

WASHINGTON UNIVERSITY

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

A THESIS ON ACCELERATION OF

NETWORK PROCESSING ALGORITHMS

by

Sailesh Kumar

Prepared under the direction of Prof. Jonathan S. Turner and Prof. Patrick Crowley

A thesis presented to the School of Engineering and Applied Science of

Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF SCIENCE

May 2008

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

A THESIS ON ACCELERATION OF

NETWORK PROCESSING ALGORITHMS

by

Sailesh Kumar

ADVISORS: Prof. Jonathan S. Turner and Prof. Patrick Crowley

May 2008

St. Louis, Missouri

Modern networks process and forward an increasingly large volume of traffic and the rate of

growth of the traffic often outpaces the improvements in the processor, memory and software

technology. In order for networking equipment to maintain an acceptable performance, there is

a need for architectural enhancements and novel algorithms to efficiently implement the various

network features. In this thesis, we focus on two core network features namely: i) IP packet

forwarding, and ii) packet content inspection. We thoroughly investigate the existing methods to

realize these two features and evaluate their usability on modern implementation platforms like

network processors. Afterwards, we introduce a number of novel algorithms which not only

improve the performance theoretically, but also better utilize the capabilities available with the

modern hardware. The major contributions of this work include the design and architecture of

an ASIC to perform longest prefix match operations on packet headers that uses substantially

less memory, an embedded memory based design for regular expressions based packet content

inspection, and a general purpose algorithm to cost-efficiently implement regular expressions

signatures used in current security systems. We evaluate the proposed algorithms using network

processor platforms and cycle accurate ASIC models, which provides us a first order estimate of

the usability of our methods.

 ii

Contents

List of Tables ... v

List of Figures... vi

Acknowledgements... ix

1 Introduction ..1
 1.1 Internet – The Beginning ..2
 1.2 Internet – Current Infrastructure and Performance Challenges4
 1.3 Dissertation Focus – Main Contributions ..9
 1.3.1 IP Packet Forwarding...9
 1.3.2 Packet Content Inspection ..12
 1.4 Evaluation..16
 1.4.1 Performance Metrics ..16
 1.4.2 Workloads ..17
 1.4.3 Implementation Platforms...18
 1.5 Organization..19

2 Background and Related Work...20
 2.1 Trie Based Longest Prefix Match...21
 2.1.1 Pipelined IP Lookup Tries ..23
 2.1.2 Efficient Encoding of Multibit-Trie Nodes..25
 2.2 Non-trie based Longest Prefix Match ...26
 2.3 Packet Content Inspection..29
 2.3.1 Aho-Corasick Algorithm based String Matching30
 2.3.2 Regular Expressions in Packet Content Inspection.................................32

3 IP Packet Forwarding ...36
 3.1 HEXA - Encoding Structured Graphs ...37
 3.1.1 Introduction to HEXA ..38
 3.1.2 Motivating Example ...40
 3.1.3 Devising One-to-One Mappings ..43
 3.1.4 Updating a Perfect Matching ..45
 3.1.5 Summarizing HEXA ..46
 3.2 CAMP – Pipelining a Trie ...47
 3.2.1 Introducing CAMP...49
 3.2.2 General Dynamic Circular Pipeline..51
 3.2.3 Detailed Architecture of the CAMP ..52

 iii

 3.2.4 Characterizing the Pipeline Efficiency...54
 3.2.5 When is LPC greater than One? ...56
 3.2.6 Mapping IP Lookup Tries to CAMP...58
 3.3 Coupling HEXA with CAMP...61
 3.4 Experimental Evaluation...63
 3.4.1 Datasets – BGP Routing Tables and Trends..64
 3.4.2 Experimental Evaluation of HEXA ..65
 3.4.3 Experimental Evaluation of CAMP...68
 3.5 Worst-case Scenarios and Discussion ...79
 3.6 Concluding Remarks..81

4 Packet Content Inspection I ...83
 4.1 Delayed Input DFAs..85
 3.1.1 Motivating Example ...86
 3.1.2 Problem Statement ...87
 3.1.3 Converting DFAs to D2FAs..88
 4.2 Bounding Default Paths ..91
 3.2.1 Results on Some Regular Expression Sets ..95
 3.2.1 Summarizing the Results..100
 4.3 Regex System Architecture ...101
 3.2.1 Randomized Mapping ..103
 3.2.1 Deterministic and Robust Mapping ...105
 4.4 Summarizing the D2FA based ASIC ...112
 4.3 Future Direction (Bounded HEXA) ...113
 4.3.1 Motivating Example ...114
 4.3.2 Memory Mapping ...116
 4.3.3 Practical Considerations...119
 4.3.4 Some Results on String Sets ..120
 4.3.5 Challenges with General Finite Automaton..123

5 Packet Content Inspection II ... 126
 5.1 Introduction to CD2FAs..127
 5.1.1 Content Addressing..127
 5.1.2 Complete Example ...129
 5.1.3 Details and Refinements ..132
 5.1.4 Memory Requirements of a CD2FA ..133
 5.2 Construction of Good D2FAs ..135
 5.2.1 Creation Phase...135
 5.2.2 Reduction Phase..137
 5.2.3 Optimization Phase ..138
 5.3 Optimizing Content Labels...139
 5.3.1 Alphabet Reduction..139
 5.3.2 Optimizing Content Label of Non-root States141
 5.3.3 Numbering Root States..143
 5.4 Memory Packing...143

 iv

 5.4.1 Packing Problem Formulation..144
 5.4.2 An Illustrating Example...146
 5.4.3 Analysis of the Packing Problem..147
 5.5 Experimental Evaluation...149
 5.6 Compact yet Fast Machines ..151
 5.6.1 Motivating Example ...153
 5.6.2 Formal Description of H-FA..156
 5.6.3 Analysis of the Transition Blowup...159
 5.6.4 Implementing History and Conditional Transitions..............................161
 5.6.5 H-cFA: Handling Length Restrictions...162
 5.6.6 Experimental Results..164
 5.7 Summarizing CD2FA and H-FA ..166

6 Summary .. 168

References ... 169

Vita ... 174

 v

List of Tables

Table 4.1 Our representative regular expression groups. ...97

Table 4.2 Original DFA and the D2FA constructed using the basic and the refined
default tree construction algorithm, without any diameter bound.98

Table 4.3 Number of transitions in D2FA with default path length bounded to 4.98

Table 5.1 Our representative regular expression groups. ...149

Table 5.2 Properties of the original DFA from out dataset...150

Table 5.3 CD2FA constructed after each phase of the CRO algorithm. Last column is
the ratio of the memory size of a CD2FA and that of a table compressed DFA
(DFATC). ...150

Table 5.4 Properties of the DFA constructed from our key reg-ex datasets.165

Table 5.5 Results of the H-FA and H-cFA construction.. ...165

 vi

List of Figures

Figure 2.1 (a) Routing table; (b) corresponding unibit trie; (c) corresponding leaf-
pushed unibit trie. ..21

Figure 2.2 (a) Routing table expanded with stride 2; (b) corresponding multibit trie.22

Figure 2.3 (a) Pipelining a lookup trie, each level forms a stage; (b) Corresponding
pipelined lookup architecture. ...23

Figure 2.4 (a) Routing table; (b) corresponding unibit leaf pushed trie; (c) unibit trie
with jump nodes. ...24

Figure 2.5 Aho-Corasick automaton for the four strings test, telephone, phone and
elephant. Gray indicates accepting node. Dotted lines are failure transitions.30

Figure 3.1 (a) Routing table; (b) corresponding binary trie. ...40

Figure 3.2 Memory mapping graph, bipartite matching. ..44

Figure 3.3 (a) Routing table (prefixes shorter than 2-bits are expanded using
controlled prefix expansion) (b) unibit trie of six levels; (c) Direct index table for first
2-bits, (d) resulting 4 sub-tries of four levels each..50

Figure 3.4 A four stage circular pipeline and the way the three subtries in Figure 3 are
mapped onto them. ...51

Figure 3.5 Schematic block diagram of a CAMP system..53

Figure 3.6 LPC of CAMP versus request queue size. ...55

Figure 3.7 A six stage circular pipeline and the way the three sub-tries in Figure 3.6
are mapped onto them..56

