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Modern networks process and forward an increasingly large volume of traffic and the rate of 

growth of the traffic often outpaces the improvements in the processor, memory and software 

technology. In order for networking equipment to maintain an acceptable performance, there is 

a need for architectural enhancements and novel algorithms to efficiently implement the various 

network features. In this thesis, we focus on two core network features namely: i) IP packet 

forwarding, and ii) packet content inspection. We thoroughly investigate the existing methods to 

realize these two features and evaluate their usability on modern implementation platforms like 

network processors. Afterwards, we introduce a number of novel algorithms which not only 

improve the performance theoretically, but also better utilize the capabilities available with the 

modern hardware. The major contributions of this work include the design and architecture of 

an ASIC to perform longest prefix match operations on packet headers that uses substantially 

less memory, an embedded memory based design for regular expressions based packet content 

inspection, and a general purpose algorithm to cost-efficiently implement regular expressions 

signatures used in current security systems. We evaluate the proposed algorithms using network 

processor platforms and cycle accurate ASIC models, which provides us a first order estimate of 

the usability of our methods. 
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Chapter 1 

 

Introduction 
 

The Internet has undergone profound transformation during the last decade. What 

started as a fairly simple data network used mostly by computer researchers, has become 

a global communications medium with mission-critical importance for the national and 

international economies and society. The number of Internet users is continuously 

growing and new Internet services are rapidly emerging, which are driving the Internet 

traffic volume to new levels. The growth in the Internet traffic is outpacing the rate at 

which hardware and memory technologies advance. New complications unanticipated 

by the original designers of the Internet are also arising in the form of erosion of 

trustworthiness, security threats, widespread use of mobility, etc, which often requires 

complex workarounds at both the protocol and the infrastructure level. These are 

introducing a variety of new challenges in the design and implementation of future 

networking equipment, which are already burdened with an increasingly large number of 

functions, and demanding performance pressures. 

 

This dissertation addresses some of these concerns by proposing an array of novel 

algorithms and methods to efficiently realize two key network functions – i) IP packet 

forwarding, and ii) packet content inspection – which are both challenging to implement 

and critical to the functioning of the Internet. Our solutions concentrate on using 

embedded memory in innovative ways that involve a combination of architectural and 

algorithmic techniques and advance the state-of-the-art in both performance and 

efficiency. Considerable attention has been paid to the current levels of embedded 

memory density and hardware support, and their future trends, thereby enabling the 

proposed solutions to remain useful in the foreseeable future. 
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1.1 Internet – The Beginning 
 

The Internet is a complex and vast networking infrastructure interconnecting millions 

of devices throughout the world, which provides services to numerous distributed 

applications. The roots of the Internet can be traced back to the development of packet 

switching [Baran et al. 1964] in the early 1960s. The communications infrastructures at 

that time were based primarily on circuit switching technologies. Unlike circuit 

switching, in which bits are the unit of information carriage and they are transmitted at 

constant intervals, packet switching employs packets of multiple bytes as the unit of 

information carriage. These packets are transferred between nodes over data links 

shared with other traffic. Due to the cross traffic, the packets may be buffered and 

queued in each node, which results in variable delay. 

 

Packet switching appeared to be an efficient approach to handle traffic originating from 

bursty sources like applications running on an array of computers. The early work of 

Leonard Kleinrock [Kleinrock 1964] laid the mathematical foundation of packet 

networks and elegantly demonstrated the effectiveness of packet switching. Later, Paul 

Baran, and Donald Davies independently developed detailed concepts of multi-node 

packet switching networks, utilizing the ideas of Kleinrock and packet queuing. The 

work of Baran and the promise of packet switching helped influence ARPANET, the 

world’s first operational packet switched network, to adopt the technology. In 1969, 

under the supervision of Kleinrock, the first packet switch, referred to as Interface 

Message Processors (IMPs), was installed at UCLA. Three additional IMPs were 

installed shortly thereafter and all four were interconnected to each other. By the end of 

1969, these four nodes constituted the direct ancestor of the current Internet. 

 

A number of applications were soon written for the ARPANET, including e-mail in 

1971, file transfer in 1973, and voice traffic in 1973. These applications helped spur the 
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growth of the APRANET; there were 9 nodes by 1970 and the APRPANET extended 

from the west coast of the U.S. to the east coast. By 1973, there were 40 nodes, and the 

ARPANET included two satellite links, to Hawaii and Norway across the Pacific and 

Atlantic oceans, respectively. During the same time frame, an array of proprietary 

networks were developed, to interconnect the computer systems within a limited 

geographical region, e.g. ALOHANET to link universities in Hawaii, and IBM’s SNA to 

connect the computing resources within a corporation. 

 

As the number of such networks grew, it became important to interconnect them. 

Vinton Cerf and Robert Kahn in 1974 developed an interconnection protocol, thereby 

paving the way to the network of networks concept and introduced the term internet. Since 

different networks used a diverse variety of links and communication methods, the 

interconnection required that everyone agree on at least one common protocol to 

communicate with each other. Transmission Control Protocol (TCP) developed by Cerf 

and Kahn became this common language for communicating over the interconnection 

network (Internet), and it became necessary for every host which is part of the Internet 

to implement this protocol. TCP provides reliable in-sequence delivery of data with end 

system retransmissions, and the basic mechanism has hardly changed since its inception. 

 

The introduction of TCP and the Internet Protocol (IP), which provides end-to-end 

packet delivery, the free and open access to its specifications and the early 

implementation helped the Internet to flourish. As the scale of the Internet increased, 

several major changes occurred to address the associated management issues. First, 

three network classes (class A, B and C) were introduced to accommodate the range of 

networks of different sizes and number of hosts. Second, the hosts were assigned names 

that were much easier to remember than the IP addresses. The Hierarchical Domain 

Name System (DNS) was subsequently developed to resolve these host names into 

Internet addresses and Classless Inter-Domain Routing (CIDR) was deployed to enable 

efficient utilization and aggregation of the IP addresses. 
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The second phase of the Internet growth, which was much more rapid, started with the 

emergence of the World Wide Web developed by Tim Berners-Lee at CERN. The 

development of the graphical browser by Marc Andreessen at NCSA gave a significant 

boost to the popularity of the World Wide Web and its easy-to-use interface made the 

Internet a viable communication medium for the general public. Several independent 

commercial networks were built and interconnected and it became possible to route 

traffic from one continent to another without passing through the government funded 

Internet backbone. An array of new Internet Service Providers (ISPs) arrived to provide 

access to the Internet from home, much like telephone connections. As the number of 

users started to grow at phenomenal rates, a number of services emerged, like web 

based email, online messaging, peer to peer file sharing. A number of new businesses 

provided these services, often for free, which further boosted the popularity of the 

Internet. Today more than one billion people regularly use the Internet, and 

conservative estimates suggest that there are more than thirty billion pages on the World 

Wide Web. Today, the economic impact of the Internet is unparalleled and it has 

become the growth engine of the world’s economy. A study conducted in early 2000 

[Barua, Whinston, and Yin 2000] estimated that the Internet economy generated more 

than $500 billion worldwide and created several million jobs, and it has been growing at 

phenomenal rates since then. 

 

1.2 Internet – Current Infrastructure and 
Performance Challenges 

 

The current Internet provides connectivity to the end hosts via access networks. An 

access network may be a wireless or wired local area network or a residential ISP 

reachable via DSL, cable modem, or a dial-up modem. These access networks are 

situated at the edge of the Internet infrastructure, which is organized as a tiered 

hierarchy of ISPs. Access networks are at the bottom of the hierarchy; at the top is a 

relatively small number of tier-1 ISPs. Tier-1 ISPs, often referred as the Internet backbone 
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networks, have direct connectivity to each other and an international presence. They also 

provide connectivity to a large number of tier-2 ISPs and other customer networks. 

Tier-2 ISPs usually have regional or national coverage, and they are connected to a small 

number of tier-1 ISPs. While many large enterprise networks are connected directly to 

the tier-1 or tier-2 ISPs, most of the end user Internet connectivity is provided by tier-2 

or lower tier ISPs. 

 

Since the links of Tier-1 ISPs carry the bulk of the Internet traffic, nodes of the tier-1 

ISP network are built with the largest and the most capable routers, often called core 

routers. The current generation of core routers are capable of receiving, processing and 

transmitting traffic at hundreds of different interfaces simultaneously, with each 

interface operating in the range of 2.5 to 40 Gbps. The state-of-the-art Cisco Carrier 

Routing System (CRS-1) supports multi-chassis configurations that extend to more than 

2000 interfaces, each running at 40 Gbps, thereby providing an aggregate bandwidth of 

92 Tbps. In addition to these high performance core routers, a number of routing 

devices are used in the network, such as provider edge routers placed at the edge of an 

ISP network, inter-provider border routers which interconnect different ISPs, and 

access routers which are located at customer sites providing connectivity with the ISP. 

 

The performance of a network device is limited by its slowest component; thus in order 

for the device to meet a given level of performance, it is critical that that all its functions 

meet the performance goal. For example, a 10 Gbps data throughput can be achieved 

only if each and every function in the data path runs at a 10 Gbps rate. (Notice that, the 

functions along the data path are those that process every packet or a large fraction of 

total packets.) The data paths of the current high performance routing devices include a 

large variety of functions, which range from routine tasks such as IP address lookup, 

packet buffering, header checksum verification, policing, and marking, to advanced 

functions such as packet classification, fair queuing, and traffic shaping. Recently, there 

is a growing demand that the networking devices also examine the content of data 

packets in addition to the structured information present in the packet header in order 
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to provide application-specific services such as application-level load-balancing and 

security-oriented filtering based on signatures. Forwarding packets based on both 

header and content is challenging and it is becoming increasingly challenging for the 

equipment vendors to implement such functions at high rates. In the future, as the best-

effort Internet service model evolves and networks become more application aware, the 

difficulties are likely to exacerbate further. These rising difficulties can be attributed to a 

number of recent developments, which we can group into three main categories: 

 

• Growing traffic volume: One of the primary sources of difficulty is the ever-

increasing traffic volume. Internet traffic has grown at exponential rates in the 

past and shows no signs of decline. The growth in Internet penetration, the 

popularity of streaming video, and the arrival of high-definition media are likely 

to trigger unprecedented growth in traffic volumes in the near future, both 

within the network core and in the other parts such as network edge, and high 

user concentration sites (e.g. enterprise networks and metro area networks). As a 

wide range of high-bandwidth business and consumer services gain further 

momentum, ISPs will face a unique set of challenges to continuously upgrade 

their networking equipment to increase bandwidth and the higher number of 

interfaces. 

 

• Growing network functions: The second primary cause of the challenges is the 

continuously increasing number of functions which are integrated into the 

devices. While a number of researchers have advocated to keep the network 

core simple [Stoica 2001], network equipment providers continue to see value in 

integrating more and more functions into core networking components. It is 

now common for routers to examine the layer-4 and higher layer’s packet 

header as well as the packet content. In the future, routers are expected to 

thoroughly examine every portion of a packet before forwarding it, thereby 

adding substantial computation overhead. 
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• Increasing complexity: The last concern is the ever-increasing complexity of the 

functions that are incorporated into various devices; the increased complexity is 

due to two key factors. The first is the growing number of end hosts and 

intermediate nodes in the network, which leads to a higher number of address 

identifiers in use, adding complexity to the functions such as IP address lookup. 

The growing number of end-to-end flows also directly impacts the per-flow 

based functions such as stateful packet content inspection and fair queuing. The 

second factor is the constant upgrades and refinement of these functions, such 

as an increasing number of rules used to classify the packets to enable more 

fine-grained control of traffic, or rising number of virus signatures to combat 

increasing security threats. A higher number of classification rules, IP addresses 

or virus signatures requires larger amounts of memory and often also deteriorate 

the performance by requiring more computation and memory bandwidth. 

 

While advancements in fiber optics and signal transmission technologies such a Dense 

Wavelength Division Multiplexing (DWDM) today enable up to terabits/sec bandwidth 

over a single fiber, silicon hardware has been unable to keep up. The advances in 

semiconductor and systems technology are not solely sufficient to combat the above 

three trends and design the next generation networking equipments which are capable 

of providing the required levels of performance. There is a pressing need of 

architectural enhancements and new innovative algorithms that can efficiently 

implement the existing and newly introduced network functions, in order for the 

Internet to continue to evolve. 

 

There is another dimension, which arises due to the rapidly changing implementation 

platforms and evolution of new ones such as network processors. Early networking 

equipments used general purpose processors to implement most packet forwarding 

functions. As the link speeds have grown, it became necessary for high performance 

systems to employ ASICs to perform the key functions. ASIC solutions provide high 

performance, but they are generally difficult to update and reprogram. Network 
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processors, on the other hand, are software-programmable devices whose feature sets 

are specifically targeted for networking applications, and they provide a much greater 

degree of flexibility and programmability in implementing various network functions. 

Consequently, network processors are a desirable platform for implementing those 

services that are updated or upgraded frequently, while ASICs are preferable for 

implementing those that have been standardized and are unlikely to change, and which 

require significant amounts of computation. 

 

Both ASICs and network processors today are capable of integrating a variety of 

external and embedded memories of various capacities, running at different clock rates. 

Modern VLSI technology supports integration of more than a billion transistors 

[Burger, and Goodman 1997] in a single chip. It is now possible to support several large 

embedded memories on a single die; for example, IBM’s ASIC fabrication technology 

[IBM 2005] can integrate up to 300 Mbits of embedded memory on one chip. In the 

future, the available computing power and the quantity of embedded memories are 

likely to increase further. Network processors will integrate higher numbers of 

independent processing units, specialized accelerators, and on-chip memory modules. 

ASICs will become denser, capable of packing much faster and many more transistors. 

The increased computational capabilities and the higher density and diversity in the 

memory subsystem will offer new levels of challenges in efficiently utilizing them and 

open up unparalleled opportunities for enhancing the overall performance. 

 

To summarize, as the Internet continues to evolve, it is becoming increasingly difficult 

to implement high performance network devices due to the rapidly expanding feature 

sets and the pressing need to keep up with the increasing traffic volume. While the 

modern implementation platforms such as network processors and dense ASICs are 

capable of integrating abundant computing resources and on-chip memory, proper 

utilization and management of these parallel resources remains a challenging problem. 

An effective realization of network functions on these increasingly capable platforms 
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therefore will require a variety of techniques at both the architectural and the 

algorithmic level, which makes it an interesting research problem. 

 

1.3 Dissertation Focus – Main Contributions 
 

In this dissertation, we concentrate on two important classes of network functions. The 

first class consists of IP packet forwarding functions, such as header lookup and packet 

classification – the former determining the next hop for the packet and the latter 

prioritizing the packets. Packet header lookup is an integral component of every routing 

system; on the other hand, packet classification is frequently used in high performance 

systems to enable Differentiated Services and Quality of Service (QoS). The second 

class of functions we focus on is packet content inspection, which involves examination of 

the entire packet payload and matching it against a predefined set of patterns. Packet 

content inspection has recently experienced a rapid adoption in the emerging 

application layer packet forwarding applications and intrusion detection systems. 

 

Due to the importance and broad deployment of the aforementioned two classes of 

network functions, a collection of novel methods has been developed to efficiently 

implement them. In this dissertation, we comprehensively evaluate the existing state-of-

the-art methods and develop novel solutions, which improve upon them both in theory 

as well as in real implementation contexts. We introduce our solutions and the main 

contributions in the following sections. 

 

1.3.1 IP Packet Forwarding 
 

An Internet router processes and forwards incoming packets based upon the structured 

information found in the packet header. The next hop for the packet is determined after 

examining the destination IP address, which is often called IP address lookup. Several 

advanced services determine the treatment a packet receives at a router by examining 
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the combination of the source and destination IP addresses and ports; this operation is 

called packet classification. The distinction between IP lookup and packet classification is 

that IP lookup classifies a packet based on a single field in the header while packet 

classification classifies a packet based on multiple header fields. The central component 

of both functions consists of determining the longest prefix matching the header fields 

within a database of variable length prefixes. 

 

In this dissertation, we introduce two techniques to enable high performance longest 

prefix match operations. These methods use a trie data-structure which is a power 

efficient approach to implement longest prefix match. Our first contribution is a novel 

representation of tries, called History-based Encoding, eXecution and Addressing (HEXA) that 

uses implicit information present in a trie structure to locate the successor trie nodes, 

thereby significantly reducing the amount of information that must be stored explicitly. 

The key observation in HEXA is that for any given node of a trie there is only one path 

that leads to it, and this path is labeled by a unique string of symbols. Since the 

algorithms that traverse the trie know the symbols that have been used to reach a node, 

we can use this “history” to define the storage location of the node. Since no nodes 

have identical histories, each node can be mapped to a distinct storage location by 

hashing its history value; provided that we have a perfect hash function. In practice, 

however, devising a perfect hash function is difficult; HEXA therefore employs a few 

discriminating bits for every node, which are hashed along with their history values. 

Since the discriminating bits can be altered, it provides multiple choices of storage 

locations for a node. We find that the amount of discriminating information needed to 

enable a perfect hashing is just two bits, which leads to a binary trie representation that 

requires just two bytes per stored prefix for IPv4 routing tables with more than 100K 

prefixes, a 2-fold memory reduction compared to the state-of-the-art representations. 

 

The resulting memory compactness leads to higher performance in implementation 

contexts where there are small on-chip memories with ample memory bandwidth and 

larger off-chip memories with more limited bandwidth. These characteristics are 
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common in conventional implementation platforms such as general purpose processors, 

network processors, ASICs and FPGAs. 

 

Our second contribution is a novel embedded memory based pipelined trie, which 

delivers high lookup and update throughput. The proposed pipelined trie called Circular 

Adaptive and Monotonic Pipeline (CAMP) is different from a regular pipeline in that the 

memory stages are configured in a circular, multi-point access pipeline so that lookups 

can be initiated at any stage. At a high-level, when compared to a linear pipeline with 

static entry and exit stages, this multi-access and circular pipeline structure enables much 

more flexibility in mapping trie nodes to pipeline stages. 

 

CAMP exploits this flexibility in mapping algorithm by applying controlled prefix 

expansion on the first few levels of the trie to obtain a modest number of sub-tries. For 

example, an expansion of all IPv4 prefixes which are shorter than 8 bits to 8 bits would 

yield at most 256 sub-tries with maximum height of 24. Each of these sub-tries is 

mapped to our circular pipeline by first choosing a memory stage for the root of the 

sub-trie, and then assigning subsequent levels of the trie to subsequent stages in the 

pipeline, including a wrap around. By choosing mappings for all sub-tries judiciously—

and fairly simple heuristics are effective—the system can maintain uniform and near-

optimal memory utilization with high probability. Moreover, this balance is preserved 

after an extended period of inserts and deletes. Thus, the system eliminates the 

deficiencies of previous approaches, which were based on linear pipeline and static 

height- or level-based node mapping [Hasan, and Vijaykumar 2005] [Basu, and Narlikar 

2003] which often led to under-utilized memory. For real routing tables storing 100K 

prefixes, our approach can achieve 40Gbps throughput with a power consumption of 

0.3 Watts. Projections on 250 thousand prefix tables show a power consumption of 0.4 

Watts at the same throughput. 

 

To summarize, we propose two novel embedded memory based architectures to realize 

longest prefix match operations. The solutions called HEXA and CAMP are orthogonal 
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and together they can enable i) high performance by exploiting the abundant memory 

bandwidth available on-chip, and ii) efficiency by economically using the scarce on-chip 

memory resources. 

 

1.3.2 Packet Content Inspection 
 

Today, many critical network services handle packets based on payload. Traditionally, 

this packet content inspection has been limited to comparing packet content to sets of 

strings. State-of-the-art systems, however, are replacing string sets with regular 

expressions, due to their increased expressiveness. Several content inspection engines 

have recently migrated to regular expressions, including: Snort, Bro, 3Com’s 

TippingPoint X505, and various network security appliances from Cisco Systems. While 

flexible and expressive, regular expressions have traditionally required substantial 

amounts of memory, which severely limits performance in the networking context. In 

this dissertation, we introduce an array of novel techniques to efficiently implement 

regular expressions in networking. Our techniques are based upon innovative machines 

that are capable of recognizing regular expressions languages. 

 

Our first contribution is a representation of Deterministic Finite Automaton (DFA) that 

substantially reduces the number of transitions associated with each state, thereby 

reducing the memory and enabling a high performance embedded implementation. The 

key observation is that groups of states in a DFA often have very similar outgoing 

transitions and we can use this duplicate information to reduce memory requirements. 

For example, suppose there are two states s1 and s2 that make transitions to the same set 

of states, {S}, for some set of input characters, {C}. We can eliminate these transitions 

from one state, say s1, by introducing a default transition from s1 to s2 that is followed 

for all the characters in {C}. Essentially, s1 now only maintains unique next states for 

those transitions not common to s1 and s2 and uses the default transition to s2 for the 

common transitions. We refer to a DFA augmented with such default transitions as a 
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Delayed Input DFA (D2FA). In practice, the proper and effective construction of the 

default transitions leads to a tradeoff between the size of the DFA representation and 

the memory bandwidth required to traverse it. In a standard DFA, each input character 

leads to a single transition between states; in a D2FA, an input character can lead to 

multiple default transitions before it is consumed along a normal transition. 

 

The approach achieves a compression ratio of more than 95% on typical sets of regular 

expressions used in networking applications. Although each input character potentially 

requires multiple memory accesses, the high compression ratio enables the data-

structure to be stored in on-chip memory modules, where the increased bandwidth can 

be provided efficiently. To explore the feasibility of this approach, we describe a single-

chip architecture that employs a modest of amount of on-chip memory, organized in 

multiple independent modules in order to provide ample bandwidth. However, in order 

to deterministically traverse the automata at high rates, it is important that the memory 

modules are uniformly populated and accessed over any short period of time. To this 

end, we develop load balancing algorithms that map our compressed automata to the 

memory modules in such a way that deterministic worst-case performance can be 

guaranteed. Via experiments, we demonstrate that our algorithms can provide high 

parsing throughput while simultaneously traversing thousands of automata. 

 

Our second contribution is Content Addressed D2FA (CD2FA), which builds upon a 

D2FA. CD2FAs replace state identifiers of a D2FA with content labels that include part 

of the information that would normally be stored in the table entry for the state. This 

makes selected information available earlier in the state traversal process, which makes it 

possible to avoid unnecessary memory accesses. Specifically, a CD2FA requires a single 

memory access before consuming any given input character, thereby matching the 

performance of an uncompressed DFA, while simultaneously keeping a small number 

of transitions per state, thereby enabling a compact memory footprint. CD2FAs employ 

a perfect hashing technique to map the content labels to memory locations; thus the 

content labels are directly used to locate the table entry for the next state labels. This 
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avoids overheads such as explicitly storing the characters and state labels as hash keys, 

leading to additional memory reduction. 

 

Our third set of solutions to implement regular expressions is specific to network 

intrusion detection systems. A unique characteristic of these security systems is that the 

packet contents of normal traffic rarely match more than the first few characters of the 

patterns. Traditional patterns matchers however employ the entire signatures to 

construct the DFA, which creates DFA that is so large that off-chip memories are 

required to store it. This approach is wasteful; rather, the tail portions of the signatures 

can be isolated, and represented by a compact but slow structure such as an NFA. For 

normal traffic, the slow path will remain asleep, and activated during those anomalous 

situations when the packet content begins to match the entire signature. We introduce 

such a packet processing architecture which we call bifurcated packet processing, which splits 

the signatures into prefixes and suffixes. The splits are computed such that normal data 

streams will rarely match an entire prefix. Subsequently, the packet processing is divided 

into two components: fast path and slow path. The fast path parses the entire content 

of each flow and matches them against the prefixes of all signatures. The slow path 

parses only those flows which have found a match in the fast path, and matches them 

against those suffixes, whose corresponding prefixes are matched. 

 

Such a splitting into fast and slow path can enable high speed parsing economically. 

Signatures used in the fast path are small, thus they can be represented with fast 

structures such as a single composite DFA. Such a composite DFA would otherwise 

explode in size and become impractical if the entire signatures were used. The slow path 

signatures, on the other hand, will parse a small fraction of traffic, thus they can be 

implemented with slow but compact structures like an NFA. Based upon experiments 

carried out on real signatures drawn from a collection of networking systems, bifurcated 

packet processing can reduce the memory requirements by up to 100 times, while 

simultaneously enabling a two to three fold increase in the packet throughput. 
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To complement the bifurcated architecture and enable a high performance fast path 

implementation, we describe a new representation of regular expressions called History 

based Finite Automaton (H-FA), which consists of an automaton augmented with a 

history buffer. The contents of the history are read and updated during execution. Like 

in a NFA, the transition function in a H-FA may return multiple next states for certain 

states and input characters; however, only one next state from this set is chosen, which 

is decided by the history buffer; thus the transitions in a H-FA are conditional upon the 

state of the history buffer. Only one state is active at any time in a H-FA which enables 

it to yield a throughput equal to that of a DFA; besides, an appropriate construction of 

H-FA results in a dramatic reduction in the number of states over a DFA. We also 

describe a variant of H-FA called counting H-FA (H-cFA), which addresses the inability 

of table driven finite automata implementations to efficiently handle length restrictions 

specified for certain sub-expressions. A number of security signatures consist of length 

restrictions, thus H-cFA results in dramatic memory reductions in their implementation. 

 

To summarize, this dissertation makes several key contributions in the area of packet 

content inspection. First, it re-iterates the notion, albeit much more quantitatively, that 

the central issue in regular expressions implementations is the trade-off between space 

and time. At one end, DFA based techniques enable a single state of execution, but 

require prohibitive amounts of memory. At the other end, NFAs are compact but 

require multiple active states. To enable high performance, a small number of active 

states is desirable, thus DFAs are preferable. Small memories however clock at higher 

rates, which brings another dimension to the tradeoff: multiple active states can be 

acceptable if it reduces the memory significantly. A number of new representations are 

introduced that fall between the NFA and DFA on the tradeoff-curve, and take 

advantage of the higher clock rates provided by small memories. D2FAs enable up to 

100-fold memory reduction over DFA and enables higher parse rates by employing 

parallel embedded memories. CD2FAs are relatively less compact, 50-fold over DFA; 

however they enable parsing rates that surpass that of a DFA even without using 

multiple memories. A bifurcated packet content inspection architecture coupled with H-
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FA based machine has also been proposed that enable NIDS to attain high parsing 

performance at a much reduced implementation cost. 

 

1.4 Evaluation 
 

Our evaluation methodology consists of three components: the performance metrics 

that we use to characterize a solution, the workloads that are used to evaluate it, and the 

implementation platforms we consider. Below, we discuss each of these. 

 

1.4.1 Performance Metrics 
 

We use the following four key performance metrics to evaluate the solutions proposed 

in this dissertation. 

 

• Efficiency: We define efficiency as the inverse of the short- and long-term cost of 

the resources required to implement a function. For example, if the task is to 

implement IP lookup for 100,000 prefixes at OC192 rate, then the efficiency 

would depend upon both the short-term cost such as cost of memory and logic, 

and the long-term cost such as power dissipation and area required on the 

board. Efficiency is critically important for those networking systems that are 

deployed in high volumes, in order for the equipment vendors to keep the 

prices low, compete in the marketplace and generate profit. 

• Raw Performance: We define raw performance as the peak packet rate that can be 

sustained with the available technology. When performance varies for varying 

inputs, we report both the average- and the worst-case results while discussing 

the likelihood of the worst-case scenarios. Solutions with high raw performance 

are important to implement state-of-the-art systems that need to forward traffic 

at the highest possible rates, and where cost is a secondary concern. 
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• Scalability: We define scalability as how well the solution performs when the size 

of the problem grows. For instance, in an IP lookup engine, scalability is the rate 

at which the system cost increases as we start increasing the number of prefixes 

and/or packet rate. Scalability is a decisive factor in the widespread deployment 

of any solution; partly because high performance networking devices usually 

have unusually long shelf life spanning decades, and partly to keep up with the 

continuously increasing traffic volumes and the expanding networks. 

• Vulnerability: We define vulnerability of a system as the possibility of a dramatic 

degradation in the performance due to anomalous circumstances that either 

arise during the normal course of network operations or as the result of a 

deliberate attack. For example, in the case of a network intrusion detection 

system, such situations may arise if the contents of several flows frequently 

match one or many signatures, thereby raising security alarms “too often”. In 

the current Internet, where users can no longer be trusted, it is important that 

the deployed solutions are capable of handling anomalous conditions. 

 

1.4.2 Workloads 
 

With the above four primary performance metrics, we use a combination of real-world, 

and synthetically generated workloads. Real-world workloads such as IP prefix tables, 

data traces, and packet header logs collected from various routing systems, are essential 

in characterizing the performance of a solution during normal traffic conditions. 

Efficiency and raw performance of a system are the two performance metrics that are 

evaluated solely with real-world workloads. A mixture of real-world and synthetically 

generated workloads, extrapolated from the real-world workloads, are used to evaluate 

the scalability of a solution. 

 

Synthetically generated workloads, on the other hand, are essential in evaluating how a 

system will behave during extreme conditions that may not arise frequently, such as 
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abnormally high routing table update traffic during a link failure and/or congested link. 

Synthetic workloads are also used to characterize security threats such as Denial of 

Service (DoS) attacks which exploit a weakness in the architecture. An example of such 

a workload is a carefully crafted packet stream that falsely raises the security alarm in a 

NIDS, or which leads to a false positive rate much higher than the normal theoretical 

rate in a Bloom filter based system. Such anomalous workloads are required to 

characterize the system performance with respect to the vulnerability performance 

metric. For every solution we propose in this dissertation, in the respective chapters, we 

explain a number of attacks and anomalous conditions and describe the synthetic 

workloads that are used to evaluate the mechanisms we propose to safeguard against 

these attacks. 

 

1.4.3 Implementation Platforms 
 

The final component of our evaluation consists of the implementation platforms that 

we consider and the settings that we use in our evaluation. Our primary implementation 

platform remains configurable ASIC architectures, customized to perform a given 

networking function. The primary motivation behind focusing solely on such 

specialized platforms is to be able to maintain high data rates. The settings such as clock 

frequency, transistor density, memory access latency and memory bandwidth that we 

choose to evaluate our solutions remain inline with the current technology trends. 

 

Programmability is essential in order to keep an implementation up-to-date in the face 

of changing workloads and continuously evolving functions; therefore our main focus is 

to keep our solutions highly programmable in spite of taking an ASIC approach. There 

are two mechanisms to achieve a high degree of programmability in this setting. First, 

one can employ a collection of programmable processors whose instruction sets are 

optimized to efficiently carry out the operations required by the function. Such network 

processor oriented mechanism will lead to very high degree of programmability but may 
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limit the performance by limiting the computation parallelism, which will be equal to the 

total number of processor cores. An alternative approach partitions the problem into 

two components, a static computation part and a set of dynamic states. The static portion will 

consist of all such operations that will not change in the future, and thus can be realized 

using logic gates. The dynamic portion will include a number of states that may change 

when the function is updated; thus these states are stored in memory. To clarify, let us 

consider a simple example. A finite automaton can be realized entirely in circuit by using 

logic gates to implement all its transitions; however, such solutions are undesirable if the 

automaton is frequently updated. A more programmable approach is to partition the 

problem into a transition table stored in embedded memory, and a set of circuitry that 

reads the transitions and traverse through the states. We focus on such hybrid circuit 

and memory based solutions. 

 

1.5 Organization 
 

In the next chapter, we discuss the background and related work on IP address lookup 

and deep packet inspection. A number of well known and deployed algorithms are 

discussed and their main advantages and disadvantages are pointed. We also set the 

stage for a fair comparison between these and our proposed methods. 

 

In Chapter 3, two algorithms and the associated architectures that target an ASIC 

implementation are proposed. It has been argued with quantitative data points that 

these solutions can enable current Internet routers to forward IP packet at high speeds. 

 

In Chapter 4 and 5, we propose methods to implement regular expressions based deep 

packet inspection at high speeds. Our implementation platforms are ASIC and network 

processors, respectively. 

