the regular expression operation. Note that the total number of registers
required in the feedback path is equal to the number of characters involved in the
given regular expression operation. For example, in figure 5a the regular expression
“aaaa(abc)*ccc” contains the zero-or-more operation. The number of characters
included in the zero-or-more operation is three. This means that the total number

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



8 · Moscola, Cho, Lockwood

b2

a3

z1

c2
c1
c0

b) z1 = aaaa(ab)+ccc

a4
a3

a5

a6

a3
a2

a4

z3

c2
c1

c3
d2

b4
c0

a5

a5

a4
a3
a2

a5

b3
c2

a4

z0

c2
c1
c0

a) z 0 = aaaa(abc)*ccc

a4
a3
a2

b3
c2

a4 z2

c2
c1

c) z 2 = aaaa(abc)?ccc d) z3 = (aaaa | abcd)ccc

c0

a5

Fig. 5. Regular expression operations in the timed segment matching architecture

of registers required in the feedback path is also three.
The regular expression operation in figure 5c is the one-or-none operation. This

operation does not include a feedback loop, but it does require additional registers
similar to the zero-or-more and one-or-more operations. Again, the number of
additional registers required is equal to the number of characters included in the
regular expression operation. The final operation show in figure 5d, the alternation
operation, is the simplest of the regular expression operations. It requires the
addition of only a single OR gate to the chain. No additional delay registers are
required.

Accordingly, it is easy to see how more complex regular expression can be con-
structed using the basic components for each of the regular expression operations.
An example using both the zero-or-more operation and the alternation operation
is shown in figure 6. Notice that the different size substrings in the alternation op-
eration require a different number of delay registers. Thus an extra DFF is inserted
at the input of the larger substring.

c1

b2

z0

c2
c1
c0

a1

a3

b2

a4
a3
a2

a5

z0 = aaaa(abc | ba)*ccc

Fig. 6. TSM example for “aaaa(abc|ba)*ccc”

3.4.2 Scalable Architecture. Our TSM architecture can also be scaled while still
maintaining its small size and the ability to scan for regular expression patterns.
First, the character grid pipeline must be duplicated for each byte of the input
width to provide decoded bits for every alignment, as shown in figure 7. Then the
pipelined regular expression chains are constructed for each alignment. Although
there are specific techniques to handle different regular expressions, we focus on
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 9

the architecture for zero-or-more. Once its concept is understood, one can easily
elaborate to build circuits for other operations (e.g. “a+” is equivalent to “aa*”).

a93

b93

c93

a83

b83

c83

a73

b73

c73

a63

b63

c63

a53

b53

c53

a43

b43

c43

a33

b33

c33

a23

b23

c23

a13

b13

c13

a03

b03

c03

decoderdata3

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0

Scaled Pipelined Character Grid

a92

b92

c92

a82

b82

c82

a72

b72

c72

a62

b62

c62

a52

b52

c52

a42

b42

c42

a32

b32

c32

a22

b22

c22

a12

b12

c12

a02

b02

c02

decoderdata2

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0

a91

b91

c91

a81

b81

c81

a71

b71

c71

a61

b61

c61

a51

b51

c51

a41

b41

c41

a31

b31

c31

a21

b21

c21

a11

b11

c11

a01

b01

c01

decoderdata1

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0

a90

b90

c90

a80

b80

c80

a70

b70

c70

a60

b60

c60

a50

b50

c50

a40

b40

c40

a30

b30

c30

a20

b20

c20

a10

b10

c10

a00

b00

c00

decoderdata0

a9

b9

c9

a8

b8

c8

a7

b7

c7

a6

b6

c6

a5

b5

c5

a4

b4

c4

a3

b3

c3

a2

b2

c2

a1

b1

c1

a0

b0

c0

3

Fig. 7. Wide pipeline grid for 4× scaled architecture

For a fixed string, the matching circuitry at each byte offset can be treated as an
independent engine until they are ORed together at the end. However, the logic
design complexity can grow rapidly when one attempts to scale regular expressions.
This is because expressions that immediately follow alternation, one-or-none, one-
or-more, or zero-or-more operations may start at multiple alignments. When the
matchers are instantiated for all possible alignments, the entire circuitry can become
exponentially large. Fortunately, we find that most of the instantiations turn out
to be duplicated logic which can be combined and reused.

To clearly understand the design process, we present a couple examples of the
zero-or-more regular expression operation on a 4-byte input datapath. Four copies
of the character grid are instantiated as shown in figure 7. The pre-decoded char-
acters bits from these grids are then used by the pattern matching pipelines. Con-
struction of a scaled chain works in a similar fashion to that of the single character
wide version, by concatenating AND gates together (or regular expression primi-
tives as shown in previous sections). The location of the character grid from which
to retrieve the character works similarly to the single character wide version. How-
ever, in the scaled version, four characters advance through the character grid on
each clock cycle. This means that if the scaled chain is currently examining the
data2 position of stage 0 in the scaled pipeline grid, on the next clock cycle it must
examine the data1 position of stage 1. This ensure that all characters get examined
while processing a data stream.