Figure 3.8 LPC of CAMP versus request queue size. Requests arrive at each pipeline
stage in random bursts (burst length highlighted in the figure)..57

Figure 3.9 a) invalid assignment: matching P1 causes one extra loop of the circular
pipeline; b) valid assignment: the circular pipeline is traversed only once.59

Figure 3.10 Example coloring with largest first heuristic. ..60

Figure 3.11 An insertion operation causes a sub-trie remapping in case of skip-level
assignment. ..61

Figure 3.12 For different memory over-provisioning values and trie sizes, the number
of choices of HEXA identifier that is needed to successfully perform the memory
mapping. ...65

Figure 3.13 For different number of choices of HEXA identifiers and trie sizes, the
memory over-provisioning that is needed to successfully perform the memory
mapping. ...66

Figure 3.14 Memory needed to represent the fast path portion of the trie with and
without HEXA. 32 tries are used, each containing between 100-120k prefixes.67

 vii

Figure 3.15 Probability distribution of the number of memory operations required to
perform a single trie update. Upper trie size = 100,000 nodes, Lower trie size = 10,000
nodes. ...69

Figure 3.16 Normalized memory requirements of each pipeline stage in a binary trie a)
CAMP using largest first heuristic, b) level to pipeline stage mapping, c) height to
stage mapping. Leaf pushing was not done in these experiments..71

Figure 3.17 Successive migrations between a set of 22 distinct BGP tables. The upper
and lower bound of the relative pipeline size are highlighted...73

Figure 3.18 Effect of incremental updates over time; two scenarios are represented:
once without and one with yearly rebalancing. ...74

Figure 3.19 Total memory requirements of a tree-bit mapped multi-bit trie with
different stride values (to highlight the properties of CAMP, we do not use HEXA in
this experiment). ..75

Figure 3.20 Percentage overshoot of size of the largest pipeline stage from the average
pipeline stage size. ...76

Figure 3.21 Power consumption and area estimates of different CAMP
configurations...77

Figure 3.22 Power consumption of different CAMP configurations.78

Figure 3.23 a) a worst-case prefix set, b) the way adaptive CAMP splits a trie into
parent and child sub-tries. ..80

Figure 4.1 Example of automata which recognize the expressions a+, b+c, and c*d+..86

Figure 4.2 Space reduction graph for DFA in Figure 4.1...90

Figure 4.3 D2FAs corresponding to two different maximum weight spanning trees.90

Figure 4.4 Default transition trees formed by the spanning tree algorithm and by our
refined version. ..94

Figure 4.5 Default transition trees (forest) formed by the refined spanning tree with
the tree diameter bounded to 7. ..95

Figure 4.6 Distribution of number of transitions per state in the D2FA constructed
from the Cisco590 expression set. ..99

Figure 4.7 Plotting total number of labeled transitions in D2FAs for various
maximum default path length bounds..100

Figure 4.8 Logical structure of the memory subsystem..102

Figure 4.9 Throughput with default path length bounded to 7 and using the
randomized mapping. ...104

Figure 4.10 Left diagram shows two trees colored by largest first algorithm. Right
diagram shows a better coloring..107

Figure 4.11 Various steps involved in the coloring of two trees with adaptive
algorithm (assuming equally sized vertices). ..110

Figure 4.12 Plotting maximum discrepancy in color usage, circles for largest first and
squares for adaptive algorithm...111

Figure 4.13 Throughput with default path length bounded to 7 and using adaptive-
coloring based deterministic mapping..112

 viii

Figure 4.14 Aho-Corasick automaton for the three strings abc, cab and abba. Gray
indicates accepting node. ..115

Figure 4.15 Memory mapping graph, bipartite matching. ..117

Figure 4.16 Plotting spill fraction: a) Aho-Coroasick automaton for random strings
sets, b) Aho-Coroasick automaton for real world string sets, and c) random and real
world strings with bit-split version of Aho-Corasick. ..122

Figure 5.1 Content-Addressing. ...128

Figure 5.2 a) DFA recognizing patterns [aA]+b+, [aA]+c+, b+[aA]+, b+[cC], and
dd+ over alphabet {a, b, c, d, A, B, C, D} (transitions for characters not shown in the
figure leads to state 1). b) Corresponding space reduction graph (only edges of weight
greater than 4 are shown). c) A set of default transition trees (tree diameter bounded
to 4 edges) and the resulting D2FA..130

Figure 5.3 a) A set of default transition trees created by Kruskal’s algorithm with tree
diameter bounded to 2. b) After dissolving tree 2-3 and joining its vertices to root
vertex 1. c) After dissolving tree 9-4-6 and joining its vertices to root vertices 1, 1 and
8. ...136

Figure 5.4 Storing list of content labels for state 9 in memory. ..142

Figure 5.5 a) Content labels of states of the CD2FA shown in Figure 2. b) Non-root
states requiring one word to store the content labels associated with their labeled
transitions. c) Candidate content labels (using 1-bit discriminators) and the resulting
candidate state numbers. d) Corresponding bipartite graph. ..147

Figure 5.6 Throughput results on Cisco rules, without and with data cache. Table
compressed DFA (DFA-TC), uncompressed DFA and CD2FA are considered and
the Input data stream results in a very high matching rate (~10%)...................................151

Figure 5.7 History based Finite Automata..152

 ix

Acknowledgements

The work on this thesis has been an inspiring, often exciting, sometimes challenging,

but always interesting experience. It has been made possible by many other people

who have supported me. First of all, I would like to express my deepest sense of

gratitude to my advisor Prof. Jonathan S. Turner. I came to Washington University

four years ago with a lot of energy but no clear direction and focus. Prof. Turner

taught me how to do research, rigorously define a problem and then pursue for a

solution. He not only gave me complete freedom to explore the research topics of my

interest, but also provided me an unflinching encouragement and support in various

ways. His truly ingenious intuition, tremendous patience and diligent mentorship has

made him a source of inspiration, which enriched my growth as a student, a researcher

and a scientist. I am indebted to him more than he knows.

I gratefully acknowledge my co-advisor Prof. Patrick Crowley for his early guidance,

supervision, and crucial contributions. From the very beginning, he treated me as a

peer and played an instrumental role in keeping me engaged and motivated. He quickly

grasped my research interests and strengths and guided me in the right direction by

introducing me to the wonderful world of computer architecture and network

processors, and set a course for long-term collaboration.

The genesis of this thesis can be traced back to my summer internship at Cisco

Systems working with Will Eatherton and John Williams. Being one of the leaders at

Cisco, Will and John had an early intuition of the performance issues surrounding

packet content inspection, and they suggested me to focus my energy in this direction.

I continued working in this area after returning from Cisco, which eventually became

the backbone of this thesis.

 x

I am grateful to Prof. Michael Mitzenmacher and Prof. George Varghese for agreeing

to collaborate and guide me on a number of ideas, which led to key publications that

became an integral part of this thesis. Their consummate emphasis on clarity and

understanding has provided me a new perspective, and nurtured and encouraged me

to produce the highest quality research that I could.

I am grateful to the other members of my committee, Prof. John Lockwood, Prof.

Roger Chamberlain, and Prof. Bob Morley for their valuable feedback and advice. My

experience as a graduate student was enhanced by the talented group of students and

friends around me. Many thanks go to Sarang Dharmapurikar for the long brainstorm

sessions, which helped me in shaping up my research direction. Inexpressible thanks

also go to Christoph Jechlitschek, and Michela Becchi for developing a number of

ideas, and spicing up my stay in St. Louis. I would also like to express my sincere

gratitude to my past and present roommates Dushyanth Balasubramanian, Shakir

James, and Nigel Thomas for patiently supporting me during my tough times.

I would also like to thank Myrna Harbison, Jean Grothe, Sharon Matlock, Peggy

Fuller, and Stella Sung for their invaluable and diligent effort in making the life of

graduate students easy. A number of Washington University staff and faculty members

have generously provided their wisdom, encouragement and assistance. In particular, I

would like to thank John DeHart, Fred Kuhns, and Prof. Sergey Gorinsky.

Finally, I would like to thank my parents, sisters, brother-in-laws and my girlfriend

Sangeeta Bhattacharya for their tremendous support, and unconditional love. Without

them, it would not have been possible for me to reach at this stage in my career.