 

Chapter 6 summarizes out contributions. 
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Chapter 2 

 

Background and Related Work 
 

An essential function of a network router is to examine the IP headers of packets 

arriving at various input ports and forward them to appropriate output ports. These 

forwarding decisions require a lookup in a routing table that consists of a large number 

of variable length IP address prefixes and their associated destination ports. This 

function, often referred as IP address lookup, determines the longest prefix matching the 

destination address field within the routing database, and then forwards the packet to 

the destination port associated with the matching prefix. In addition to basic packet 

forwarding, modern systems are increasingly identifying different classes of traffic and 

providing them different levels of service. The allocation of packets into different 

classes of end-to-end flows requires examination of multiple fields of the packet header, 

as flow classes are identified by five tuples of the IP header: a pair of source and 

destination addresses, a protocol, and a pair of source and destination ports. In practical 

sets, a large fraction of the rules include prefixes. While port numbers are most often 

specified as ranges, they can also be represented as a set of prefixes. Thus the process of 

classification of packets based upon five tuples translates into several longest prefix 

matches and a number of high performance packet classification algorithms such as 

[Gupta, and McKeown 1999] and [Baboescu, Singh, and Varghese 2003] employ some 

form of longest prefix match. 

 

Due to the widespread use of longest prefix match, both in packet forwarding and in 

packet classification, it has been studied extensively. Some well known hardware 

approaches include the use of TCAM, Bloom filters and hash tables. Another class of 
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solutions employs a trie to implement the longest prefix match operations. We begin 

our discussion with these trie based methods. 

 

2.1 Trie based Longest Prefix Match 
 

A trie is an ordered tree data structure associating a string sx to each node nx; sx is not 

explicitly stored at the tree, but can be derived by concatenating the symbols labeling 

the edges on the path from the root of the trie to the node nx. A basic property of tries 

is that all descendants of a node nx share a common prefix, represented by the string 

associated with nx. In the context of IP address lookup, a binary trie representing a 

routing table can be built by traversing each prefix from the leftmost to the rightmost 

bit, and inserting nodes into the trie as needed, a left child for each 0 and a right child 

for each 1. For an example, see Figure 2.1 (a) and (b). Nodes corresponding to valid 

prefixes must be marked with a prefix pointer that gives the location of the next hop 

info. Lookup is performed by traversing the trie according to the bits in the IP address. 

When a leaf or a node with no matching outgoing edge is reached, the last marked node 

traversed corresponds to the longest matching prefix. 

 

As illustrated in Figure 2.1 (b), each node contains two child pointers and one prefix 

pointer. To reduce memory usage, leaf pushing (Figure 2.1 (c)) has been proposed 

[Waldvogel et al. 1997], wherein prefixes at non-leaf nodes (e.g.: P1, P3) are pushed 

down to the leaves. Leaf pushing makes every node have two children or none; thus, 
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Figure 2.1  (a) Routing table; (b) corresponding unibit trie; (c) corresponding leaf-pushed 

unibit trie. 
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each node requires a single pointer to locate the prefix or the array of children. 

However, leaf-pushed nodes may need to be replicated at several leaves (e.g.: P3); 

therefore on average, leaf pushing results in less than a 2-fold memory reduction. 

Moreover, it also complicates updates. 

 

If several bits are scanned for each node traversal, then the resulting data structure is a 

multibit trie. The number of bits scanned at once is called the stride. A node with stride 

d will have a maximum of 2d child nodes. In a multi-bit trie, some prefixes may be 

expanded to align to the stride boundaries, which may increase the size of the routing 

table, as illustrated in Figure 2.2. However, during a node traversal, multiple bits are 

scanned at once, which reduces the number of steps. Since the time to complete a 

lookup is determined by the trie depth, the choice of stride depends upon the lookup 

time-memory tradeoff: smaller strides allow a more compact data structure but require 

more memory accesses, whereas larger strides reduces the lookup time at the cost of 

more memory. 

 

Controlled prefix expansion has been introduced in order to address the above issue 

[Srinivasan, and Varghese 1999]. Given the maximum number of memory accesses 

allowed for a lookup (i.e.: trie depth), this technique uses dynamic programming to 

determine the stride leading to the minimum total memory. However, this involves two 

important limitations: first, it is suitable for building a trie from scratch but does not 

support incremental updates; second, while reducing the total memory, this technique 
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Figure 2.2  (a) Routing table expanded with stride 2; (b) corresponding multibit trie. 
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does not control the per level memory occupancy in a pipelined trie. The reason for this 

will be explained shortly. 

 

2.1.1 Pipelined IP Lookup Tries 
 

An effective way to tackle the time-memory tradeoff is to recognize that tries are well 

suited to data structure pipelining. A common way to pipeline a trie is to assign each trie 

level to a different stage, as illustrated in Figure 2.3, so that a lookup request can be 

issued every cycle, thereby increasing the throughput. Besides increased lookup 

performance, such pipelined implementations are also suitable for handling updates. In 

fact, as proposed in [Basu, and Narlikar 2003], software preprocessing of prefix 

insertions and deletions can be exploited in order to determine the necessary per-level 

modifications to be performed in the trie. In a second phase, those write operations can 

be inserted in the pipeline in the form of “write bubbles”. Because of the sequential 

character of the pipeline operation, straightforward techniques can prevent write 

operations from interfering with the concurrent lookups. 

 

In a pipelined implementation, it is desirable for nodes to be distributed uniformly 

across pipeline stages. [Basu, and Narlikar 2003] applies an extended version of 

controlled prefix expansion to achieve this objective. Rather than minimizing the total 

memory, the modified algorithm aims at minimizing the size of the largest trie level, 

while still keeping the total memory low. Through the use of variable-stride tries (having 
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a fixed per level stride but allowing different strides at different levels), it achieves a 

discretely balanced prefix distribution across pipeline stages. 

 

An alternative approach is presented in [Hasan, and Vijaykumar 2005], where height-

based (rather than level-based) pipelining is proposed. The work does not aim at 

balancing memory utilization; rather, it focuses on guaranteeing worst case performance 

bounds. In particular, it focuses on leaf-pushed unibit tries using a technique called 

jump nodes, which limits the number of copies of a leaf-pushed node. The usage of 

jump nodes is exemplified in Figure 2.4, where all descendants of node Y represent 

either the prefix P4 (leaf-pushed) or P5. Clearly, all internal nodes in the subtree rooted 

at Y can be condensed into a jump node carrying the information about the remaining 

portion of P5. In [Hasan, and Vijaykumar 2005], the authors argue that jump nodes 

ensure that the number of leaves in a leaf pushed unibit trie is equal to the number of 

prefixes, which enables O(1) updates. Unfortunately, since not all the copies of leaf-

pushed nodes can be removed by using jump nodes (see P1 in Figure 2.4), such claims 

are incorrect. Moreover, height-based pipelining leads to unbalanced stages; as a 

workaround, hardware-based pipelining has been proposed, which, adds to the 

complexity and power consumption. 

 

The most recent and the most efficient pipelined trie has been proposed in [Baboescu et 

al. 2005], which uses a circular pipeline with dynamic pipeline entry points. It has been 

shown that such a circular pipeline can enable uniform utilization of the memory 

available at each stage irrespective of the trie shape, thereby enabling much better 
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memory utilization. Uniform pipeline stages also avoid any single stage to requiring 

excessive amounts of memory and hence becoming a performance bottleneck. 

 

2.1.2 Efficient Encoding of Multibit-Trie Nodes 
 

The last relevant aspect studied in the trie literature is the use of compression to reduce 

memory requirements. Memory compression is achieved by representing a number of 

nearby nodes of the trie with a bit-map. In particular, the Lulea scheme [Degermark et 

al. 1997] uses leaf pushing and controlled prefix expansion along with an appropriate 

stride length, say k, to create a multi-bit expanded trie. Each multi-bit node of this trie 

requires 2k words, each representing either a matching prefix or the next node pointer. 

Since a large number of these 2k words may be identical due to the use of controlled 

prefix expansion, Lulea employs a single bit-mask to eliminate such repetitions of 

words, thereby significantly reducing the total memory. Due to the use of leaf pushing, 

Lulea however does not exhibit good incremental update properties. Tree Bitmap 

algorithm [Eatherton, Dittia, and Varghese 2004] on the other hand focuses on non-

leaf-pushed multi-bit tries, and uses two separate bit-masks, one to represent the 

destination ports associated with the prefixes within the multi-bit node, and another to 

represent the pointers to the sub-tries. Therefore, Tree Bitmap allows O(1) updates 

unlike Lulea which may require that the entire memory structure be modified, while 

requiring comparable amounts of memory. 

 

Shape shifting tries (SST) [Song, Turner, and Lockwood 2005] has been proposed as an 

alternative solution that adapts its node encodings according to the shape of the trie, 

thereby leading to further memory compression. The core idea is that when a trie is 

sparse (such as an IPv6 trie), then using the traditional multi-bit representation, where a 

multi-bit node represents a sub-tree of fixed shape (binary tree with k levels), may lead 

to wasted space. A shape shifting trie allows its multi-bit nodes to correspond to 

arbitrarily shaped sub-trees, thereby enabling the sub-trees within the underlying binary 
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trie to conform to the structure of the trie, and significantly reducing the number of 

SST nodes and the total memory. Notice, however that SST has an overhead that every 

node must store a few bits, in addition to the bit-masks, specifying its shape; therefore, 

it is important in SST to keep the total number of currently used sub-tree shapes to a 

small value. Two classes of algorithms have been proposed by the authors for the 

appropriate construction of SST trie. The first algorithm focuses on achieving 

substantial levels of memory compression by limiting the number of SST nodes and the 

number of distinct shapes that are used, while the second focuses on significantly 

reducing the total number of SST node that are traversed to perform a lookup, thereby 

enabling higher lookup throughput. 

 

2.2 Non-trie based Longest Prefix Match 
 

A number of alternative architectures have been proposed, which avoid using a trie 

data-structure to perform longest prefix matching. The Multiway and Multicolumn Search 

technique [Lampson, Srinivasan, and Varghese 1999] require O(W+logN) time and 

O(2N) memory, where W is the number of bits in the address, and N is the total 

number of prefixes. The scheme involves a basic binary search for the longest matching 

prefix problem, an efficient implementation of which requires two techniques: encoding 

a prefix as the start and end of a range, and pre-computing the best-matching prefix 

associated with a range. The paper also proposes a number of optimizations for cache 

based implementations, such as a multi-way search technique, which exploits the fact 

that most processors prefetch an entire cache line when doing a memory access. These 

techniques along with the use of an initial precomputed array to lookup the first 16-bits 

of the address results in a total of 9 memory accesses to perform longest prefix match in 

the worst case. The primary issue with this algorithm, however, is its linear scaling 

relative to address length, thus such schemes are not attractive to implement IPv6 

lookups and packet classification. 
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Another computationally efficient algorithm called Binary Search on Prefix Lengths has 

been introduced in [Waldvogel et al. 1997]. The main contribution of this work is to use 

significant precomputation of the lookup database to bound the number of memory 

accesses required during the lookup. The algorithm first sorts the prefixes into up to a 

maximum of W sets based on their length; each set is intended to be examined 

separately to find the best matching prefix. In order to enable fast examination, a hash 

table is used for each set; the authors made an assumption that the examination of a set 

will require a single hash probe. We will later talk why such assumption can lead to low 

worst case performance, and high performance hash tables are required in order to 

enable guaranteed throughput [Song, Dharmapurikar, Turner, and Lockwood 2005] 

[Kumar, and Crowley 2006]. The simpler scheme uses binary search to choose the 

sequence of sets to probe, beginning with the median length set. Thus if an IPv4 lookup 

table contains prefixes of all lengths, the search will begin with the probe of the set 

containing the length 16 prefixes. Markers are placed along the binary search path for 

prefixes that are of longer lengths, in order to direct the search to the appropriate set. If 

no matching prefix or marker is present then the search will continue at the shorter set 

along the binary search path. There is a potential problem of backtracking, i.e. for a 

given IP address, if there is no longer matching prefix in the table then the search may 

unnecessarily follow a marker. In order to prevent this, the best-matching prefix for the 

marker is computed and stored with the marker. If a search terminates without finding a 

match, the best-matching prefix stored with the most recent marker is used to make the 

routing decision. The authors also propose methods of optimizing the data structure to 

the statistical characteristics of the database. Empirical measurements using an IPv4 

database resulted in memory requirements of about 42 bytes per entry. 

 

A variant of this scheme [Dharmapurikar, Krishnamurthy, and Taylor 2003], efficiently 

narrows the scope of the search by using compact but probabilistic Bloom filters. There 

are W Bloom filters, one for each prefix length. While the hash tables built from the 

prefixes are stored in off-chip memory, their associated Bloom filters are stored in an 

on-chip memory, which has ample bandwidth and low access latency, and therefore can 
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be probed in parallel. Before accessing the hash tables, the Bloom filters are examined, 

which probabilistically directs the search to the appropriate hash table within constant 

time. In order to optimize average performance, the authors introduce asymmetric 

Bloom filters which allocate memory resources according to prefix distribution and 

provide viable means for their implementation. Via the use of a direct lookup array and 

use of Controlled Prefix Expansion (CPE), it has been shown that the worst case 

performance can be limited to two hash probes and one array access per lookup. 

 

The last but the most frequently used hardware based architecture for longest prefix 

matching is Ternary Content Addressable Memory (TCAM). A CAM is an associative 

memory array containing data words. When a user supplies a word to the CAM, it 

searches its entire memory array to see if that data word is stored anywhere in it. If 

found, the CAM returns the first location where the word is present along with optional 

information called a tag. A TCAM is an extension, which allows its data bits to be 

“don’t care” in addition to being 1, or 0. This adds tremendous flexibility in search; for 

example, a ternary CAM might have a stored word of "1XX0" which will match any of 

the four search words "1000", "1010", "1100", or "1110". Clearly, TCAMs can be used 

to search longest matching prefixes, if the prefixes are sorted by their length, beginning 

with the longer prefixes, and the tag stores the next hop information [McAuley, and 

Francis 1993]. Due to hardware implementation and optimizations at the transistor 

level, TCAMs enable longest prefix matching at very high rates. However they consume 

a significant amount of power, because a search requires a probe into every data word 

of the memory. It also becomes problematic for the TCAM to ensure fast updates to 

the prefix database, due to the requirement that the prefixes must remain sorted. A 

number of papers have been published both in the area of power-efficient 

implementation of TCAM [Zane, Narlikar, and Basu 2003] and the effective use of 

TCAM to enable fast incremental updates. Power efficient TCAM architectures usually 

partition the memory array into smaller segments, thus selectively addressing smaller 

portions of the TCAM at a time [Spitznagel, Taylor, and Turner 2003]. A number of 
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schemes have also been introduced to enable fast updates to the prefix database such as 

[Shah, and Gupta 2001] [Song, and Turner, 2006]. 

 

2.3 Packet Content Inspection 
 

Modern systems are expected to examine the packet content in addition to the header in 

order to make forwarding decisions. Packet content inspection is gaining popularity as it 

provides capability to accurately classify and control traffic in terms of content, 

applications, and individual subscribers. Cisco and others today see deep packet 

inspection happening in the network and they argue that “Deep packet inspection will 

happen in the ASICs, and that ASICs need to be modified” [Shafer, Jones 2005]. Some 

important applications requiring deep packet inspection are listed below: 

 

• Network intrusion detection and prevention systems (NIDS/NIPS) generally 

scan the packet header and payload in order to identify a given set of signatures 

of well known security threats. 

• Layer 7 switches and firewalls provide content-based filtering, load-balancing, 

authentication and monitoring. Application-aware web switches, for example, 

provide scalable and transparent load balancing in data centers. 

• Content-based traffic management and routing can be used to differentiate 

traffic classes based on the type of data in packets. 

 

Deep packet inspection often involves scanning every byte of the packet payload and 

identifying a set of matching predefined patterns. Traditionally, patterns have been 

specified as exact match strings. Naturally, due to their wide adoption and importance, 

several high speed and efficient string matching algorithms have been proposed 

recently. These often employ variants of standard string matching algorithms such as 

Aho-Corasick [Aho, and Corasick 1975], Commentz-Walter [Commentz, and Walter 

1979], and Wu-Manber [Wu, and Manber 1994], and use a preprocessed data-structure 
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to perform high-performance matching. Among these, Aho-Corasick has been adopted 

most widely and is relevant to our work. 

 

2.3.1 Aho-Corasick Algorithm based String Matching 
 

One of the earliest, efficient algorithms for exact multi-pattern string matching is due to 

Aho-Corasick [Aho, and Corasick 1975]. The algorithm enables string matching in time 

linear in the size of the input. Aho-Corasick builds a finite automaton from the strings, 

whose structure is similar to a trie, and encodes all the strings to be searched in multiple 

stages. The construction begins with an empty root node which represents no partial 

match; subsequently nodes are added for each character of the pattern to be matched, 

starting at the root node and going to the end of the pattern. Strings that share a 

common prefix also share a corresponding set of ancestor nodes in the trie. Beyond 

this, there are two variants of Aho-Corasick: deterministic and non-deterministic. In the 

non-deterministic version, the state machine trie is traversed beginning at the root node 

and failure pointers are added from each node to the longest prefix of that node that 

also leads to a valid node in the trie. Figure 2.5, illustrates a simple example. There are 

four strings: phone, telephone, test, and elephant. The automaton consists of 

25 nodes in total. The bold transitions are normal ones, while the dotted ones are failure 

transitions. The operation of this implementation is straightforward. For any given input 
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Figure 2.5  Aho-Corasick automaton for the four strings test, telephone, phone and elephant. Gray 
indicates accepting node. Dotted lines are failure transitions. 
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character in any given state, the character is consumed if a normal transition for the 

character is present at the state; else the failure transition is taken. Due to the 

construction, whenever a failure transition is taken the current input character is not 

consumed, and used recursively until it is consumed during a normal transition. It is 

easy to show via amortized analysis that only two state traversals per character of the 

input string are required to process any given input string. 

 

The deterministic version of Aho-Corasick automaton avoids the use of failure pointers 

in order to enable one traversal per input character. Instead of using failure pointers, 

next state from every state for every character in the alphabet is precomputed, and these 

transitions are added to the automaton. For an ASCII alphabet, such a construction 

results in 256 transitions at every state, which requires substantial amounts of memory. 

 

A large body of research literature has concentrated on enhancing the Aho-Corasick 

algorithm for use in networking. In [Tuck et al. 2004], the authors present techniques to 

enhance the worst-case performance of Aho-Corasick algorithm. Their algorithm was 

guided by the analogy between IP lookup and string matching and applies bitmap and 

path compression to Aho-Corasick. Their scheme has been shown to reduce the 

memory required for the string sets used in NIDS by up to a factor of 50 while 

improving performance by more than 30%. Many researchers have proposed high-

speed Aho-Corasick based pattern matching hardware architectures. In [Tan, and 

Sherwood 2005] the authors propose an efficient algorithm that converts the 

deterministic version of Aho-Corasick automaton into multiple binary state machines. 

These state machines have significantly fewer transitions per state, which dramatically 

reduces the total space requirements. In [Sourdis, and Pnevmatikatos 2004], the authors 

present an FPGA-based design which uses character pre-decoding coupled with CAM-

based pattern matching. In [Yusuf, and Luk 2005], authors use hardware sharing at the 

bit level to exploit logic design optimizations, thereby reducing the area by a further 

30%. Other work [Dharmapurikar et al. 2003][Bakar, and Prasanna 2004][Cho, and 

Smith 2004][Gokhale et al. 2002] presents several efficient string matching 
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architectures; their performance and space efficiency are well summarized in [Sourdis, 

and Pnevmatikatos 2004]. 

 

2.3.2 Regular Expressions in Packet Content Inspection 
 

In [Sommer, and Paxson 2003], the authors note that regular expressions might prove 

to be fundamentally more efficient and flexible as compared to exact-match strings 

when specifying signatures for packet content inspection. The flexibility is due to the 

high degree of expressiveness achieved by using character classes, union, optional 

elements, and closures, while the efficiency is due to the effective schemes to perform 

pattern matching. Open source NIDS systems, such as Snort and Bro, today use regular 

expressions to specify rules. Regular expressions are also the language of choice in 

several commercial security products, such as TippingPoint X505 [TippingPoint 2005] 

from 3Com and a family of network security appliances from Cisco Systems. 

Additionally, layer 7 filters based on regular expressions are available for the Linux 

operating system. 

 

The most popular representation of regular expressions is the finite state automata 

[Hopcroft, and Ullman 1979]. There are two primary kinds: Deterministic Finite 

Automaton (DFA) and Non-deterministic Finite Automaton (NFA). A DFA consists of 

an alphabet denoted by Σ, which is a finite set of input symbols, a finite set of states s, 

an initial state and a transition function δ, which specifies the transition from every state 

for every symbol in the alphabet. In networking applications, the alphabet generally 

consists of 256 ASCII characters. A key property of a DFA is that in any given state, the 

transition function returns a single next state for any given input symbol; thus at any 

time, only one state is active in a DFA. The distinction between an NFA and a DFA lies 

in their transition function: instead of returning a single next state, the transition 

function of a NFA returns a set of states, which may be an empty set. Thus, multiple 

states can be simultaneously active in an NFA. 
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A regular expression containing n characters can be represented by an NFA consisting 

of O(n) states. During the execution of an NFA, O(n) states can be active in the worst 

case, and the processing complexity for a single input character can be O(n2). When a 

DFA is constructed from the same regular expression, it may generate O(Σ n) states in 

the worst-case. However, only one state will be active during execution, thereby leading 

to O(1) per character processing complexity. Clearly, there is a space-time tradeoff 

between NFAs and DFAs. NFAs are compact but slow; DFAs are fast but may require 

prohibitive amounts of memory. Current implementations of regular expressions 

patterns used in networking require gigabytes of memory, and their performance 

remains limited to sub-gigabit parsing rates; which makes this an important and 

challenging research area. 

 

In order to enable high parse rates, several researchers have proposed specialized 

hardware-based architectures which implement finite automata using fast on-chip logic. 

Implementing regular expressions in custom hardware was explored in [Floyd, and 

Ullman 1982], in which the authors showed that an NFA can be efficiently implemented 

using a programmable logic array. Sindhu et al. [Sidhu, and Prasanna 2001] and Clark et 

al. [Clark, and Schimmel 2003] have implemented NFAs on FPGA devices to perform 

regular expressions matching and were able to achieve very good space efficiency. In 

[Moscola et al. 2003], the authors have used such forms of NFAs that reduce the total 

number of simultaneously active states and demonstrated significant improvement in 

throughput. 

 

These hardware based implementation approaches have two common characteristics: 1) 

due to the limited amount of on-chip storage, they use an NFA to keep the total 

number of states small, and 2) they exploit a high degree of parallelism by encoding the 

automata in the parallel logic resources. These design choices are guided partly by the 

high degree of computation parallelism available on an FPGA/ASIC and partly by the 

desire to achieve high throughput. While such choices seem promising for FPGA 
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devices, they might not be acceptable in systems where the expression sets needs to be 

updated frequently. More importantly for systems which are already in deployment, it 

might prove difficult to quickly re-synthesize and update the regular expressions 

circuitry. Therefore, regular expression engines which use memory rather than logic, are 

often more desirable as they provide a higher degree of flexibility and programmability. 

 

Commercial content inspection engines like Tarari’s RegEx [LSI Co. 2005] already 

emphasize the ease of programmability provided by a dense multiprocessor architecture 

coupled to a memory. Content inspection engines from other vendors [SafeXcel 

2003][Cavium Octeon 2005], also use memory-based architectures and report packet 

scan rates up to 4 Gbps. In this solution space, the transitions of the automaton are 

stored in memory in a tabular form, which is addressed with the state number and the 

input symbol. Every state traversal requires at least one memory access. Consequently, it 

becomes critical to keep as few active states as possible in order to limit the number of 

memory accesses and maintain a high parse rate. DFAs are therefore preferred over 

NFAs; however a large number of complex regular expressions often creates DFAs 

with an exponentially large number of states. Rather than constructing a composite 

DFA from the entire regular expressions set, [Yu et al. 2006] have proposed to partition 

the set into a small number of subgroups, such that the overall space needed by the 

automata is reduced dramatically. The proposed partitioning method keeps the number 

of DFAs small while containing the exponential blowup in the number of states. They 

also propose architectures to implement the grouped regular expressions on both 

general-purpose processor and multi-core processor systems, and demonstrate an 

improvement in throughput of up to 4 times. In order to further boost the parsing 

performance, a recent paper [Brodie, Taylor, and Cytron 2006] attempts to construct 

DFAs that can consume multiple characters during a single state traversal. However, for 

the patterns used in networking, such DFAs tend to have exponentially increasing 

numbers of states in the number of input characters that are consumed at once. Even 

though the authors report an increased parse rate, their datasets were limited and it 

remains challenging to use this approach in networking. 
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In this dissertation, we extend these high performance memory-based regular 

expressions implementations. We propose a number of novel representations and 

algorithms that can enable regular expressions pattern matching at multi-gigabit rates, 

while also keeping the memory requirements low and preserving the flexibility provided 

by programmability. 
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Chapter 3 

 

IP Packet Forwarding 
 

In this chapter, we propose a number of algorithms and architectures that target an 

ASIC implementation, and can enable current Internet routers to forward IP packet at 

high speeds. IP packet forwarding routines include IP address lookup and packet 

classification, both of which generally require longest prefix match operations. 

Conventional methods of longest prefix match require fast computation and high 

memory bandwidth to achieve high performance. ASICs can enable such levels of 

performance by providing the required computation, and packing multiple embedded 

memory modules, which can be accessed in parallel, thereby providing enormous 

amounts of bandwidth. With such levels of memory bandwidth and computation 

power, it may become challenging to utilize them efficiently. Proper utilization of the 

bandwidth provided by multiple memory modules requires that the data-structure be 

distributed across these modules in a way that the accesses remain balanced and no 

single module becomes a performance bottleneck. 

 

Another dimension to the difficulty arises due to the limited amount of memory bits 

available on-chip to handle the large databases; and that these bits are much more 

expensive than the commodity off-chip memory bits. It therefore becomes critical to 

prudently use the embedded memory, and store only those components of the data-

structures on-chip that are accessed very frequently. If multiple on-chip memory 

modules are used to provide high bandwidth, it also becomes important to keep them 

nearly uniformly occupied at all times, in order to keep high levels of memory space 

utilization. Thus there are three challenges in devising a high-performance alternative 

for ASIC implementation: first, on-chip data-structures must be compact; second, they 
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must be uniformly divided and stored across the set of on-chip memories; and third, the 

accesses to the memory modules must remain balanced. 

 

We describe two novel and orthogonal architectural solutions which can efficiently 

implement longest prefix match in an ASIC and achieve high performance by utilizing 

multiple embedded memories. Our solutions – based on a trie data structure –

significantly reduces the on-chip memory compared to the state-of-the art techniques, 

and maintains a high degree of memory utilization, both in space and bandwidth. The 

first solution is called History based Encoding, eXecution, and Addressing (HEXA), 

which is a compact representation of directed acyclic graphs such a tries. HEXA based 

encoding of a trie results in between two to four times reduction in on-chip memory 

when compared to Eatherton-Dittia tries, and requires slightly increased computation to 

maintain the same level of lookup performance, thereby making it ideal for ASIC based 

systems. Our second solution is a novel pipelined trie implementation called Circular 

Adaptive and Monotonic Pipeline (CAMP), which efficiently utilizes the bandwidth 

provided by multiple memory modules to enable fast lookups. Unlike previous 

approaches such as linear pipelines, CAMP provides near perfect memory utilization 

when mapping the trie nodes to the pipeline stages, thereby using the scarce and 

expensive embedded memory bits much more prudently. We begin with HEXA, and 

keep our description broad enough so that we can later apply an extension to encode 

more complex graph structures such as the Aho-Corasick finite state automaton. 

 

3.1 HEXA –Encoding Structured Graphs 
 

Several common packet processing tasks make use of directed graph data structures in 

which edge labels are used to match symbols from a finite alphabet. Examples include 

tries used in IP route lookup and string-matching automata used to implement deep 

packet inspection for virus scanning. We describe a novel representation for such data 

structures that is significantly more compact than conventional approaches. We observe 
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that the edge-labeled, directed graphs used by some packet processing tasks have the 

property that for all nodes u, all paths of length k leading to u are labeled by the same 

string of symbols, for all values of k up to some bound. For example, tries satisfy this 

condition trivially, since for each value of k, there is only one path of length k leading to 

each node. The data structure used in the Aho-Corasick string matching algorithm 

[Aho, and Corasick 1975] also satisfies this property, even though in this case there may 

be multiple paths leading to each node. Since the algorithms that traverse the data 

structure know the symbols that have been used to reach a node, we can use this 

“history” to define the storage location of the node. Since some nodes may have 

identical histories, we need to augment the history with some discriminating 

information, to ensure that each node is mapped to a distinct storage location. We find 

that in some applications the amount of discriminating information needed can be 

remarkably small. For binary tries for example, two bits of discriminating information is 

sufficient. This leads to a binary trie representation that requires just two bytes per 

stored prefix for IP routing tables with more than 100K prefixes. 

 

3.1.1 Introduction to HEXA 
 

A large fraction of current research literature improves the performance of traversing 

directed graph structures such as tries by either reducing the number of child pointers 

stored and/or by reducing the number of nodes. With or without the reductions in the 

number of nodes or pointers, to our best knowledge, directed graphs are always 

implemented in the following conventional manner. Each node in the n node graph is 

denoted by a unique log2n bit identifier, which also determines the memory location 

of the node. At this memory location, all next node pointers (identifiers of the 

subsequent “next nodes”) are stored, along with some auxiliary information. The 

auxiliary information may be a flag indicating if the node corresponds to a match in a 

string matching automata or a valid prefix in an IP lookup trie, and an identifier for the 

string, or the next hop for the matching prefix. The auxiliary information usually 
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requires only a few bits and is kept once for every node; on the other hand, identifiers 

of the “next node” use log2n bits each and are required once for every next node 

pointer. Thus, in large graphs (say a million nodes) containing multiple next node 

pointers per node (say two), the memory required by the identifiers of the “next node” 

(20-bits per identifier, 2 such identifiers per node) can be much higher than the memory 

required by the auxiliary information. 

 

Another complicating factor in the conventional design approach is that the identifiers 

of the “next node” are read for each symbol in the input stream, while the auxiliary 

information is read only upon a match. This necessitates that the “next node” identifiers 

be stored in a fast embedded memory in order to enable high parsing rate. For instance, 

a high performance lookup trie may store the set of “next nodes”, for every node, in a 

fast memory along with a flag indicating whether the node corresponds to a prefix. On 

the other hand, the next hop information can be kept with a shadow trie, stored in a 

slow memory like DRAM. Similarly, in a string matching automaton, in addition to the 

“next node” identifiers, only a flag per node is needed in the fast memory, which will 

indicate whether the node is a match. The prime motivation for separating the fast and 

slow path is to reduce the amount of embedded memory, which is often expensive and 

limited in size. The advantages are however undermined as the identifiers of the “next 

node” represent a large fraction of the total memory. While there is a general interest in 

reducing the total memory, clearly there are increased benefits in reducing the memory 

required to store these “next node” identifiers. 

 

We begin the description of a new method to store directed graph structures that we 

call HEXA. While conventional methods use log2n bits to identify each of n nodes in a 

graph, by taking advantage of the graph structure, HEXA employs a novel method that 

can use a fixed constant number of bits per node for structured graphs such as tries. 

Thus, when HEXA based identifiers are used to denote the transitions of the graph, the 

fast memory needed to store these transitions can be dramatically reduced. The total 
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memory is also reduced significantly, because auxiliary information often represents a 

fraction of the total memory. 