The simplest example of a scaled regular expression pattern matcher in our TSM
architecture occurs when the regular expression operation includes same number of
characters as the width of the input. In the example in figure 8a, notice that the
zero-or-more regular expression operation (“*”) is operating on the four character
string “bbbb”. In this case, the substring in the “*” operation is the same length
as the width of the data input. Since any number of iterations of the “*” operation

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



10 · Moscola, Cho, Lockwood

b11
b10
b03
b02

c10
c03

c11

a03

a02

a10

b12
b11
b10
b03

c11
c10

c12

a10

a03

a11

b13
b12
b11
b10

c12
c11

c13

a11

a10

a12

b20
b13
b12
b11

c13
c12

c20

a12

a11

a13

X

X = aaa(bbbb)*ccc

b20

c13
c12

c20

a12

a11

a13

b13

c12
c11

c13

a11

a10

a12

b12

c11
c10

c12

a10

a03

a11

b11

c10
c03

c11

a03

a02

a10

Y

Y = aaa(b)*ccc

Fig. 8. Examples of the zero-or-more regular expression operation in the scaled
TSM architecture

do not change the alignment of the immediately following substring “ccc”, the
pattern matchers do not cross over to the other parallel matchers. In the example
in figure 8b, the “*” is operating on the single character string “b”. In this case,
the substring in the “*” operation is a single character. Therefore, every iteration
of “b” would change the expected alignment for the “ccc” substring. As a result,
every matcher is connected to its adjacent matcher.

The above examples are regular expressions that are less than or equal to the
width of the pipeline. However, our architecture is not restrictive. For substrings
that are greater than the width of the pipeline, the substring can simply be broken
down into smaller substrings while still applying the rules described in the previous
sections. The example in figure 9 shows the iterative loop required for a regular
expression operation that is larger than the pipeline width.

a
11

b
10

b
03

a
02

c
11

d
10

d
03

c
02

Fig. 9. TSM architecture for ...“(abbacddc)*”...

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 11

3.5 Implementation

Using an automatic VHDL generator, we generated hardware for five of the pattern
matching architectures described in this paper. The architectures implemented
in this section include the 8-bit regular expression chain1, the 8-bit and 32-bit
pipelined character grid2, and the 8-bit and 32-bit version of timed segment matcher
architectures. To evaluate the five architectures, each was generated with five
different pattern sets. The pattern sets range in size from 300 bytes to 3000 bytes.

Additionally, we generated architectures that scan for full regular expressions
using the 8-bit regular expression chain, and the 8-bit and 32-bit timed segment
matcher architectures. The regular expressions were randomly generated in the
form of “abcd(efgh)*ij”. Because the 8-bit and 32-bit pipelined character grid
architectures don’t support regular expressions, no regular expression hardware
was generated for those architectures.

3.5.1 Area and Performance. The hardware for each pattern set was synthesized
and placed and routed on the Xilinx Virtex 4 LX200 -11 chips. For synthesis, we
used Synplicity’s Synplify Pro v8.1. Placing and routing was completed using
version 7.1 of the Xilinx back-end tools. Tables I and II, show the complete results
for all the different architectures for each of the pattern sets we implemented.

8-bit Input (1 Character Wide)

Regex Chain Pipelined Grid TSM

# of
Chars

Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs

300 436 3.49 319 1.06 471 438 3.50 172 0.57 730 432 3.46 168 0.56 600

600 433 3.46 572 0.95 747 399 3.19 266 0.44 1032 429 3.43 290 0.48 864

1200 441 3.53 1016 0.85 1212 436 3.49 422 0.35 1508 430 3.44 504 0.42 1289

2100 426 3.41 1672 0.80 1886 403 3.22 684 0.33 2197 435 3.48 856 0.41 1921

3000 411 3.29 2287 0.76 2503 420 3.36 931 0.31 2818 432 3.46 1202 0.40 2497

8-bit Input (1 Character Wide)

Regex Chain Pipelined Grid TSM

# of
Chars

Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs

300 436 3.49 319 1.06 471 438 3.50 172 0.57 730 432 3.46 168 0.56 600

600 433 3.46 572 0.95 747 399 3.19 266 0.44 1032 429 3.43 290 0.48 864

1200 441 3.53 1016 0.85 1212 436 3.49 422 0.35 1508 430 3.44 504 0.42 1289

2100 426 3.41 1672 0.80 1886 403 3.22 684 0.33 2197 435 3.48 856 0.41 1921

3000 411 3.29 2287 0.76 2503 420 3.36 931 0.31 2818 432 3.46 1202 0.40 2497

Table I. Device utilization for pipelined regular expression chain and pipelined
character grid architectures

32-bit Input (4 Characters Wide)