Sailesh Kumar

Washington University in St. Louis

May 2008

1

Chapter 1

Introduction

The Internet has undergone profound transformation during the last decade. What

started as a fairly simple data network used mostly by computer researchers, has become

a global communications medium with mission-critical importance for the national and

international economies and society. The number of Internet users is continuously

growing and new Internet services are rapidly emerging, which are driving the Internet

traffic volume to new levels. The growth in the Internet traffic is outpacing the rate at

which hardware and memory technologies advance. New complications unanticipated

by the original designers of the Internet are also arising in the form of erosion of

trustworthiness, security threats, widespread use of mobility, etc, which often requires

complex workarounds at both the protocol and the infrastructure level. These are

introducing a variety of new challenges in the design and implementation of future

networking equipment, which are already burdened with an increasingly large number of

functions, and demanding performance pressures.

This dissertation addresses some of these concerns by proposing an array of novel

algorithms and methods to efficiently realize two key network functions – i) IP packet

forwarding, and ii) packet content inspection – which are both challenging to implement

and critical to the functioning of the Internet. Our solutions concentrate on using

embedded memory in innovative ways that involve a combination of architectural and

algorithmic techniques and advance the state-of-the-art in both performance and

efficiency. Considerable attention has been paid to the current levels of embedded

memory density and hardware support, and their future trends, thereby enabling the

proposed solutions to remain useful in the foreseeable future.

2

1.1 Internet – The Beginning

The Internet is a complex and vast networking infrastructure interconnecting millions

of devices throughout the world, which provides services to numerous distributed

applications. The roots of the Internet can be traced back to the development of packet

switching [Baran et al. 1964] in the early 1960s. The communications infrastructures at

that time were based primarily on circuit switching technologies. Unlike circuit

switching, in which bits are the unit of information carriage and they are transmitted at

constant intervals, packet switching employs packets of multiple bytes as the unit of

information carriage. These packets are transferred between nodes over data links

shared with other traffic. Due to the cross traffic, the packets may be buffered and

queued in each node, which results in variable delay.

Packet switching appeared to be an efficient approach to handle traffic originating from

bursty sources like applications running on an array of computers. The early work of

Leonard Kleinrock [Kleinrock 1964] laid the mathematical foundation of packet

networks and elegantly demonstrated the effectiveness of packet switching. Later, Paul

Baran, and Donald Davies independently developed detailed concepts of multi-node

packet switching networks, utilizing the ideas of Kleinrock and packet queuing. The

work of Baran and the promise of packet switching helped influence ARPANET, the

world’s first operational packet switched network, to adopt the technology. In 1969,

under the supervision of Kleinrock, the first packet switch, referred to as Interface

Message Processors (IMPs), was installed at UCLA. Three additional IMPs were

installed shortly thereafter and all four were interconnected to each other. By the end of

1969, these four nodes constituted the direct ancestor of the current Internet.

A number of applications were soon written for the ARPANET, including e-mail in

1971, file transfer in 1973, and voice traffic in 1973. These applications helped spur the

3

growth of the APRANET; there were 9 nodes by 1970 and the APRPANET extended

from the west coast of the U.S. to the east coast. By 1973, there were 40 nodes, and the

ARPANET included two satellite links, to Hawaii and Norway across the Pacific and

Atlantic oceans, respectively. During the same time frame, an array of proprietary

networks were developed, to interconnect the computer systems within a limited

geographical region, e.g. ALOHANET to link universities in Hawaii, and IBM’s SNA to

connect the computing resources within a corporation.

As the number of such networks grew, it became important to interconnect them.

Vinton Cerf and Robert Kahn in 1974 developed an interconnection protocol, thereby

paving the way to the network of networks concept and introduced the term internet. Since

different networks used a diverse variety of links and communication methods, the

interconnection required that everyone agree on at least one common protocol to

communicate with each other. Transmission Control Protocol (TCP) developed by Cerf

and Kahn became this common language for communicating over the interconnection

network (Internet), and it became necessary for every host which is part of the Internet

to implement this protocol. TCP provides reliable in-sequence delivery of data with end

system retransmissions, and the basic mechanism has hardly changed since its inception.

The introduction of TCP and the Internet Protocol (IP), which provides end-to-end

packet delivery, the free and open access to its specifications and the early

implementation helped the Internet to flourish. As the scale of the Internet increased,

several major changes occurred to address the associated management issues. First,

three network classes (class A, B and C) were introduced to accommodate the range of

networks of different sizes and number of hosts. Second, the hosts were assigned names

that were much easier to remember than the IP addresses. The Hierarchical Domain

Name System (DNS) was subsequently developed to resolve these host names into

Internet addresses and Classless Inter-Domain Routing (CIDR) was deployed to enable

efficient utilization and aggregation of the IP addresses.

4

The second phase of the Internet growth, which was much more rapid, started with the

emergence of the World Wide Web developed by Tim Berners-Lee at CERN. The

development of the graphical browser by Marc Andreessen at NCSA gave a significant

boost to the popularity of the World Wide Web and its easy-to-use interface made the

Internet a viable communication medium for the general public. Several independent

commercial networks were built and interconnected and it became possible to route

traffic from one continent to another without passing through the government funded

Internet backbone. An array of new Internet Service Providers (ISPs) arrived to provide

access to the Internet from home, much like telephone connections. As the number of

users started to grow at phenomenal rates, a number of services emerged, like web

based email, online messaging, peer to peer file sharing. A number of new businesses

provided these services, often for free, which further boosted the popularity of the

Internet. Today more than one billion people regularly use the Internet, and

conservative estimates suggest that there are more than thirty billion pages on the World

Wide Web. Today, the economic impact of the Internet is unparalleled and it has

become the growth engine of the world’s economy. A study conducted in early 2000

[Barua, Whinston, and Yin 2000] estimated that the Internet economy generated more

than $500 billion worldwide and created several million jobs, and it has been growing at

phenomenal rates since then.

1.2 Internet – Current Infrastructure and
Performance Challenges

The current Internet provides connectivity to the end hosts via access networks. An

access network may be a wireless or wired local area network or a residential ISP

reachable via DSL, cable modem, or a dial-up modem. These access networks are

situated at the edge of the Internet infrastructure, which is organized as a tiered

hierarchy of ISPs. Access networks are at the bottom of the hierarchy; at the top is a

relatively small number of tier-1 ISPs. Tier-1 ISPs, often referred as the Internet backbone

5

networks, have direct connectivity to each other and an international presence. They also

provide connectivity to a large number of tier-2 ISPs and other customer networks.

Tier-2 ISPs usually have regional or national coverage, and they are connected to a small

number of tier-1 ISPs. While many large enterprise networks are connected directly to

the tier-1 or tier-2 ISPs, most of the end user Internet connectivity is provided by tier-2

or lower tier ISPs.

Since the links of Tier-1 ISPs carry the bulk of the Internet traffic, nodes of the tier-1

ISP network are built with the largest and the most capable routers, often called core

routers. The current generation of core routers are capable of receiving, processing and

transmitting traffic at hundreds of different interfaces simultaneously, with each

interface operating in the range of 2.5 to 40 Gbps. The state-of-the-art Cisco Carrier

Routing System (CRS-1) supports multi-chassis configurations that extend to more than

2000 interfaces, each running at 40 Gbps, thereby providing an aggregate bandwidth of

92 Tbps. In addition to these high performance core routers, a number of routing

devices are used in the network, such as provider edge routers placed at the edge of an

ISP network, inter-provider border routers which interconnect different ISPs, and

access routers which are located at customer sites providing connectivity with the ISP.