 

The key to the identification mechanism used by HEXA is that when nodes are not 

accessed in a random ad-hoc order but in an order defined by the paths leading to them, 

the nodes can be identified by properties of these paths. For instance, in a trie, if we 

begin parsing at the root node, we can reach any given node only by a unique stream of 

input symbols. In general, as the parsing proceeds, we need to remember only the 

previous symbols in order to uniquely identify each node. To clarify, we consider a 

simple trie-based example before formalizing the ideas behind HEXA. 

 

3.1.2 Motivating Example 
 

Let us consider a simple directed graph given by an IP lookup trie. A set of 5 prefixes 

and the corresponding binary trie, containing 9 nodes, is shown in Figure 3.1. We 

consider first the standard representation. A node stores the identifier of its left and 

right child and a bit indicating if the node corresponds to a valid prefix. Since there are 

9 nodes, identifiers are 4-bits long, and a node requires total 9-bits in the fast path. The 

fast path trie representation is shown below, where nodes are shown as 3-tuples 

consisting of the prefix flag and the left right children (NULL indicates no child): 
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Figure 3.1  (a) Routing table; (b) corresponding binary trie. 
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Here, we assume that the next hops associated with a matching node are stored in a 

shadow trie which is stored in a relatively slow memory. Note that if the next hop trie 

has a structure identical to the fast path trie, then the fast path trie need not contain any 

additional information. Once the fast path trie is traversed and the longest matching 

node is found, we will read the next hop trie once, at the location corresponding to the 

longest matching node. 

 

We now consider storing the fast path of the trie using HEXA. In HEXA, a node will 

be identified by the input stream over which it will be reached. Thus, the HEXA 

identifier of the nodes will be: 

 

 

 

These identifiers are unique. HEXA requires a hash function; temporarily, let us assume 

we have a minimal perfect hash function f that maps each identifier to a unique number 

in [1, 9]. (A minimal perfect hash function is also called a one-to-one function.) We use 

this hash function for a hash table of 9 cells; more generally, if there are n nodes in the 

trie, ni is the HEXA identifier of the i
th node and f is a one-to-one function mapping ni’s 

to [1, n], Given such a function, we need to store only 3 bits worth of information for 

each node of the trie in order to traverse it: the first bit is set if node corresponds to a 

valid prefix, and the second and third bits are set if the node has a left or right child. 

Traversal of the trie is then straightforward. We start at the first trie node, whose 3-bit 

tuple will be read from the array at index f(-). If the match bit is set, we will make a note 

of the match, and fetch the next bit from the input stream to proceed to the next trie 

1. - 
2. 0 

3. 1 

4. 00 

5. 01 

6. 11 

7. 010 

8. 011 

9. 0100 

1. 0, 2 

4. 1, NULL, NULL 

5. 0, 7, 8 

6. 1, NULL, NULL 

1. 0, 2, 3 

2. 0, 4, 5 

3. 1, NULL, 6 

7. 0, 9, NULL 

8. 1, NULL, NULL 

9. 1, NULL, NULL 

• 1, P2 
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node. If the bit is 0 (1) and the left (right) child bit of the previous node was set, then 

we will compute f(ni), where ni is the current sequence of bits (in this case the first bit of 

the input stream) and read its 3 bits. We continue in this manner until we reach a node 

with no child. The most recent node with the match bit set will correspond to the 

longest matching prefix. 

 

Continuing with the earlier trie of 9 nodes, let the mapping function f, have the 

following values for the nine HEXA identifiers listed above: 

 

 

 

With this one-to-one mapping, the fast path memory array of 3-bits will be programmed 

as follows; we also list the corresponding next hops: 

 

 1 2 3 4 5 6 7 8 9 
Fast path 1,0,0 1,0,0 1,0,0 0,1,1 0,1,0 1,0,0 0,1,1 0,1,1 1,0,1 
Next hop P3 P2 P4   P5   P1 
 

This array and the above mapping function are sufficient to parse the trie for any given 

stream of input symbols. 

 

This example suggests that we can dramatically reduce the memory requirements used 

to represent a trie by practically eliminating the overheads associated with node 

identifiers. However, we require a minimal perfect hash function, which is hard to 

devise. In fact, when the trie is frequently updated, maintaining the one-to-one mapping 

may become extremely difficult. We will explain how to enable such one-to-one 

mappings with very low cost. We also ensure that our approach maintains very fast 

incremental updates; i.e. when nodes are added or deleted, a new one-to-one mapping 

can be computed quickly and with very few changes in the fast path array. 

 

1. f(-) = 4 

2. f(0) = 7 

3. f(1) = 9 

4. f(00) = 2 

5. f(01) = 8 

6. f(11) = 1 

7. f(010) = 5 

8. f(011) = 3 

9. f(0100) = 6 

4. 0, 2 
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3.1.3 Devising One-to-one Mappings 
 

We have seen that we can compactly represent a directed trie if we have a minimal 

perfect hash function for the nodes of the graph. More generally, we might seek merely 

a perfect hash function; that is, we map each identifier to a unique element of [1, m] for 

some m ≥ n, mapping the n identifiers into m array cells. For large n, finding perfect hash 

functions becomes extremely compute intensive and impractical. 

 

We can simplify the problem dramatically by considering the fact that the HEXA 

identifier of a node can be modified without changing its meaning and keeping it 

unique. For instance we can allow a node identifier to contain a few additional (say c) 

bits, which we can alter at our convenience. We call these c-bits the node’s 

discriminator. Thus, the HEXA identifier of a node will be the history of labels used to 

reach the node, plus its c-bit discriminator. We use a (pseudo)-random hash function to 

map identifiers plus discriminators to possible memory locations. Having these 

discriminators and the ability to alter them provides us with multiple choices of memory 

locations for a node. Each node will have 2c choices of HEXA identifiers and hence up 

to 2c memory locations, from which we have to pick just one. The power of choice in 

this setting has been studied and used in multiple-choice hashing [Kirsch, and 

Mitzenmacher 2005] and cuckoo hashing [Pagh, and Rodler 2001], and we use results 

from these analyses. 

 

Note that when traversing the graph, we need to know a node’s discriminator in order 

to access it. Hence instead of storing a single bit for each left and right child, we store 

the discriminator if the child exists. In practice, we also typically reserve the all-0 c-bit 

word to represent NULL, giving us only 2c−1 memory locations. 

 

This problem can now be viewed as a bipartite graph matching problem. The bipartite 

graph G = (V1+V2, E) consists of the nodes of the original directed graph as the left set 

of vertices, and the memory locations as the right set of vertices. The edges connecting 
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the left to the right correspond to the edges determined by the random hash function. 

Since discriminators are c-bits long, each left vertex will have up to 2c edges connected 

to random right vertices. We refer to G as the memory mapping graph. We need to find 

a perfect matching (that is, a matching of size n) in the memory mapping graph G, to 

match each node identifier to a unique memory location. 

 

If we require that m = n, then it suffices that c is log log n + O(1) to ensure that a perfect 

matching exists with high probability. More generally, using results from the analysis of 

cuckoo hashing schemes [Pagh, and Rodler 2001], it follows that we can have constant c 

if we allow m to be slightly greater than n. For example, using 2-bit discriminators, 

giving 4 choices, then m = 1.1n guarantees that a perfect matching exists with high 

probability. In fact, not only do these perfect matchings exist, but they are efficiently 

updatable, as we describe in Section 3.1.4. 

 

Continuing with our example of the trie shown in Figure 3.1, we now seek to devise a 

one-to-one mapping using this method. We consider m = n and assume that c is 2, so a 

node can have 4 possible HEXA identifiers, which will enable it to have up to 4 choices 
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Figure 3.2  Memory mapping graph, bipartite matching. 
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of memory locations. A complication in computing the hash values may arise because 

the HEXA identifiers are not of equal length. We can resolve it by first appending to a 

HEXA identifier, its length and then padding the short identifiers with zeros. Finally we 

append the discriminators to them. The resulting choices of identifiers and the memory 

mapping graph is shown in Figure 3.2, where we assume that the hash function is 

simply the numerical value of the identifier modulo 9. In the same figure, we also show 

a perfect matching with the matching edges drawn in bold. With this perfect matching, a 

node will require only 2-bits to be uniquely represented (as c = 2). 

 

We now consider incremental updates, and show how a one-to-one mapping in HEXA 

can be maintained when a node is removed and another is added to the trie. 

 

3.1.4 Updating a Perfect Matching 
 

In several applications, such as IP lookup, fast incremental updates are critically 

important. This implies that HEXA representations will be practical for these 

applications only if the one-to-one nature of the hash function can be maintained in the 

face of insertions and deletions. Taking advantage of the choices available from the 

discriminator bits, such one-to-one mappings can be maintained easily. 

 

Indeed, results from the study of cuckoo hashing immediately yield fast incremental 

updates. Deletions are of course easy; we simply remove the relevant node from the 

hash table (and update pointers to that node). Insertions are more difficult; what if we 

wish to insert a node and its corresponding hash locations are already taken? In this 

case, we need to find an augmenting path in the memory mapping graph, remapping 

other nodes to other locations, which is accomplished by changing their discriminator 

bits. Finding an augmenting path will allow the item to be inserted at a free memory 

location, and increasing the size of the matching in the memory mapping graph. In fact 

for tables sized so that a perfect matching exists in the memory mapping graph, 
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augmenting paths of size O(log n) exist with high probability, so that only O(log n) 

nodes need to be re-mapped, and these augmenting paths can be found via a breadth 

first search over o(n) nodes [Pagh, and Rodler 2001]. In practice, a random walk 

approach, where a node to be inserted if necessary takes the place of one of its 

neighbors randomly, and this replaced node either finds an empty spot in the hash table 

or takes the place of one of its other neighbors randomly, and so on, finds an 

augmenting path quite quickly [Pagh, and Rodler 2001]. 

 

We also note that even when m = n, so that our matching corresponds to a minimal 

perfect hash function, using c = O(log log n) discriminator bits guarantees that if we 

delete a node and insert a new node (so that we still have m = n), an augmenting path of 

length O(log n/ log log n) exists with high probability. We omit the straightforward 

proof. 

 

We will demonstrate in our experiments in Section 3.4.2 that the number of changes 

needed to maintain a HEXA representation with node insertions and deletions is quite 

reasonable in practice. Again, similar results can be found in the setting of cuckoo 

hashing. 

 

3.1.5 Summarizing HEXA 
 

HEXA is a novel representation for structured graphs such as tries. HEXA uses a 

unique method to locate the nodes of the graph in memory, which enables it to avoid 

using any “next node” pointer. Since these pointers often consume most of the memory 

required by the graph, HEXA based representations are significantly more compact 

than the standard representations, and extremely valuable in ASIC implementations. We 

now proceed with the description of CAMP, which is a pipelined implementation of 

tries to enable high lookup throughput. We will later show that a pipelined trie such as 

CAMP with HEXA encoded nodes can result in a longest prefix match solution that is 
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significantly superior to the current state-of-the-art methods in all four performance 

metrics defined in Chapter 1. 

 

3.2 CAMP – Pipelining a Trie 
 

Recent advances in optical and signaling technology have pushed network link rates 

beyond 40 Gbps, with 160 Gbps links now appearing. A line card terminating a 160 

Gbps IP link needs to forward a minimum-sized packet within 2 ns. To do so, a packet 

header must be processed within 2 ns. At such speeds, both IP lookup, and packet 

classification become very challenging. The performance problem with longest prefix 

match is due to the sequential memory accesses required per match, and the growing 

global routing tables containing over one hundred thousand prefixes. The dual 

challenges of serialized access and large datasets have inspired a number of novel 

specialized hardware architectures. 

 

Memory bandwidth is an important concern in any implementation, whether it is based 

on off-chip memory or an ASIC. For example, at 160 Gbps rates, a multi-bit trie of 

stride 4 requires 8 memory accesses every 2 ns. Achieving this bandwidth using a single 

memory is challenging. A number of researchers have proposed a pipelined trie. Such 

tries enable high throughput because when there are enough memories in the pipeline, 

no memory stage is accessed more than once for a search and each stage can service a 

memory request for a different lookup each cycle. 

 

Most recently, [Baboescu, Tullsen, Rosu, and Singh 2005] have proposed a circular 

pipelined trie, which is different from the previous ones in that the memory stages are 

configured in a circular, multi-point access pipeline so that lookups can be initiated at 

any stage. At a high-level, this multi-access and circular structure enables much more 

flexibility in mapping trie nodes to pipeline stages, which in turn maintains uniform 

memory occupancy. We extend this approach with an architecture called Circular, 
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Adaptive and Monotonic Pipeline (CAMP). Our work, while also exploiting a circular 

pipeline, differs from the previous circular pipeline proposals in several ways. 

 

First, CAMP differs in the way the trie is split into sub-tries. While Baboescu et al. aim 

at having a large (~4000) number of equally sized sub-tries, our design strives for 

simplicity. Thus, CAMP splits a trie into one root sub-trie and multiple leaf sub-tries. 

The root sub-trie handles the first few bits (say r) of the IP address, and it is 

implemented as a table, indexed by the first r bits of the IP address. With this, there may 

be up to 2r leaf sub-tries; each of which can be independently mapped to the pipeline. 

By judiciously mappings these, the system maintains near-optimal memory utilization, 

not only in memory space but also in the number of accesses per pipeline stage. 

 

Second, having a reduced number of sub-tries of different sizes, we propose a different 

heuristic to map them to the pipeline stages. As a matter of fact, our scheme proves to 

be much simpler, and also gracefully handles incremental updates. 

 

Finally, our design uses a different mechanism to maximize pipeline utilization and 

handle out of order lookup conditions. In particular, we aim at having not more than 

one access per pipeline stage for any lookup. CAMP goes further and decouples the 

dependence of number of pipeline stages from the number of trie levels. Thus it can 

employ a large number of compact and fast pipeline stages to enable high throughput 

while consuming low power. With a large number of stages, pipeline utilization may 

degrade significantly. To this end, CAMP employs effective schemes to achieve high 

utilization. 

 

We also present an extensive analysis of the design tradeoffs and their impact on lookup 

rate and power consumption. For real routing tables storing 150,000 prefixes, CAMP 

achieves 40 Gbps throughput with a power consumption of 0.3 Watts. Projections on 

250,000 prefixes show a power consumption of 0.4 Watts at the same throughput. We 

begin with a description of the operation of pipelined tries. 
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3.2.1 Introducing CAMP 
 

Pipelining is an effective way to achieve high lookup rates. Previous pipelined schemes 

are based on the assumption that the pipeline is linear, and has a unique entry and exit 

point; moreover, it is assumed that a global mapping is performed on the entire trie. We 

remove both assumptions, based on the observation that practical prefix-sets present us 

considerable opportunity to split a trie into multiple sub-tries; thus, different pipeline 

entry points can be assigned to them. This leads to many mapping opportunities, from 

which assignments may be chosen to achieve balanced pipeline stages. Moreover, it also 

eliminates two important limitations faced by any global mapping based scheme, 

namely, 1) the number of pipeline stages is bound to the maximum prefix length, and 2) 

adding a memory bank  requires a complete remapping (in scenarios of an overflow 

generated by a sequence of prefix insertions). 

 

We introduce Circular Adaptive and Monotonic Pipeline (CAMP) using a set of 8 small 

prefixes shown in Figure 3.3 along with the corresponding binary trie. Pipelining this 

trie will require 6 stages. A level-based mapping [Basu, and Narlikar 2003] will result in 

1, 2, 3, 5, 2 and 2 nodes in stages 1 to 6, respectively, while a height-based mapping 

[Hasan, and Vijaykumar 2005] will result in 6, 4, 2, 1, 1 and 1 nodes. Thus, both of these 

mappings create unbalanced pipeline and the degree of imbalance is dependent upon 

the prefix set. 

 

We now consider splitting this trie into four sub-tries. Since prefix P1 is only 1-bit long, 

we first expand it to 2 bits using controlled prefix expansion (see Figure 3.3). Now, all 

prefixes in the database are longer than 2-bits; therefore, the upper two levels of the trie 

can be stored in a direct index table, which leaves us with three sub-tries of at most four 

levels each. More generally, when a routing database contains prefixes all of which are 

longer than x-bits (shorter prefixes are expanded to x-bits), then the first x levels of the 
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trie can be replaced by a direct index table containing 2x entries, each of which points to 

one of the up to 2x sub-tries with height at most 32 – x. 

 

With multiple subtries, we now seek to obtain a balanced mapping of nodes to pipeline 

stages. We exploit the fact that requests can enter and exit at any stage, thus roots of 

sub-tries can be mapped to any stage. If we also allow a request to wrap-around through 

the pipeline (i.e., by taking advantage of the circular pipeline), we can get a high degree 

of flexibility in mapping. Nodes descended from the root of a sub-trie can be stored at 

subsequent pipeline stages, wrapping around once the final stage is reached. In the 

example above, the 3 sub-tries constructed from the 8 prefix table can be mapped to a 

four stage circular memory pipeline with dynamic entry points as shown in Figure 3.4. 

Note that the first two bits are used to determine the entry stage into the pipeline and 

subsequent bits are processed within different pipeline stages. 
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Figure 3.3  (a) Routing table (prefixes shorter than 2-bits are expanded using controlled prefix 
expansion) (b) unibit trie of six levels; (c) Direct index table for first 2-bits, (d) resulting 4 sub-

tries of four levels each. 
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3.2.2 General Dynamic Circular Pipeline 
 

A general circular pipeline may not require a node to be stored in a stage adjacent to the 

parent node’s stage. For example, the two nodes of the first sub-trie in the previous 

example can be stored at any two distinct stages, because, irrespective of the way they 

are stored, a lookup request for this sub-trie will access each stage only once. However, 

this will require the pipeline to insert no-ops when a request traverses a stage where the 

required node is not present. Supporting no-ops increases the flexibility in storing the 

nodes of various sub-tries which can lead to more balanced pipeline stages. On the 

other hand, as will be shown later, it may complicate the update scenario. 

 

A general circular pipeline has three important properties, i) it allows dynamic entry and 

exit points, ii) it is circular, thus all neighboring stages are connected in one direction, 

and iii) it supports no-ops for which requests are simply passed over whenever the 

designated node is not found. The corresponding mapping algorithm maps the root of 

each sub-trie to some pipeline stage and subsequent nodes are mapped such that, a) a 
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Figure 3.4  A four stage circular pipeline and the way the three subtries in Figure 3 are 

mapped onto them. 
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node is stored at a stage which is at least one ahead (accounting for wraparound) of the 

stage where its parent is stored, and b) all lookup paths terminate before making a circle 

through the pipeline. Thus, nodes along any path are mapped in a monotonically 

increasing pipeline stage and every lookup is guaranteed to make at most one access to a 

memory stage. 

 

It can be argued that the lookup throughput of a general circular pipeline matches that 

of any other pipeline because a lookup request accesses a memory at most once. 

However, allowing dynamic entry points introduces new problems due to request 

conflicts. A request contending to enter the ith stage may have to wait until a bubble 

(idle cycle) arises there. In an extreme case, a request may have to wait for such a bubble 

indefinitely, if other requests are entering the pipeline every cycle and keeping its entry 

stage busy. This may lead to non-deterministic performance, low pipeline utilization and 

out-of-order request processing. However, as we will see next, relatively straightforward 

techniques coupled with a small speedup in pipeline operating-rate ensure deterministic 

performance. 

 

3.2.3 Detailed Architecture of CAMP 
 

The schematic block diagram of a CAMP system is shown in Figure 3.5, which consists 

of a direct lookup table and a circular pipeline of memories. The direct table lookup 

performs a lookup on the first x-bits of the address (x being the initial stride in the 

lookup trie), and determines the stage where the root node of the corresponding sub-

trie is stored. Subsequently, a lookup request to traverse through the sub-trie is 

dispatched into that stage. All requests to a pipeline stage are stored in an ingress FIFO 

in front the stage. As soon as the stage receives a bubble (idle cycle), the request at the 

front of the FIFO is issued into the pipeline. The request traverses through the pipeline 

and as it reaches the stage containing the last leaf node, it comes out with either valid 

next hop information or a no match. 
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The ingress FIFO in front of each stage is crucial in improving the efficiency. Consider 

a system without such queues. It is possible that a stream of n lookup requests enters 

some stage resulting in a train of n entries in the pipeline, and subsequent requests 

contending to enter the pipeline waits for up to n cycles. Thus, the efficiency can be as 

low as 50%, because the pipeline services n requests and then waits for up to n cycles 

before servicing subsequent requests. In the worst-case, efficiency can be even lower. 

Consider a situation when a request enters at a pipeline stage i. The next request will 

wait for 1 cycle if it contents to enter at the pipeline stage i+1. The third will waits for 2 

cycles, as it contends to enter at the stage i+2. If this pattern will continue, the ith 

request will wait for i–1 cycles, which will lead to a very low efficiency. 

 

The ingress FIFO in front of each pipeline stage serves as a reorder buffer, which 

obviates the above issue of head of line blocking. If a request must wait for a few cycles 

because its entry stage is busy, it stays in the stage’s ingress FIFO instead of blocking 

the subsequent requests. Quite intuitively, large request queues will improve the 

efficiency of the pipeline, as they will provide extended immunity against conditions 

when a request must wait before being dispatched into the pipeline. 
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Figure 3.5  Schematic block diagram of a CAMP system. 
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A drawback of using these ingress FIFOs is that the requests may leave the pipeline out-

of-order. Therefore, a reorder buffer is required at the output to restore the order of 

requests. Reordering is optional because the problem of out-of-order arises only among 

the packets destined to different destinations. A single TCP flow will never experience 

any reordering, as any two packets having the same prefix (thus designated to the same 

“next hop”) always traverse thru the same path in the lookup trie. Hence, these requests 

will contend to enter the pipeline at the same stage, where they are serviced in a first-in 

first-out order. We now introduce the metric of pipeline efficiency and characterize it 

for different pipeline configurations and input traffic patterns. 

 

3.2.4 Characterizing the Pipeline Efficiency 
 

The primary metric to characterize the efficiency of CAMP is pipeline utilization. 

Pipeline utilization is the fraction of time the pipeline remains busy provided that there 

is a continuous backlog of lookup requests. Another metric, which more directly reflects 

the performance, is Lookups per Cycle or LPC, i.e. the rate at which lookup requests are 

dispatched into the pipeline. 

 

A linear pipeline guarantees a LPC of 1 however pipeline utilization can remain low if a 

majority of prefixes are not 32-bits long (hence they do not use all stages). In a CAMP 

pipeline, on the other hand, pipeline utilization can be maintained at 1 and requests may 

be dispatched at rates higher than one per cycle. LPC greater than 1 can be achieved, i) 

when most requests do not make a complete circle through the pipeline, or ii) when 

there are more pipeline stages than there are levels in the trie. Thus, whenever some 

pipeline stages are not traversed by a request, new requests contending to enter those 

stages can be issued into the pipeline. Note that, practical IP lookups, where a majority 

of prefixes are only 24-bits long, will only utilize 75% stages of a 32-stage pipeline. 
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In order to evaluate the efficiency of CAMP, we use software simulations to determine 

the pipeline utilization and the resulting LPC. In the first set of experiments, we assume 

that all requests make one complete circle through the pipeline and there are as many 

pipeline stages as there are levels in the trie (in this case pipeline utilization will be equal 

to the LPC). Later we consider scenarios, when requests do not make a complete circle. 

We also assume that the requests that find its ingress FIFO full are discarded; in an 

actual implementation, to avoid such discards, a large buffer can be allocated which will 

feed the ingress FIFOs. The only variable in the arriving requests now is the entry point 

in the pipeline. We consider following four different distributions of the entry points of 

the arriving requests: i) uniformly random request to each stage, ii) uniformly random 

short bursts of requests to each pipeline stage, and iii) uniformly random long bursts of 

request to each stage, and iv) weighted random arrivals; thus some stages receive more 

requests than the others. 

 

Our representative setup has 24 pipeline stages and requests circle through all stages 

before exiting. In Figure 3.6, we report the LPC for different request queue sizes. It is 

clear that, a LPC of 0.8 can be achieved for all traffic patterns, once the request queue 

size is 32. This suggests that CAMP remains 80% efficient for practically all traffic 

patterns. In another experiment, we fixed the request arrival rate at 0.8 per cycle and the 
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Figure 3.6  LPC of CAMP versus request queue size. 
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request queue size at 32 and measured the discard rate and the average delay 

experienced by a request. After running the experiment for more than 100 million 

iterations, no requests were discarded and the average delay experienced by a request 

was only a few tens of cycles. 

 

Not surprisingly, in these experiments, very long bursts of requests to various pipeline 

stages result in higher utilization because when many requests arrive at a stage one after 

another, they are all serviced without conflict. On the other hand, when the burst 

lengths are comparable to the pipeline depth, trains of requests are created and 

subsequent bursts may have to wait before getting dispatched into the pipeline. 

 

3.2.5 When is LPC greater than one? 
 

While the LPC of a linear pipeline is always one, the LPC of CAMP can be engineered 

to be greater than one, which can improve the throughput. This is possible because 

CAMP enables a trie data-structure to be pipelined further, up to a number of stages 

much larger than the number of levels in the trie. For example, the mapping of the three 

sub-tries shown in Figure 3.3 to a six stage pipeline is shown in Figure 3.7. As we will 

soon see, with many sub-tries, it is not difficult to determine an appropriate stage for 
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Figure 3.7  A six stage circular pipeline and the way the three sub-tries in Figure 3.6 are 

mapped onto them. 



 
 
 
 
 

 

57 

the sub-trie’s root so that every stage of the pipeline is nearly uniformly populated. 

When there are many stages in the pipeline, each sub-trie (and its lookup requests) will 

span only a fraction of all stages. This can lead to a dispatch rate higher than one per 

cycle, assuming that all arriving requests do not traverse the same sub-trie. In fact, when 

sub-tries and therefore the associated prefixes are nearly uniformly dispersed all around 

the stages (because stages are balanced), it is less likely that all lookup requests will 

contend to enter one stage. Notice that, an orthogonal factor leading to higher LPC is 

the fact that most prefixes have only 24-bits. 

 

From an implementation perspective, it is neither difficult nor expensive to implement 

more pipeline stages relative to the trie levels. A multi-bit trie with the appropriate node 

encoding (tree-bit map or shape shifting trie), will not only reduce the memory but also 

effectively increase the number of stages in the pipeline per trie level. A stride of k will 

reduce the number of levels in the trie by a factor of k, which can directly lead to a k-

times higher LPC if we keep the same number of pipeline stages. 

 

We now consider evaluating such scenarios. Our setup consists of a 32-stage pipeline, 

and an initial stride of 8 leading to the sub-tries containing at most 24 leftmost prefix 

bits. Each sub-trie uses tree-bit map of stride 3, thus a single lookup path spans across 
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Figure 3.8  LPC of CAMP versus request queue size. Requests arrive at each pipeline stage in 

random bursts (burst length highlighted in the figure). 
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at most 8 pipeline stages. In this experiment, we also assume that the average prefix 

length is 24-bits, thus a request on average traverses thru only 6 stages. As reported in 

Figure 3.8, the LPC ranges from 3 to 5, even for long bursts of requests contending to 

enter the same stage. For smaller bursts, which are more common, LPC is even higher. 

 

3.2.6 Mapping IP Lookup Tries in CAMP 
 

To use CAMP, we need a mapping algorithm which assigns the trie nodes to the 

pipeline stages. The primary purpose of the algorithm is to achieve a uniform 

distribution of nodes to stages. In particular, the mapping should minimize the size of 

the biggest (and bottleneck) stage. This will not only enable high throughout but also 

reduce the chances of unbalanced pipeline during updates. 

 

Problem Formulation 

 

We can formulate the above problem as a constrained graph coloring problem, where 

colors represent the pipeline stages, and the graph corresponds to the set of sub-tries. 

The following two constraints guide the coloring: i) every color should be nearly equally 

used, and ii) a relation of order, when traversing a sub-trie from the root to the leaves, 

must be associated with the color assignment. The first constraint captures the intent of 

achieving a uniform distribution of nodes across the stages. The second constraint arises 

due to the fact that nodes must be mapped to the circular pipeline stages in a circular 

and monotonic order. Thus, all paths from root to leaf must be assigned distinct colors 

in a monotonic order (including wraparound). 

 

If we represent each color by an integer, the relation of order is the “saturated <” 

relation. In other words, if we have N colors (1, 2, ..., N) then the following relation will 

hold: 1<2<...<N<1. A mapping which doesn’t preserve this order relation is 

exemplified in Figure 3.9(a). Such a mapping can cause a lookup to circle through the 
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pipeline more than once, thereby reducing the LPC. A mapping which preserves the 

order relation is illustrated in Figure 3.9(b), where all paths from root to leaf (i.e. any 

lookup operation) traverse through a color at most once. Naturally there can be several 

mapping choices which will preserve the order relation and we are interested in those 

which lead to a nearly uniform usage of different colors. Such constrained graph 

coloring problem is NP-hard and can be reduced to the well known partition problem 

therefore we present a heuristic algorithm to obtain a near optimal solution. 

 

The Largest First Coloring Algorithm 

 

Several simple heuristics can be obtained to perform the coloring which preserves the 

order relation. For instance, each sub-trie can be colored by first randomly selecting a 

color for the root node and then incrementing the color when proceeding towards the 

leaves. While such a randomized scheme may lead to fairly balanced color distributions 

in the case of a large number of sub-tries, it may not be satisfactory when there are not 

that many sub-tries or when some sub-tries are significantly larger than the others. We 

therefore introduce a more effective coloring heuristic. In particular, if we color sub-

tries sequentially, at each coloring step we want to exploit the information about the 

current status of the color distribution. 
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Figure 3.9  a) invalid assignment: matching P1 causes one extra loop of the circular pipeline; 

b) valid assignment: the circular pipeline is traversed only once. 
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A largest first coloring heuristic seeks to obtain uniform color usage by coloring the 

sub-tries in a sequence such that the larger sub-tries are colored before the smaller ones. 

Such a sequence is motivated by the well-known bin-packing heuristic and can be 

attributed to the fact that if tries are colored in a decreasing size sequence then the 

coloring of smaller tries can effectively correct the unbalances caused by the already 

colored bigger tries. Thus, the largest first heuristic first sorts all sub-tries according to 

their size and then in a decreasing order, assigns colors to the nodes of the sub-tries. 

For the currently selected sub-trie, the coloring needs to restore any discrepancy in the 

color usage until now. Since, the choice of a color for the root determines the colors for 

all subsequent nodes, the largest first algorithm tries all possible colors for the root node 

(subsequent nodes are colored with increasing color values) and finds the color usage 

for each choice. Finally, it picks the one which results in the most uniform color usage 

and moves on to the next sub-trie. Figure 3.10 illustrates the application of the largest 

first heuristic on a set of four sub-tries. 

 

Additional Considerations 

 

The above coloring heuristic only considers unitary increment between colors of a node 

and those of its children. It would be possible to add further flexibility in color 

assignment by removing this constraint, without affecting the correctness of the system. 

The shaded area in Figure 3.11(a) illustrates this possibility. The added flexibility may 

lead to more uniform usage of colors however it complicates the coloring. The 
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Figure 3.10  Example coloring with largest first heuristic. 
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complexity may be acceptable if the mapping were static; however in practical systems, 

updates often add and remove nodes from the tries, in which case, remapping a large 

part of the trie may be needed if the unitary increment constraint is not applied. As an 

example, let us add a bottom right node to the trie shown in Figure 3.11(a). Since color 

4 is already used at the leaf, the colors of the nodes in the shaded area must be 

reassigned, as illustrated in Figure 3.11(b). For this reason, we do not consider the 

possibility of skipping colors between adjacent levels. 

 

3.3 Coupling HEXA with CAMP 
 

In this section we describe how the HEXA and CAMP techniques can be brought 

together to create an efficient and high performance longest prefix match architecture. 