Pipelined Grid TSM

# of
Chars

Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs

300 398 12.74 586 1.95 1609 403 12.90 542 1.81 1153

600 382 12.21 913 1.52 2292 391 12.52 942 1.57 1731

1200 368 11.76 1511 1.26 3426 395 12.64 1676 1.40 2766

2100 377 12.05 2433 1.16 5049 374 11.98 2773 1.32 4315

3000 359 11.48 3372 1.12 6576 384 12.29 3832 1.28 5831

32-bit Input (4 Characters Wide)

Pipelined Grid TSM

# of
Chars

Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs
Freq
MHz

TP
Gbps

LUTs
LUTs
/Byte

DFFs

300 398 12.74 586 1.95 1609 403 12.90 542 1.81 1153

600 382 12.21 913 1.52 2292 391 12.52 942 1.57 1731

1200 368 11.76 1511 1.26 3426 395 12.64 1676 1.40 2766

2100 377 12.05 2433 1.16 5049 374 11.98 2773 1.32 4315

3000 359 11.48 3372 1.12 6576 384 12.29 3832 1.28 5831

Table II. Device utilization for the architectures

1Implemented as described by Sidhu [R. Sidhu and V. K. Prasanna 2001]
2Implemented as described by Baker [Baker and Prasanna 2004]

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



12 · Moscola, Cho, Lockwood

As with the regular expression chain and pipelined character grid, our TSM
architecture allows for very high clock frequencies. Both the 8-bit and 32-bit TSM
architectures are capable of running at similar clock frequencies to those of the
equivalent size chain or pipelined grid architectures. These high clock frequencies
translate to bandwidths of up to 3.46 Gbps for the 8-bit architecture and 12.90
Gbps for the 32-bit architecture. It is worth noting that as the size of pattern sets
increase, the clock frequency for all of the different architectures decreases slightly.
This decrease in frequency is attributed to the increasing fanout of the decoded
character bits as the size of the pattern set increases.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

300 800 1300 1800 2300 2800

N
u

m
b

er
 o

f 
L

U
T

s

Number of Pattern Bytes

8-bit chain 8-bit pipeline 8-bit TSM 32-bit pipeline 32-bit TSM

Fig. 10. LUTs vs. Number of Pattern Bytes

Including all of the decoder logic, the 8-bit TSM architecture utilizes only 0.40
LUTs/byte of the pattern for the 3000 byte pattern set. This is almost half the
size of the regular expression chain architecture which requires 0.76 LUTs/byte for
the same pattern set. The 8-bit pipelined character grid is slightly smaller than
the TSM architecture, requiring only 0.31 LUTs/byte. The 32-bit TSM architec-
ture and the 32-bit pipelined character grid are also similar in size requiring 1.28
LUTs/byte and 1.12 LUTs/byte respectively. The graph in figure 10 shows the
number of LUTs required by each of the different architectures. The graph shows
that the LUT resource requirement for the 8-bit regular expression chain is sig-
nificantly larger than either of the other two 8-bit architectures. The 8-bit TSM
architecture, while slightly larger than the 8-bit pipelined character grid, manages
to stay close in size even with the added ability to do regular expression pattern
matching.

The number of LUTs/byte achieved by all of the architectures decreases as the
size of the pattern set increases. This is because as the size of the pattern set
increases, all of the decoder logic required by the architectures becomes a smaller
and smaller percentage of the overall logic required. This means that the number
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 13

0.00

0.50

1.00

1.50

2.00

2.50

300 800 1300 1800 2300 2800

L
U

T
s 

p
er

 B
yt

e

Number of Pattern Bytes

8-bit chain 8-bit pipeline 8-bit TSM 32-bit pipeline 32-bit TSM

Fig. 11. LUTs/Byte vs. Number of Pattern Bytes

0

1000

2000

3000

4000

5000

6000

7000

300 800 1300 1800 2300 2800

N
u

m
b

er
 o

f 
D

F
F

s

Number of Pattern Bytes

8-bit chain 8-bit pipeline 8-bit TSM 32-bit pipeline 32-bit TSM

Fig. 12. DFFs vs. Number of Pattern Bytes

of LUTs/byte for all of the architectures will asymptotically approach some value
representing the minimum space requirements achievable by the architecture as
shown in figure 11. The graph also shows that the lowest LUT resource utilization
for the 8-bit and 32-bit TSM architectures are comparable to that of the 8-bit and
32-bit pipelined character grid architectures.

The timed segment matching designs are the smallest architecture in terms if D-
flip flop (DFF) utilization. For the largest pattern set, the 8-bit TSM architecture
requires fewer DFFs than either of the other two 8-bit architectures. The 32-bit

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



14 · Moscola, Cho, Lockwood

TSM architecture also requires fewer DFFs than the 32-bit pipelined character grid
as shown in figure 12.