The performance of a network device is limited by its slowest component; thus in order

for the device to meet a given level of performance, it is critical that that all its functions

meet the performance goal. For example, a 10 Gbps data throughput can be achieved

only if each and every function in the data path runs at a 10 Gbps rate. (Notice that, the

functions along the data path are those that process every packet or a large fraction of

total packets.) The data paths of the current high performance routing devices include a

large variety of functions, which range from routine tasks such as IP address lookup,

packet buffering, header checksum verification, policing, and marking, to advanced

functions such as packet classification, fair queuing, and traffic shaping. Recently, there

is a growing demand that the networking devices also examine the content of data

packets in addition to the structured information present in the packet header in order

6

to provide application-specific services such as application-level load-balancing and

security-oriented filtering based on signatures. Forwarding packets based on both

header and content is challenging and it is becoming increasingly challenging for the

equipment vendors to implement such functions at high rates. In the future, as the best-

effort Internet service model evolves and networks become more application aware, the

difficulties are likely to exacerbate further. These rising difficulties can be attributed to a

number of recent developments, which we can group into three main categories:

• Growing traffic volume: One of the primary sources of difficulty is the ever-

increasing traffic volume. Internet traffic has grown at exponential rates in the

past and shows no signs of decline. The growth in Internet penetration, the

popularity of streaming video, and the arrival of high-definition media are likely

to trigger unprecedented growth in traffic volumes in the near future, both

within the network core and in the other parts such as network edge, and high

user concentration sites (e.g. enterprise networks and metro area networks). As a

wide range of high-bandwidth business and consumer services gain further

momentum, ISPs will face a unique set of challenges to continuously upgrade

their networking equipment to increase bandwidth and the higher number of

interfaces.

• Growing network functions: The second primary cause of the challenges is the

continuously increasing number of functions which are integrated into the

devices. While a number of researchers have advocated to keep the network

core simple [Stoica 2001], network equipment providers continue to see value in

integrating more and more functions into core networking components. It is

now common for routers to examine the layer-4 and higher layer’s packet

header as well as the packet content. In the future, routers are expected to

thoroughly examine every portion of a packet before forwarding it, thereby

adding substantial computation overhead.

7

• Increasing complexity: The last concern is the ever-increasing complexity of the

functions that are incorporated into various devices; the increased complexity is

due to two key factors. The first is the growing number of end hosts and

intermediate nodes in the network, which leads to a higher number of address

identifiers in use, adding complexity to the functions such as IP address lookup.

The growing number of end-to-end flows also directly impacts the per-flow

based functions such as stateful packet content inspection and fair queuing. The

second factor is the constant upgrades and refinement of these functions, such

as an increasing number of rules used to classify the packets to enable more

fine-grained control of traffic, or rising number of virus signatures to combat

increasing security threats. A higher number of classification rules, IP addresses

or virus signatures requires larger amounts of memory and often also deteriorate

the performance by requiring more computation and memory bandwidth.

While advancements in fiber optics and signal transmission technologies such a Dense

Wavelength Division Multiplexing (DWDM) today enable up to terabits/sec bandwidth

over a single fiber, silicon hardware has been unable to keep up. The advances in

semiconductor and systems technology are not solely sufficient to combat the above

three trends and design the next generation networking equipments which are capable

of providing the required levels of performance. There is a pressing need of

architectural enhancements and new innovative algorithms that can efficiently

implement the existing and newly introduced network functions, in order for the

Internet to continue to evolve.

There is another dimension, which arises due to the rapidly changing implementation

platforms and evolution of new ones such as network processors. Early networking

equipments used general purpose processors to implement most packet forwarding

functions. As the link speeds have grown, it became necessary for high performance

systems to employ ASICs to perform the key functions. ASIC solutions provide high

performance, but they are generally difficult to update and reprogram. Network

8

processors, on the other hand, are software-programmable devices whose feature sets

are specifically targeted for networking applications, and they provide a much greater

degree of flexibility and programmability in implementing various network functions.

Consequently, network processors are a desirable platform for implementing those

services that are updated or upgraded frequently, while ASICs are preferable for

implementing those that have been standardized and are unlikely to change, and which

require significant amounts of computation.

Both ASICs and network processors today are capable of integrating a variety of

external and embedded memories of various capacities, running at different clock rates.

Modern VLSI technology supports integration of more than a billion transistors

[Burger, and Goodman 1997] in a single chip. It is now possible to support several large

embedded memories on a single die; for example, IBM’s ASIC fabrication technology

[IBM 2005] can integrate up to 300 Mbits of embedded memory on one chip. In the

future, the available computing power and the quantity of embedded memories are

likely to increase further. Network processors will integrate higher numbers of

independent processing units, specialized accelerators, and on-chip memory modules.

ASICs will become denser, capable of packing much faster and many more transistors.

The increased computational capabilities and the higher density and diversity in the

memory subsystem will offer new levels of challenges in efficiently utilizing them and

open up unparalleled opportunities for enhancing the overall performance.

To summarize, as the Internet continues to evolve, it is becoming increasingly difficult

to implement high performance network devices due to the rapidly expanding feature

sets and the pressing need to keep up with the increasing traffic volume. While the

modern implementation platforms such as network processors and dense ASICs are

capable of integrating abundant computing resources and on-chip memory, proper

utilization and management of these parallel resources remains a challenging problem.

An effective realization of network functions on these increasingly capable platforms

9

therefore will require a variety of techniques at both the architectural and the

algorithmic level, which makes it an interesting research problem.

1.3 Dissertation Focus – Main Contributions

In this dissertation, we concentrate on two important classes of network functions. The

first class consists of IP packet forwarding functions, such as header lookup and packet

classification – the former determining the next hop for the packet and the latter

prioritizing the packets. Packet header lookup is an integral component of every routing

system; on the other hand, packet classification is frequently used in high performance

systems to enable Differentiated Services and Quality of Service (QoS). The second

class of functions we focus on is packet content inspection, which involves examination of

the entire packet payload and matching it against a predefined set of patterns. Packet

content inspection has recently experienced a rapid adoption in the emerging

application layer packet forwarding applications and intrusion detection systems.

Due to the importance and broad deployment of the aforementioned two classes of

network functions, a collection of novel methods has been developed to efficiently

implement them. In this dissertation, we comprehensively evaluate the existing state-of-

the-art methods and develop novel solutions, which improve upon them both in theory

as well as in real implementation contexts. We introduce our solutions and the main

contributions in the following sections.

1.3.1 IP Packet Forwarding

An Internet router processes and forwards incoming packets based upon the structured

information found in the packet header. The next hop for the packet is determined after

examining the destination IP address, which is often called IP address lookup. Several

advanced services determine the treatment a packet receives at a router by examining

10

the combination of the source and destination IP addresses and ports; this operation is

called packet classification. The distinction between IP lookup and packet classification is

that IP lookup classifies a packet based on a single field in the header while packet

classification classifies a packet based on multiple header fields. The central component

of both functions consists of determining the longest prefix matching the header fields

within a database of variable length prefixes.

In this dissertation, we introduce two techniques to enable high performance longest

prefix match operations. These methods use a trie data-structure which is a power

efficient approach to implement longest prefix match. Our first contribution is a novel

representation of tries, called History-based Encoding, eXecution and Addressing (HEXA) that

uses implicit information present in a trie structure to locate the successor trie nodes,

thereby significantly reducing the amount of information that must be stored explicitly.

The key observation in HEXA is that for any given node of a trie there is only one path

that leads to it, and this path is labeled by a unique string of symbols. Since the

algorithms that traverse the trie know the symbols that have been used to reach a node,

we can use this “history” to define the storage location of the node. Since no nodes

have identical histories, each node can be mapped to a distinct storage location by

hashing its history value; provided that we have a perfect hash function. In practice,

however, devising a perfect hash function is difficult; HEXA therefore employs a few

discriminating bits for every node, which are hashed along with their history values.

Since the discriminating bits can be altered, it provides multiple choices of storage

locations for a node. We find that the amount of discriminating information needed to

enable a perfect hashing is just two bits, which leads to a binary trie representation that

requires just two bytes per stored prefix for IPv4 routing tables with more than 100K

prefixes, a 2-fold memory reduction compared to the state-of-the-art representations.

The resulting memory compactness leads to higher performance in implementation

contexts where there are small on-chip memories with ample memory bandwidth and

larger off-chip memories with more limited bandwidth. These characteristics are

11

common in conventional implementation platforms such as general purpose processors,

network processors, ASICs and FPGAs.

Our second contribution is a novel embedded memory based pipelined trie, which

delivers high lookup and update throughput. The proposed pipelined trie called Circular

Adaptive and Monotonic Pipeline (CAMP) is different from a regular pipeline in that the

memory stages are configured in a circular, multi-point access pipeline so that lookups

can be initiated at any stage. At a high-level, when compared to a linear pipeline with

static entry and exit stages, this multi-access and circular pipeline structure enables much

more flexibility in mapping trie nodes to pipeline stages.