HEXA is a compression method that encodes the “next node” pointers in structured 

graphs such as tries in a novel way that substantially reduces the amount of memory 

required. Memory compression is extremely valuable in ASIC implementations, where 

expensive and limited embedded memories are used, however HEXA does not aid in 

improving the lookup performance of the trie. In fact, in an optimal setting, HEXA 

encoded tries use much smaller stride values than competing approaches, which 

increases the number of memory accesses required to lookup any given address. Thus, if 

the entire trie is stored using a single embedded memory, HEXA encoding can reduce 

the lookup throughput and may not be desirable. Fortunately, it is possible in ASIC 

based systems to employ a reasonably large number of compact but independent 
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Figure 3.11  An insertion operation causes a sub-trie remapping in case of  skip-level 
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memory modules, thereby substantially increasing the amount of memory bandwidth 

available. CAMP perfectly complements HEXA in such settings: HEXA provides 

memory compression so that larger lookup data structures can be accommodated by the 

on-chip memory; CAMP enables bandwidth efficiency by properly utilizing the available 

memory bandwidth to enable high lookup throughput. 

 

While HEXA is crucial in reducing the memory required to store a given trie, CAMP 

also plays an important role in improving the space efficiency. In CAMP, memory 

modules are configured in a novel circular pipeline, which unlike a traditional linear 

pipeline, allows multiple entry and exit points. Such a structure provides much greater 

flexibility in mapping the trie nodes to the pipeline stages and keeps the pipeline stages 

balanced, which helps reduce the amount of memory required to store a given number 

of prefixes. In our experiments, we will report that when HEXA is coupled with 

CAMP, a longest prefix match engine can be devised which is not only efficient in 

space, but also enables high lookup rate and low power dissipation. There are, however 

some complications in coupling HEXA with CAMP, which we will discuss before 

proceeding with the experimental evaluation. 

 

When we couple CAMP with HEXA, we will obtain nodes from a collection of sub-

tries rather than from a single trie for mapping to memory. This apparent complication 

does not pose any serious threat to the mapping process, because nodes within each 

sub-trie will maintain unique HEXA identifiers. The real complication arises due to the 

use of multiple memory modules. In our description presented in Section 3.1.3, we map 

the HEXA encoded nodes to memory words within a single address space. CAMP 

however uses multiple memory modules (pipeline stages), thus HEXA encoded trie 

nodes are required to be mapped to both “a memory module” and “a word within the 

module”. Additionally, when we couple CAMP with HEXA, we will map nodes from a 

collection of sub-tries rather than from a single trie. A logical first step is divide the trie 

into multiple sub-tries and map sub-trie nodes to memory modules, which can be 

accomplished with the algorithm presented in our description of CAMP in Section 
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3.2.6. The next step is to determine the HEXA identifier of nodes within each module, 

and then map these identifiers to memory words within the module. Since the HEXA 

identifier of every node is unique, the HEXA identifiers of the sub-trie nodes within 

each memory module will also be unique. Thus, within each memory module, HEXA 

identifiers to memory words mapping can be accomplished, with the construction of a 

bipartite graph of the sub-trie nodes to be stored in the module and its memory words, 

and subsequently finding a perfect matching in the graph (the procedure is described in 

Section 3.1). 

 

Once both – node to pipeline stage, and node to memory word location – mappings are 

complete and next node pointers of each node (discriminators of the next nodes) are 

stored, the execution of the pipeline will require a slight modification. In a standalone 

CAMP system, IP addresses are inserted in the entry stage; subsequently, lookup of a 

node in any pipeline stage provides the location of the next node (if it exists) stored in 

the next stage. This location is passed over to the next stage along with the IP address 

and the current lookup bit position within the IP address. When coupled with HEXA, a 

node will not explicitly store the location of its next nodes; rather their discriminator 

values will be stored. Therefore, in such a system, a discriminator, an IP address, and 

the current lookup bit position are passed between the pipeline stages. Recall that the 

discriminator of a node is hashed along with the node’s HEXA identifier to compute its 

memory locations, thus each pipeline stage will require a hash function circuit. Other 

components of the system will remain unaffected. To summarize, there are two key 

differences between a standalone CAMP system, and an integrated HEXA/CAMP 

system: the integrated system requires a hash function within each pipeline stage to map 

HEXA identifiers to memory locations, and discriminators instead of explicit memory 

locations are passed between pipeline stages. 

 

3.4 Experimental Evaluation 
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In this section we evaluate the performance of HEXA and CAMP and compare them 

with state-of-the art methods such as Eatherton-Dittia tries, and linear pipelines. We 

first consider unibit tries, and show how HEXA can lead to dramatic memory reduction 

and how the selection of the initial stride in CAMP keeps the pipeline stages balanced. 

Subsequently, we analyze the impact of route updates, and show how both HEXA and 

CAMP can gracefully handle them. Thereafter, we extend these analyses to multi-bit trie 

implementations and show how our solutions remain effective for such representations. 

We conclude with a brief analysis of power dissipation and die area. Our study focuses 

mainly on practical databases: we therefore begin with a brief discussion of the IPv4 

address allocation process and trends in BGP routing table growth. 

 

3.4.1 Datasets - BGP Routing Tables and Trends 
 

BGP tables have grown steadily over the past two decades from less than 5000 entries 

in the early 1990s to nearly 75,000 entries in 2000 to up to 135,000 entries today. The 

trends in the growth are well studied in [BGP Table Data 2006][Huston 2001], which 

highlight that 16 to 24-bit long prefixes makes up the bulk of the BGP table. It has been 

shown that a small fraction (<1%) of prefixes are longer than 24-bits and are likely to 

remain so in the near future due to address aggregation and route aggregation 

techniques. The use of prefix length filtering also limits the propagation of longer 

prefixes throughout the global BGP routing domain. 

 

Another important trend concerns updates in BGP tables. A majority of updates are 

linked to network link failure and recovery which removes a set of neighboring prefixes 

from the trie and quickly adds them back either due to the link recovery or due to the 

discovery of an alternative path. 

 

To summarize the BGP trends: i) the number of prefixes in BGP tables has grown 

nearly exponentially and is likely continue to grow; ii) prefixes smaller than 26-bits make 
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up the bulk of the BGP table and this is likely to remain true in the near future; iii) route 

updates can be concentrated in short periods of time; however, updates rarely change 

the shape of the trie, even after extended periods of time. 

 

We now discuss the memory requirements of pipelined tries. Unless otherwise specified, 

the experiments reported in this section are based on a dataset consisting of more than 

fifty BGP tables obtained from [BGP Table Data 2006] and [Routing Information 

Service], containing from 50,000 to 135,000 prefixes. 

 

3.4.2 Experimental Evaluation of HEXA 
 

We have performed a thorough experimental evaluation of the HEXA representations 

of lookup trie. The results shown here demonstrate that, HEXA can dramatically reduce 

the memory required by a binary trie; at the same time it can also reduce the memory in 

more sophisticated trie implementations like multi-bit trie and tree bit-map. 
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Figure 3.12  For different memory over-provisioning values and trie sizes, the number of 
choices of HEXA identifier that is needed to successfully perform the memory mapping. 
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In Figure 3.12, for varying trie sizes, we plot the number of choices of HEXA 

identifiers that are needed to find a perfect matching in the memory mapping graph. As 

expected, more choices of HEXA identifiers or increased memory over-provisioning 

((m−n)/m) helps in finding a perfect matching. In agreement with the theoretical 

analysis, for m=n, the required number of HEXA identifier choices remains O(log n). 

However, when m is slightly greater than n (results for 1, 3 and 10% are reported here), 

the required number of choices becomes constant, independent of the trie size. Recall 

that the number of HEXA identifier choices determines the number of discriminator 

bits that are needed for a node, thus a small memory over-provisioning is desirable in 

order to keep the discriminators constant in size. 

 

From a practical point, we would like to keep the number of choices of HEXA 

identifiers a power of two minus one, so that one discriminator value will be used to 

indicate a null child node and all remaining permutations of discriminator values will be 

used in finding better matching. Thus, we are interested in such choices as 1, 3, 7, etc. 

Therefore, we fix the number of HEXA choices at these values, and plot the memory 
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Figure 3.13  For different number of choices of HEXA identifiers and trie sizes, the memory 

over-provisioning that is needed to successfully perform the memory mapping. 
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over-provisioning needed to successfully perform a one-to-one memory mapping 

(Figure 3.13). It is clear that that for 3 HEXA identifier choices, the required memory 

over-provisioning is 10%. Thus, 2.2 bits are enough to represent each node identifier. 

 

Multi-bit Tries 

 

We now extend our evaluation of HEXA to multi-bit tries where tree bit-maps are used 

to represent the multi-bit nodes. Notice that when HEXA is used for such tries, the bit-

masks used for the tree bitmap nodes are not affected; only the pointers to the child 

nodes are replaced with the child’s discriminator. The first design issue in such tries is to 

determine a stride which will minimize the total memory. We accomplish this 

experimentally by applying different strides to our datasets and measuring the total fast 

path memory. The results are reported in Figure 3.14. Clearly, strides of 3, 4 and 5 are 

the most appropriate choices, when HEXA is not used. When HEXA is employed, 

large strides no longer remain effective in reducing the memory. This happens because a 

uni-bit HEXA trie requires just 2-bits of discriminator to represent a node, thus there is 

little room for further memory reductions by representing a subset of nodes with a 
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Figure 3.14  Memory needed to represent the fast path portion of the trie with and without 

HEXA. 32 tries are used, each containing between 100-120k prefixes. 
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bitmap. In fact, with increasing stride, the bitmaps grow exponentially and quickly 

surpass any memory savings achieved with the tree bitmap based multi-bit nodes. 

Note that smaller strides may not be acceptable in off-chip memory based 

implementations. However, in an embedded implementation such as pipelined trie 

[Basu, and G. Narlikar 2003], small stride may enable higher throughput, as reported in 

[Baboescu, Tullsen, Rosu, and Singh 2005]. This happens because with small stride, one 

can employ much deeper pipelines and each pipeline stage can be kept compact and 

fast. 

 

Incremental Updates 

 

We now present the results of incremental updates on tries represented with HEXA. In 

our experiments, we remove a trie node and add another to the trie, and then attempt to 

find a mapping for the newly added node. The general objective of triggering minimum 

changes in the existing mapping is achieved by finding the shortest augmenting path in 

the memory mapping graph, between the newly added node and some free memory 

location (as described in Section 3.1.4). We find that the shortest augmenting path 

indeed remains small, thus a small number of existing nodes are remapped. In Figure 

3.15, we plot the probability distribution of the number of nodes that are remapped 

during an update of a single trie node. It is clear that no update is likely to take more 

than 19 memory operations and a large majority of updates require less than 10 memory 

operations. Thus, when prefixes are added or removed, update operations in a HEXA 

encoded trie can be carried out very quickly, irrespective of the trie shape and the 

update patterns. 

 

3.4.3 Experimental Evaluation of CAMP 
 
Before reporting our experimental results, we discuss some practical considerations that 

arise in a CAMP system. 
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Practical Considerations 

 

Two important issues must be addressed when designing a CAMP pipeline: i) choice of 

the number of stages and ii) selection of the initial stride, which divides a trie into 

multiple sub-tries. We postpone the discussion of these3e issues to subsequent sections, 

and concentrate on another important design issue. For a given number of stages and 
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Figure 3.15  Probability distribution of the number of memory operations required to perform 

a single trie update. Upper trie size = 100,000 nodes, Lower trie size = 10,000 nodes. 
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initial stride, how to dimension each stage and how does this compare with a linear 

pipeline? 

 

To answer these questions, we determine the memory requirement of every pipeline 

stage for an array of routing tables in our dataset. Thereafter, from among all these data 

points, we compute the maximum memory requirement of every stage. Since some 

tables contain fewer prefixes than others, it is likely that they will require relatively less 

memory at each stage and hence may not contribute to the maximum computation. 

Therefore, we normalize the memory requirement of a stage for a given prefix set 

before considering it for the maximum computation. Thus the impact of a prefix set’s 

size is eliminated but that of the prefix trends and length distribution are preserved. 

This gives us a first order estimate of the memory required at each pipeline stage for the 

today’s prefix sets. 

 

In Figure 3.16(a) we plot the normalized size of each stage of a CAMP pipeline for all 

routing tables (normalized with respect to the average pipeline stage size). The initial 

stride is set to 8, thus all subsequent uni-bit sub-tries require 25 pipeline stages. A “dot” 

represents the size of the corresponding pipeline stage for a prefix-set. The maximum 

size of each pipeline stage from among all dots is shown as an envelope in solid line. In 

Figure 3.16(b) and (c), we draw similar plots for a linear pipeline using a level-to-stage 

and height-to-stage mapping, respectively. We then add up the maximum size of each 

stage, represented by the envelope. This provides us the total memory overhead of each 

scheme (printed in the same plots). It can be noted that CAMP has a total memory 

overhead of 2.4% as compared to 23% in the height-to-stage mapping and 31% in level-

to-stage mapping. Thus, not only does CAMP allow a more balanced distribution of 

nodes to stages (highlighted by Figure 3.16), but it also reduces the total memory. 

 

Initial Stride and Number of Sub-tries 

 



 
 
 
 
 

 

71 

0

0.01

0.02

0.03

0.04

0.05

1 4 7 10 13 16 19 22 25

Pipeline stage #

R
e
la

ti
v
e
 s

iz
e
 o

f 
th

e
 p

ip
e
li
n

e

Sum of normalized upper bounds = 1.024

 

0

0.03

0.06

0.09

0.12

0.15

1 6 11 16 21 26 31

Pipeline stage #

R
e
la

ti
v
e
 s

iz
e
 o

f 
th

e
 p

ip
e
li
n

e

Sum of normalized upper bounds = 1.31

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 6 11 16 21 26 31

Pipeline stage #

R
e
la

ti
v
e
 s

iz
e
 o

f 
th

e
 p

ip
e
li
n

e

Sum of normalized upper bounds = 1.23

 
Figure 3.16  Normalized memory requirements of each pipeline stage in a binary trie a) 
CAMP using largest first  heuristic, b) level to pipeline stage mapping, c) height to stage 

mapping. Leaf pushing was not done in these experiments. 

The selection of the initial stride determines the number of sub-tries a trie will be 

split into. Specifically, an initial stride of k will lead to up to 2
k
 sub-tries. A large 

number of sub-tries generally leads to more balanced pipeline stages. On the same 
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dataset used in the previous analysis, we verified that the 2.4% memory overhead 

reported for an initial stride of 8 reduces to 0.02% and 0.01% for initial strides of 12 

and 16, respectively. Larger initial strides, however, come at a cost. The direct 

indexed array which processes the initial k-bits and selects a sub-trie has 2
k
 entries. 

Therefore, an initial stride of 12, which requires a 4K entry table, is preferable over 

16, which requires a 64K entry table. 

 

Incremental Updates 

 

From the previous discussion it is clear that the CAMP mapping algorithm leads to 

uniform pipeline utilization once an appropriate initial stride is chosen. We now study 

the effect of updates, which may disturb a balanced system. The goal of the discussion 

is twofold: first, we seek to evaluate the degree of imbalance that can be introduced by 

incremental updates in extreme scenarios; second, we seek to determine a bound on the 

extra memory needed to compensate for the imbalance.  

 

An extreme (and unlikely) scenario is created by considering a subset of BGP tables, 

each containing nearly 105,000 prefixes, and simulating a sequence of migrations from 

one table to the other. The system begins in a balanced state (an initial stride of 12 is 

assumed) and each successive migration incrementally removes all prefixes belonging to 

the previous table and adds the ones present in the new table. During migration, the 

node to stage assignment of already existing sub-tries is preserved (and extended to the 

newly added nodes of the same sub-tries), while the roots of the newly added sub-tries 

are assigned a random stage. The results of these experiments are reported in Figure 

3.17, where several distinct simulations have been run starting from a different routing 

table. The sizes of the smallest and the largest pipeline stage, normalized with respect to 

the total table size, are shown by a sequence of min-max data points in black-gray shade. 

The upper and lower envelope of all min-max data points is drawn in the same plot. It 

is clear that, even in this extreme case, the imbalance leads to only a 4% increase in the 

occupancy of the largest stage. 
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A more realistic scenario has been created by considering monthly snapshots of the 

rrc00 routing table over time, from 2002 till 2006 [Routing Information Service], during 

which, the table grew from 90126 prefixes to 135520 prefixes. Two cases are 

considered: in the first one, a balanced node to stage assignment is performed at the 

beginning (2002) and incremental updates are carried out until 2006 without any 

intermediate rebalancing. In the second case, the system is rebalanced, once every year, 

with a new (and balanced) node to stage assignment. Figure 3.18, reporting the result of 

this experiment, can be read as Figure 3.17 with the difference that the x-axis now 

reports the timestamp of each table snapshot. Without rebalancing, the maximum 

variation in the occupancy of the largest memory stage is 6%, while with rebalancing it 

is 4%. Note that such variation decreases every year; in particular, it is limited to less 

than 1% after 2006. In fact, as the routing table grows and the trie becomes relatively 

denser, it becomes more difficult to disturb a balanced system. 

 

We conclude that, even in extreme update scenarios, the occupancy of a CAMP pipeline 

stage can increase only marginally. Hence, small memory over-provisioning should be 

adequate. Although there are effective methods to rebalance a CAMP system in face of 
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Figure 3.17  Successive migrations between a set of 22 distinct BGP tables. The upper and 

lower bound of the relative pipeline size are highlighted. 
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real-time incremental updates, the limited amount of imbalance and the infrequent need 

of rebalancing renders them not worthwhile. 

 

Multi-bit Tries 

 

Until now, we have only considered a uni-bit trie lookup. We now extend our evaluation 

to multi-bit tries where tree-bit maps are used to represent multi-bit nodes. The first 

design issue is to determine a stride which minimizes the total memory. We accomplish 

this experimentally by applying different strides on our datasets and measuring the total 

memory. The results are reported in Figure 3.19. It is obvious that strides of 3, 4 and 5 

are the most appropriate choices. 

 

When selecting the stride from among the three choices above, CAMP has relatively 

higher flexibility than a linear pipeline. In the case of a linear pipeline, a higher stride will 

reduce the number of memory stages, which may increase the size of each stage. A 

linear pipelined trie will therefore generally prefer conservative strides (e.g.: 3) so as to 

keep the bottleneck stage smaller, even though this may lead to non optimal total 

memory. CAMP, on the other hand, may choose a relatively larger stride due to the fact 

that pipeline stages are uniformly sized and no single stage is the bottleneck. 
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Figure 3.18  Effect of incremental updates over time; two scenarios are represented: once 

without and one with yearly rebalancing. 
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Additionally, as we will show in the next subsection, CAMP exhibits more flexibility in 

selecting the number of pipeline stages which can reduce their size independent of the 

adopted stride. 

 

Number of Pipeline Stages 

 

A key property of CAMP is that the number of pipeline stages can be different from the 

number of trie levels. This enables a trie data-structure to be pipelined to many more 

stages. Besides reducing the size of each pipeline stage (thus enabling them to run 

faster), more stages also improves the overall LPC, leading to a higher throughput. On 

the other hand, a large number of stages may lead to a less balanced distribution of 

nodes across different stages. 

 

We experimentally quantify the impact of the number of stages on the node 

distribution. We keep an initial stride at 9 and the stride of each sub-trie is 5. In Figure 

3.20, we vary the number of pipeline stages from 6 thru 30 and plot the excessive nodes 

allocated to the largest pipeline stage (percentage of the average number of nodes in a 

stage). Clearly, more stages results in higher imbalance as the largest stage is relatively 
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Figure 3.19  Total memory requirements of a tree-bit mapped multi-bit trie with different 

stride values (to highlight the properties of CAMP, we do not use HEXA in this experiment). 
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more occupied. However, note that, even for 30 pipeline stages, the largest stage is less 

than 1% bigger than the average stage. Therefore, we can conclude that the overall 

impact of higher number of pipeline stages on the node distribution is very nominal. 

 

Power Dissipation and Area Estimates 

 

We now characterize the power dissipation and die area of a CAMP and HEXA system. 

The analysis is carried out assuming a 0.09µm CMOS process and using CACTI3.2 

[Shivakumar, Jouppi 2001]. The evaluation considers large synthetic prefix sets, besides 

our original dataset. We allocate an additional 25% memory to account for pathological 

conditions which may arise in the future. Wherever there is choice, we pick an optimum 

memory configuration (number of banks and clock frequency), which meets a given 

throughput objective. Finally, throughout the experiments, we use a tree-bit mapped 

multi-bit trie of stride between 2 and 4, whichever. 

 

In Figure 3.21(a), we plot the power dissipation of the system for different link rates. As 

shown, the power dissipation for 1 million prefixes is 7 Watts when a 5-stage pipeline is 

used, and drops down to 3.4 Watts when a 10-stage pipeline is used. This can be 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35

Number of pipeline stages

%
 o

v
e
rs

h
o

o
t 

o
f 

th
e
 l

a
rg

e
s
t 

s
ta

g
e

 
Figure 3.20  Percentage overshoot of size of the largest pipeline stage from the average 

pipeline stage size. 
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explained as follow. The size of each stage is halved (from 1.6 MB to 0.8 MB) when 

doubling the number of stages. A single memory bank of these sizes has an access time 

of 4.2 ns and 2.2 ns, respectively. Therefore, achieving a 160 Gbps throughput requires 

a 4-bank and 2-bank memory, respectively, the former consuming 33% more energy per 

clock cycle. A smaller number of stages also lead to a lower LPC, thus requiring 

clocking the memory at higher rates. 

 

Another interesting observation is that 1 million prefixes on a 10 stage pipeline 

dissipates less power than 600k prefixes on a 5 stage pipeline. In order to obtain an 

optimum number of pipeline stages which minimizes the power dissipation, we measure 

the power dissipation while varying the number of stages. In Figure 3.22 we plot the 
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Figure 3.21  Power consumption and area estimates of different configurations. 
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power dissipation of a 1 million and 600k prefix system providing 160 Gbps 

throughput. Power dissipation clearly drops as we increase the number of stages, 

however, beyond 15 stages, the reductions are nominal. It happens because every stage 

is 0.5 MB in a 15-stage pipeline, and a single memory bank of this size has access time 

of less than 2 ns, sufficient to provide 160 Gbps. Beyond 25 stages, the increase in 

power due to the increased number of individual components exceeds the reductions 

due to higher LPC. Hence, the overall power dissipation begins to increase. 

 

The cost and yield of an ASIC depends very much on the die size; therefore, we also 

quantify the die size of the system. In Figure 3.21(b), we plot the area in cm2, required 

by a 5- and 10-stage pipeline for different link rates. As expected, a larger number of 

prefixes results in proportionally larger area. We report the area requirements as a 

function of the number of pipeline stages in Figure 3.22, which suggests that as the 

number of stages increases, area first decreases and then increases after a certain point. 

However, the area sensitivity is small, because area is mostly independent of the LPC 

and clock frequency and only loosely coupled to the number of banks. 
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Figure 3.22  Power consumption of different configurations. 
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3.5 Worst-case Scenarios and Discussion 
 

Since both CAMP and HEXA solutions are probabilistic – HEXA relies upon the 

randomness of the hash function; CAMP relies upon the trie shape – we discuss some 

worst-case scenarios and the likelihood of their occurrences in order to evaluate the 

vulnerability of these solutions. A key distinction between the vulnerability of HEXA 

and CAMP is that in HEXA, due to the use of hash function, the likelihood of finding a 

mapping of nodes to memory locations becomes independent of the prefix database, 

while in CAMP the imbalance in the memory utilization resulting from the node to 

pipeline stage mapping depends entirely upon the prefixes (trie shape). Consequently, 

memory efficiency in CAMP is vulnerable to the worst-case datasets; to tackle this 

problem, we describe an extension of CAMP, which enables robust and balanced 

memory mapping independent of the trie shape. In HEXA, the mapping performance 

remains robust and independent of the prefix database; therefore, we limit our 

evaluation to a brief analysis, which we present first. 

 

The memory mapping process in HEXA uses a (pseudo)-random hash function to map 

HEXA identifiers to memory locations; therefore it can be reduced to the well studied 

and understood balls and bins problem. For n trie nodes, there are n balls, and for m 

memory locations, there are m bins. For a c-bit discriminator, each ball has 2c pseudo-

random choices of bins to pick from, and the goal is to insert each ball in some bin. For 

2c = 3, and m = 1.1n, it has been shown that the likelihood that some balls do not find a 

bin is a negative exponential in n [Pagh, and Rodler 2001]. (for a million nodes trie, this 

probability is lower than the probability that there is a power failure across the entire 

globe.) A catch in this analysis is that it assumes a uniformly random hash function; 

practical hash functions are however (pseudo)-random. While several well known 

pseudo-random hash function exhibit a high degree of randomness, they also present a 

security threat. If the hash function is known, an attacker can propagate such IP 

prefixes that create a trie whose nodes and their HEXA identifiers lead to too many 

hash collisions, and the memory mapping will fail. A standard solution is to use a secret 
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key as an auxiliary input to the hash function. If the secret is sufficiently long, then it 

will become difficult for an attacker to create such anomalous conditions. 

 

With this straightforward solution to make HEXA secure and robust, we now shift our 

attention to CAMP in which the mapping efficiency relies on the shape of the trie, 

leaving it more vulnerable to anomalous conditions. In our experiments, we have solely 

considered practical routing tables; we now consider such datasets that present a 

potential threat in mapping, and can cause severe imbalance in the memory utilization. 

Such worse-case conditions clearly arise when it is not trivial to split a trie into multiple 

sub-tries and uniformly map them to different stages. Recall that we divided a single trie 

into up to 2k sub-tries by separately considering the initial k-bits of the address. As 

shown in Figure 3.23(a), any trie which begins with a long skinny section is difficult to 

be split with this mechanism. If we attempt to split such a trie, it will require a large 

initial stride, which can make the direct index table (2initial stride entries) prohibitively large. 

 

In order to handle these worst-case conditions, we propose an extension called adaptive 

CAMP, which allows a trie to be split into a parent sub-trie and multiple child sub-tries. 

This way, not only can we directly control the number and size of the sub-tries 

generated, but we can also ensure that the resulting sub-tries are equal in size. The 

process begins with assigning rank (total number of its descendents) to each node. We 

then distinguish all nodes whose rank is equal to the size of the sub-tries we want to 

k

root

k

root

rank of node i =

size of sub-trie

rooted at i

 
Figure 3.23  a) a worst-case prefix set, b) the way adaptive CAMP splits a trie into a parent 

and multiple child sub-tries. 
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generate. These nodes form a sub-trie of which they are the root. We then remove these 

sub-tries from the original trie, and iteratively apply the process to this remaining trie. 

The procedure is illustrated on the above trie in Figure 3.23(b), where the trie is split 

into a parent sub-trie and multiple child sub-tries (the root node of each sub-trie is 

highlighted). 

 

Once these sub-tries are generated, their nodes are mapped (both the child and parent 

sub-tries) to the pipeline stages. Pipeline stages are expected to be more balanced, as the 

sub-tries are of roughly equal size. A direct index table will no longer be required. 

Requests will be first dispatched into the pipeline to parse the parent sub-trie, and then 

another request will be dispatched to parse one of the child sub-tries. Such multiple 

request dispatches will clearly reduce the LPC and more pipeline stages will be required 

to mitigate this issue. Extended CAMP, thus, trades-off performance with robustness 

and security. 

 

3.6 Concluding Remarks 
 

In this chapter, we described the design of high performance architecture to implement 

longest prefix match. A unique characteristic of ASIC is that they can pack a limited 

number of memory bits on-chip; however, these bits can be configured in multiple 

memory modules to provide enormous amounts of bandwidth. To exploit this limited 

but fast pool of embedded memories and enable high performance, we combine two 

novel architectures, which we dub HEXA and CAMP. HEXA is a novel representation 

for structured graphs such as tries, and uses a unique method to locate the nodes of the 

graph in memory, which enables it to avoid using any “next node” pointer. Since these 

pointers often consume much of the memory required by the graph, HEXA based 

representations are significantly more compact, making them desirable in an ASIC. 

CAMP perfectly complements HEXA and utilizes the bandwidth provided by multiple 

embedded memories. To do so efficiently, CAMP uses a multi-point access circular 
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pipeline of memories; each stage stores a single or set of levels of the lookup trie and a 

stream of lookup requests are issued into the pipeline, one every cycle, in order to 

achieve high throughput. Circular structure provides much more flexibility in mapping 

nodes of the lookup trie to the stages, which in turn, improves the memory utilization 

and also reduces the total memory and power consumption. 
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Chapter 4 

 

Packet Content Inspection I 
 

In this chapter, we continue our endeavor to devise architectures that enable high 

performance by developing a novel approach to packet content inspection. Packet 

content inspection has recently gained popularity as it provides the capability to 

accurately classify and control traffic in terms of content, applications, and individual 

subscribers. Forwarding packets based on content (either for the purpose of 

application-level load-balancing in a web switch or security-oriented filtering based on 

content signatures) requires new levels of support in networking equipment. 

Traditionally, this deep packet inspection has been limited to comparing packet content 

to sets of strings. State-of-the-art systems, however, are replacing string sets with regular 

expressions, due to their increased expressiveness. Several content inspection engines 

have recently migrated to regular expressions, including: Snort, Bro, 3Com’s 

TippingPoint X505, and various network security appliances from Cisco Systems. 

Additionally, layer 7 filters based on regular expressions are available for the Linux 

operating system. While flexible and expressive, regular expressions have traditionally 

required substantial amounts of memory, which severely limits performance in the 

networking context. 

 

To see why, we must consider how regular expressions are implemented. A regular 

expression is typically represented by a deterministic finite automaton (DFA). For any 

regular expression, it is possible to construct a DFA with the minimum number of 

states. The memory needed to represent a DFA is, in turn, determined by the product 

of the number of states and the number of transitions from each state. For an ASCII 

alphabet, each state will have 256 outgoing edges. Typical sets of regular expressions 
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containing hundreds of patterns for use in networking yield DFAs with tens of 

thousands of states, resulting in storage requirements in the hundreds of megabytes. 

Standard compression techniques are not effective for these tables due to the relatively 

high number of unique ‘next-states’ from a given state. Consequently, traditional 

approaches quickly become infeasible as rule sets grow. 

 

We introduce a compact representation for DFAs, which that enables packet content 

inspection to be implemented using an ASIC on-chip memory. Our approach reduces 

the number of transitions associated with each state. The main observation is that 

groups of states in a DFA often have very similar outgoing transitions and we can use 

this duplicate information to reduce memory requirements. For example, suppose there 

are two states s1 and s2 that make transitions to the same set of states, {S}, for some set 

of input characters, {C}. We can eliminate these transitions from one state, say s1, by 

introducing a default transition from s1 to s2 that is followed for all the characters in 

{C}. Essentially, s1 now only maintains unique next states for those transitions not 

common to s1 and s2 and uses the default transition to s2 for the common transitions. 

We refer to a DFA augmented with such default transitions as a Delayed Input DFA 

(D2FA). 

 

In practice, the proper and effective construction of the default transitions leads to a 

tradeoff between the size of the DFA representation and the memory bandwidth 

required to traverse it. In a standard DFA, an input character leads to a single transition 

between states; in a D2FA, an input character can lead to multiple default transitions 

before it is consumed along a normal transition. 

 

Our approach achieves a compression ratio of more than 95% on typical sets of regular 

expressions used in networking applications. Although each input character potentially 

requires multiple memory accesses, the high compression ratio enables us to keep the 

data structure in the on-chip memory modules in an ASIC, where the increased 

bandwidth can be provided efficiently. We describe an ASIC architecture that employs a 
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modest of amount on-chip memory, organized in multiple independent modules. We 

use multiple embedded memories to provide ample bandwidth. However, in order to 

deterministically execute the compressed automata at high rates, it is important that the 

memory modules are uniformly populated and accessed over short periods of time. To 

this end, we develop load balancing algorithms to map our automata to the memory 

modules in such a way that deterministic worst-case performance can be guaranteed. 

Our algorithms can maintain throughput at 10 Gbps while matching thousands of 

regular expressions. 

 

To summarize, we propose a) the D2FA representation of regular expressions which 

significantly reduces the amount of memory required, b) an ASIC architecture that uses 

the D2FA representation, and c) a load balancing algorithm which ensures that on-chip 

resources on the ASIC are uniformly used, thereby enabling worst-case performance 

guarantees. 