By calculating trend lines for both the number of LUTs and DFFs required for
each architecture, it becomes clear that the DFFs are the limiting factor in the
number of pattern bytes that can be programmed into the FPGA. Therefore, by
having a smaller DFF resource requirement, the TSM architecture will be able to
scan for larger pattern sets than both the regular expression chain and the pipelined
character grid architecture. Using the trend line, the maximum number of strings
that the Xilinx Virtex 4 LX200 FPGA can accommodate can be calculated to be
approximately 31K patterns given that the patterns have an average length of 8
bytes.

In addition to fixed strings, we generated regular expression pattern matchers
using the 8-bit regular expression chain, and the 8-bit and 32-bit timed segment
matcher architectures. Each architecture was generated to scan for 300 regular
expression patterns in the form “abcd(efgh)*ij”. The results for the architectures
are shown in table III.

8-bit Input (1 Character Wide) 32-bit Input (4 Characters Wide)

Regex Chain Pipelined Grid TSM Pipelined Grid TSM

LUTs 2913 N/A 1409 N/A 6676

DFFs 3087 N/A 1748 N/A 5395

8-bit Input (1 Character Wide) 32-bit Input (4 Characters Wide)

Regex Chain Pipelined Grid TSM Pipelined Grid TSM

LUTs 2913 N/A 1409 N/A 6676

DFFs 3087 N/A 1748 N/A 5395

Table III. Device utilization when scanning for regular expressions

The results clearly show that 8-bit TSM architecture is much smaller than the
8-bit chain architecture in both LUT and DFF resource utilization when scanning
for regular expressions.

4. HARDWARE-ACCELERATED LANGUAGE PARSING

While pattern matching may be sufficient for applications such as network intrusion
detection systems and spam filters, it may not powerful or expressive enough for
many other applications. One such application is content-based routing. When
a spam filter detects a false positive the end result may be that a valid email is
incorrectly labeled as spam. However, false positives in a content-based router may
have many undesirable affects, including improperly routed packets, excessively
high latencies, packets that never reach their destinations, and networks that are
bogged down by incorrectly multicasted packets. By incorporating a parser into
the network we can achieve a higher level of understanding of streaming data.
This higher level of understanding can reduce the number of false positives and
help to alleviate the previously mentioned problems. The remainder of this section
describes an architecture that can add semantic meaning to patterns that are found
within streaming data.

4.1 Fast Regular Language Parser

Unlike other parsers which use a table to look up the next state of the parser, our
regular language parser converts the rules of a regular grammar into a nondeter-
ministic finite automaton (NFA) [Moscola et al. 2006c]. Representing the grammar
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 15

as an NFA has two main benefits. First, it allows the grammar to be converted
into a highly pipelined logic structure that can be mapped directly onto an FPGA.
Using FPGA logic, as opposed to memory, allows for higher throughput. An NFA
representation also allows the parser to exploit the parallelism of the FPGA by
exploring all possible parsing paths in parallel. Additionally, an NFA generally has
fewer states than its deterministic counterpart, thus allowing for a more compact
representation.

changelonger  no  and  , until

][][][  then           

)1 if(or   all are  if         

][][][  then           

) if(or   all are  if         

][  ][][  then           

)1 if(or   all are  if        

1from jeach  ,to1fromeachFor 

][hen          t

 )0if(or  nullable all areif

productioneach For 

repeat

}{][

symbol naleach termiFor 

11

1

11

1

1

nullableFOLLOWFIRST

YFIRSTYFOLLOWYFOLLOW

=ji+nullable ... YY

XFOLLOWYFOLLOWYFOLLOW

i=knullable ... YY

YFIRSTXFIRSTXFIRST

i=nullable ... YY 

 to k i+ k   i       

trueXnullable

 k=  ... Y Y      

 ... YY X   

ZZFIRST

 Z

jii

ji

ii

ki

i

i

k

k

∪←

∪←

∪←

←

→

←

−+

+

−

Fig. 13. Algorithm for finding FIRST () and FOLLOW () sets from a production list

To model the grammar as an NFA, we use the well-known FIRST and FOLLOW
set algorithms for predicative parsers [Aho et al. 1986]. These algorithms accept a
grammar as input and output all the information necessary to construct an NFA.
As defined in [Appel 1998], FIRST (α) is the set of all terminal symbols that can
begin any string derived from α. FOLLOW (α) is defined as the set of terminal
symbols that can immediately follow α. The FIRST and FOLLOW set algorithms
are shown in figure 13. To illustrate these algorithms, we use the sample grammar
shown in figure 14. The FIRST and FOLLOW sets for this grammar are displayed
in a table in figure 15.