CAMP exploits this flexibility in mapping algorithm by applying controlled prefix

expansion on the first few levels of the trie to obtain a modest number of sub-tries. For

example, an expansion of all IPv4 prefixes which are shorter than 8 bits to 8 bits would

yield at most 256 sub-tries with maximum height of 24. Each of these sub-tries is

mapped to our circular pipeline by first choosing a memory stage for the root of the

sub-trie, and then assigning subsequent levels of the trie to subsequent stages in the

pipeline, including a wrap around. By choosing mappings for all sub-tries judiciously—

and fairly simple heuristics are effective—the system can maintain uniform and near-

optimal memory utilization with high probability. Moreover, this balance is preserved

after an extended period of inserts and deletes. Thus, the system eliminates the

deficiencies of previous approaches, which were based on linear pipeline and static

height- or level-based node mapping [Hasan, and Vijaykumar 2005] [Basu, and Narlikar

2003] which often led to under-utilized memory. For real routing tables storing 100K

prefixes, our approach can achieve 40Gbps throughput with a power consumption of

0.3 Watts. Projections on 250 thousand prefix tables show a power consumption of 0.4

Watts at the same throughput.

To summarize, we propose two novel embedded memory based architectures to realize

longest prefix match operations. The solutions called HEXA and CAMP are orthogonal

12

and together they can enable i) high performance by exploiting the abundant memory

bandwidth available on-chip, and ii) efficiency by economically using the scarce on-chip

memory resources.

1.3.2 Packet Content Inspection

Today, many critical network services handle packets based on payload. Traditionally,

this packet content inspection has been limited to comparing packet content to sets of

strings. State-of-the-art systems, however, are replacing string sets with regular

expressions, due to their increased expressiveness. Several content inspection engines

have recently migrated to regular expressions, including: Snort, Bro, 3Com’s

TippingPoint X505, and various network security appliances from Cisco Systems. While

flexible and expressive, regular expressions have traditionally required substantial

amounts of memory, which severely limits performance in the networking context. In

this dissertation, we introduce an array of novel techniques to efficiently implement

regular expressions in networking. Our techniques are based upon innovative machines

that are capable of recognizing regular expressions languages.

Our first contribution is a representation of Deterministic Finite Automaton (DFA) that

substantially reduces the number of transitions associated with each state, thereby

reducing the memory and enabling a high performance embedded implementation. The

key observation is that groups of states in a DFA often have very similar outgoing

transitions and we can use this duplicate information to reduce memory requirements.

For example, suppose there are two states s1 and s2 that make transitions to the same set

of states, {S}, for some set of input characters, {C}. We can eliminate these transitions

from one state, say s1, by introducing a default transition from s1 to s2 that is followed

for all the characters in {C}. Essentially, s1 now only maintains unique next states for

those transitions not common to s1 and s2 and uses the default transition to s2 for the

common transitions. We refer to a DFA augmented with such default transitions as a

13

Delayed Input DFA (D2FA). In practice, the proper and effective construction of the

default transitions leads to a tradeoff between the size of the DFA representation and

the memory bandwidth required to traverse it. In a standard DFA, each input character

leads to a single transition between states; in a D2FA, an input character can lead to

multiple default transitions before it is consumed along a normal transition.

The approach achieves a compression ratio of more than 95% on typical sets of regular

expressions used in networking applications. Although each input character potentially

requires multiple memory accesses, the high compression ratio enables the data-

structure to be stored in on-chip memory modules, where the increased bandwidth can

be provided efficiently. To explore the feasibility of this approach, we describe a single-

chip architecture that employs a modest of amount of on-chip memory, organized in

multiple independent modules in order to provide ample bandwidth. However, in order

to deterministically traverse the automata at high rates, it is important that the memory

modules are uniformly populated and accessed over any short period of time. To this

end, we develop load balancing algorithms that map our compressed automata to the

memory modules in such a way that deterministic worst-case performance can be

guaranteed. Via experiments, we demonstrate that our algorithms can provide high

parsing throughput while simultaneously traversing thousands of automata.

Our second contribution is Content Addressed D2FA (CD2FA), which builds upon a

D2FA. CD2FAs replace state identifiers of a D2FA with content labels that include part

of the information that would normally be stored in the table entry for the state. This

makes selected information available earlier in the state traversal process, which makes it

possible to avoid unnecessary memory accesses. Specifically, a CD2FA requires a single

memory access before consuming any given input character, thereby matching the

performance of an uncompressed DFA, while simultaneously keeping a small number

of transitions per state, thereby enabling a compact memory footprint. CD2FAs employ

a perfect hashing technique to map the content labels to memory locations; thus the

content labels are directly used to locate the table entry for the next state labels. This

14

avoids overheads such as explicitly storing the characters and state labels as hash keys,

leading to additional memory reduction.

Our third set of solutions to implement regular expressions is specific to network

intrusion detection systems. A unique characteristic of these security systems is that the

packet contents of normal traffic rarely match more than the first few characters of the

patterns. Traditional patterns matchers however employ the entire signatures to

construct the DFA, which creates DFA that is so large that off-chip memories are

required to store it. This approach is wasteful; rather, the tail portions of the signatures

can be isolated, and represented by a compact but slow structure such as an NFA. For

normal traffic, the slow path will remain asleep, and activated during those anomalous

situations when the packet content begins to match the entire signature. We introduce

such a packet processing architecture which we call bifurcated packet processing, which splits

the signatures into prefixes and suffixes. The splits are computed such that normal data

streams will rarely match an entire prefix. Subsequently, the packet processing is divided

into two components: fast path and slow path. The fast path parses the entire content

of each flow and matches them against the prefixes of all signatures. The slow path

parses only those flows which have found a match in the fast path, and matches them

against those suffixes, whose corresponding prefixes are matched.

Such a splitting into fast and slow path can enable high speed parsing economically.

Signatures used in the fast path are small, thus they can be represented with fast

structures such as a single composite DFA. Such a composite DFA would otherwise

explode in size and become impractical if the entire signatures were used. The slow path

signatures, on the other hand, will parse a small fraction of traffic, thus they can be

implemented with slow but compact structures like an NFA. Based upon experiments

carried out on real signatures drawn from a collection of networking systems, bifurcated

packet processing can reduce the memory requirements by up to 100 times, while

simultaneously enabling a two to three fold increase in the packet throughput.

15

To complement the bifurcated architecture and enable a high performance fast path

implementation, we describe a new representation of regular expressions called History

based Finite Automaton (H-FA), which consists of an automaton augmented with a

history buffer. The contents of the history are read and updated during execution. Like

in a NFA, the transition function in a H-FA may return multiple next states for certain

states and input characters; however, only one next state from this set is chosen, which

is decided by the history buffer; thus the transitions in a H-FA are conditional upon the

state of the history buffer. Only one state is active at any time in a H-FA which enables

it to yield a throughput equal to that of a DFA; besides, an appropriate construction of

H-FA results in a dramatic reduction in the number of states over a DFA. We also

describe a variant of H-FA called counting H-FA (H-cFA), which addresses the inability

of table driven finite automata implementations to efficiently handle length restrictions

specified for certain sub-expressions. A number of security signatures consist of length

restrictions, thus H-cFA results in dramatic memory reductions in their implementation.

To summarize, this dissertation makes several key contributions in the area of packet

content inspection. First, it re-iterates the notion, albeit much more quantitatively, that

the central issue in regular expressions implementations is the trade-off between space

and time. At one end, DFA based techniques enable a single state of execution, but

require prohibitive amounts of memory. At the other end, NFAs are compact but

require multiple active states. To enable high performance, a small number of active

states is desirable, thus DFAs are preferable. Small memories however clock at higher

rates, which brings another dimension to the tradeoff: multiple active states can be

acceptable if it reduces the memory significantly. A number of new representations are

introduced that fall between the NFA and DFA on the tradeoff-curve, and take

advantage of the higher clock rates provided by small memories. D2FAs enable up to

100-fold memory reduction over DFA and enables higher parse rates by employing

parallel embedded memories. CD2FAs are relatively less compact, 50-fold over DFA;

however they enable parsing rates that surpass that of a DFA even without using

multiple memories. A bifurcated packet content inspection architecture coupled with H-

16

FA based machine has also been proposed that enable NIDS to attain high parsing

performance at a much reduced implementation cost.