 

The remainder of the chapter is organized as follows. Section 4.1 describes the D2FA 

representation. Details of our construction algorithm and the compression results are 

presented in Section 4.2. Section 4.3 presents the system architecture, load balancing 

algorithms and throughput results. We summarize the architecture in Section 4.4. 

Finally, in Section 4.5, we present preliminary research results of applying HEXA to 

finite automata. 

 

4.1 Delayed Input DFAs 
 

It is well-known that for any regular expression set, there exists a DFA with the 

minimum number of states [Hopcroft 1971]. The memory needed to represent a DFA 

is determined by the number of transitions from one state to another, or equivalently, 

the number of edges in the graph representation. For an ASCII alphabet, there can be 

up to 256 edges leaving each state, making the space requirements excessive. Table 
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compression techniques can be applied to reduce the space in situations when the 

number of distinct “next-states” from a given state is small. However, in DFAs that 

arise in network applications, these methods are typically not very effective because on 

average, there are more than 50 distinct “next-states” from various states of the 

automaton. 

 

We introduce a modification to the standard DFA that can be represented much more 

compactly. Our modifications are based on a technique used in the Aho-Corasick string 

matching algorithm [Aho, and Corasick 1975]. We extend their technique and apply it to 

DFAs obtained from regular expressions, rather than simple string sets. 

 

4.1.1 Motivating Example 
 

We introduce our approach using an example. The left side of Figure 4.1 shows a 

standard DFA defined on the alphabet {a,b,c,d} that recognizes the three patterns, 

p1=a
+, p2=b

+c, and p3=c
*d+ (in these expressions, the asterisk represents 0 or 

more repetitions of the immediately preceding sub-expression, while the plus sign 

represents one or more repetitions). In this DFA, state 1 is the initial state, and states 2, 

5 and 4 are match states for the three patterns p1, p2 and p3, respectively. 
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Figure 4.1  Example of automata which recognize the expressions a+, b+c, and c*d+ 
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The right side of Figure 4.1 shows an alternate type of DFA, which includes unlabeled 

edges that are referred to as default transitions. When matching an input string, a default 

transition is used to determine the next state, whenever the current state has no 

outgoing edge labeled with the current input character. When following a default 

transition the current input character is retained. Consider the operation of the two 

automata on the input string aabdbc. For this input, the sequence of states visited by 

the left-hand automaton is 1223435, where the underlined states are the match states 

that determine the output value for this input string. The right-hand automaton visits 

states 1212314135. Notice that the sequence of match states is the same, so if the 

second automaton output associates these states with the same three patterns, it 

produces the same output as the first one. Indeed, it is not difficult to show that the two 

automata visit the same sequence of match states for any input string. That is, they 

produce the same output, for all inputs and are hence equivalent.  

 

Note that the right-hand automaton in Figure 4.1 has just nine edges, while the one on 

the left has 20. We find that for the more complex DFAs that arise in network 

applications, we can generally reduce the number of edges by more than 95%, 

dramatically reducing the space needed to represent the DFA. There is a price for this 

reduction of course, since no input is consumed when default edges are followed. In the 

example in Figure 4.1, no state with an incoming default transition also has an outgoing 

default transition, meaning that for every two edges traversed, we are guaranteed to 

consume at least one input character. Allowing states to have both incoming and 

outgoing default transitions leads to a more compact representation, at the cost of some 

reduction in the worst-case performance. 

 

4.1.2 Problem Statement 
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We refer to an automaton with default transitions as a Delayed Input DFA (D2FA). We 

represent a D2FA by a directed graph, whose vertices are called states and whose edges 

are called transitions. Transitions may be labeled with symbols from a finite alphabet Σ. 

Each state may have at most one unlabeled outgoing transition, called its default 

transition. One state is designated as the initial state and for every state s, there is a 

(possibly empty) set of matching patterns, µ(s). 

 

For any input string x∈Σ*, we define the destination state, δ(x) to be the last state 

reached by starting at the initial state and following transitions labeled by the characters 

of x, using default transitions whenever there is no outgoing transition that matches the 

next character of x (so, for the D2FA on the right side of Figure 4.1, δ(abcb)=3 and 

δ(dcbac)=1). We generalize δ to accept an arbitrary starting state as a second 

argument; so for the D2FA on the right side of Figure 4.1, δ(abcb,2) =3. 

 

Consider two D2FAs with destination state functions δ1 and δ2, and matching pattern 

functions µ1 and µ2. We say that the two automata are equivalent if for all strings x, 

µ1(δ1(x))=µ2(δ2(x)). In general, given a DFA that recognizes some given set of regular 

expressions, our objective is to find an equivalent D2FA that is substantially more 

memory-efficient. 

 

We can bound the worst-case performance of a D2FA in terms of the length of its 

longest default path (that is, a path comprising only default transitions). In particular, if 

the longest default path has k transitions, then for all input strings, the D2FA will 

consume at least one character for every k transitions followed. To ensure that a D2FA 

meets a throughput objective, we can place a limit on the length of the longest default 

path. This leads to a more refined version of the problem, in which we seek the smallest 

equivalent D2FA that satisfies a specified bound on default path length. 
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4.1.3 Converting DFAs to D2FAs 
 

Although, we are in general interested in any equivalent D2FA, for a given DFA, we 

have no general procedure for synthesizing a D2FA directly. Consequently, our 

procedure for constructing a D2FA proceeds by transforming an ordinary DFA, by 

introducing default transitions in a systematic way, while maintaining equivalence. Our 

procedure does not change the state set, or the set of matching patterns for a given 

state. Hence, we can maintain equivalence by ensuring that the destination state 

function δ(x), does not change. 

 

Consider two states u and v, where both u and v have a transition labeled by the symbol 

a to a common third state w, and no default transition.  If we introduce a default 

transition from u to v, we can eliminate the a-transition from u without affecting the 

destination state function δ(x). A slightly more general version of this observation is 

stated below. 

 

Lemma 1. Consider a D2FA with distinct states u and v, where u has a transition labeled 

by the symbol a, and no outgoing default transition. If δ(a,u)=δ(a,v), then the D2FA 

obtained by introducing a default transition from u to v and removing the transition 

from u to δ(a,u) is equivalent to the original DFA. 

Note that by the same reasoning, if there are multiple symbols a, for which u has a 

labeled outgoing edge and for which δ(a,u)=δ(a,v), the introduction of a default edge 

from u to v allows us to eliminate all these edges. Our procedure for converting a DFA 

to a smaller D2FA applies this transformation repeatedly. Hence, the equivalence of the 

initial and final D2FAs follows by induction. The D2FA on the right side of Figure 4.1 

was obtained from the DFA on the left, by applying this transformation to state pairs 

(2,1), (3,1), (5,1) and (4,1). 
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For each state, we can have only one default transition, so it’s important to choose our 

default transitions carefully to allow us to get the largest possible reduction. We also 

restrict the choice of default transitions to ensure that there is no cycle defined by 

default transitions. With this restriction, the default transitions define a collection of 

trees with the transitions directed towards the tree roots and we can identify the set of 

transitions that gives the largest space reduction by solving a maximum weight spanning 

tree problem in an undirected graph which we refer to as the space reduction graph. 

 

The space reduction graph for a given DFA is a complete, undirected graph, defined on 

the same vertex set as the DFA. The edge joining a pair of vertices (states) u and v is 

assigned a weight w(u,v) that is one less than the number of symbols a for which 
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Figure 4.2  Space reduction graph for DFA in Figure 4.1. 
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Figure 4.3  D2FAs corresponding to two different maximum weight spanning trees. 
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δ(a,u)=δ(a,v). The space reduction graph for the DFA on the left side of Figure 4.1 is 

shown in Figure 4.2. Notice that the spanning tree of the space reduction graph that 

corresponds to the default transitions for the D2FA in Figure 4.1 has a total weight of 

3+3+3+2=11, which is the difference in the number of transitions in the two automata. 

Also, note that this is a maximum weight spanning tree for this graph. Figure 4.3 shows 

D2FAs corresponding to two different maximum weight spanning trees. Note that while 

these two automata use the same number of edges as the one in Figure 4.1, they have 

default paths of length 3 and 2, respectively, meaning that their worst-case performance 

will not be as good. 

 

4.2 Bounding Default Paths 
 

If our only objective was minimizing the space used by a D2FA, it would suffice to find 

a maximum weight spanning tree in the space reduction graph. The tree edges 

correspond to the state pairs between which we create default transitions. The only 

remaining issue is to determine the orientation of the default transitions. Since each 

vertex can have only one outgoing default transition, it suffices to pick some arbitrary 

state to be the root of the default transition tree and direct all default transitions towards 

this state. 

 

Unfortunately, when this procedure is applied to DFAs arising in typical network 

applications, the resulting default transition tree has many long paths, implying that the 

D2FA may need to make many transitions for each input character consumed. We can 

improve the performance somewhat, by selecting a tree root that is centrally located 

within the spanning tree. However, this still leaves us with many long default paths. The 

natural way to avoid long default paths is to construct a maximum weight spanning tree 

with a specified bounded diameter. Unfortunately, the construction of such spanning 

trees is NP-hard [Garey, and Johnson 1979]. It’s also not clear that such a spanning tree 

leads to the smallest D2FA. What we actually require is a collection of bounded diameter 
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trees of maximum weight. While this problem can be solved in polynomial time if the 

diameter bound is 1 (this is simply maximum weight matching), the problem remains 

NP-hard for larger diameters. 

 

Fortunately, we have found that fairly simple methods, based on classical maximum 

spanning tree algorithms, yield good results for D2FA construction. One conceptually 

straight-forward method builds a collection of trees incrementally. The method (which 

is based on Kruskal’s algorithm [Kruskal 1956]) examines the edges in decreasing order 

of their weight. An edge {u,v} is selected as a “tree-edge” so long as u and v do not 

already belong to the same tree, and so long as the addition of the edge will not create a 

tree whose diameter exceeds a specified bound. Once all the edges have been 

considered, the tree edges define default transitions. We orient the default transitions in 

each tree by directing them towards a selected root for that tree, where the roots are 

selected so as to minimize the distance to the root from any leaf. 

 

The one complication with this method is checking the diameter bounds. We can do 

this efficiently by maintaining for each vertex u a value d(u) which specifies the number 

of edges in the longest tree path from u to a vertex in the same tree. These values can be 

used to check that the addition of a new edge will not violate the diameter bound. When 

a new tree edge is added, the distance values must be updated for vertices in the tree 

formed by the addition of the new edge. This can be done in linear time for each 

update. Consequently, the total time needed to maintain the distance values is O(n2). 

Since Kruskal’s algorithm, on which our algorithm is based, requires O(n2log n) time on 

complete graphs, the diameter checking does not increase the asymptotic running time 

of the algorithm. 

 

One refinement to this fairly simple algorithm is shown below. While examining the 

edges in decreasing order of their weights, we also look for an edge among all equal 

weight edges, which results in the minimum expansion in the diameter of the trees 

joined. In practice, since there are only 255 different weight values, at any point in time, 
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there will often be plenty of equal weight edges to choose from. The resulting refined 

algorithm begins with the weighted undirected space reduction graph G=(V,W) and 

modifies an edge set tree_edges which form the default transition trees. First it 

considers all edges of weight 255, and incrementally constructs default trees of small 

diameters. Then it repeatedly considers smaller weight edges and adds them to the 

default transition trees. 

 

It turns out that the refinement generally leads to default transition trees with 

significantly smaller diameter as compared to a normal spanning tree, which remains 

oblivious to the diameter of the trees until the diameter bound is reached. In a setup, 

where the diameter bound is not applied, the refined spanning tree algorithm creates 

default transition trees of equal weight but relatively smaller diameter. When the 

 
procedure refinedmaxspantree (graph G=(V, W), modifies set edge tree_edges); 

(1) vertex u, v; 

(2) set edges; 

(3) set weight-set[255]; 

(4) tree_edges := {}; edges := W; 

(5)  

(6) for edge (u, v) ∈ edges ⇒ 

(7)  if weight(u, v) > 0 ⇒ 

(8)   add (u, v) to weight-set[weight(u, v)]; 

(9)  fi 
(10)  

(11) for integer i = 255 to 1 ⇒ 

(12)  do weight-set[i] ≠ [ ] ⇒ 

(13)   Select (u, v) from weight-set[i] which leads to the 

(14)   smallest growth in the diameter of the tree_edges trees 

(15)   if vertices u and v belongs to different default trees ⇒ 

(16)    if tree_edges U (u, v) maintains the diameter bound ⇒ 

(17)     tree_edges := tree_edges U (u, v); 

(18)    fi 

(19)   fi 

(20)  od 

(21) rof 

end; 
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diameter bound is applied, the refined algorithm creates trees with higher weight too. 

This happens, because a normal spanning tree, in its process, quickly creates several 

trees whose diameter is “too large” and hence can not be further linked to any tree. The 

refined version ensures that tree diameter remains small; hence more trees can be 

linked, resulting in higher weight. 

 

In order to illustrate the effect of this refinement, we take a synthetic DFA, which 

consists of 31 states. All pairs of states u and v were assigned transitions on a random 

number (drawn from a geometric distribution with success probability, π = 0.05, thus 
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Figure 4.4  Default transition trees formed by the spanning tree algorithm and by the refined 

version. 
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mean, E(X) = 19) of symbols a such that δ(a,u)=δ (a,v). Thus the weight of the edges in 

the space reduction graph was geometrically distributed. When we ran the normal and 

refined versions of the default trees construction algorithms without any diameter 

bound, they created spanning trees of weight 1771, as shown in Figure 4.4. While the 

weights of both trees are maximum, their diameters are 13 and 10 respectively. If we 

choose nodes 28 and 29, respectively, as the roots of these two trees, the longest default 

paths contain 7 and 5 edges, while the average length of default paths are 3.8 and 2.8, 

respectively. 

 

Clearly, the refinement in the spanning tree algorithm reduces the memory accesses 

needed by a D2FA for every character. We will later see that when diameter bounds are 

applied, the refined algorithm creates more compact D2FAs as well. 

 

When we bounded the diameter of the trees to 6, and ran our algorithm on the same 

synthetic DFA, it created three default transition trees, as shown in Figure 4.5. The total 

weight of all three trees was 1653, which suggests that the resulting D2FA will require 

slightly more space as compared to the one with no diameter restraint. However, 

bounding the diameter to 6 ensures an important property that the length of all default 

paths can be easily limited to 4 and hence the D2FA will require at most 4 memory 

accesses per character. 
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Figure 4.5  Default transition trees (forest) formed by the refined spanning tree with the tree 

diameter bounded to 6. 
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4.2.1 Results on Some Regular Expression Sets 
 

 

In order to evaluate the space reductions achieved by a delayed input DFA, or D2FA, 

we performed experiments on regular expression sets used in a wide variety of 

networking applications. Our most important datasets are the regular expression sets 

used in deep packet inspection appliances from Cisco Systems [Eatherton, and Williams 

2005]. This set contains more than 750 moderately complex expressions, which are used 

to detect the anomalies in the traffic. It is widely used across several Cisco security 

appliances and Cisco commonly employs general purpose processors with a gigabyte or 

more of memory to implement them. In addition to this set, we also considered the 

regular expressions used in the open source Snort and Bro NIDS, and in the Linux 

layer-7 application protocol classifier. The Linux layer-7 protocol classifier consists of 

70 expressions. Snort contains more than 1500 expressions, although, they don’t need 

to be matched simultaneously. An effective way to implement the Snort rules is to 

identify the expressions for each header rule and then group the expressions 

corresponding to the overlapping rules (the set of header rules a single packet can match 

to). We use this approach. For the Bro NIDS, we present results for the HTTP 

signatures, which consist of 648 regular expressions. 

 

Given these regular expression sets, as the first step in constructing DFAs with a small 

number of states, we used the set splitting techniques proposed in [Yu, et al. 2005]. This 

approach splits the regular expressions into multiple sets so that each set creates a small 

DFA. We created 10 sets of rules from the Cisco regular expressions, and were able to 

reduce the total memory footprint to 92 MB, as there were a total of 180138 states, and 

each individual DFA had less than 64K states, (thus 2 bytes encodes a state). Clearly, 

such an efficient grouping resulted in a significant space reduction over more than a 

gigabyte space required otherwise. We split the Linux layer-7 expressions into three sets, 

such that the total number of states was 28889. For the Snort set, we present results for 

the header rule “tcp $EXTERNAL_NET any -> $HTTP_SERVERS 
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$HTTP_PORTS,” which consists of 22 complex expressions. Since Snort rules were 

complex, with long length restriction on various character classes, we applied rewriting 

techniques proposed in [Yu, et al. 2005] to some rules and split them further into four 

sets. Bro regular expressions were generally simple and efficient therefore we were able 

to compile all of them in a single automaton. The key properties of our representative 

regular expression groups are summarized in Table 4.1. 

 

In order to estimate the reduction objectives of D2FA, we introduce a term redundancy. 

There is redundancy if there exist multiple transitions from different states leading to 

the same “next state” for the same input character. For example in Figure 4.1, there are 

transitions from state 1, 2, 3, 4 and 5 all leading to the same next state on input b. So, 

there are 4 redundant states. Even though, it may not be possible to eliminate all 

redundant transitions, it still gives a good estimate on the upper bound of the number 

of transitions that can be eliminated by constructing a D2FA from the DFA. 

 

After constructing the minimum state DFAs from these regular expressions, we used 

both normal and refined versions of the default trees construction algorithms to 

construct the corresponding D2FAs. The reduction in the number of transitions is 

shown in Table 4.2 with no diameter bounds applied. The length of default paths are 

Table 4.1  Our representative regular expression groups. 

 

Source # of regular 

expressions 

Avg. ASCII 

length of 

expressions 

% expressions 

using wildcards 

(*, +, ?) 

% expressions 

length restrictions 

{,k,+} 

Cisco 590 36.5 5.42 1.13 

Cisco 103 58.7 11.65 7.92 

Cisco 7 143.0 100 14.23 

Linux 56 64.1 53.57 0 

Linux 10 80.1 70 0 

Snort 11 43.7 100 9.09 

Snort 7 49.57 100 28.57 

Bro 648 23.6 0 0 
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also shown. It is clear that, D2FAs eliminates nearly all redundancy from the DFAs. It is 

also apparent that refined version of algorithm creates substantially smaller default paths 

as compared to the basic algorithm. In order to get a sense of the distribution of the 

number of labeled transitions per state of a D2FA, we plot this quantity in Figure 4.6, 

for the Cisco regular expression group containing 590 expressions. The majority of 

states have 2 or fewer labeled transitions. Note that most states have 2 transitions 

because most rules are case insensitive, like [d-eD-E0-9\-

_][/\\][^/\\\r\n?\x26\s\t:]*[.][Nn][Uu]. 

 

Table 4.2  Original DFA and the D2FA constructed using the basic and the refined default tree 

construction algorithm, without any diameter bound. 

 

  Original DFA 

   

 rules Total # of 

states 

Total # of 

transitions  

Total # of 

distinct 

transitions 

Total # of 

redundant 

transitions 

%   

duplicates 

 Cisco590 17,713 4,534,528 1,537,238 4,509,852 99.45

 Cisco103 21,050 5,388,800 1,236,587 5,346,595 99.21

 Cisco7 4,260 1,090,560 312,082 1,063,896 97.55

 Linux56 13,953 3,571,968 590,917 3,517,044 98.46

 Linux10 13,003 3,328,768 962,299 3,052,433 91.69

 Snort11 41,949 10,738,944 540,259 10,569,778 98.42

 Bro648 6,216 1,591,296 149,002 1,584,357 99.56

 

  Delayed  input DFA, D
2
FA 

  Basic Algorithm Refined Algorithm 

 rules Total # of 

transitions 

%    

reduction 

Avg. 

default 

length 

Max. 

default 

length 

Total # of 

transitions 

%   

reduction 

Avg. 

default 

length 

Max. 

default 

length 

 Cisco590 36,519 99.2 18.32 57 36,519 99.2 8.47 17

 Cisco103 53,068 99.0 16.65 54 53,068 99.0 7.82 19

 Cisco7 28,094 97.4 19.61 61 28,094 97.4 10.91 23

 Linux56 58,571 98.3 7.68 30 58,571 98.3 5.62 21

 Linux10 285,991 91.3 5.14 20 285,991 91.3 4.64 17

 Snort11 168,569 98.4 5.86 9 168,569 98.4 3.43 6

 Bro648 7,082 99.5 6.45 17 7,082 99.5 2.59 8
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Since the above results are with no diameter restrictions, default transition paths are 

quite long. In order to achieve smaller default paths, we ran our algorithm with the 

diameter restricted to a small constant. In this case, we first compare the reductions 

achieved by both versions of default tree construction algorithm. In Table 4.3, we 

report the number of transitions in the resulting D2FA, with the length of default paths 

bounded to 4 edges. Clearly, refined version of spanning tree yields relatively more 

compact D2FA. 
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Figure 4.6  Distribution of number of transitions per state in the D2FA constructed from the 

Cisco590 expression set. 
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In Figure 4.7, we plot the reduction in the number of transitions of a DFA, as a ratio of 

number transitions in the D2FA and the number of distinct transitions (transitions 

leading to distinct “next states”) in the original DFA, by applying the refined version of 

spanning tree and bounding the default paths at different values. It is obvious that 

smaller default path restrictions produce D2FAs with a higher number of labeled 

transitions. Note that, the reduction numbers plotted are with respect to the total 

number of distinct transitions (leading to different “next states”) at various states in the 

original DFA, and not all transitions. Clearly this metric is conservative and suggests the 

space reduction by D2FA over a DFA using the best (possibly hypothetical) table 

compression scheme which enables it to store only the distinct transitions. If we would 

use the total transitions in a DFA as our metric, D2FA will result in even higher 

reduction. 

 

4.2.2 Summarizing the Results 
 

The results suggest that a delayed input DFA or D2FA can substantially reduce the 

space requirements of regular expression sets used in many networking applications. 

For example, using a D2FA, we were able to reduce the space requirements of regular 

expressions used in deep packet inspection appliances of Cisco Systems to less than 

Table 4.3  Number of transitions in D2FA with default path length bounded to 4. 

 

DFA Basic algorithm Refined algorithm 

Cisco590 97,873 70,793 

Cisco103 115,654 82,879 

Cisco7 37,520 36,091 

Linux56 69,437 66,739 

Linux10 314,915 302,112 

Snort11 180,545 178,354 

Bro648 11,906 8,078 
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2MB. We also saw significant reduction in the Bro and Linux layer-7 expressions. Snort 

expressions resulted in moderate improvements (according to our conservative metric) 

as there were fewer distinct transitions per state. 

 

The D2FA reduces the space requirements at the cost of multiple memory accesses per 

character. In fact, splitting an expression set into multiple groups adds to the number of 

memory accesses as it creates multiple D2FAs, all of which need to be processed. 

Although, D2FAs perform equally well on expression sets which are not split, we 

decided to split, in order to reduce the total number of states in the DFA to begin with 

(e.g. 92 MB for 9 partitions of the Cisco rules versus >1 GB without rule partitioning). 

Such a design choice makes sense in our context, because we use multiple embedded 

memories available in an ASIC, which provides us with ample bandwidth, but limited 

capacity. We now present our architecture and algorithms to map the D2FAs onto them. 

 

4.3 Regex ASIC Architecture 
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Figure 4.7  Plotting total number of labeled transitions in D2FAs for various maximum default 

path length bounds. 
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In this section, we describe an ASIC architecture and an algorithm that maps the D2FA 

nodes onto embedded memory modules. One of our design objectives is flexibility, so 

we predominantly use embedded memories in order to store the automata rather than 

synthesizing them in logic gates [Floyd, and Ullman 1982]. Using memory rather than 

logic allows the architecture to remain flexible in the face of frequently updated regular 

expressions. In addition to dense ASIC embedded memory technologies like IBM’s, 

modern FPGAs such as the Xilinx Virtex-4 contain several hundreds of 18Kbit memory 

blocks providing several megabytes in aggregate. The embedded memories in FPGAs 

have multiple ports and clock rates of up to 300 MHz. Of course, ASIC technologies 

provide a higher degree of flexibility, with the number of ports, the size of each 

memory, and the clock rate all being design specific. Thus, a memory-based scalable 

design in an ASIC setting is eminently practical. Given this, we architect our embedded 

memory based ASIC with the following points in mind. 

 

• While small memories often clock at higher rates, every additional memory adds 
to the overhead of the control circuitry. Therefore, we intend to use an adequate 
number of reasonably sized memories, so that the overall bandwidth remains 
appropriate while maintaining reasonable control complexity. 

 

• Using multiple, equally-sized embedded memories will enable the architecture to 
scale capacity and bandwidth linearly with increasing on-chip transistor density. 

 

• A die with several equally sized memories can achieve efficient placement and 
routing, resulting in minimal wasted die area. 

Memory Memory Memory Memory....

D2FA

scanner

D2FA

scanner

D2FA

scanner
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Figure 4.8  Logical structure of the memory subsystem. 



 
 
 
 
 

 

103 

 

Therefore, our design will use memories of equal size, independent of the characteristics 

of any particular data set. In fact, using several small equally sized memories is a natural 

choice given that the kind of expressions and the resulting automata are likely to change 

very often. 

 

The resulting architecture consists of a symmetric tile of equally sized embedded 

memories; the logical organization of this system is shown in Figure 4.8. Note that 

FPGAs, with hundreds of fix-sized memory modules, fall within the scope of this 

architecture. As can be seen, there are multiple memories, each accessible by an array of 

regular expression engines. Each engine is capable of scanning one packet at a time. 

Multiple engines are present to exploit the packet- and flow-level parallelism available in 

most packet processing contexts. While throughput for an individual packet will be 

limited to that of a single memory, overall system throughput can approach the 

aggregate memory bandwidth. 

 

To do so, we must map the D2FA to these memories in such a way that, a) there is 

minimal fragmentation of the memory space, so that every memory remains uniformly 

occupied; and b) each memory receives a nearly equal number of accesses, so that none 

of them becomes a throughput bottleneck. We now propose algorithms to achieve 

these objectives. 

 

4.3.1 Randomized Mapping 
 

A straightforward uniformly random mapping of states to memory modules can provide 

scalable average-case performance. The expectation is that over a long period of time, 

each memory will receive a nearly equal fraction of all references. Thus, with a 

reasonable number of concurrent packets, average throughput can remain high. 

Consider a case of m memory modules and p concurrently scanned packets. If each 
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packet generates a read request at an interval of l cycles (i.e., the memory read latency), 

we need to scan m×l packets concurrently in order to keep the m memories busy. In 

practice, we need more packets due to random conflicts. The problem can be modeled 

as a balls and bins problem. There are m bins (memory modules) and balls (memory 

requests) arrive to them randomly. Only one can be serviced at each bin per cycle, so 

any remaining balls must wait for subsequent memory cycles. If m balls arrive randomly, 

1-e-1 will be served and rest has to wait for next cycle. Thus only 65% of the memories 

will be busy. As more balls arrive, more memories will remain busy. Thus, scanning 

many packets concurrently improves the overall throughput, while individual packets 

are served relatively slowly. 

 

We report the throughput of such a randomized architecture in Figure 4.9, assuming a 

dual-port embedded memory running at 300 MHz and a read access latency of 4 cycles. 

In this experiment, we have limited the longest default paths in the D2FA to 7. The 

input data was generated from the MIT DARPA Intrusion Detection Data Sets [MIT 

DARPA dataset]. We inserted additional data into these sets so that the automaton will 

detect approximately 1% matches. It is evident from the plots that as we increase the 

number of concurrently scanned packets, the overall throughput scales up. Moreover, as 

the number of embedded memories increases, the throughput scales almost linearly up 

to 8 memories, beyond which there is little improvement. This saturation is due to 

significant spatial locality in the automata traversal in which some states are visited more 

often than the others. In fact, in some cases, we found that a single state is visited 

almost 30% of the time. If such a state resides in memory module k, it is likely that 

memory module k will limit the overall performance irrespective of the number of 

modules. However, such situations are rare, and the average performance remains 

excellent. 

 

A randomized system is also likely to have a very low worst-case throughput as evident 

from Figure 4.9. This can be explained as follows. A D2FA often needs to traverse 

multiple default transitions for a character; if the maximum default path length is limited 
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to 7, then 8 state traversals might be needed for a character. Since the state to memory 

mapping is random, there may exist default paths along which all states reside in the 

same memory module (or in a small number of modules). If the input data is such that 

the automaton repeatedly traverses such default paths, then throughput will degrade. 

 

Moreover, when we map multiple automata (one for each regular expression group) 

onto memory modules randomly, default paths of different automata may map to the 

same memory module. In this case, packets traversing those paths will be processed 

serially, and overall system throughput could diminish even further. Since this 

randomized approach is subject to these pathological worst-case conditions, we now 

propose deterministic mapping algorithms capable of maintaining worst-case 

guarantees. 

 

4.3.2 Deterministic and Robust Mapping 
 

The first goal of a robust and deterministic mapping is to ensure that all automata, 

which are executed simultaneously, are stored in different memory modules. This will 
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Figure 4.9  Throughput with default path length bounded to 7 and using the randomized 

mapping. 
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ensure that each executes in parallel without any memory conflicts. Achieving this goal 

is straight-forward, provided that there are more memory modules than automata. The 

second goal is to ensure that all states along any default path map to different memory 

modules. Thus, no pathological condition can arise for long default paths as a memory 

module will be referred at most once. Another benefit is that we will need fewer 

concurrent packets to achieve a given level of throughput, due to the better utilization 

of the bandwidth. 

 

Problem Formulation: We can formulate the above problem as a graph coloring 

problem, where colors represent memory modules and default paths of the D2FAs 

represent the graph. As we have seen, these paths form a forest, where vertices 

represent states and directed edges represent default transitions. Our goal is to color the 

vertices of the forest so that all vertices along any path from a leaf to the root are 

colored with different colors. Moreover, we need to ensure that every color is nearly 

equally used, so that memories remains uniformly occupied. Clearly, if d is the longest 

default path, i.e. the depth of the deepest tree, then we need at least d+1 colors1. We 

present two heuristic algorithms, to color the trees in the forest. 

 

Deterministic and Robust Mapping 

 

The largest first algorithm is similar to the first-fit, decreasing bin-packing heuristic 

[Liang 1980], one of the best known heuristics for solving the NP-complete bin packing 

problem. The algorithm is formally described above, where the directed graph D 

represents the default transitions and C the set of all colors. The algorithm proceeds by 

ordering the default transition trees according to their size (i.e., the number of vertices 

times the size of each vertex). Then, in decreasing order of size, it colors each tree such 

that all vertices at different depths are colored with one of the d+1 colors. Since there 

are a total of d+1 colors and the maximum depth of a tree is d, vertices along all default 

                                                 
1
 A natural way to construct a D

2
FA is to limit the default path length to the number of memory 

modules (colors) available to it 
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procedure largest-first-coloring (dgraph D(V, W), set color C); 

(1) heap h, c, l; 

(2) for tree t ∈ D ⇒ 

(3)  for vertex u ∈ t ⇒ size(t) := size(t) + size(u); rof 

(4)  h.insert(t, size(t)); 

(5) rof 

(6) for color j ∈ C ⇒ c.insert(j, 0); rof 

(7) do h ≠ [ ] ⇒ 

(8)  t := h.findmax(); h.remove(t); 

(9)  for all depth values i ∈ t ⇒ 

(10)   l.insert(i, size of all vertices at depth i); 

(11)  rof 
(12)  color j := c.findmax(); 

(13)  do l ≠ [ ] ⇒ 

(14)   depth i := l.findmin(); size s := l.key(i); l.remove(); 

(15)   Color vertices at depth i in tree t with color j; 

(16)   c.changekey(j, c.key(j) + s); 

(17)   j := c.findnextmax(); 

(18)  od 

(19) od 

end; 

 

paths are guaranteed to get different colors. In order to ensure that colors are nearly 

equally used, largest first heuristics are used. For a currently selected tree, it groups the 

vertices at different depths and sorts the group with respect to the size of all vertices in 

the group. Then, it assigns the most used color to the smallest group and the least used 

color to the largest group. 