Using the FIRST and FOLLOW sets, an NFA for the grammar can be con-
structed as follows. First, a state is created for each of the terminal symbols in
the grammar, including the end-of-input symbol ($) which represents the accepting
state. In the sample grammar, the terminal symbols are received, from, by and
done. Then, for each terminal symbol, a transition is created to each of the termi-
nal symbols in its FOLLOW set. Finally, the start states (multiple start states are
possible) are identified. The FIRST set of the starting symbol identifies all of the
terminal symbols that can start the grammar. The corresponding state for each

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



16 · Moscola, Cho, Lockwood

Fig. 14. Sample regular grammar

Fig. 15. FIRST and FOLLOW sets for symbols

in the grammar

received received

from

by

done

rq

fq bq

d
q

$
q

Fig. 16. NFA for grammar in figure 14

received

from by

start

done

accept

primitve

Fig. 17. Hardware parser for grammar shown in

figure 14

starting symbols is identified as a starting state. Figure 16 shows the NFA for the
sample grammar in figure 14.

A similar approach can be used to map the grammar directly into hardware. To
build the hardware logic for the regular language parser, each terminal symbol in the
grammar is represented using a simple primitive. The primitive, which can be seen
in figure 17, consists of a single register and an AND gate. The inputs to each of the
AND gates include the current state of the primitive (i.e. the output of the register)
and a detection signal from a pattern matcher. When the pattern matcher detects
a string which is representative of a terminal symbol in the grammar, it asserts
a signal which is connected to the AND gate of the primitive for that symbol.
The output of each AND gate represents a transition in the state of the grammar.
Transitions are again determined from the FOLLOW sets of each of the terminal
symbols in the grammar. The output of an AND gate for a terminal symbol is
routed to the input of each of the primitives in its FOLLOW set. If the register
of a primitive requires multiple inputs, an OR gate is used to combine the inputs
into a single input for the primitive. As with the NFA model, the FIRST set of the
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 17

starting symbol of the grammar provides the initial input to the parsing structure.
This input can be asserted at the beginning of a data stream to initialize the parsing
structure.

While this technique does work for the grammar shown in figure 14, it may not
work for all regular grammars. For example, adding the rule S → not received
done to the grammar results in the addition of done into the FOLLOW set of
received. This, in turn, results in the addition of a connection between the output
of the received primitive and the input of the done primitive in figure 17. The
addition of this connection results in a parsing structure that accepts invalid inputs.
For example, the new parsing structure accepts the input received done, which is
not defined by the grammar. To alleviate this problem, the original grammar can
be modified by making each occurrence of a terminal symbol a unique symbol that
is assigned its own primitive in the parsing structure. To illustrate, figure 18 shows
the original grammar after adding the rule S → not received done and making
each terminal symbol unique.

Fig. 18. Sample grammar for a regular language

start

done1

accept

done2

received1

not1

by1

received3

from1

2received

Fig. 19. Hardware parser for grammar in
figure 18

start

accept

received1

1

by1from1

donez

receivedz not

Fig. 20. Simplified parsing structure for grammar
in figure 18

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



18 · Moscola, Cho, Lockwood

The parsing structure that is generated for this new grammar using the FIRST
and FOLLOW set technique described earlier is shown in figure 19. Note that there
is now a primitive for each occurrence of each terminal symbol in the grammar and
the structure only accepts the intended language. This structure can subsequently
be minimized to decrease the number of primitives required for the parsing struc-
ture. For each terminal symbol X, if the input sets to Xi and Xj are equivalent, the
primitives for Xi and Xj can be merged into a single primitive. This can be seen
in figures 19 and 20 where received2 and received3 are merged into receivedz.
Primitives for terminal symbols Xi and Xj can also be merged if the FOLLOW
sets of Xi and Xj are equivalent. This is shown in figures 19 and 20 where done1

and done2 are merged into donez. Figure 20 shows the parsing structure for the
grammar in figure 18 after being minimized.

When combined with a pattern matcher, the hardware parser described in this
section is capable of maintaining the state of a data stream. While doing so, the
parser can also forward pattern information along with the state of the parsing
structure for each pattern to a back-end for further processing. The back-end can
utilize this information to take appropriate actions for the desired application. The
following section describes how this technique can be used to develop intelligent
network applications.

5. CONTENT-BASED ROUTING MODULE

To help illustrate our hardware-based parsing technique and how it can be used
in intelligent network applications, this section describes the implementation of a
content-based router using the fast regular language parser presented in section 4.1
[Moscola et al. 2006a]. Our architecture for content-based routing can route packets
with many different formats. Instead of routing packets based simply on strings
that appear within the packet, our architecture parses the entire packet payload.
Packet formats to be routed are specified using grammars. In this paper we illus-
trate how our architecture is configured and used to route XML packets. Since its
introduction, XML has become the format of choice for exchanging information over
networks. Additionally, we choose XML because there are many grammars already
available for XML messages in the form of document type definitions (DTD).