1.4 Evaluation

Our evaluation methodology consists of three components: the performance metrics

that we use to characterize a solution, the workloads that are used to evaluate it, and the

implementation platforms we consider. Below, we discuss each of these.

1.4.1 Performance Metrics

We use the following four key performance metrics to evaluate the solutions proposed

in this dissertation.

• Efficiency: We define efficiency as the inverse of the short- and long-term cost of

the resources required to implement a function. For example, if the task is to

implement IP lookup for 100,000 prefixes at OC192 rate, then the efficiency

would depend upon both the short-term cost such as cost of memory and logic,

and the long-term cost such as power dissipation and area required on the

board. Efficiency is critically important for those networking systems that are

deployed in high volumes, in order for the equipment vendors to keep the

prices low, compete in the marketplace and generate profit.

• Raw Performance: We define raw performance as the peak packet rate that can be

sustained with the available technology. When performance varies for varying

inputs, we report both the average- and the worst-case results while discussing

the likelihood of the worst-case scenarios. Solutions with high raw performance

are important to implement state-of-the-art systems that need to forward traffic

at the highest possible rates, and where cost is a secondary concern.

17

• Scalability: We define scalability as how well the solution performs when the size

of the problem grows. For instance, in an IP lookup engine, scalability is the rate

at which the system cost increases as we start increasing the number of prefixes

and/or packet rate. Scalability is a decisive factor in the widespread deployment

of any solution; partly because high performance networking devices usually

have unusually long shelf life spanning decades, and partly to keep up with the

continuously increasing traffic volumes and the expanding networks.

• Vulnerability: We define vulnerability of a system as the possibility of a dramatic

degradation in the performance due to anomalous circumstances that either

arise during the normal course of network operations or as the result of a

deliberate attack. For example, in the case of a network intrusion detection

system, such situations may arise if the contents of several flows frequently

match one or many signatures, thereby raising security alarms “too often”. In

the current Internet, where users can no longer be trusted, it is important that

the deployed solutions are capable of handling anomalous conditions.

1.4.2 Workloads

With the above four primary performance metrics, we use a combination of real-world,

and synthetically generated workloads. Real-world workloads such as IP prefix tables,

data traces, and packet header logs collected from various routing systems, are essential

in characterizing the performance of a solution during normal traffic conditions.

Efficiency and raw performance of a system are the two performance metrics that are

evaluated solely with real-world workloads. A mixture of real-world and synthetically

generated workloads, extrapolated from the real-world workloads, are used to evaluate

the scalability of a solution.

Synthetically generated workloads, on the other hand, are essential in evaluating how a

system will behave during extreme conditions that may not arise frequently, such as

18

abnormally high routing table update traffic during a link failure and/or congested link.

Synthetic workloads are also used to characterize security threats such as Denial of

Service (DoS) attacks which exploit a weakness in the architecture. An example of such

a workload is a carefully crafted packet stream that falsely raises the security alarm in a

NIDS, or which leads to a false positive rate much higher than the normal theoretical

rate in a Bloom filter based system. Such anomalous workloads are required to

characterize the system performance with respect to the vulnerability performance

metric. For every solution we propose in this dissertation, in the respective chapters, we

explain a number of attacks and anomalous conditions and describe the synthetic

workloads that are used to evaluate the mechanisms we propose to safeguard against

these attacks.

1.4.3 Implementation Platforms

The final component of our evaluation consists of the implementation platforms that

we consider and the settings that we use in our evaluation. Our primary implementation

platform remains configurable ASIC architectures, customized to perform a given

networking function. The primary motivation behind focusing solely on such

specialized platforms is to be able to maintain high data rates. The settings such as clock

frequency, transistor density, memory access latency and memory bandwidth that we

choose to evaluate our solutions remain inline with the current technology trends.

Programmability is essential in order to keep an implementation up-to-date in the face

of changing workloads and continuously evolving functions; therefore our main focus is

to keep our solutions highly programmable in spite of taking an ASIC approach. There

are two mechanisms to achieve a high degree of programmability in this setting. First,

one can employ a collection of programmable processors whose instruction sets are

optimized to efficiently carry out the operations required by the function. Such network

processor oriented mechanism will lead to very high degree of programmability but may

19

limit the performance by limiting the computation parallelism, which will be equal to the

total number of processor cores. An alternative approach partitions the problem into

two components, a static computation part and a set of dynamic states. The static portion will

consist of all such operations that will not change in the future, and thus can be realized

using logic gates. The dynamic portion will include a number of states that may change

when the function is updated; thus these states are stored in memory. To clarify, let us

consider a simple example. A finite automaton can be realized entirely in circuit by using

logic gates to implement all its transitions; however, such solutions are undesirable if the

automaton is frequently updated. A more programmable approach is to partition the

problem into a transition table stored in embedded memory, and a set of circuitry that

reads the transitions and traverse through the states. We focus on such hybrid circuit

and memory based solutions.

1.5 Organization

In the next chapter, we discuss the background and related work on IP address lookup

and deep packet inspection. A number of well known and deployed algorithms are

discussed and their main advantages and disadvantages are pointed. We also set the

stage for a fair comparison between these and our proposed methods.

In Chapter 3, two algorithms and the associated architectures that target an ASIC

implementation are proposed. It has been argued with quantitative data points that

these solutions can enable current Internet routers to forward IP packet at high speeds.

In Chapter 4 and 5, we propose methods to implement regular expressions based deep

packet inspection at high speeds. Our implementation platforms are ASIC and network

processors, respectively.

Chapter 6 summarizes out contributions.

20

Chapter 2

Background and Related Work

An essential function of a network router is to examine the IP headers of packets

arriving at various input ports and forward them to appropriate output ports. These

forwarding decisions require a lookup in a routing table that consists of a large number

of variable length IP address prefixes and their associated destination ports. This

function, often referred as IP address lookup, determines the longest prefix matching the

destination address field within the routing database, and then forwards the packet to

the destination port associated with the matching prefix. In addition to basic packet

forwarding, modern systems are increasingly identifying different classes of traffic and

providing them different levels of service. The allocation of packets into different

classes of end-to-end flows requires examination of multiple fields of the packet header,

as flow classes are identified by five tuples of the IP header: a pair of source and

destination addresses, a protocol, and a pair of source and destination ports. In practical

sets, a large fraction of the rules include prefixes. While port numbers are most often

specified as ranges, they can also be represented as a set of prefixes. Thus the process of

classification of packets based upon five tuples translates into several longest prefix

matches and a number of high performance packet classification algorithms such as

[Gupta, and McKeown 1999] and [Baboescu, Singh, and Varghese 2003] employ some

form of longest prefix match.

Due to the widespread use of longest prefix match, both in packet forwarding and in

packet classification, it has been studied extensively. Some well known hardware

approaches include the use of TCAM, Bloom filters and hash tables. Another class of

21

solutions employs a trie to implement the longest prefix match operations. We begin

our discussion with these trie based methods.

2.1 Trie based Longest Prefix Match

A trie is an ordered tree data structure associating a string sx to each node nx; sx is not

explicitly stored at the tree, but can be derived by concatenating the symbols labeling

the edges on the path from the root of the trie to the node nx. A basic property of tries

is that all descendants of a node nx share a common prefix, represented by the string

associated with nx. In the context of IP address lookup, a binary trie representing a

routing table can be built by traversing each prefix from the leftmost to the rightmost

bit, and inserting nodes into the trie as needed, a left child for each 0 and a right child

for each 1. For an example, see Figure 2.1 (a) and (b). Nodes corresponding to valid

prefixes must be marked with a prefix pointer that gives the location of the next hop

info. Lookup is performed by traversing the trie according to the bits in the IP address.

When a leaf or a node with no matching outgoing edge is reached, the last marked node

traversed corresponds to the longest matching prefix.