 

When the forest consists of a large number of trees, largest first coloring ensures that 

colors are nearly equally used; thereby ensuring that different memory modules will 

remain uniformly occupied. However, when there are a small number of trees, the 

largest first algorithm often leads to uneven memory usage. A simple example is shown 

on the left hand side of Figure 4.10, where there are two trees which are colored with 4 

colors. With the largest first algorithm, color 3 is used to color 7 vertices, while colors 1, 

2 and 4 are each used to color only 3 vertices. An alternative coloring, which uses each 
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color uniformly and also ensures that vertices along a default path uses different colors, 

is shown on the right hand side in the same figure. We now propose an algorithm which 

produces such coloring. 

 

Adaptive Coloring Algorithm 

 

The largest first algorithm performs poorly because it does not exploit situations when 

multiple colors are available to color a vertex. For instance, in the example shown in 

Figure 4.10, the largest first algorithm assigned color 3 to all vertices at depth 3, 

although five of these six vertices can be colored with either color 3 or 4. In practice, a 

D2FA creates default trees with many such opportunities. This adaptive algorithm 

exploits this power of multiple choices and results in a more uniform color usage. 

 

It begins by assigning a set of all C colors to all vertices and then removes colors from 

each set until every vertex is fully colored (i.e. a single color left in their set). In order to 

remove appropriate colors, it keeps track of two variables for every color. The first 

variable used tracks the total number of vertices colored by each color, and the second 

variable deprived tracks the future choices of colors that remain in the sets of those 

vertices not yet fully colored. More specifically, for every color, deprived maintains the 

number of the vertices, which are deprived of using it, as it has been removed from 

their color set and used maintains the number of vertices colored with it. Clearly, the 
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Figure 4.10  Left diagram shows two trees colored by largest first algorithm. Right diagram shows 

a better coloring. 
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procedure adaptive-coloring (dgraph D(V, W), set color C); 

(1) heap h; 

(2) for color c ∈ C ⇒ used[c] := 0; deprived[c] := 0; rof 

(3) for vertex u ∈ V ⇒ 

(4)  set color colors[u] := C; 

(5)  h.insert(u, depth(u)); 

(6) rof 

(7) do h ≠ [ ] ⇒ 

(8)  u := h.findmax(); h.remove(u); 

(9)  if |colors[u]| > 1 ⇒ assign-color(u, D, C); fi 

(10) od 

end; 
procedure assign-color (vertex u, dgraph D(V, W) , set color C); 

(1) color c; 

(2) Pick c from colors[u] with min used[c] and max deprived[c]; 

(3) colors[u] := c; 

(4) used[c] := used[c] + size(u); 

(5) for v ∈ descendents(u) ⇒ colors[v] := colors[v] − c; rof 

(6) for v ∈ ancestors(u) ⇒ colors[v] := colors[v] − c; rof 

(7) calculate-deprived(D, C); 

(8) if def-trans(u) ≠ NULL ⇒ assign-color(def-trans(u), D, C); fi 

end; 
procedure calculate-deprived (dgraph D(V, W) , set color C); 

(1) for color c ∈ C ⇒ deprived[c] := 0; rof 

(2) for vertex u ∈ V ⇒ 

(3)  if |colors[u]| = 1 ⇒ 

(4)   color c := colors[u]; 

(5)   for v ∈ descendents(u) ⇒ 

(6)    if |colors[v]| > 1 ⇒ deprived[c] += size(v); fi 

(7)   rof 

(8)  fi 

(9) rof 

end; 

goal is to more often use colors a) which most of the vertices are deprived of and b) 

with which fewest vertices are fully colored with. 

 

After initializing the color sets of each vertex, the next step is to decide an ordering of 

the vertices, in which colors will be removed from their color set. An effective ordering 
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is to first choose vertices which do not have a high degree of freedom in choosing 

colors. Since vertices along longer default paths have fewer choices (e.g. vertices along x 

deep default paths can pick one of d−x+1 colors), they should be colored first. 

Therefore, adaptive algorithm processes vertices of all trees simultaneously, in a 

decreasing order of the depth values. It chooses a vertex, and removes all but one color 

from its color set, thus effectively coloring it. Whenever a vertex u is colored with color 

c, color c is removed from the color set of all ancestors and descendents of u, since it 

can’t be used to color any of them. Then, all ancestor vertices of u are recursively 

colored. The algorithm is formally presented above. A set colors is kept for every vertex 

and initially it contains all C colors. Once all but one color is removed from this set, the 

vertex gets colored. The steps involved in the coloring of two trees by the adaptive 

algorithm using four colors are illustrated in Figure 4.11. 

 

Coloring Results 

 

In order to evaluate, how uniformly the largest first and adaptive algorithms utilize 

various colors, we generated D2FA such that they have different numbers of default 

transition trees in the corresponding forest. This was achieved by limiting the default 

path length to different values. We also limited ourselves to use only d+1 colors (where 

d is the longest default path), as allowing the use of more colors makes the coloring far 

easier. Our principal metric of coloring efficiency is the maximum discrepancy in color 

usage. If used(i) is the size (number of vertices times the number of transitions it has) of 

all vertices using the i-th color, then the maximum color usage discrepancy will be, 

 

)( max))( min)( max( iusediusediused
iii

−
 

 

Clearly, smaller values of discrepancy reflect more uniform usage of various colors. We 

plot the maximum discrepancy in color usage in Figure 4.12, for different number of 

default transition trees in the forest. It is apparent that adaptive algorithm uses colors 

more uniformly. Using the adaptive coloring algorithm, once we limited the default 
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paths to 7 or less, we were able to map all of our D2FA to memory modules such that 

there was a maximum discrepancy of less than 7 bytes in the memory occupancy. 
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Figure 4.11  Various steps involved in the coloring of two trees with adaptive algorithm 

(assuming equally sized vertices). 
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We finally report the throughput of the D2FAs generated from the Cisco rules, with the 

default path length limited to 7, in Figure 4.13. Note that since we are using coloring, we 

need at least 8 memory modules. We assume a dual-port embedded memory running at 

300 MHz, read access latency of 4 cycles and the previous MIT intrusion detection data 

set. The performance achieved by deterministic mapping is clearly superior to the 
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Figure 4.12  Plotting maximum discrepancy in color usage, circles for max-min and squares for 

adaptive algorithm. 
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Figure 4.13  Throughput with default path length bounded to 7 and using adaptive-coloring based 

deterministic mapping. 
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randomized mapping, as a) it ensures good worst-case throughput, and b) it requires 

fewer concurrent packets to achieve high average throughput. 

 

4.4 Summarizing the D2FA based ASIC 
 

We have introduced a new representation for regular expressions, called the delayed 

input DFA or D2FA, which significantly reduces the space requirements of a DFA by 

replacing its multiple transitions with a single default transition. By reduction, we show 

that the construction of an efficient D2FA from a DFA is NP-hard. We therefore 

present heuristics for D2FA construction that provide deterministic performance 

guarantees. Our results suggest that a D2FA constructed from a DFA can  reduce 

memory space requirements by more than 95%. Thus, the entire automaton can fit in 

the on-chip memories in an ASIC. Since embedded memories provide ample 

bandwidth, further space reductions are possible by splitting the regular expressions into 

multiple groups and creating a D2FA for each of them. 

 

As a side effect, a D2FA introduces a cost of possibly several memory accesses per input 

character, since D2FAs require multiple default transitions to consume a single 

character. Therefore, a careful implementation is required to ensure good, deterministic 

performance. We present a memory-based ASIC architecture, which uses multiple 

embedded memories, and show how to map the D2FAs onto them in such a way that 

each character is effectively processed in a single memory cycle. As a proof of concept, 

we were able to construct D2FAs from regular expression sets used in many widely used 

systems, including those employed in the widely used security appliances from Cisco 

Systems that required less than 2 MB of embedded memory and provided up to 10 

Gbps throughput at a modest clock rate of 300 MHz. The proposed architecture can 

provide deterministic performance guarantees with today’s VLSI technology, and a 

worst-case throughput of OC192 can be achieved while simultaneously executing 

several thousands of regular expressions. 
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4.5 Future Direction (Bounded HEXA) 
 

In Chapter 3, we presented HEXA, which is a novel method to encode “next nodes” in 

a directed acyclic graph. We now extend HEXA to represent nodes of finite automata 

to facilitate further memory compression desired in ASICs. Our current extension is 

applicable only to automata that recognize exact match strings, such as Aho-Corasick. 

Although HEXA can be extended further to represent general finite automata; we leave 

it to the future work, with the exception of a brief description of some components of 

the design and the challenges involved. 

 

One potential problem with exact match string automata is that, due to the presence of 

cycles, HEXA identifiers of nodes may become unbounded if we continue traversing a 

loop and receiving input symbols. One way to enable bounded HEXA identifiers is to 

restrict each identifier to say previous k symbols, where k may vary for different nodes. 

This, however, requires that all incoming k-long paths into all nodes of the graph have 

identical sequences of labels. Clearly, nodes of a general graph will not meet this 

requirement even for k=1 as there may be multiple incoming transitions into a node 

labeled with different symbols. Fortunately string based automata such as Aho-Corasick, 

Wu-Manber and Commentz-Walter do not exhibit this property and all incoming 

transitions into a node are labeled with identical symbols. In fact, all incoming k-long 

paths into a node are labeled with identical sequence of symbols, thus potentially 

creating long unique identifiers; notice that here k is different for different nodes. Even 

high performance networking specific variants of these well known automata such as 

the bit-split Aho-Corasick [Tan, and Sherwood 2005] exhibit similar characteristics. 

 

For such graphs, we introduce an extension called bounded HEXA (bHEXA) which uses 

a variable but finite number of symbols in the history to identify a node, instead of 

examining the entire history. Since the number of history symbols that we examine may 
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be different for different nodes, bHEXA identifiers require additional bits to indicate 

this length. While these bits add to the memory needed, having variable length 

identifiers also opens up another dimension of multiple choices of identifiers for the 

nodes, which helps in finding a one-to-one mapping and reduces the dependence on 

discriminator bits or even avoid using them. To clarify, we consider a simple string-

based example. 

 

4.5.1 Motivating Example 
 

Let us consider the Aho-Corasick automaton for the 3 strings: abc, cab and abba, defined 

over the alphabet {a, b, c}. The automaton (shown in Figure 4.14) consists of 9 nodes 

(all symbols for which a transition is not shown in the figure are assumed to lead to 

state 1). A standard implementation of this automaton will use 4-bit node identifiers. 

These identifiers will determine the memory location where the transitions of the node 

will be stored. There are three transitions per node (over symbols a, b and c, 

respectively) and assuming that a match flag is required for every node, the fast path 

memory will store four entries for each of the nine nodes, as shown below: 
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Figure 4.14  Aho-Corasick automaton for the three strings abc, cab and abba. Gray indicates 
accepting node. 



 
 
 
 
 

 

116 

 

 

Since node identifiers are 4-bits, in this case a node requires 13-bits of fast path 

memory. We now attempt to use bHEXA to represent this automaton. Since bHEXA 

allows identifiers to contain variable number of input symbols from the history, our first 

objective is to identify the legitimate bHEXA identifiers for the nodes. Clearly, we 

would like to keep the identifier unique for each node, irrespective of the path that leads 

to the node. The identifier of the root node is “−”, as it is visited without receiving any 

input symbol (zero path length). The identifiers of the nodes which are one transition 

away from the root may contain up to one symbol from the history because all single 

transition paths that lead to such nodes are labeled with the same symbol. As an 

example, all incoming edges into node 2 are labeled with a; thus its identifier can either 

be − or a. Similarly, the identifier of node 7 can be − or c. In general, a node which is k 

transitions away from the root may have the bHEXA identifier of any length up to k 

symbols. For example, both paths 321 →→ ba

 and 3549 →→→ bab

 lead 

to the node 3, and the last two symbols in these paths are identical; consequently, its 

bHEXA identifier can either be − or b or ab. Choices of bHEXA identifiers for the 

remaining nodes are listed below: 

 

 

 

Notice that each of the above bHEXA identifiers is legitimate. However, we must 

ensure that, the ones we choose are unique, so that no two nodes end up with identical 

identifiers. If we employ c-bit discriminators with bHEXA identifiers then we may allow 

up to 2c nodes to pick identical identifiers and then use different discriminator values to 

make them unique. The memory mapping method that we present in the next section 

1. − 

2. −, a 

3. −, b, ab 

4. −, b, bb, abb 

5. −, a, ba, bba, abba 

6. −, c, bc, abc 

7. −, c 

8. −, a, ca 

9. −, b, ab, cab 

4. no, 5, 1, 7 

5. match, 2, 3, 7 

6. match, 8, 1, 7 

1. no, 2, 1, 7 

2. no, 2, 3, 7 

3. no, 2, 4, 6 

7. no, 8, 1, 7 

8. no, 2, 9, 7 

9. match, 2, 4, 6 

10.  
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enforces these constraints and ensures that the bHEXA identifier of each node is 

unique. 

 

4.5.2 Memory Mapping 
 

The next step is to select a bHEXA identifier for every node to ensure that each 

identifier is mapped to a unique memory location. A large fraction of nodes, being away 

from the root node, are likely to have several choices of bHEXA identifiers, which will 

improve the probability of a one-to-one mapping. These choices however come at a 

cost; if a node has k choices (can have up to k−1 symbols long bHEXA identifiers) then 

up to log2k additional bits may be needed to indicate the length of its identifier. 

During the graph traversal, these bits will be required to determine the exact number of 

history symbols that forms the bHEXA identifier of the node. In our example 

automaton, node 5 has 5 choices; hence 3-bits may be needed to indicate the length of 

its bHEXA identifier. We can however omit the last choice from its set of legitimate 

identifiers, thereby keeping the bHEXA identifiers within four symbols and requiring 

only 2-bits. For completeness, we also keep c-bit discriminators (c may be zero, if we do 

not need them). Notice that instead of storing the complete bHEXA identifier, only 

c+log2k bits worth of information is required to be stored; this information along with 

the history of input symbols is sufficient to re-generate the complete bHEXA identifier 

of any given node. 

 

Continuing with our example, we construct a memory mapping graph (as described in 

Chapter 3), which is shown in Figure 4.15. In the graph we use m=10, thus an extra 

memory cell is available for the nine nodes. We also limit the bHEXA identifiers to 

contain up to three history symbols and do not use discriminators. The edges of the 

graph are determined by the hash function h, which is: 
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In this formula, the input symbols are assumed to take these numerical values: −=0, 

a=1, b=2, c=3. In the same figure, a maximum matching in the memory mapping 

graph is highlighted, which assigns a unique memory location to each node of the 

automaton. According to this matching, the bHEXA identifiers of the nodes are chosen 

as: 

 

Nodes 1 2 3 4 5 6 7 8 9 

bHEXA − a ab bb bba bc c ca b 

Length 0 1 2 2 3 2 1 2 1 

 

Notice again that we only store the length of bHEXA identifiers in the memory (and 

discriminators, if they are used). During the graph traversal, the length and the history 

of input symbols are sufficient to reconstruct the complete bHEXA identifier. Since the 

length can be encoded with 2-bits in this case and there are no discriminators, the fast 
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Figure 4.15  Memory mapping graph, bipartite matching. 
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path will require total 7 bits per node: a match flag and 2-bits each to indicate the length 

of the bHEXA identifiers of the three “next nodes” for the symbols a, b and c, 

respectively. The resulting programming of the fast path memory is shown below: 

 

Memory location node match flag a b c 

0 1 0 01 00 01 

1 2 0 01 10 01 

2 9 1 01 10 01 

3 7 0 10 00 01 

4 8 0 01 01 01 

5 3 0 01 10 10 

6 4 0 11 00 01 

7 -     

8 6 1 10 00 01 

9 5 1 01 10 01 

Compared to a standard implementation (13-bits per node), bHEXA uses about half the 

memory (7-bits per node). There may however be circumstances when a perfect 

matching does not exist in the memory mapping graph. There are two possible 

solutions to resolve this problem. The first solution is upward expansion, in which 

additional memory cells are allocated; each new cell improves the likelihood of a larger 

matching. The second solution is sideways expansion, in which an extra bit is added, 

either to the discriminator of the bHEXA identifier or to its length, whichever leads to 

larger matching. Notice that each such extra bit doubles the number of edges in the 

memory mapping graph, which is likely to produce a significantly larger matching. 

Unfortunately, sideways expansion also increases the memory rapidly. For example, if 

the current bHEXA identifiers require 3-bits, then a single bit of sideways expansion 

will increase the total memory by 33%. 

 

A memory efficient way of finding one-to-one mapping should iterate between two 

phases. In the first phase, upward expansion will be applied until the added memory 

exceeds the memory needed by a single bit of sideways expansion. If one-to-one 

mapping is not yet found then the second phase will begin, which will reset the previous 

upward expansion and perform a bit of sideways expansion. If a one-to-one mapping is 
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still not found, the first phase is repeated (without resetting the sideways expansion). 

This method is expected to find a one-to-one mapping while also minimizing the 

memory. 

 

4.5.3 Practical Considerations 
 

The challenges that may appear during the implementation of bHEXA are likely to 

depend primarily on the characteristics of the directed graph. The first challenge may 

arise when the directed graph contains long paths, all of whose edges have identical 

labels. Consider the Aho-Corasick automaton for l characters long string such as 

aaaaa… There will be l+1 nodes in the automaton and the legitimate bHEXA 

identifier for the ith node will be any such string (aaa…) of length less than i. In this 

case, if we attempt to find a one-to-one mapping without using any discriminator then 

the bHEXA identifier of any ith node will be i−1 characters long. Since there are l+1 

nodes, the longest bHEXA identifier will contain l symbols and log2l bits will be 

required to store its length. If we employ c discriminator bits then the longest bHEXA 

identifiers can be reduced by a factor of 2c, nevertheless the total number of bits that 

will be stored per bHEXA identifier will remain the same. Clearly, large l will undermine 

the memory savings achieved by using bHEXA. While such strings are not common, we 

would still like to decouple the performance of bHEXA from the characteristics of the 

strings sets. 

 

One way to tackle the problem is to allow the length bits to indicate superlinear 

increments in bHEXA identifier length. For instance, if there are three length bits 

available then they may be used to represent the bHEXA lengths of 0, 1, 2, 3, 5, 7, 12, 

and 16, thereby covering a much larger range of bHEXA lengths. Of course, the exact 

values that the length bits will represent will depend upon the strings database. A 

second way to tackle the problem is to employ a small on-chip CAM to store those 

nodes of the automaton that could not be mapped to a unique memory location due to 
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the limited number of length and discriminator bits. In our previous example, if l is 9, 

and the bHEXA lengths are represented with 3-bits, then at least 2 nodes of the 

automaton cannot be mapped to any unique memory location. These nodes can be 

stored in the CAM and can be quickly looked up during parsing. We refer to the 

fraction of total nodes that can not be mapped to unique memory location as the spill 

fraction. In our experiments, we find that for real world string sets, the spill fractions 

remains low, hence a small CAM will suffice. 

 

4.5.4 Some Results on String Sets 
 

We now report the results obtained from experiments in which we use bHEXA to 

implement string based pattern matchers, in which we find that bHEXA representations 

achieve between 2-5 fold reductions in the memory. We use string sets obtained from a 

collection of sources: peptide protein signatures [Comprehensive Peptide Signature 

Database], Bro signatures, and string components of the Cisco security signatures. We 

have also used randomly generated signatures whose lengths were kept comparable to 

the real world security signatures. These strings were implemented with Aho-Corasick 

automata; in most experiments we did not use failure pointers as they reduce the 

throughput. Without failure pointers, an automaton has 256 outgoing transitions per 

node, and may require large amounts of memory. In order to cope up with such high 

fan-out issue, we have considered the recently proposed bit-split version of Aho-

Corasick, wherein multiple state machines are used, each handling a subset of the 8-bits 

in each input symbol. For example, one can use eight binary state machines, with each 

machine looking at a single bit of the 8-bit input symbols, thereby reducing the total 

number of per node transitions to 16. 

 

First, we report the results on randomly generated sets of strings consisting of a total 

64,887 ASCII characters. In Figure 4.16(a), we plot the spill fraction (number of 

automaton nodes that could not be mapped to a memory location) as we vary the 
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memory over-provisioning. It is clear from the plot that it is difficult to achieve zero 

spill without using discriminators. With a single bit of discriminator and less than 10% 

memory over-provisioning, spill fraction becomes zero, even when the bHEXA lengths 

are limited to 4. Thus, total 3-bits are needed in this case, to identify any given node: 

one for its discriminator and two to indicate the length of its bHEXA identifier. This 

represents more than five fold reduction in the memory when compared to a standard 

implementation, which will require 16-bits to represent a node. 

 

Next we report similar results for real world string sets. In Figure 4.16(b), we plot the 

spill fraction for the set of protein strings, and the strings extracted from the Bro 

signatures, and Cisco security signatures. We only report results of those bHEXA 

configurations (number of discriminator bits and maximum bHEXA length) that keep 

the spill fraction at an acceptably low value. For the Bro strings, about 10% memory 

over-provisioning is needed in order to keep the spill fraction below 0.2%. The spill 

level corresponds to 11 nodes which remain unmapped in the automaton consisting of 

total 5,853 nodes. The bHEXA configuration in this case does not use any 

discriminator and limits the length to 8, thus total of 3-bits are needed to identify any 

given node. For the protein patterns, again a 10% memory over-provisioning is needed 

in a configuration that uses 1-bit discriminator and up to 8 characters long bHEXA 

identifiers. Thus, in this case, 4-bits are needed to represent a node. 

 

In the Cisco string set containing total 622 strings, there was one string that consisted of 

the \x04 ASCII symbol repeated 50 times, which creates up to 50 states with identical 

bHEXA identifiers. This is precisely the issue that we have described in Section 4.5.3. 

With restricted bHEXA length and limited discriminator bits, it is impossible to 

uniquely identify each of the resulting 51 nodes. Consequently, in a configuration where 

we employ 4-bits per bHEXA identifier, 35 nodes remain unmapped even if we 

arbitrarily increase the memory over-provisioning (refer to third set of vertical columns 

in Figure 4.16(b)). As we remove this string from the database, we were able to reduce 
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the spill fraction to 0.1% with no memory over-provisioning and for an identical 

bHEXA configuration (last set of vertical columns in Figure 4.16(b)). 

 

These results suggest that bHEXA based representations reduces the memory by 

between 3 to 5 times, when compared to standard representations. In our final set of 

experiments, we attempted to represent bit-split Aho-Corasick automaton with 

bHEXA. We employed four state-machines, each handling two bits of the 8-bit input 

character. To our surprise, we found that bit-split versions were more difficult to map 

to the memory, and required longer discriminators and bHEXA identifiers, which 

increases the number of bits per node. In spite of employing the techniques we have 

discussed in Section 4.5.3 (e.g. using superlinear increase in the bHEXA length), we 

generally require 5 bits to represent each node of a bit-split automaton. This represents 
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Figure 4.16  Plotting spill fraction: a) Aho-Coroasick automaton for random strings sets, b) Aho-
Coroasick automaton for real world string sets, and c) random and real world strings with bit-split 

version of Aho-Corasick. 
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approximately 2-3 fold reduction in memory as compared to a standard implementation. 

The results are plotted in Figure 4.16(c). 

 

4.5.5 Challenges with General Finite Automaton 
 

Modern network security appliances use regular expressions matching and employ finite 

automata to represent them. Since complex regular expressions generally lead to large 

and complex automaton, it is important to reduce their memory footprint to enable an 

on-chip implementation and high parsing speed. Therefore, we investigate if it is 

possible to use some variant of bHEXA be to represent a general finite automata and 

save memory. Unfortunately, our early analysis suggests that for the finite automata, it is 

difficult to save memory by using bHEXA. The primary reason is the extensive use of 

character classes in these regular expressions. We consider the following simple example 

to illustrate this. Consider the simple regular expression [ab][ca][bc]; such expressions 

are commonly used. The resulting automaton is shown below. 

 

1 a,b 2 c,a 3 b,c 4

^c,a
^b,c

*^a,b

 

 

In this automaton, none of the nodes have all of its incoming paths labeled with unique 

sequence of symbols. Thus, it is difficult to use bHEXA identifiers to identify them. 

One may add new symbols in the alphabet, which will represent those character classes 

that are present in the regular expressions, thereby enabling paths with unique 

sequences of symbol. This however is likely to significantly expand the alphabet size, 

which will significantly increase the number of outgoing transitions from every node2. 

For instance, we find that, the regular expressions sets used in modern security 

                                                 
2
 Notice that in a DFA, at any given node, there is an outgoing transition for every symbol in the 

alphabet. 
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appliance from Cisco Systems have several thousand different character classes. Other 

sets of regular expressions in Snort and Bro exhibit similar characteristics. This is likely 

to offset any memory reduction achieved with the bHEXA identifiers. 

 

An orthogonal complication concerns the performance.  With the expanded alphabet, 

one may require additional memory lookups to map any given input symbol into the 

alphabet symbol representing the appropriate character class. Such additional lookups 

for every input symbol will adversely affect the parsing performance, and additional 

memory bandwidth will be required to maintain a given level of parsing rate. Memory 

bandwidth being more expensive than memory size, such trade-offs may not be 

desirable (assuming that we were able to save some memory with bHEXA). 

 

To conclude, it appears plausible to employ bHEXA for the general finite automata 

used to represent regular expressions rules used in modern networking equipments. 

However, we believe that it will not lead to significant memory saving due for complex 

patterns, due to the added complexity in parsing and symbol resolution to the character 

classes. Nevertheless, we leave further investigation of the issue for the future research. 
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Chapter 5 

 

Packet Content Inspection II 
 

In Chapter 4, we focused on algorithms and architectures to implement packet content 

inspection functions in an ASIC setting. ASICs are custom tailored devices designed 

specifically for a given function which results in an unparalleled efficiency and 

performance. However, at low unit volumes, they are becoming unattractive as NRE 

(Non-Recurring Engineering) costs are skyrocketing today, turnaround times are getting 

longer and yield is a major challenge. Besides, ASICs lack in programmability and the 

practice of extensive use of embedded memory keeps a design from reaping the benefits 

of continuously growing density and declining per-bit cost in commodity off-chip 

memory components. Consequently, network processors (NP) have emerged to provide 

the required programmability while maintaining an acceptable level of performance. 

Systems, where cost and economics are more important than raw performance, are 

therefore increasingly using NPs as the platform of choice. 

 

An NP is a software programmable device whose feature set is specifically customized 

for network specific operations. A typical architecture consists of a dense array of 

simple and efficient micro-processors connected to a number of specialized hardware 

units, a limited number of embedded memory blocks, and external memory modules. A 

variety of external memories are supported, and each processor supports multiple 

hardware thread contexts to tolerate the potentially long memory access latencies. In 

such setting, memory bandwidth is a precious resource, which often limits the 

throughput; therefore, it becomes critical for any implementation to be thrifty in 

memory bandwidth usage. We introduce two novel methods to efficiently implement 
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packet content inspection functions in such memory bandwidth constrained 

environments. 

 

Our first method is called Content Addressed Delayed input DFA (CD2FA), which provides 

a compact representation of regular expressions yet requires equal amount of memory 

bandwidth as a traditional uncompressed DFA for its execution. A CD2FA builds upon 

D2FA and addresses successive states of D2FA using their content, rather than a 

“content-less” identifier. This makes selected information available earlier in the state 

traversal process, which makes it possible to avoid unnecessary memory accesses. We 

demonstrate that such content-addressing can be effectively used to obtain automata 

that are very compact and can achieve high throughput. Specifically, we show that 

CD2FAs use as little as 10% of the space required by a conventional compressed DFA, 

and match the throughput of an uncompressed DFA. 

 

Our second solution is a novel machine called a History based Finite Automata (H-FA), 

which can recognize complex regular expressions at a given parse speed using memory 

bandwidth comparable to that of a DFA and CD2FA, but only a fraction of memory 

space. In fact, the memory space reduction can be so dramatic that we find that the 

addition of a small data cache (such as 4 KB) can significantly improve the packet 

throughput by keeping high cache hit rate. We begin with the description of CD2FAs. 

 

5.1 Introduction to CD2FAs 
 

5.1.1 Content Addressing 
 

In a conventional DFA implementation, states are identified by numbers and these 

numbers are used to locate a table entry that contains information defining the given 

state. Content-addressed D2FAs replace state identifiers with content labels that include 

part of the information that would normally be stored in the table entry for the state. 
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The content labels can be used to skip past default transitions that would otherwise 

need to be traversed before reaching a labeled transition that matches the current input 

character. Using hashing, we can also use the content labels to locate the table entry for 

the next state. 

 

We illustrate the idea of content addressing with the example shown in Figure 5.1. This 

figure shows three states of a D2FA, R, U and V. The heavy-weight edges in the figure 

represent default transitions and R is the root of one of the trees defined by the default 

transitions. State U has labeled transitions for characters c and d, in addition to its 

default transition to R. State V has labeled transitions for characters a and b, in 

addition to its default transition to U. The arrows coming in from the left represent 

transitions from other states to states R, U and V. For each such predecessor state, we 

store a content label that includes the information shown in the figure, in addition to 

some auxiliary information that will be discussed later. The content label for transitions 

entering state U is cd,R. This label tells us that state U has outgoing transitions labeled 

by the characters c and d, and that its parent is R, which is the root of a default 

transition tree. The content label for transitions entering state V is ab,cd,R. This tells 

us that state V has outgoing transitions labeled by the characters a and b, and that its 

parent (in the default transition tree) has outgoing transitions labeled by the characters c 

and d, and that its parent’s parent is R, which is the root of a default transition tree. 

 

R

c

d

a

b

all

ab,cd,R

cd,R

R find node R
at location R

V

U
find node U at
hash(c,d,R)

find node V at

hash(a,b,hash(c,d,R))

R

c

d

a

b

all

ab,cd,R

cd,R

R find node R
at location R

V

U
find node U at
hash(c,d,R)

find node V at

hash(a,b,hash(c,d,R)) 
Figure 5.1  Content-Addressing. 
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Suppose that the current state of the D2FA is one of the predecessors of state V and 

that the current input character selects a content label for a transition to state V and 

that the next input character is x. While V is the next state, since V has no labeled 

transition for x, we would like to avoid visiting state V so that we can skip the 

associated memory access. Similarly, we would like to avoid visiting state U, since it also 

has no labeled transition for x. Assume that we have a hash function h for which 

h(cd,R)=U and for which h(ab,U)=V. Given the content label ab,cd,R (which is 

stored at the predecessor state), we can determine that neither our immediate next state 

(V) nor its parent (U) has an outgoing transition for x. Hence, we can proceed directly 

to R. If on the other hand, the next input character is c or d, then we can proceed 

directly to U by computing h(cd,R). Similarly, if the next input character is a or b, we 

can proceed directly to V by computing h(ab,h(cd,R)). 

 

Summarizing, we associate a content label with every state in a D2FA. Each label 

includes a character set for the state and each of its ancestors in the default transition 

tree, plus a number identifying the state at the root of the tree. We augment the content 

label with a bit string that indicates which of the states on the path from the given state 

to the root of its tree are matching states for the automaton. In our examples, we use 

underlining of the character set for a given state to denote that the state is a matching 

state. So, if state U in our example matched an input pattern of interest, we would write 

the content label for U as cd,R and the content label for V as ab,cd,R. Content labels 

are stored at predecessor states, and hashing is used to map the labels to the next state 

that we need to visit. 