<!ELEMENT card      (routekey, name, title?, phone?)>
<!ELEMENT routekey  (#PCDATA)>
<!ELEMENT name      ((first, last) | (last, first))>
<!ELEMENT first     (#PCDATA)>
<!ELEMENT last      (#PCDATA)>
<!ELEMENT title     (#PCDATA)>
<!ELEMENT phone     (#PCDATA)>

Fig. 21. DTD for example implementation

Figure 21 shows an example DTD which represents a simple business card. It
contains fields for a first name, a last name, a title, and a phone number. Addi-
tionally, the DTD contains a routekey field which indicates which field the router
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 19

STRING [a-zA-Z0-9-]+
%%
card:       "<card>" routekey name title phone "</card>"
routekey:   "<routekey>" route "</routekey>"
route:       routefirst | routelast
routefirst: "first"
routelast:  "last"
name:       "<name>" nameN "</name>"
nameN:       nameFL | nameLF
nameFL:      firstFL lastFL
nameLF:      lastLF firstLF
firstFL:    "<first>" STRING "</first>"
lastFL:     "<last>" STRING "</last>"
lastLF:     "<last>" STRING "</last>"
firstLF:    "<first>" STRING "</first>"
title:      "<title>" STRING "</title>" | 
phone:      "<phone>" STRING "</phone>" | 
%%

ε
ε

Fig. 22. Lex/Yacc style grammar

should use for routing. We will use this DTD throughout the remainder of this
section to illustrate our content-based router architecture.

Prior to generating the hardware to parse the DTD in figure 21, we first convert
the DTD into a Lex/Yacc style grammar. The Lex/Yacc style grammar is shown in
figure 22. This grammar is then passed into a custom compiler which automatically
generates the VHDL required for the pattern matcher and the parsing structure.
The layout of the main components of the architecture, including a pattern matcher,
a parsing structure, and a routing module, is shown in figure 23.

Pattern
Matcher

...

Grammar

Parsing
Structure

data
packets

32
Pattern
FIFO

...

Patterns

Routing
Module

data
packets

Fig. 23. Content-based router architecture

5.1 Parsing Structure

The parsing structure defines the semantics of patterns as they are detected by
the pattern matcher. The hardware logic for the parsing structure is determined
from the input grammar using the FOLLOW set algorithm as described in section

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



20 · Moscola, Cho, Lockwood

4.1. The FOLLOW set for our content-based router grammar is shown in figure
24. The resulting parsing structure for our content-based router implementation is
illustrated in figure 25.

FOLLOW SetPatterns

</card></phone>

<phone>, </card></title>

<last>1</first>1

<first>2</last>2

</first>1, </last>1, </first>2, 
</last>2, </title>, </phone>

STRING

<title>, <phone>, </card></name>

</name></last>1, </first>2

STRING
<first>1, <last>1, <first>2, 
<last>2, <title>, <phone> 

<first>1, <last>1<name>

<name></routekey>

</routekey>first, last

first, last<routekey>

<routekey><card>

FOLLOW SetPatterns

</card></phone>

<phone>, </card></title>

<last>1</first>1

<first>2</last>2

</first>1, </last>1, </first>2, 
</last>2, </title>, </phone>

STRING

<title>, <phone>, </card></name>

</name></last>1, </first>2

STRING
<first>1, <last>1, <first>2, 
<last>2, <title>, <phone> 

<first>1, <last>1<name>

<name></routekey>

</routekey>first, last

first, last<routekey>

<routekey><card>

Fig. 24. FOLLOW sets for content-based router grammar

start
of packet

<card>

<routekey>

first last

</routekey>

<first>

STRING
P7

</first>

<last>

STRING

P6

P10

P9

P8

</last>
P11

Parsing Structure

P0

P1

P2 P3

P4

<name>
P5

<last>

STRING
P13

</last>

<first>

STRING

P12

P16

P15

P14

</first>
P17

</name>

<title>
P19

STRING

</title>

P18

P21

P20

<phone>

STRING
P23

</phone>

P22

P24

</card>

XML
valid

P25

1

1

1

1

1

1

2

2

2

2

2

2

Fig. 25. Diagram of parsing structure

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 21

The generated parsing structure processes packets one pattern at a time. At
the start of a packet, the starting register (register P0 in figure 25) is set. As
packets are processed, the parsing structure receives a signal from the pattern
matcher for each pattern that is found. These signals allow the parsing structure
to traverse through the grammar and maintain the semantics of the data stream.
During processing, all signals from the pattern matcher are sent downstream to the
routing module accompanied by the state of the parsing structure. The state of the
parsing structure indicates where in the grammar each pattern is found. Knowing
where in the grammar a pattern is found allows the routing module to make more
intelligent decisions. To better understand this, consider that the parsing structure
in figure 25 is searching for several instances of STRING. However, if the router is
configured to route on a first name, only STRING values that occur at register P7
or P16 should affect the action that the router takes. Other occurrences of STRING,
those at P10, P13, P20, and P23, should not affect the action taken by the content
based router. Without parsing the entire data stream and maintaining the context
of where each STRING value occurs, this behavior is not possible.

5.1.1 Validating XML Input. To avoid routing invalid or malformed XML mes-
sages, our content-based router validates all XML messages prior to routing them.
As shown in figure 25, an XML valid signal is asserted when the parsing structure
successfully traverses through the entire grammar. The XML valid signal is for-
warded to the routing module which can subsequently take the appropriate routing
action on the XML message.