As illustrated in Figure 2.1 (b), each node contains two child pointers and one prefix

pointer. To reduce memory usage, leaf pushing (Figure 2.1 (c)) has been proposed

[Waldvogel et al. 1997], wherein prefixes at non-leaf nodes (e.g.: P1, P3) are pushed

down to the leaves. Leaf pushing makes every node have two children or none; thus,

P5110*

P4100*

P31*

P200*

P1*

P5110*

P4100*

P31*

P200*

P1* P1

P2

P4 P5

P3

P2 P1

P4 P5P3 P3

(a) (b) (c)

0

0 0

0 0

1

1

0

0
0

0 0

1

1

1 1

1

Figure 2.1 (a) Routing table; (b) corresponding unibit trie; (c) corresponding leaf-pushed

unibit trie.

22

each node requires a single pointer to locate the prefix or the array of children.

However, leaf-pushed nodes may need to be replicated at several leaves (e.g.: P3);

therefore on average, leaf pushing results in less than a 2-fold memory reduction.

Moreover, it also complicates updates.

If several bits are scanned for each node traversal, then the resulting data structure is a

multibit trie. The number of bits scanned at once is called the stride. A node with stride

d will have a maximum of 2d child nodes. In a multi-bit trie, some prefixes may be

expanded to align to the stride boundaries, which may increase the size of the routing

table, as illustrated in Figure 2.2. However, during a node traversal, multiple bits are

scanned at once, which reduces the number of steps. Since the time to complete a

lookup is determined by the trie depth, the choice of stride depends upon the lookup

time-memory tradeoff: smaller strides allow a more compact data structure but require

more memory accesses, whereas larger strides reduces the lookup time at the cost of

more memory.

Controlled prefix expansion has been introduced in order to address the above issue

[Srinivasan, and Varghese 1999]. Given the maximum number of memory accesses

allowed for a lookup (i.e.: trie depth), this technique uses dynamic programming to

determine the stride leading to the minimum total memory. However, this involves two

important limitations: first, it is suitable for building a trie from scratch but does not

support incremental updates; second, while reducing the total memory, this technique

P51100*

P41001*

P311*

P51101*

P41000*

P310*

P200*

P1*

P51100*

P41001*

P311*

P51101*

P41000*

P310*

P200*

P1*

(a)

P1

(b)

00

10

11

00

01
P2

00

01

01

10

10

11

11

P4

P4
P3

P3

P5
P5 P3

P3
P1

(b)

00

10

11

00

01
P2

00

01

01

10

10

11

11

P4

P4
P3

P3

P5
P5 P3

P3

Figure 2.2 (a) Routing table expanded with stride 2; (b) corresponding multibit trie.

23

does not control the per level memory occupancy in a pipelined trie. The reason for this

will be explained shortly.

2.1.1 Pipelined IP Lookup Tries

An effective way to tackle the time-memory tradeoff is to recognize that tries are well

suited to data structure pipelining. A common way to pipeline a trie is to assign each trie

level to a different stage, as illustrated in Figure 2.3, so that a lookup request can be

issued every cycle, thereby increasing the throughput. Besides increased lookup

performance, such pipelined implementations are also suitable for handling updates. In

fact, as proposed in [Basu, and Narlikar 2003], software preprocessing of prefix

insertions and deletions can be exploited in order to determine the necessary per-level

modifications to be performed in the trie. In a second phase, those write operations can

be inserted in the pipeline in the form of “write bubbles”. Because of the sequential

character of the pipeline operation, straightforward techniques can prevent write

operations from interfering with the concurrent lookups.

In a pipelined implementation, it is desirable for nodes to be distributed uniformly

across pipeline stages. [Basu, and Narlikar 2003] applies an extended version of

controlled prefix expansion to achieve this objective. Rather than minimizing the total

memory, the modified algorithm aims at minimizing the size of the largest trie level,

while still keeping the total memory low. Through the use of variable-stride tries (having

P2 P1

P4 P5P3 P3

0

0

0 0

1

1

1 1

0 1

Memory 1

Memory 2

Memory 3

Memory 4

Memory 1

Logic 1

Memory 2

Logic 1

Start address

(tree root)

Packet header

Memory n

Logic 1

Next
hop

. . .

Figure 2.3 (a) Pipelining a lookup trie, each level forms a stage; (b) Corresponding pipelined

lookup architecture.

24

a fixed per level stride but allowing different strides at different levels), it achieves a

discretely balanced prefix distribution across pipeline stages.

An alternative approach is presented in [Hasan, and Vijaykumar 2005], where height-

based (rather than level-based) pipelining is proposed. The work does not aim at

balancing memory utilization; rather, it focuses on guaranteeing worst case performance

bounds. In particular, it focuses on leaf-pushed unibit tries using a technique called

jump nodes, which limits the number of copies of a leaf-pushed node. The usage of

jump nodes is exemplified in Figure 2.4, where all descendants of node Y represent

either the prefix P4 (leaf-pushed) or P5. Clearly, all internal nodes in the subtree rooted

at Y can be condensed into a jump node carrying the information about the remaining

portion of P5. In [Hasan, and Vijaykumar 2005], the authors argue that jump nodes

ensure that the number of leaves in a leaf pushed unibit trie is equal to the number of

prefixes, which enables O(1) updates. Unfortunately, since not all the copies of leaf-

pushed nodes can be removed by using jump nodes (see P1 in Figure 2.4), such claims

are incorrect. Moreover, height-based pipelining leads to unbalanced stages; as a

workaround, hardware-based pipelining has been proposed, which, adds to the

complexity and power consumption.

The most recent and the most efficient pipelined trie has been proposed in [Baboescu et

al. 2005], which uses a circular pipeline with dynamic pipeline entry points. It has been

shown that such a circular pipeline can enable uniform utilization of the memory

available at each stage irrespective of the trie shape, thereby enabling much better

P41*

P51010*

P3010*

P2000*

P10*

P41*

P51010*

P3010*

P2000*

P10*(a)

P5

P2 P5P1 P3 P1 P4

P4
P4

P2 P1

P4

Jump 010

m
is

m
at

ch m
a
tch

(b)

(c)

P1 P3

X X YY

Figure 2.4 (a) Routing table; (b) corresponding unibit leaf pushed trie; (c) unibit trie with

jump nodes.

25

memory utilization. Uniform pipeline stages also avoid any single stage to requiring

excessive amounts of memory and hence becoming a performance bottleneck.

2.1.2 Efficient Encoding of Multibit-Trie Nodes

The last relevant aspect studied in the trie literature is the use of compression to reduce

memory requirements. Memory compression is achieved by representing a number of

nearby nodes of the trie with a bit-map. In particular, the Lulea scheme [Degermark et

al. 1997] uses leaf pushing and controlled prefix expansion along with an appropriate

stride length, say k, to create a multi-bit expanded trie. Each multi-bit node of this trie

requires 2k words, each representing either a matching prefix or the next node pointer.

Since a large number of these 2k words may be identical due to the use of controlled

prefix expansion, Lulea employs a single bit-mask to eliminate such repetitions of

words, thereby significantly reducing the total memory. Due to the use of leaf pushing,

Lulea however does not exhibit good incremental update properties. Tree Bitmap

algorithm [Eatherton, Dittia, and Varghese 2004] on the other hand focuses on non-

leaf-pushed multi-bit tries, and uses two separate bit-masks, one to represent the

destination ports associated with the prefixes within the multi-bit node, and another to

represent the pointers to the sub-tries. Therefore, Tree Bitmap allows O(1) updates

unlike Lulea which may require that the entire memory structure be modified, while

requiring comparable amounts of memory.

Shape shifting tries (SST) [Song, Turner, and Lockwood 2005] has been proposed as an

alternative solution that adapts its node encodings according to the shape of the trie,

thereby leading to further memory compression. The core idea is that when a trie is

sparse (such as an IPv6 trie), then using the traditional multi-bit representation, where a

multi-bit node represents a sub-tree of fixed shape (binary tree with k levels), may lead

to wasted space. A shape shifting trie allows its multi-bit nodes to correspond to

arbitrarily shaped sub-trees, thereby enabling the sub-trees within the underlying binary

26

trie to conform to the structure of the trie, and significantly reducing the number of

SST nodes and the total memory. Notice, however that SST has an overhead that every

node must store a few bits, in addition to the bit-masks, specifying its shape; therefore,

it is important in SST to keep the total number of currently used sub-tree shapes to a

small value. Two classes of algorithms have been proposed by the authors for the

appropriate construction of SST trie. The first algorithm focuses on achieving

substantial levels of memory compression by limiting the number of SST nodes and the

number of distinct shapes that are used, while the second focuses on significantly

reducing the total number of SST node that are traversed to perform a lookup, thereby

enabling higher lookup throughput.