 

5.1.2 Complete Example 
 

We now turn to a more complete example. Figure 5.2a shows a DFA that matches the 

patterns a[aA]+b+, [aA]+c+, b+[aA]+, b+[cC] and dd+. Part b of the figure shows a 

corresponding space reduction graph and part c shows a D2FA constructed using this 
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space reduction graph. The default transitions are shown as bold edges. Note that states 

1 and 8 are roots of their default transition trees and that the longest sequence of 

default transitions that can be followed without consuming an input character is 2. If we 

use the D2FA to parse an input string, the number of memory accesses can be as large 

as three times the number of characters in the input string. Consider a parse of the 

string aAcba. Using the original DFA, we can write this in the form 

 

956441 →→→→→ abcAa  
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Figure 5.2  a) DFA recognizing patterns [aA]+b+, [aA]+c+, b+[aA]+, b+[cC], and dd+ over 
alphabet {a, b, c, d, A, B, C, D} (transitions for characters not shown in the figure leads to state 
1). b) Corresponding space reduction graph (only edges of weight greater than 4 are shown). c) 
A set of default transition trees (tree diameter bounded to 4 edges) and the resulting D2FA. 
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Here, the underlined state numbers indicate matching states. Using the D2FA, we the 

parse of the string will be 

 

98156661441 →→→→→ abcAa  

 

Here, we are showing the intermediate states traversed by the D2FA. To specify the 

CD2FA, we first need to write the content labels for each of the states. These are listed 

below. 

 

 

 

Note that since states 3 and 7 have no labeled outgoing transitions in the D2FA, their 

content labels include empty character sets that are indicated by dashes. The dash in the 

content label for state 3 is underlined to indicate that state 3 is a matching state. The 

complete representation of the CD2FA is shown below. 

 

 

 

6. c: c,1 

7.   
8. a: cC,8 

b: 8 

c: –,1 

d: 1 

A: cC,8 

B: 1 

C: –,1 

D: 1 

9. c: c,1 

C: 1 

6. c,1 

7. –,1 

8. 8 

9. cC,8 

1. 1 

2. d,1 

3. –, d,1 

4. b,c,1 

5. b,8 

1. a: b,c,1 

b: b,8 

c: 1 

d: d,1 

A: b,c,1 

B: 1 

C: 1 

D: 1 

2. d: –,d,1 

3.   
4. b: 8 

5. b: b,8 
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Here, for each state, we list the content labels associated with the character for which 

there is an outgoing labeled transition from the state. Note that only states 1 and 8 have 

labeled outgoing transitions for every character and states 3 and 7 have no labeled 

transitions. 

 

Let’s use this representation to parse the input string aAcba. In state 1, we find that 

the content label for the first input character (a) is b,c,1. This tells us that the next state is 

h(b,h(c,1))=4, where h is an assumed hash function that maps content labels to the 

original state numbers. Since state 4 has no defined transition for the next input 

character (A), we proceed directly to state 1, skipping intermediate states h(b,h(c,1))=4 

and h(c,1)=6. We are now ready to process A. We see that its content label is also b,c,1. 

In this case however, the parent of the next state does have a defined transition for the 

next character (c), so we proceed to that state, which we find by computing h(c,1)=6. In 

state 6, we process character c using the content label c,1. Since the label indicates that 

the next state h(c,1)=6 is a match state, we make note of the match, but since state 6 has 

no labeled transition for the next input character (b), we proceed to state 1. Continuing 

in this way produces the parse 

 

1 461 46 61 58 9a A c b c→ → → → →  

 

If we compare this parse with the parse for the D2FA, we see that the transitional states 

are simply shifted to the left, reflecting the fact that the CD2FA skips past these states as 

it processes each input character. 

 

5.1.3 Details and Refinements 
 

In our examples, we have assumed the existence of a hash function that we could use to 

map content labels to state numbers. Since the numbers used to identify states are 

arbitrary, any hash function that produces distinct state numbers for each content label 
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can be used. Note that hash values are only needed for those states that are not roots of 

their default transition trees. The root states can simply be numbered sequentially and 

since there are only a few such states; the number of bits needed to represent these 

states can also be small. 

 

There are some tricks that can be used to ensure uniqueness of the hash values 

computed for each content label. Specifically, for each character set in a content label, 

the order in which the characters are listed is arbitrary. Consequently, we can change the 

order of the characters in order to avoid conflicting hash values. If content labels are 

packed into words of fixed size, we can sometimes pad short label by repeating some 

characters, thus changing the hash value without changing the label’s meaning. In some 

cases it may be necessary to augment the hash values with additional bits to ensure 

uniqueness. We refer to such extra bits as discriminators. As we report later, we have 

found that very few discriminator bits are needed in practice. 

 

To find the content label for the current input character, we need to know where it 

appears in the list of content labels for the current state. States that are at the roots of 

their default transition trees have content labels for every symbol in the alphabet, so we 

can use simple indexing to find the appropriate label in this case. For states that are not 

roots, we have content labels only for those characters for which there is a labeled 

outgoing transition. The content label used to reach the state tells us which characters 

the state has outgoing transitions for. If our next character is the i-th one in the list of 

characters found in the content label at the predecessor state, then the next content 

label we need to consult will be at position i in the list of content labels for the current 

state. So, given the starting location of the list of content labels for the state, we can use 

indexing to find the specific content label of interest, without having to scan past the 

other content labels defined for the current state. 

 

5.1.4 Memory Requirements of a CD2FA 
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The memory required for a CD2FA depends directly upon the D2FA from which it is 

constructed and the size of the resulting content labels. If we let a(s) denote the number 

of ancestors of state s in its default transition tree (including s) and c(s) denote the 

number of characters for which s and its non-root ancestors have labeled transitions, 

then we need at least ( ) ( )c s b a s r+ +  bits to represent the content label for state s, 

where b is the number of bits needed to represent a character and r is the number of 

bits needed to represent the identifier for a root. In addition, to identify which 

characters in the content label correspond to transitions from which ancestors of state s, 

we can use an additional bit per character, giving ( )( 1) ( )c s b a s r+ + + . Additional bits 

may be needed for discriminators, which we ignore for now. Note that if we require that 

content labels be packed into a fixed size word, then the depth of the default transition 

trees will be limited by the word size, since both c(s) and a(s) get large for states that are 

far from the roots of their trees. 

 

If we allow the content labels to have variable lengths, then we can potentially reduce 

the overall space requirement, since nodes close to the roots of their trees will have 

smaller content labels. If the nodes with larger content labels have relatively few 

incoming transitions, then the impact of these larger content labels on the overall 

memory requirements will be limited. Of course, allowing variable length content labels 

also means that we have to include length information in content labels, adding to the 

space needed to represent each label. In our experimental results, we allow content 

labels of two sizes: 32 bits and 64 bits. This adds approximately c(s) bits to each content 

label (details in section 5.2), but does lead to a significant overall space savings. 

 

This discussion makes it clear that the problem of constructing D2FAs that lead to small 

CD2FA is non-trivial. As shown in Chapter 4, bounding the default paths to a small 

constant in general leads to larger D2FAs than if we allow the depth to become large. 

However, small depth D2FAs will have relatively small content labels. The use of 

variable length content labels adds another dimension to the problem, since it makes it 

desirable for states with many incoming transitions to have small content labels. Hence, 



 
 
 
 
 

 

135 

it makes sense to position these states close to the roots of their default transition trees. 

Unfortunately, we don’t know in advance, which states will have large numbers of 

incoming transitions, since the introduction of default transitions can dramatically 

change the number of labeled transitions entering a state. In the next section, we focus 

on a simple heuristic approach, which we have found produces good results 

experimentally. 

 

5.2 Construction of Good D2FAs 
 

In this section, we attempt to construct D2FAs, which lead to compact CD2FAs. We 

need to ensure the size of content labels is bounded so that they can be fetched in a 

single memory access (in our experiments, we limit them to 64-bits), hence we only 

consider edges of the space reduction graph, whose weights are sufficiently large (in our 

case larger than 252). Our general objective is to create compact CD2FAs and not 

compact D2FAs (which can be created by solving a maximum weight spanning tree 

problem as described in Chapter 4), therefore we take proper care that default paths do 

not grow too deep and that content labels do not become too big. 

 

To meet these objectives, we have developed a simple yet effective heuristic called CRO, 

which runs in three phases, called creation, reduction and optimization. The creation phase 

creates a set of initial default transition trees whose default paths are limited to one 

default transition. The reduction phase reduces the number of trees by iteratively 

dissolving and merging trees, while maintaining the default length bound of one transition. 

The optimization phase attempts to reduce the total space requirement further, by 

allowing some default paths to grow longer than just one default transition. 

 

5.2.1 Creation Phase 
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During the creation phase, a forest on the space reduction graph which consists of trees 

whose diameter is limited to 2. The algorithm is based on Kruskal’s algorithm [Kruskal 

1956], thus it examines all edges in the space reduction graph in a decreasing order of 

weight. An edge is chosen to be part of the forest if adding the edge to the forest 

neither creates a cycle nor violates the diameter bound of two. In order to achieve 

maximum reduction in this phase, the selections made by the algorithm also aims to 

ensure that those states, where there is higher number of incoming labeled transitions, 

are more likely to become tree roots. Therefore, an in-degree, equal to the total number of 

incoming labeled transitions to a state, is assigned to all states. As the algorithm 

proceeds, from among all unexamined edges of equal weights, the ones, whose joining 

vertices have higher cumulative in-degree are examined earlier than those edges whose 

joining vertices have lower in-degree. 
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Figure 5.3  a) A set of default transition trees created by Kruskal’s algorithm with tree diameter 
bounded to 2. b) After dissolving tree 2-3 and joining its vertices to root vertex 1. c) After 

dissolving tree 9-4-6 and joining its vertices to root vertices 8, 1 and 1. 
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In Figure 5.3a, we illustrate the outcome of the creation phase, when applied to the 

space reduction graph shown in Figure 5.2b. Four default transition trees form, three of 

which contain a single edge. In general, the creation phase forms a large number of trees 

which contain a single edge because, once such a tree forms, it can not be linked to 

other trees containing one or more edges (because diameter bound of 2). Consequently, 

the weight of the forest can be increased further by reducing the number of trees. For 

instance, if, instead of selecting the edge 2-3 in Figure 5.3a, we select edges 1-2 and 1-3, 

then the weight can be increased by 6, while maintaining the diameter bound. 

Therefore, the creation phase is followed by a reduction phase, which reduces the 

number of trees. 

 

5.2.2 Reduction Phase 
 

During the reduction phase, the number of trees is reduced in an attempt to increase the 

weight of the spanning forest. Trees in the current forest are repeatedly examined in an 

order of decreasing weight (sum of weight of all edges in the tree). For any tree under 

examination, it is first dissolved and all its edges are removed from the forest. 

Afterwards, each vertex u of the dissolved tree is joined to the root vertex r of one of 

the tree among all trees in the forest, for which edge (u, r) has the highest weight. If the 

result of dissolving and reconnecting the vertices does not lead to an increase in the 

weight of the forest then the dissolved tree is restored. The reduction phase stops when 

the forest remains unaffected after a pass in which all trees are examined. 

 

The outcome of the reduction phase is illustrated in Figure 5.3b and 3c. Initially, tree 5-8 

is examined, however it is not dissolved because dissolving it and connecting its vertices 

to one of the tree roots doesn’t increase the weight of the forest. Afterwards, tree 2-3 is 

dissolved and vertices 2 and 3 are joined to the root vertex 1. This increases the weight 

of the forest by 6. Thereafter, tree 4-6-9 is dissolved, and its vertices 4, 6, and 9 are 
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joined to root vertices 8, 1, and 1 respectively. The weight again increases by 6. None of 

the two remaining trees can be dissolved further, therefore the reduction phase stops. 

 

The reduction phase, in this instance, has reduced the number of trees from 4 to 2 and 

increased the weight of the forest from 36 to 48. Thus, the total number of labeled 

transitions in the D2FA has been reduced from 36 to 24. In large automata, reduction 

phase is much more effective in reducing the number of default transition trees and 

therefore the total number labeled transitions in a D2FA. 

 

The CD2FA synthesized immediately after the reduction phase is generally compact as i) 

there is a reduced number of labeled transitions in the D2FA and ii) all default paths are 

limited to a single default transition leading to compact content labels. However, even 

more compact CD2FA can be created by allowing longer default paths for certain states, 

specifically the states where not many labeled transitions enter. The optimization phase 

carries out these optimizations, where the diameter of the certain parts of the trees is 

expanded. 

 

5.2.3 Optimization Phase 
 

Prior to the optimization phase, a CD2FA is constructed and content labels are 

associated with all labeled transitions. At this point, some states may have many labeled 

outgoing transitions because their default paths are limited to a single default transition. 

We may reduce the number of labeled transitions at these states by allowing them to 

have longer default paths. This, however, may increase the size of the content label of 

transitions entering those states, as labels associated with those transitions will store all 

characters for which transitions are defined at all states along the default path. 

Therefore, it is important to selectively increase the default path of only those states 

which results in an overall space reduction. 
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To accomplish this, the optimization phase proceeds with an assignment of in-degree 

(size of content label of transitions entering into the state) and out-degree (size content 

label of transitions leaving the state) to all states. The eligible candidates for the default 

path expansion are those states which have high out-degree and low in-degree. Therefore, 

states are repeatedly examined in decreasing order of their (out-degree – in-degree) values. 

For a state under examination, a new default state from among all states, whose default 

path contains a single default transition, is evaluated. If one such default state results in 

an overall reduction in the memory, then it becomes the new default transition of the 

examined state. The time needed to examine a state is O(n), thus the time to once 

examine all n states is O(n2). 

 

After all states are examined once, the default paths contain up to two default 

transitions. The procedure is repeated until a pass doesn’t result in any reduction in the 

total memory. Note that during a pass, default paths grow by at most one default 

transition. In practice, we found that the algorithm stops after 1-2 passes, thus the 

resulting default paths contain at most 2-3 default transitions and the asymptotic run 

time of optimization phase remains O(n2). 

 

5.3 Optimizing Content Labels 
 

In this section, we present optimizations to compactly encode CD2FA content labels. 

We begin these with an attempt to reduce the number of symbols in the alphabet. 

 

5.3.1 Alphabet Reduction 
 

A CD2FA consists of root states, which do not have a default transition, and non-root 

states, which have a valid default transition. Even though, root states have labeled 

transitions defined for all characters in the alphabet, a large fraction of these lead to the 

same next state. We refer to the most frequently occurring “next state” from any given 
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state as its common transition. If we let A denote the original alphabet, let C(s) denote the 

characters, for which common transitions are present at a root state s, then its alphabet 

can be reduced to A-C(s), if we explicitly store the common transition of the state. In 

general, alphabet of the root states can be reduced to U statesroot 
)(

∈
−

s
sCA . For example, 

root states 1 and 8 of the D2FA in Figure 5.2c, have common transitions (over 

characters B and D) leading to state 1. Note that these transitions are not explicitly 

shown in the figure, assuming that all transitions which are not explicitly shown in the 

figure leads to state 1. Once we remove the characters for these common transitions 

from the alphabet, it can be reduced to {a,b,c,d,A,C}. 

 

It turns out that in all CD2FAs we consider in our experiments, the reduced alphabet of 

the root states contains less than 128 characters. Moreover, even though there are up to 

a thousand root states, there are less than 64 distinct common transitions at these states; 

thus, we only need a 64 entry table to store the content labels associated with the 

common transitions. We also need to associate each root to one of the table entries, 

which can be done efficiently by appropriately numbering the root states. For instance if 

all root states with identical common transition are assigned a series of contiguous 

integers, then we only need to associate the first and last integer value to the common 

transition. 

 

The second step is to reduce the alphabet of non-root states, which have a small 

number of labeled transitions and a default transition. If L(s) is the set of characters for 

which labeled transitions are present at a non-root state s, then the alphabet of non-root 

states can become U statesroot 
)(

−∈nons
sL . Using this procedure, alphabet of the non-root 

states of the D2FA shown in Figure 5.2c can be reduced to {b,c,d,C}. 

 

If we take the union of the reduced alphabet of root and non-root states, the resulting 

set (referred as Ar) still contains much fewer characters than the ASCII alphabet, thus 

characters of the reduced alphabet may require fewer bits to represent. For instance we 

were able to represent them by 7-bits in our experiments, as Ar contained between 64 
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and 128 characters. In order to translate a character from ASCII alphabet to the reduced 

alphabet, an alphabet translation table is needed, which contains 256 entries and is indexed 

by the ASCII character. Entries, which correspond to the characters in the reduced 

alphabet, contain a 7-bit translated character, while entries, for which a character is not 

present in the reduced alphabet, contain a special symbol. This table requires less than 

256 bytes and therefore can be easily stored either in the data cache or in the instruction 

cache via a function call. 

 

5.3.2 Optimizing Content Label of Non-root States 
 

The content labels of non-root states may have variable lengths, which depend upon the 

number of labeled transitions leaving the state and its non-root predecessors. At 

present, we intend to restrict the content labels to two words (8-bytes), so that they can 

be fetched in a single memory access3. Thus, a content label may require 3 additional 

bits to store its length. We can perform an optimization by considering that memories 

often allow addressing at 4-byte boundaries; in other words, memory is organized as 4-

byte words, in which case content labels will either be one or two words long, and a 

single bit will be sufficient to store its length. 

 

When content labels have variable length, a complication may arise, as we need to 

know, where the content label for an input character appears in the list of content labels 

for the current state. In order to appropriately index this list, with the content label of 

each state, we need to store the length of the content labels of the states where its 

labeled transition enters. Thus, the content label of a state s with c(s) labeled transitions 

requires c(s) additional bits. As we have already mentioned, we need two additional bits 

per content label in the list, one to indicate whether it associates with a match and 

another to indicate the depth of the associated next state, in its default transition tree. 

 

                                                 
3
 These schemes can be easily extended to memory technologies, where minimum access size is 

different from 8-bytes. 
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Consider an example, where we seek to store the list of content labels for state 9 of the 

CD2FA in Figure 5.2c. State 9 has 2 labeled transitions, one leading to state 1 on input C 

and another leading to state 6 on input c. If we assume that that content label of the first 

transition is 1 word long, while the second is 2 words, then the content label of state 9 

(more specifically of labeled transitions entering state 9), will be 8,
1

0

2

1 Cc ; here we indicate 

length of the content label as a superscript and the depth (in its default transition tree) 

of the next state as a subscript. The resulting memory structure is shown in Figure 5.4; 

state 9 requires total 3 memory words at an address determined by applying a hash on 

its content label (we discuss more about hashing in section 6). 

 

With an ASCII alphabet, (8-bit characters), the content label for a state will require 11-

bits per labeled transition, plus log2t bits to represent the root of its default transition 

tree (t is the number of default transition trees). In our experiments, we reduce the 

alphabet to fewer than 128 characters, thus, 7-bits represent a character, which enables 

us to use only 10-bits per labeled transition. Also there are fewer than a thousand root 

states, thus 10-bits are enough to represent them. Therefore, the content label of a state, 

which has up to 2 labeled transitions, fits in a 4-byte word, while states with between 3 

and 5 labeled transitions require two words. Note that, we only allow a state to have up 

to five labeled transitions, thus, we only consider those edges of the space reduction 

graph, whose weight is higher than 251. 

8,
1

0

2

1 Cccontent label of

state 9: 2 words

C

1content label of

state 1: 1 word

Aa,

From state 8
1,

2

1c
content label of

state 6: 2 words

c

c

hash (c, C, 8)

Memory

1,
2

1cc

C 1

 
Figure 5.4  Storing list of content labels for state 9 in memory. 
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5.3.3 Numbering Root States 
 

With only log2t bits to represent root states, transitions leaving root states are stored in 

a two dimensional table with t rows and |Ar| columns. The table is indexed using the 

root state number as row index and the input character as the column index. Each cell 

of the table is two words long (even though content label of many transitions may be 

just 1 word long); thus a root state requires 2|Ar| memory words. 

 

5.4 Memory Packing 
 

When we introduced CD2FA, we assumed that there exists a hash function that maps 

content labels to the required state numbers. In this section, we present algorithms to 

devise such mapping. While associating state numbers to content labels, we are 

interested in not only associating unique numbers but also such numbers that can be 

directly used as an index into the memory. Thus, we would like to associate a unique 

memory address to the content label of each state, so that the list of content labels for 

all labeled transitions leaving the state is stored at that address. This will truly enable us 

to require a single memory access per input character. Throughout this section, we refer 

to the state number as the memory address where it is stored and storing a state means 

storing the content labels for its labeled transitions. We focus on storing non-root 

states, as root states are simply stored as a two dimensional table. 

 

The size of the list of content labels for a state depends both upon the number of 

labeled transitions leaving the state as well as length of their content labels (1 or 2 

words). Traditional table compression schemes [Hopcroft, and Ullman 1979] may be 

applied to associate a unique address to each state’s content label, however these 

schemes are known to be NP-hard, and they also incur sizeable overheads as they 
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require i) additional pointer per state, and ii) a marker for every content label. They also 

require an additional memory access per character, which may reduce the throughput. 

 

We present a novel method which enables, i) an optimal memory utilization with zero 

space overhead, and ii) single memory access per input character. It is based on classical 

bipartite graph matching, with running time of O(n3/2), where n is the number of states. 

Our method proceeds by forming groups of states so that states with identical memory 

requirement belong to the same group. Since we allow a non-root state to have at most 

5 labeled transitions, the memory requirement of a non-root state can vary from one 

word to up to ten words; hence there can be up to 10 groups of states. Afterwards, 

memory is partitioned in 10 regions and states of each group are stored in different 

regions. Note that, in a CD2FA, states can be easily mapped to their memory regions as 

the memory requirements of a state can be directly inferred from the states’ content 

label. 

 

Afterwards, our algorithm handles a group at a time and, as described below, stores its 

states into its memory region. 

 

5.4.1 Packing Problem Formulation 
 

Let there are n states in a group and each state requires s memory words to store its 

labeled outgoing transitions. Clearly, the group’s memory region must contain at least ns 

words. We consider a slight memory over-provisioning, so the memory region consists 

of ms words (where m = n+∆, and ∆/n is the over-provisioning). The content labels of 

all states of the group needs to be uniquely mapped to one of the m memory locations 

(which become the content labels’ state number). We apply a hash function (with 

codomain = [1, m]) to the content labels to compute this mapping. As traditional 

hashing is subject to collisions, multiple content labels may be mapped to a single state 

number. Collision resolution policies can be applied however they are likely to degrade 
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the performance by requiring additional memory accesses. They will also incur space 

overheads by unnecessarily storing the content labels (as the hash keys). 

 

Our algorithm eliminates both these deficiencies by enabling a collision free hashing, i.e. 

content labels are mapped to unique state number. This is achieved by exploiting the 

possibility of renaming a content label, without changing its meaning, thus effectively 

changing its hash value. There are three ways to rename content labels without changing 

their meanings. a) The simplest way is to modify the value of discriminator. b) An 

alternative is to change the order in which characters appear in the content label; thus a 

content label with t characters can have t ! different possible names. c) In fixed size word 

length restricted content labels, yet another possibility is to pad short label by repeating 

some characters already present in the content label, or by modifying the unused bits. 

With these facilities to modify the name of a content label without changing its 

meaning, a naïve mapping may arbitrarily rename them whenever a collision occurs. We 

develop a more systematic approach to select the appropriate names. 

 

Our approach progresses by evaluating all possible names (called candidate names) that 

can be assigned to a content label by employing the three mentioned methods. A hash is 

then applied to the candidate names, and the result is a set of candidate state numbers 

for the content label. Once all candidate state numbers are known, a bipartite graph G = 

(V1+V2, E) is constructed, where vertex set V1 corresponds to the n content labels and 

V2 the m state numbers. Edge set E contains all edges (u, v) such that u ∈ V1, v ∈ V2 

and v is a candidate state number for u. 

 

After constructing the bipartite graph G, the next step is to seek a perfect matching, i.e. 

match each content label to a unique state number. It is likely that no perfect matching 

exists. A maximum matching M in G, which is the largest set of pairwise non-adjacent 

edges, may not contain n edges, in which case some content labels will not be assigned 

any state number. However using theoretical analysis, it has been shown that, when the 

number of candidate names per content label is Ω(log n), then a perfect matching will 
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exist with high probability, even if ∆ = 0. As ∆ increases slightly, probability of perfect 

matching grows very quickly, which guarantees that little over-provisioning will always 

result in a perfect matching. 

 

Once a perfect matching is found, for each content label, we fix its name to the one, for 

which its state number corresponds to a matching edge. These content labels are 

guaranteed to enable a collision free hashing during lookup. 

 

5.4.2 An Illustrating Example 
 

Before presenting the analysis of our memory packing, we consider a simple example to 

illustrate the basic ideas. We consider the CD2FA shown in Figure 2c. There are 9 states, 

and the content labels of labeled transitions entering these states are shown in Figure 

5.5a. There are 7 non-root states. States 3 and 7 do not require any memory, as they do 

not have any labeled outgoing transition (their content labels, however, may be stored at 

other states, from where a labeled transition enters these states). State 9 is the only state 

in its group, thus its packing is trivial. States 2, 4, 5 and 6, as shown in Figure 5.5b, each 

requires one word; therefore these are packed in a memory region containing 4 or more 

words. 

 

First, we consider no memory over-provisioning (m = n = 4), and a single bit 

discriminator. We limit ourselves to using discriminators to rename content labels and 

do not use other methods. Thus, there are two candidate names for each state’s content 

label, and the candidate state numbers by applying hash over these are shown in Figure 

5.5c. The resulting bipartite graph is shown in Figure 5.5d; there are two perfect 

matching in this graph, one containing edges, 4-2, 2-1, 5-4 and 6-3 and another 

containing edges, 4-4, 2-2, 5-1 and 6-3. Either of these will suffice in mapping unique 

state numbers to the content labels. Note that, in this case, we have not used memory 

over-provisioning; indeed, we find that, we can generally avoid memory over-
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provisioning and also avoid discriminators because the other two methods of renaming 

content labels creates enough edges in the bipartite graph so that a perfect matching 

most likely exists. 

 

5.4.3 Analysis of the Packing Problem 
 

The possibility of an optimal packing depends on the likelihood of finding a perfect 

matching on the above bipartite graph. A necessary and sufficient condition that a 

perfect matching exists is given by Hall’s Matching Theorem [Hall 1936]. 

 

State
Content labels of

transitions entering
the state

size of
content

label

1 1 1

2 d, 1 1

3 Ζ, d, 1 1

4 b, c, 1 1

5 b, 8 1

6 c, 1 1

7 Ζ, 1 1

8 8 1

9 cC, 8 1

4

5

8

6

b

c

2

b

3

d

8

c, 1

b, 8

Ζ, d, 1

4

5

2

6

1

3

2

4

State hash (discriminator, content label)

4
 hash (0, b, c, 1) = 2

 hash (1, b, c, 1) = 4

2
 hash (0, d, 1) = 1

 hash (1, d, 1) = 2

5
 hash (0, b, 8) = 1

 hash (1, b, 8) = 4

6
 hash (0, c, 1) = 2

 hash (1, c, 1) = 3

Content                      State
   label                      number

b, c, 1

d, 1

Using 1-bit discriminator in a content label

 
Figure 5.5  a) Content labels of states of the CD2FA shown in Figure 2. b) Non-root states requiring one 

word to store the content labels associated with their labeled transitions. c) Candidate content labels (using 

1-bit discriminators) and the resulting candidate state numbers. d) Corresponding bipartite graph. 
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Hall’s Matching Theorem: Given a set of n items, and a set of identifiers for each 

item (called its candidate set), each item can be assigned a unique identifier from its 

candidate set if, and only if, for every k ∈ [1, n], the union of candidate sets of any k 

items, contains at least k identifiers. 

 

Thus, we have to show that, for every k content labels, the union of their candidate 

state numbers contains k or more distinct numbers. For k=1, this is obvious, as the 

candidate set of any content label is non-empty. For k>1, Hall’s theorem can be 

unsatisfied. This is due to the use of hashing in determining the state numbers. Even 

though a content label can have many (say l ) names, its candidate set may still contain a 

single state number, due to collisions. In general, k content labels will have a total of kl 

random state numbers in the union of their candidate set. Thus, in order to compute the 

likelihood of a perfect matching, we compute the probability with which a set of kl 

randomly chosen numbers ∈ [1, m] contains k or more distinct numbers. 

 

The problem of finding perfect matchings in such bipartite graphs is well studied. In 

[Motwani 1994], author shows that a perfect matching in a symmetric bipartite graph 

with n left and right vertices and with random edges, exists with high probability when 

the number of edges are O(n log n). In fact, this threshold is sharp, which means that the 

probability of perfect matching increases very quickly, as we add slightly more edges 

after threshold. In an asymmetric case, (when m > n), [Fotakis, et al. 2003] shows that 

the probability of a perfect matching again increases quickly, as m is greater than n. For 

instance, when m/n = 1.01, (implies 1% memory over-provisioning), a perfect matching 

exists with high probability, if there are more than 7n edges in the bipartite graph. 

 

With these results we can conclude that if we have the flexibility to assign O(log n) 

different names to each content label, then we will most likely find a perfect matching 

without any memory over-provisioning. O(log n) corresponds to approximately 16 

choices of names for each content label in a 64K state CD2FA; this can be easily 

achieved even without using discriminators. As expected, in our experiments, we found 
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a perfect matching in all CD2FAs without using memory over-provisioning or 

employing the discriminators. 

 

5.5 Experimental Evaluation of CD2FA 
 

In order to evaluate the effectiveness of a CD2FA, we perform experiments using the 

same datasets that we used in our evaluation of D2FA (described in Chapter 4). The 

properties of the representative regular expression groups drawn from this dataset are 

summarized in Table 5.1. 

 

We applied CRO algorithm on these regular expression groups to create CD2FAs. In 

Table 5.2 and 5.3, we report the properties of the original DFA and the outcome of the 

CD2FA construction algorithm after every phase; we report the number of trees in the 

CD2FA, total number of labeled transitions, and memory needed by the CD2FA. We 

also report the size of the reduced alphabet. While reduction phase is most effective in 

reducing memory, alphabet reduction also reduces memory by nearly two times. It is 

clear that, memory reduction achieved by CD2FA, constructed from the CRO 

algorithm, is between 2.5 to 20 times, when compared to a table compressed DFA. If 

we compare CD2FA to uncompressed DFA (which is a fair comparison because a 

Table 5.1  Our representative regular expression groups. 

 
Source # of 

regular 

expressio

ns 

Avg. ASCII 

length of 

expressions 

% expressions 

using 

wildcards (*, 

+, ?) 

% expressions 

length 

restrictions 

{,k,+} 

Cisco 590 36.5 5.42 1.13 

Cisco 103 58.7 11.65 7.92 

Cisco 7 143.0 100 14.23 

Linux 56 64.1 53.57 0 

Linux 10 80.1 70 0 

Snort 11 43.7 100 9.09 

Bro 648 23.6 0 0 
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CD2FA matches an uncompressed DFA in throughput), the memory space reductions 

are much higher, between 5 to 60 times. 

 

While CD2FAs match uncompressed DFAs in terms of throughput, in a practical 

system with an on-chip cache, a CD2FA may surpass a DFA by achieving higher cache 

hits due to its smaller memory footprint. In Figure 5.6, we report the throughput results, 

Table 5.2  Properties of the original DFA from out dataset. 