5.2 Routing Module

The routing module, shown in figure 26, is responsible for modifying the IP header of
each packet to route the packet to the appropriate destination. As packets enter the
content-based router they are buffered in the routing module until the packet has
been completely processed. Prior to routing any packet, the routing module verifies
that the packet is the correct format. Most importantly, this entails validating the
XML message. XML messages that do not strictly adhere to the grammar provided
will not be rerouted by the module. Optionally, the module can also check for
specific IP address and port ranges prior to routing.

For our example implementation, we want to route packets based on the first
character of either the first name or the last name specified in the XML message.
The routekey value specifies which name to use for routing. A series of control
signals received from the pattern matcher and the parsing module allow the routing
module to route packets accordingly. These control signals are described below and
can be seen in figure 26.

The value routefirst is enabled by the parsing structure when register P2 is
set and the pattern first is detected by the pattern matcher. This value indicates
that the packet should be routed according to the first name in the XML message.
Similarly, the value routelast is enabled when register P3 is set and the pattern
last is detected. It indicates that the packet should be routed according to the
last name in the XML message. These values stay enabled for the duration of the
packet.

The firstSTRING value is enabled by the parsing structure when either register
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



22 · Moscola, Cho, Lockwood

routefirst

firstSTRING

routelast

lastSTRING

Routing Module

IP valid
Port valid

XML valid reroute
packet

route character E

route data

D Q
8

Route Table

dest. IP

Packet Buffer

data
packets

32
output

controller

data
packets

Fig. 26. Diagram of routing module

P7 or register P16 are set and a STRING pattern is detected by the pattern matcher.
Similarly, the lastSTRING value is enabled when either register P10 or P13 are set
and a STRING pattern is detected. The firstSTRING and lastSTRING values are
only valid for a single clock cycle. During this clock cycle, the first character of the
STRING pattern (the route character) is forwarded to the routing module and
stored. This value is then used to address a routing table which determines the
next destination of the packet being processed.

Once a packet has been fully processed, the output controller reads the packet
from the packet buffer for output. If the packet contains a valid XML message (and
optionally, IP address and port ranges), then the IP header is rewritten with the
new destination address as it is output.

5.3 Implementation and Experimental Setup

The content-based router described in this paper was fully implemented and tested
on the Xilinx Virtex XCV2000E FPGA on the FPX platform. The FPX was
integrated into a Global Velocity GVS-1000 chassis. A photograph of an FPX and
the GVS-1000 chassis is shown in figure 27.

The GVS-1000 has two bidirectional gigabit interfaces for passing traffic into the
FPX. To test our content-based router architecture, each of the gigabit interfaces on
the GVS-1000 were connected to a different host machines. One machine was used
to generate and send XML messages into the content-based router. The second
machine was used as a receiver for routed messages. Since only two machines
were used for our experiments, we routed XML messages to different ports on the
receiving machine based on the message content. Both Ethereal and a small counter
application were used to verify XML messages arrived at the correct destination
port on the receiving machine.
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 23

Fig. 27. FPX and GVS-1000 chassis

5.4 Area and Performance

For this application our maximum clock frequency is limited to 100 MHz by the
protocol processing infrastructure. At this speed our content-based router can
achieve a maximum throughput of 3.2 Gbps. Without the protocol wrappers, the
core of the content-based router architecture can achieve frequencies over 200 MHz.
At this speed the content-based router can route XML data messages at over 6.4
Gbps.

The content-based router requires 3751 slice flip flops, approximately 9% of the
available flip flop resources. The architecture requires 3058 4-input LUTs, approx-
imately 7% of the available LUT resources.

The infrastructure for protocol processing alone requires 2623 slice flip flops and
2196 4-input LUTs. This is approximately 6% and 5% of the available flip flop and
LUT resources respectively.

The core of the content-based router (without the protocol processing infras-
tructure) requires approximately 1128 slice flip flops and 862 4-input LUTs. This
is approximately 2.9% and 2.2% of the available flip flop and LUT resources re-
spectively. Such a small space requirement for the core of the routing architecture
means we can fit much larger and/or many more grammars on the FPGA.

6. CONCLUSION

In this paper we described a new architecture for a scalable regular expression
pattern matcher. By studying the advantages of the pipelined regular expression
chain and the character grid architectures, we have created a novel pattern matching
architecture. Several pattern matching architectures were implemented on a Xilinx
Virtex 4 LX200 FPGA and compared. Our TSM architecture is capable of running
at over 400 MHz and processing regular expression patterns at up to 12.90 Gbps.

Additionally, we presented a parsing architecture that can be automatically gen-
erated from regular grammars. We illustrated how the regular language parser
can be used to implement a content-based router. The content-based router was
implemented and tested in the Xilinx Virtex XCV2000E FPGA on the FPX plat-
form. The architecture was placed and routed at 100 MHz and can process XML
messages at 3.2 Gbps. Without the infrastructure required for protocol processing,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



24 · Moscola, Cho, Lockwood

the content-based router architecture is capable of running at over 200 MHz and
processing XML messages at over 6.4 Gbps.