 

Original DFA 

Memory (MB) Dataset # of 

states 

# distinct 

transition

s 
No 

compress

ion 

With table 

compression 

Cisco590 17,713 1,537,238 9.07 6.23 

Cisco103 21,050 1,236,587 10.77 9.56 

Cisco7 4,260 312,082 2.18 1.14 

Linux56 13,953 590,917 7.14 3.62 

Linux10 13,003 962,299 6.65 3.35 

Snort11 37,167 441,414 19.03 3.55 

Bro648 6,216 149,002 3.18 1.26 

 
Table 5.3  CD

2
FA constructed after each phase of the CRO algorithm. Last column is the 

ratio of memory size of a CD2FA and that of a table compressed DFA (DFATC) 

 
CD2FA 

After creation phase After reduction phase After optimization phase and alphabet 

reduction 

# of trees # of 

transitions 

Memory 

(MB) 

# of trees # of 

transitions 

Memory 

(MB) 

# of trees # of 

transitions 

Memory 

(MB) 

Alphabet 

size 

4,227 1,099,809 8.87 243 117,743 0.80 243 62,043 0.39 98 

4,617 1,205,978 9.72 684 253,239 1.87 684 122,679 0.86 106 

838 220,705 1.76 194 59,077 0.44 194 32,842 0.23 126 

1,741 459,215 3.73 266 156,485 1.17 266 85,444 0.61 123 

3,361 870,623 7.27 994 382,464 3.01 994 183,237 1.48 118 

3,024 806,790 6.31 257 188,913 1.28 257 65,629 0.36 37 

370 100,341 0.77 24 15,183 0.08 24 9,779 0.05 83 
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where we have performed a trace driven cache based memory model simulation using 

Dinero IV simulator [Hill, and Elder 1998]. In order to create near worst-case 

conditions for a cache, the input data stream contained a high concentration of 

matching patterns (around 10% matches), which resulted in very low spatial locality in 

automata traversal. Even under these conditions, we found that cache hit rates were 

moderately good (25-50%), enough to improve the throughput. Hit rates of CD2FA 

were noticeably higher (>60%) as it had much smaller memory footprint. Hence its 

throughput is also much higher. Note that the throughput of a table compressed DFA 

is much lower as it requires more than one memory access per input character. 

 

5.6 H-FA: Compact yet Fast Machines 
 

In this section, we propose a novel machine that deals with the problem of DFA state 

explosion in a unique way. State explosion in a DFA occurs because the DFA states 

must encode partial match information for many constituent patterns. The regular 

expressions that are typically used in networking comprise simple patterns with one or 

many closures over characters classes embedded in between (e.g. abc.*cde or ab[a-
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Figure 5.6  Throughput results on Cisco rules, without and with data cache. Table compressed DFA (DFA-

TC), uncompressed DFA and CD2FA are considered and the Input data stream results in a very high 

matching rate (~10%). 
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z]*ef). The prefix portion in these patterns can be matched with a stream of suitable 

characters and the subsequent characters can be consumed without moving beyond the 

closure. These characters can begin to match either the same or some other reg-ex, and 

such situations of multiple partial matches have to be followed. In fact, every 

combination of multiple partial matches has to be followed. A DFA represents each 

such combination with a separate state due to its inability to remember anything other 

than its current state of execution. With multiple closures, the number of combinations 

of the partial matches can be exponential, thus the number of DFA states can also 

explode exponentially. 

 

An intuitive solution to avoid such exponential explosions is to construct a machine, 

which can remember more information than just a single state of execution. NFAs fall 

in this genre; they are able to remember multiple execution states, thus they avoid state 

explosion. NFAs, however, are slow; they may require O(n2) state traversals to consume 

a character. In order to preserve the fast execution, we would like to ensure that the 

machine maintains a single state of execution. One way to enable a single execution 

state and yet avoid the memory blowup that normally accompanies state explosion, is to 

equip the machine with a small and fast auxiliary data which we call history, that registers 

the key events which occurs during the parse history, such as encountering a closure. 

Recall that the state explosion occurs because parsing get stuck at a single or multiple 

closures; thus if the history buffer registers these events then the automaton may avoid 

the need to explicitly represent these states in the lookup table. We call this class of 

Control FA

Auxiliary data

conditionsactions

Input characters match indications

 
Figure 5.7  History based Finite Automaton. 
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machines History based Finite Automaton (H-FA). It is illustrated in Figure 5.7. Overall 

state of the HFA includes state of the control DFA and the values of the history data. 

 

The execution of H-FA is augmented with the conditions within the history buffer. The 

control automaton is similar to a traditional DFA and consists of a set of states and 

transitions. Multiple transitions on a single character may leave from a state (like in a 

NFA), however, only one of these transitions is taken during the execution, which is 

determined by the contents of the history buffer. Thus, certain transitions in an H-FA 

have an associated condition. The contents of the history buffer may be updated during 

the machine execution. The challenge is deciding what to place in the auxiliary data. We 

want a small amount of data stored in the history buffer as well as a small number of 

distinct conditions and actions, such that the control automaton does not explode in the 

number of states. 

 

Fortunately there is direct connection between the size of an H-FA control automaton 

(number of states and transitions) and the partial matches in the regular expressions 

pattern that are registered in the history buffer. If we judiciously choose these partial 

matches then the H-FA states can be limited. The next obvious questions are: i) how to 

determine these key partial matches? ii) Having determined these partial matches, how 

to construct the automaton? iii) How to execute the automaton and update the history 

buffer? We now proceed with comprehensive description of H-FA where we attempt to 

answer these questions. 

 

5.6.1 Motivating Example 
 

We introduce the construction and executing of H-FA with a simple example. Consider 

two reg-ex patterns listed below: 

 

r1 = .
*ab[^a]*c;  r2 = .

*def; 
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These patterns create a NFA with 7 states, which is shown below: 

 

1 2 3b c

^a

4 5 6e f

0

d

a
*

NFA: ab[^a]*c; def

 

 

Let us examine the corresponding DFA, which is shown below (some transitions are 

omitted from the figure to keep it readable; missing transitions usually lead to state 0): 
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The DFA has 10 states; each DFA state corresponds to a subset of NFA state numbers, 

as shown above. There is a small blowup in the number of states, which occurs due to 

the presence of the Kleene closure [^a]* in the expression r1. Once the parsing reaches 

the Kleene closure (NFA state 2), subsequent input characters can begin to match the 

expression r2, hence the DFA requires three additional states (0,2,4), (0,2,5) and (0,2,6) 

to follow this multiple match. There is a subtle difference between these states and the 

states (0,4), (0,5) and (0,6), which corresponds to the matching of the reg-ex r2 alone: 

DFA states (0,2,4), (0,2,5) and (0,2,6) comprise the same subset of the NFA states as the 

DFA states (0,4), (0,5) and (0,6) plus they also contain the NFA state 2 (meaning that 

NFA state 2 is also active). 
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In general, those NFA states which represent a Kleene closure appear in several DFA 

states. The situation becomes more serious when there are multiple reg-exes containing 

closures. If a NFA consists of n states, of which k states represents closures, then 

during the parsing of the NFA, several permutations of these closure states can become 

active; 2k permutations are possible in the worst case. Thus the corresponding DFA, 

each of whose states will be a set of the active NFA states, may require total n2k states. 

Such an exponential explosion clearly occurs because the DFA needs to remember that 

it has reached these closure NFA states during the parsing. Intuitively, the simplest way 

to avoid the explosion is to equip the DFA to remember those closures which have 

been reached during the parsing. In the above example, if the machine can maintain an 

additional flag which indicates if the NFA state 2 has been reached or not, then the total 

number of DFA states can be reduced. One such machine is shown below: 
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b, flag<=1

a, flag<=0

c,if flag=1, flag<=0

a, flag<=0

c, flag=0

flag

 

 

This machine makes transitions like a DFA; is addition it maintains a flag, which is 

either set or reset (indicated by <=1, and <=0 in the figure) when certain transitions are 

taken. For instance transition on character a from state (0) to state (0,1) resets the flag, 

while transition on character b from state (0,1) to state (0) sets the flag. Some transitions 

also have an associated condition (flag is set or reset); these transitions are taken only 

when the condition is met. For instance the transition on character c from state (0) leads 

to state (0,3) if the flag is set, else it leads to state (0). This machine will accept the same 
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language which is accepted by our original NFA, however unlike the NFA, this machine 

will make only one state traversal for an input character. Consider the parse of the string 

“cdabc” starting at state (0), and with the flag reset. 

 

( ) ( ) ( ) ( ) ( ) ( )

                    flagset     flagreset                                           
                                                           

3,001,04,000

     

set is flag because                                                                                                                                reset      is flag because        

↑↑
→→→→→ cbadc

 

 

In the beginning the flag is reset; consequently the machine makes a move from state 

(0) to state (0) on the input character c. On the other hand, when the last input 

character c arrives, the machine makes a move from state (0) to state (0,3) because the 

flag is set this time. Since the state (0,3) is an accepting state, the string is accepted by 

the machine. 

 

Such a machine can be easily extended to multiple flags; each flag indicating a Kleene 

closure. The transitions will be made depending upon the state of all flags and the flags 

will be updated during certain transitions. As illustrated by the above example, 

augmenting an automaton with these flags can avoid state explosion. However, we need 

a more systematic way to construct these H-FAs, which we describe now. 

 

5.6.2 Formal Description of H-FA 
 

History based Finite Automata (H-FA) consists of an automaton and a set called history 

buffer. The transition of the automaton has i) an associated condition based upon the 

contents of the history, and ii) an associated action which either inserts into the history set, 

removes from it, or both. H-FA can thus be represented by a 6-tuple M = (Q, q0, Σ, A, 

δ, H), where Q is the set of states, q0 is the start state, Σ is the alphabet, A is the set of 

accepting states, δ is the transition function, and H is the history set. The transition 
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function δ takes in a character, a state, and a history value as its input and returns a new 

state and a new history value. 

 

δ : Q × Σ × H  → Q × H 

 

H-FAs can be synthesized either directly from a NFA or from a DFA. For clarity, we 

explain the construction from a combination of NFA and DFA. We consider our 

previous example of two reg-exes. First, we determine those NFA states of the reg-exes, 

which we will register in the history buffer. We defer the formal method to pick such 

NFA states, and at present just pick the closure states. Since, the first reg-ex, r1 contains 

a closure represented by the NFA state 2; we keep a flag in the history for this state. 

Next, we identify those DFA states, which contain this closure NFA state number, and 

call these DFA states fading states, which are highlighted below. 
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Afterwards, we attempt to remove the NFA state 2 from the fading DFA states. Notice 

that, if we will make a note that the NFA state 2 has been reached by setting the history 

flag, then we can remove the NFA state 2 from the fading states subset. The 

consequence of removing the NFA state 2 from the fading states is that these fading 

states may overlap with some DFA states in the non-fading region, thus they can be 

removed. Transitions which originated from a non-fading state and led to a fading state 

and vice-versa will now set and reset the history flag, respectively. Furthermore, all 

transitions that remain in the fading region will have an associated condition that the 
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flag is set. Let us illustrate the removal of the NFA state 2 from the fading state (0, 2). 

After removal, this state will overlap with the DFA state (0); the resulting conditional 

transitions are shown below: 
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Here a transition with “|s” means that the transition is taken when history flag for the 

state s is set; “+s” implies that, when this transition is taken, the flag for s is set, and “-s” 

implies that, with this transition, the flag for s is reset. Notice that all outgoing 

transitions of the fading state (0,2) now originate from state (0) and have the associated 

condition that the flag is set. Also those transitions which led to a non-fading state reset 

the flag and incoming transitions into state (0,2) originating from a non-fading state 

now has an action to set the flag. Once we remove all states in the fading region, we 

have the following H-FA: 
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Notice that several transitions in this machine can be pruned. For example the two 

transitions on character d from state (0) to state (0,4) can be reduced to a single 

unconditional transition (the pruning process is later described in greater detail). Once 

we completely prune the transitions, the H-FA will have total 4 conditional transitions; 

remaining transitions will be unconditional. When there are multiple closures, then 

multiple flags can be employed in the history buffer and the above procedure can be 

repeatedly applied to synthesize the H-FA. 

 

The above example demonstrates a general method for the H-FA construction from a 

DFA. In order to achieve the maximum space reduction, the algorithm should only 

register those NFA state numbers in the history buffer which appear most frequently in 

the DFA states. Thus, if the history buffer has room for say 16 flags, then those 16 

NFA states should be identified which appear most often in the DFA states. 

Afterwards, the above procedure can be repeatedly applied. With multiple flags in the 

history buffer, some transitions may have conditions over multiple history flags. Some 

transitions may also set or reset multiple flags. If there are k flags in the history buffer 

and h represents this vector, then a condition C will be a k-bit vector, which becomes 

true if all those bits of h are found set whose corresponding bits in C are also set. 

 

The representation of conditions as vectors eases the pruning process, which is carried 

out immediately after the construction. The pruning process eliminates any transition 

with condition C1, if another transition on condition C2 exists between the same pair of 

states, over the same character such that the condition C1 is a subset of the condition C2 

(i.e. C2 is true whenever C1 is true) and the actions associated with both the transitions 

are identical. In general, the pruning process eliminates a large number of transitions, 

and it is essential in reducing the memory requirements of the H-FA. After pruning, 

there may remain a small amount of blowup in the number of transitions. In the worst-

case, if we eliminate k NFA states from the DFA by employing k history flags then 

there can be up to 2k additional conditional transitions in the resulting H-FA. However, 
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such worst-case conditions are rare; normally there is only a small blowup in the 

number of transitions. We now present a brief analysis of these blowups. 

 

5.6.3 Analysis of the Transition Blowup 
 

Consider a set k of regular expressions each containing a closure. Let the ith expression 

be denoted by iiiii
rcccr 22

*

101 ][ , where r1c0 and c2r2 are prefix and suffix parts of the 

expression; here the closure is over set of characters denoted by c1, c0 denotes the set of 

characters preceding the closure and c2 denotes the set of characters following the 

closure. For such an expression, if c1 contains a large number of characters, then there is 

likely to be a state blowup in the DFA. On the other hand, if we construct an H-FA, 

and allow each of the k closures to be represented by flags in the history buffer, then 

the blowup in the number of conditional transitions will depend directly upon c2. 

 

First, if none of the c2’s overlaps with each other, then there will be at most one 

conditional transition per character per state and in total there will be up to k additional 

conditional transitions per state. On the other hand, when c2’s are overlapping then 

there may be an exponential blowup in the number of conditional transitions. 

 

To better understand the nature of the transition blowup, let us consider the transitions 

leaving DFA state (i,j,k), which comprises three NFA states. We assume that the NFA 

state i corresponds to a closure and needs to be represented by a history flag. Let the 

closure be over a character set c1, and the character set which moves the parsing past the 

closure is c2. If we remove the NFA state i from all DFA states then the state (i,j,k) may 

be merged with a pre-existing DFA state (j,k). Let the transition on a character c from 

state (i,j,k) lead to state (p,q,r). For c ∈ c1, p must be i; p may differ from i only when c ∈ 

c2 or c ∉ c1. Hence, after i is removed from the DFA states, the newly added conditional 

transitions from the state (i,j) over characters c ∈ c1 will be identical to the transitions 

leaving state (i,j); hence they will be removed during pruning. Only those conditional 
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transitions will remain, which are over the characters c ∈ c2 or c ∉ c1. In situations when 

there are multiple closures, there may be multiple permutations of the conditional 

transitions only if character sets ic2 , over which parsing progresses ahead of the closures 

are overlapping. For instance, if each ic2  is {a} then there can be up to 2
k conditional 

transitions over the character a, and the conditions will be every possible combination 

of the k flags in the history buffer. 

 

The actions (insert/remove from history) associated with the conditional transitions will 

depend upon the characteristics of c0 and c1. Flags will be set by the transitions over 

character c0, and reset by the transitions on characters not from the set c1. Thus, if c0 is 

small and c1 is large, then only a small number of transitions will have an associated 

action. If we examine the regular expressions used in practical signatures, the sets c0 and 

c2 are usually small, thus the H-FA will be extremely effective is reducing the number of 

state. On the other hand, the set c1 is large; hence, there will be minimal blowup in the 

number of conditional transitions. We present detailed results of the nature of H-FA 

constructed from current reg-ex signatures in the next section; here we resume with the 

discussion of certain concerns with the implementations of H-FA’s history buffer and 

the associated conditional transitions. 

 

5.6.4 Implementing History and Conditional Transitions 
 

It is clear that, if there is no overlap between the sets of the characters which moves the 

parsing past the closure, then a state will have at most two transitions on any character, 

one unconditional, and another conditional. When certain characters of these sets are 

overlapping, say t-times then there may be up to 2t conditional transitions per state over 

that character. In most of our experiments, t remains smaller than 3. Thus, there are at 

most 8 conditional transitions per state. In rare situations, where t is greater than 3, we 

split the reg-ex sets into multiple sets, so that t becomes smaller than 3, which keeps the 

maximum number of conditional transitions at 8. 
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With up to 8 transitions per character per state, they can be stored together at some 

memory location, and can be fetched in a single memory access. For 16K states, 16-bits 

will represent a transition, and for 16-bit history buffer, conditions and actions can be 

represented with 32-bits, thus 6-bytes will represent a conditional transition, and 48-bit 

wide logical memory will be sufficient. Such logical bus widths can be achieved in NPs 

as well as in an ASIC/FPGA based system. 

 

Once the conditional transitions are fetched from the memory, the next step involves 

the selection of appropriate transitions. This selection will depend upon the contents of 

the history buffer. First those transitions are filtered out whose condition do not satisfy 

(a condition is false if some flags which are set in the condition, are not set in the 

history); unconditional transitions are never filtered. Afterwards, from among remaining 

transitions, the one whose condition required most set flags is selected. Note that there 

can never be a tie (multiple conditional transitions with equal number of set flags). In 

terms of the hardware cost, the logic to compute if the conditions are met or not will 

require k gates per condition, and the logic to decide among the chosen transitions will 

require k adders, log2k priority encoders, and a few gates to glue them together. In total, 

the circuitry will require less than 1000 gates for a 16-bit history buffer; and will be able 

to make decisions in a few nano-seconds (there will be roughly 2log2k+3 gates in the 

critical path). 

 

5.6.5 H-cFA: Handling Length Restrictions 
 

We now propose an extension called History based counting finite Automata (H-cFA), which 

efficiently solves the limitations of finite automata in efficiently implementing length 

restriction on sub-expressions within the regular expression. We begin with an example, 

in which we consider the same set of two reg-exes in our previous example with the 

closure in the first reg-ex replaced with a length restriction of 4, as shown below: 
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r1 = .
*ab[^a]4c;  r2 = .

*def; 

 

A DFA for these two reg-exes will require 20 states. The blowup in the number of 

states in the presence of the length restriction occurs due to the inability of the DFA to 

keep track of the length restriction. Let us now construct an H-cFA for these reg-exes. 

The first step in this construction replaces the length restriction with a closure, and 

constructs the H-FA, with the closure represented by a flag in the history buffer. 

Subsequently with every flag in the history buffer, a counter is appended. The counter is 

set to the “length restriction value” by those conditional transitions which set the flag, 

while it is reset by those transitions which reset the flag. Furthermore, those transitions 

whose condition is a “set flag” are attached with an additional condition that the 

counter value is 0. During the executing of the machine, all positive counters are 

decremented for every input character. The resulting H-cFA is shown below: 
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Consider the parse of the string “abdefdc” by this machine starting at the state (0), 

and with the flag and counter reset. 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0flag                  0ctr                   1ctr                     2ctr                  3ctr         4ctr1;flag                                            

                                                                                                            

3,05,06,05,04,001,00
0ctr and 1 flag because                                                                                                                                                                                                                                                

<=<=<=<=<=<=<=

↑↑↑↑↑↑
→→→→→→→

==

cdfedba
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As the parsing reaches the state (0,1), and makes transition to the state (0), the flag is 

set, and the counter is set to 4. Subsequent transitions decrements the counter. Once 

the last character c of the input string arrives, the machine makes a transition from state 

(0,5) to state (0,3), because the flag is set and counter is 0; thus the string is accepted. 

This example illustrates the straightforward method to construct H-cFAs from H-FAs. 

Several kinds of length restrictions including “greater than i”, “less than i” and “between 

i and j” can be implemented. Each of these conditions will require an appropriate 

condition with the transition. For example, “less than i” length restriction will require 

that the conditional transition becomes true when the history counter is greater than 0. 

 

From the hardware implementation perspective, a greater than or less than condition 

requires approximately equal number of gates needed by an equality condition, hence 

different kinds of length restrictions are likely to have identical implementation cost. In 

fact, a reprogrammable logic can be devised equally efficiently, which can check each of 

these conditions. Thus, the architecture will remain flexible in face of the frequent 

signature updates. This simple solution is extremely effective is reducing the number of 

states, specifically in the presence of long length restrictions. Snort signatures comprises 

of several long length restrictions, hence H-cFA is extremely valuable in implementing 

these signatures. We now present our detailed experimental results, where we highlight 

the effectiveness of our solutions. 

 

5.6.6 Experimental Results 
 

In this section, we report the effectiveness of H-FA and H-cFA in reducing memory on 

a selected set of reg-exes datasets. In Table 5.4 and 5.5, we report the results from our 

representative set of experiments, and highlight the number of flags and counters that 

we employ in the history buffer. Snort rules comprise of several long length restrictions; 

we find that, for these datasets, H-cFAs are extremely effective in keeping the memory 

small. Without employing the counting capability, a composite automaton for Snort reg-
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exes explodes in size. For Cisco rules, we show how varying the number of flags affects 

the H-FA size (first two rows of the Table 5.5 use different number of flags). In general, 

with more history flags, the H-FA is more compact. 

 

Notice that the traditional DFA compression techniques including the D2FA can also 

be applied to H-FA, thereby further reducing the memory. The results also demonstrate 

that with H-FAs, we always require a single composite automaton as opposed to the 

Table 5.4  Properties of the DFA constructed from our key reg-ex datasets. 

 

DFA Source Avg. ASCII 

length 

# of closures, 

# of length 

restriction # of 

automata 

total # of states 

Cisco64 19.8 14, 1 1 132,784 

Snort rule 1 36.9 6, 6 3 62,589 

Snort rule 2 16 1, 2 1 12,703 

Snort rule 3 13.8 5, 1 2 4,737 

Linux70 21.4 11, 0 2 20,662 

 

 
Table 5.5  Results of the H-FA and H-cFA construction 

 

Composite H-FA / H-cFA Source 

# of (flags, 

counters) 

in history 

Total # 

of states 

Max # of 

transitions / 

character 

Total # of 

transitions 

% space 

reduction 

with H-FA 

H-FA 

parsing 

rate 

speedup 

Cisco64 6, 0 3,597 2 1,215,450 94.69 1x 

Cisco64 13, 0 1,861 8 682,718 96.77 1x 

Snort rule 1 5, 6 583 8 238,107 97.40 3x 

Snort rule 2 1, 2 71 2 27,498 98.58 1x 

Snort rule 3 5, 1 116 4 46,124 93.48 2x 

Linux70 9, 0 1,304 8 546,378 81.63 2x 
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DFA approach, where we may require multiple automata, leading to a reduced 

performance. Thus, H-FA approach also helps in improving the parsing speed. 

 

The table highlights another important result: the blowup in the number of conditional 

transitions in the H-FA generally remains very small. In a DFA there are 256 outgoing 

transitions, while in most of the H-FAs these are less than 500. Thus, there is less than 

2-fold blowup in the number of transitions; on the other hand reduction in the number 

of states is generally a few orders of magnitude, thus the net effect is a significant 

memory reduction. 

 

5.7 Summarizing CD2FA and H-FA 
 

In this chapter, we introduce the Content Addressed Delayed Input DFA (CD2FA), 

which provides compact representation of regular expressions. A CD2FA is built upon 

the recently proposed delayed input DFA (D2FA), whose state numbers are replaced 

with content labels. The content labels compactly contain information which are 

sufficient for the CD2FA to avoid any default traversal, thus avoiding unnecessary 

memory accesses and hence achieving higher throughput in a network processor setting. 

While a CD2FA requires equal number of memory accesses to those required by an 

uncompressed DFA, in systems with a small data cache, CD2FA surpasses 

uncompressed DFA in throughput, due to their small memory footprint and high cache 

hit rate. We find that with a modest 1 KB data cache, that can be easily provided in 

today’s NPs, CD2FA achieves two times increased throughput as compared to an 

uncompressed DFA, and at the same time requires only 10% of the memory required 

by a table compressed DFA. Thus, CD2FAs can implement regular expressions much 

more economically and improve throughput and scalability in the number of rules. A 

recent development [Becchi, and Crowley 2007] constructs compact D2FA with an 

amortized parsing complexity of less than 2 memory accesses per input character. Such 

structures can be coupled with content addressing to enable further space compression. 
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Our second contribution is H-FA, which is a novel machine that solves the problem 

of DFA state explosions while maintaining a high parsing performance. In one way, 

H-FA is similar to a NFA, in that the per character execution complexity of the 

machine is O(k), where k is the maximum number of concurrent partial matches, say 

due to the presence of k Kleene closures in the regular expressions. H-FA, however, 

achieves high parsing performance by partitioning itself into two components, a 

finite automaton and a history buffer containing a set of flags. The automaton 

requires a single state traversal per character, thus can be stored in off-chip memory 

and still be executed at high rates; the history buffer on the other hand requires k 

parallel examinations, however it is extremely compact (requires only k-bits) and can 

be stored in fast on-chip registers. Thus, even though the theoretical execution 

complexity of H-FA is O(k) for k closures in the regular expressions, it can run as 

fast as a DFA in practice, while avoiding the state explosions of the DFA. 
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Chapter 6 

 

Summary 
 

IP header lookup and packet content inspection are two important and well-studied 

topics. Despite the enormous amount attention of the research community, there 

remain a number of ripe areas for contribution. In this thesis, we describe a number of 

novel algorithms and architectures for realizing these two functions that aim at 

advancing the current state-of-the art in a number of different ways. While our focus is 

throughput, primarily due to the persistent concern over rapidly increasing data rates in 

the Internet, we also give a fair amount of attention to the other important aspects of 

implementation such as power consumption, silicon die area, scalability, and robustness. 

It is often critical that the desired level of throughput is achieved with a reasonably low 

power consumption, and die area.  Scalability and robustness of the architecture, on the 

other hand, decides how long the architecture will remain relevant and adaptable to 

meet the newly emerging performance pressures, and how well it will cope with the 

unforeseeable security threats and changing usage patterns. In today’s competitive 

networking device marketplace, and due to a plethora of existing solutions, these issues 

become a decisive factor in the success and wide adoption of any architecture. 

 

Centered on the aforementioned four performance aspects, the platforms that we use to 

evaluate our algorithms are ASICs and network processors. These two platforms are the 

most commonly used by current network equipment vendors, and each has their own 

benefits and drawbacks. What differentiates these platforms is a tradeoff between 

performance and programmability. Network processors provide an unparalleled level of 

programmability, which enables quicker implementation, and upgrades of any given 

function. ASICs, on the other hand, are known to provide a high degree of parallel 
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computation capability, which can be used to achieve high performance and efficiency. 

Consequently, there are marked differences in the implementation approach employed 

in ASICs and network processors. Algorithms that require ample parallel computation 

are preferable in an ASIC. Current ASICs also provide a moderate amount of high 

bandwidth on-chip memory. Thus, such algorithms can be practically implemented that 

require compact data-structures but demands high memory bandwidth to enable high 

performance. Unlike ASICs, current network processors have very limited or no on-

chip memory for data storage and off-chip memory is used as the primary storage for all 

data-structures. Even though off-chip memory size has grown substantially recently, its 

bandwidth has remained a premium, hence the algorithms used in network processors 

often seek to keep the number of memory accesses small, even though it requires an 

increased memory size. While developing our algorithms, we keep these implementation 

tradeoffs in mind. In addition to these platform specific evaluations, we also conduct a 

preliminary evaluation of our algorithms in an abstract sense, where our primary metrics 

are computation complexity, and memory bandwidth and space required. 

 

In IP lookup, which is one of our primary topics, we introduce two novel architectures 

that complement each other and can be used to design an ASIC can enable high lookup 

throughput at low levels of power consumption and memory size. The first architecture 

is called CAMP, which is a pipelined IP lookup architecture based on multi-point access 

circular pipeline of traditional memories. A key feature of the architecture is that the 

number of stages in the pipeline is decoupled from the number of levels in the trie. 

Hence, a large number of smaller memory stages can be employed, leading to a higher 

throughput at lower die area and power dissipation. The architecture also allows near 

optimal memory utilization and also ensures that all pipeline stages are equal in size. 

CAMP also ensures fast incremental updates, which has been validated on a collection 

of real and synthetic prefix sets. To complement the high lookup throughput made 

possible with CAMP, we develop HEXA, which is a novel representation for structured 

graphs such as IP lookup tries that substantially reduces the memory required. HEXA 

uses a unique method to locate the nodes of the trie in memory, which enables it to 
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avoid using any “next node” pointer. Since these pointers often consume most of the 

memory required by the lookup trie, HEXA based representations are significantly 

more compact than the standard representations. We validate HEXA with a number of 

well known IP lookup databases which results in a memory reduction of up to 3-times 

over the state-of-the art methods. Such memory reductions are essential in an ASIC 

setting, where fast but limited amount of embedded memories are available, and can be 

used to dramatically improve the packet throughput and reduce the power dissipation. 

 

As part of the experimental evaluation, we thoroughly present and discuss the die area, 

power consumption, and lookup throughput achieved when a combination of HEXA 

and CAMP is used to implement IP lookup function in an ASIC setting. Additionally, 

we also present a preliminary theoretical analysis of the algorithms used in the two 

architectures. More specifically, in HEXA, we derive an approximate bound on the 

memory requirements, by borrowing analyses from the Cuckoo hashing. The analysis 

establishes that the memory requirements in HEXA is O(n), for n node IP lookup trie, 

as compared to the O(n logn) memory required in standard solutions. The analysis of the 

CAMP has been limited to a number of experiments carried over a set of synthetic IP 

lookup tables, which establishes an approximate experimental bound on the memory 

requirement and pipeline imbalance. 

 

In the area of deep packet inspection using regular expressions signatures, we introduce 

a number of new representations for regular expressions. The first representation is 

delayed input DFA (D2FA), which significantly reduces the memory requirements of a 

DFA by replacing its multiple transitions with a single default transition. By reduction, 

we show that the construction of an efficient D2FA from a DFA is NP-hard. We 

therefore present heuristics for D2FA construction that provide deterministic 

performance guarantees. Our results suggest that a D2FA constructed from a DFA can 

reduce memory space requirements by more than 95%. Thus, the entire automaton can 

possibly fit in on-chip memories of an ASIC. Since embedded memories provide ample 

bandwidth, further space reductions are possible by splitting the regular expressions into 
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multiple groups and creating a D2FA for each of them, and storing and executing them 

independently. 

 

As a side effect, a D2FA introduces a cost of possibly several memory accesses per input 

character, since it requires multiple default transitions to consume a single character. 

Therefore, a careful implementation is required to ensure deterministic, and good 

performance. We present a memory-based architecture, which uses multiple embedded 

memories, and show how to map the D2FAs onto them in such a way that each 

character is effectively processed in a single memory cycle. As a proof of concept, we 

construct D2FAs from regular expression sets used in many widely used systems, 

including those employed in the widely used security appliances from Cisco Systems, 

that required less than 2 MB of embedded memory and provided up to 10 Gbps 

throughput at a modest clock rate of 300 MHz. Our ASIC architecture provides 

deterministic performance guarantees and suggests that with today’s VLSI technology, a 

worst-case throughput of OC192 can be achieved while simultaneously executing 

several thousands of regular expressions. 

 

Our second contribution is Content Addressed Delayed Input DFA (CD2FA), which 

provides a compact representation of regular expressions suitable for implementation in 

network processor platforms. A CD2FA is built upon the D2FA, whose state numbers 

are replaced with content labels. The content labels compactly contain information 

which are sufficient for the CD2FA to avoid any default traversal, thus avoiding 

unnecessary memory accesses and hence achieving higher throughput. While a CD2FA 

requires number of memory accesses equal to those required by an uncompressed DFA, 

with the addition of small data caches that are increasingly becoming available in current 

network processors, CD2FA surpasses uncompressed DFA’s in throughput, due to its 

small memory footprint and therefore higher cache hit rate. We find that with a modest 

1 KB data cache, CD2FA achieves almost two times higher throughput as compared to 

an uncompressed DFA, and also requires less than 10% of the memory required by a 

DFA compressed with standard table compression. Consequently, CD2FAs can 
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implement regular expressions much more economically and improve the throughput 

and scalability in the number of rules in a network processor based implementation 

environment. Given the anticipated effect of Internet growth, increasing number of 

security threats and diversification of the regular expression signature sets, both D2FA 

and CD2FA based solutions are expected to gain wide adoption and popularity in the 

immediate future. 
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