REFERENCES

Aho, A., Sethi, R., and Ullman, J. 1986. Compilers: Principles and Techniques and Tools.

Addison-Wesley.

Appel, A. W. 1998. Modern Compiler Implementation in Java. Cambridge University Press.

Baker, Z. and Hong-Jip Jung, V. K. P. 2006. Regular Expression Software Deceleration for In-
trusion Detection Systems. In Proceedings of International Conference on Field-Programmable

Logic and Applications (FPL). Madrid, Spain.

Baker, Z. K. and Prasanna, V. K. 2004. A Methodology for Synthesis of Efficient Intrusion
Detection Systems on FPGAs. In IEEE Symposium on Field-Programmable Custom Computing

Machines. IEEE, Napa Valley, CA.

Bispo, J., Sourdis, I., Cardoso, J. M., and Vassiliadis, S. 2006. Regular Expression Matching
for Reconfigurable Packet Inspection. In Proceedings of International Conference on Field

Programmable Technology (FPT). Bangkok, Thailand.

Cho, Y. H. and Mangione-Smith, W. H. 2005. High-Performance Context-Free Parser for

Polymorphic Malware Detection. In Advanced Networking and Communications Hardware

Workshop. Lecture Notes in Computer Science (LNCS), Madison, WI.

Cho, Y. H., Navab, S., and Mangione-Smith, W. H. 2002. Specialized Hardware for Deep

Network Packet Filtering. In 12th Conference on Field Programmable Logic and Applications.

Springer-Verlag, Montpellier, France, 452–461.

Ciressan, C., Sanchez, E., Rajman, M., and Chappelier, J.-C. 2000. An FPGA-Based Co-

processor for the Parsing of Context-Free Grammars. In Proceedings of IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM). Napa, CA.

Clark, C. R. and Schimmel, D. E. 2003. Efficient Reconfigurable Logic Circuits for Matching

Complex Network Intrusion Detection Patterns. In International Conference on Field Pro-
grammable Logic and Applications (FPL). Lisbon, Portugal, 956–959.

Cristian-Raul, C., Eduardo, S., and Martin, R. 2001. An FPGA-Based Syntactic Parser for

Real-Life Unrestricted Context-Free Grammars. Technical Report No. 01/373 01/373, Swiss
Federal Institute of Technology (EPFL), Lausanne (Switzerland). October.

Franklin, R., Carver, D., and Hutchings, B. L. 2002. Assisting Network Intrusion Detection

with Reconfigurable Hardware. In IEEE Symposium on Field-programmable Custom Comput-
ing Machines. IEEE, Napa Valley, CA.

Koulouris, A., Koziris, N., Andronokos, T., Papakonstantinou, G., and Tsanakas, P. 1998.
A Parallel Parsing VLSI Architecture for Arbitrary Context Free Grammars. In Proceedings of

International Conference on Parallel and Distributed Systems (ICPADS). Tainan, Taiwan.

Moscola, J., Cho, Y. H., and Lockwood, J. W. 2006a. A Reconfigurable Architecture for
Multi-Gigabit Speed Content-Based Routing. In Proceedings of Hot Interconnects 14 (HotI).

Stanford, CA, USA.

Moscola, J., Cho, Y. H., and Lockwood, J. W. 2006b. Fast Semantic based Identification
of Regular Expressions using Reconfigurable Devices. In submitted to IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM). Napa, CA.

Moscola, J., Cho, Y. H., and Lockwood, J. W. 2006c. Reconfigurable Context-Free Grammar

based Data Processing Hardware with Error Recovery. In Proceedings of International Parallel
& Distributed Processing Symposium (IPDPS/RAW). Rhodes Island, Greece.

Moscola, J., Lockwood, J., Loui, R., and Pachos, M. 2003. Implementation of a Content-
Scanning Module for an Internet Firewall. In IEEE Symposium on Field-Programmable Custom

Computing Machines. IEEE, Napa Valley, CA.

R. Sidhu and V. K. Prasanna. 2001. Fast Regular Expression Matching using FPGAs. In IEEE

Symposium on Field-Programmable Custom Computing Machines. IEEE, Napa Valley, CA.

Roesch, M. 1999. Snort - Lightweight Intrusion Detection for Networks. In USENIX LISA 1999

conference. USENIX, http://www.snort.org/.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.



Hardware-Accelerated Language Parser · 25

Sourdis, I. and Pnevmatikatos, D. 2003. Fast, Large-Scale String Match for a 10Gbps FPGA-

based Network Intrusion Detection System. In 13th Conference on Field Programmable Logic
and Applications. Springer-Verlag, Lisbon, Portugal.

Received August 2006; March 2007; August 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2007.