2.2 Non-trie based Longest Prefix Match

A number of alternative architectures have been proposed, which avoid using a trie

data-structure to perform longest prefix matching. The Multiway and Multicolumn Search

technique [Lampson, Srinivasan, and Varghese 1999] require O(W+logN) time and

O(2N) memory, where W is the number of bits in the address, and N is the total

number of prefixes. The scheme involves a basic binary search for the longest matching

prefix problem, an efficient implementation of which requires two techniques: encoding

a prefix as the start and end of a range, and pre-computing the best-matching prefix

associated with a range. The paper also proposes a number of optimizations for cache

based implementations, such as a multi-way search technique, which exploits the fact

that most processors prefetch an entire cache line when doing a memory access. These

techniques along with the use of an initial precomputed array to lookup the first 16-bits

of the address results in a total of 9 memory accesses to perform longest prefix match in

the worst case. The primary issue with this algorithm, however, is its linear scaling

relative to address length, thus such schemes are not attractive to implement IPv6

lookups and packet classification.

27

Another computationally efficient algorithm called Binary Search on Prefix Lengths has

been introduced in [Waldvogel et al. 1997]. The main contribution of this work is to use

significant precomputation of the lookup database to bound the number of memory

accesses required during the lookup. The algorithm first sorts the prefixes into up to a

maximum of W sets based on their length; each set is intended to be examined

separately to find the best matching prefix. In order to enable fast examination, a hash

table is used for each set; the authors made an assumption that the examination of a set

will require a single hash probe. We will later talk why such assumption can lead to low

worst case performance, and high performance hash tables are required in order to

enable guaranteed throughput [Song, Dharmapurikar, Turner, and Lockwood 2005]

[Kumar, and Crowley 2006]. The simpler scheme uses binary search to choose the

sequence of sets to probe, beginning with the median length set. Thus if an IPv4 lookup

table contains prefixes of all lengths, the search will begin with the probe of the set

containing the length 16 prefixes. Markers are placed along the binary search path for

prefixes that are of longer lengths, in order to direct the search to the appropriate set. If

no matching prefix or marker is present then the search will continue at the shorter set

along the binary search path. There is a potential problem of backtracking, i.e. for a

given IP address, if there is no longer matching prefix in the table then the search may

unnecessarily follow a marker. In order to prevent this, the best-matching prefix for the

marker is computed and stored with the marker. If a search terminates without finding a

match, the best-matching prefix stored with the most recent marker is used to make the

routing decision. The authors also propose methods of optimizing the data structure to

the statistical characteristics of the database. Empirical measurements using an IPv4

database resulted in memory requirements of about 42 bytes per entry.

A variant of this scheme [Dharmapurikar, Krishnamurthy, and Taylor 2003], efficiently

narrows the scope of the search by using compact but probabilistic Bloom filters. There

are W Bloom filters, one for each prefix length. While the hash tables built from the

prefixes are stored in off-chip memory, their associated Bloom filters are stored in an

on-chip memory, which has ample bandwidth and low access latency, and therefore can

28

be probed in parallel. Before accessing the hash tables, the Bloom filters are examined,

which probabilistically directs the search to the appropriate hash table within constant

time. In order to optimize average performance, the authors introduce asymmetric

Bloom filters which allocate memory resources according to prefix distribution and

provide viable means for their implementation. Via the use of a direct lookup array and

use of Controlled Prefix Expansion (CPE), it has been shown that the worst case

performance can be limited to two hash probes and one array access per lookup.

The last but the most frequently used hardware based architecture for longest prefix

matching is Ternary Content Addressable Memory (TCAM). A CAM is an associative

memory array containing data words. When a user supplies a word to the CAM, it

searches its entire memory array to see if that data word is stored anywhere in it. If

found, the CAM returns the first location where the word is present along with optional

information called a tag. A TCAM is an extension, which allows its data bits to be

“don’t care” in addition to being 1, or 0. This adds tremendous flexibility in search; for

example, a ternary CAM might have a stored word of "1XX0" which will match any of

the four search words "1000", "1010", "1100", or "1110". Clearly, TCAMs can be used

to search longest matching prefixes, if the prefixes are sorted by their length, beginning

with the longer prefixes, and the tag stores the next hop information [McAuley, and

Francis 1993]. Due to hardware implementation and optimizations at the transistor

level, TCAMs enable longest prefix matching at very high rates. However they consume

a significant amount of power, because a search requires a probe into every data word

of the memory. It also becomes problematic for the TCAM to ensure fast updates to

the prefix database, due to the requirement that the prefixes must remain sorted. A

number of papers have been published both in the area of power-efficient

implementation of TCAM [Zane, Narlikar, and Basu 2003] and the effective use of

TCAM to enable fast incremental updates. Power efficient TCAM architectures usually

partition the memory array into smaller segments, thus selectively addressing smaller

portions of the TCAM at a time [Spitznagel, Taylor, and Turner 2003]. A number of

29

schemes have also been introduced to enable fast updates to the prefix database such as

[Shah, and Gupta 2001] [Song, and Turner, 2006].

2.3 Packet Content Inspection

Modern systems are expected to examine the packet content in addition to the header in

order to make forwarding decisions. Packet content inspection is gaining popularity as it

provides capability to accurately classify and control traffic in terms of content,

applications, and individual subscribers. Cisco and others today see deep packet

inspection happening in the network and they argue that “Deep packet inspection will

happen in the ASICs, and that ASICs need to be modified” [Shafer, Jones 2005]. Some

important applications requiring deep packet inspection are listed below:

• Network intrusion detection and prevention systems (NIDS/NIPS) generally

scan the packet header and payload in order to identify a given set of signatures

of well known security threats.

• Layer 7 switches and firewalls provide content-based filtering, load-balancing,

authentication and monitoring. Application-aware web switches, for example,

provide scalable and transparent load balancing in data centers.

• Content-based traffic management and routing can be used to differentiate

traffic classes based on the type of data in packets.

Deep packet inspection often involves scanning every byte of the packet payload and

identifying a set of matching predefined patterns. Traditionally, patterns have been

specified as exact match strings. Naturally, due to their wide adoption and importance,

several high speed and efficient string matching algorithms have been proposed

recently. These often employ variants of standard string matching algorithms such as

Aho-Corasick [Aho, and Corasick 1975], Commentz-Walter [Commentz, and Walter

1979], and Wu-Manber [Wu, and Manber 1994], and use a preprocessed data-structure

30

to perform high-performance matching. Among these, Aho-Corasick has been adopted

most widely and is relevant to our work.

2.3.1 Aho-Corasick Algorithm based String Matching

One of the earliest, efficient algorithms for exact multi-pattern string matching is due to

Aho-Corasick [Aho, and Corasick 1975]. The algorithm enables string matching in time

linear in the size of the input. Aho-Corasick builds a finite automaton from the strings,

whose structure is similar to a trie, and encodes all the strings to be searched in multiple

stages. The construction begins with an empty root node which represents no partial

match; subsequently nodes are added for each character of the pattern to be matched,

starting at the root node and going to the end of the pattern. Strings that share a

common prefix also share a corresponding set of ancestor nodes in the trie. Beyond

this, there are two variants of Aho-Corasick: deterministic and non-deterministic. In the

non-deterministic version, the state machine trie is traversed beginning at the root node

and failure pointers are added from each node to the longest prefix of that node that

also leads to a valid node in the trie. Figure 2.5, illustrates a simple example. There are

four strings: phone, telephone, test, and elephant. The automaton consists of

25 nodes in total. The bold transitions are normal ones, while the dotted ones are failure

transitions. The operation of this implementation is straightforward. For any given input

1

p

2 h 3 o 4 n 5 e 6

t

7 e 7 l 11 e 12 p 13 h 14 o 15 n 16 e 17

s

9 t 10

e

18 l 19 e 20 p 21 h 22 a 23 n 24 t 25

Figure 2.5 Aho-Corasick automaton for the four strings test, telephone, phone and elephant. Gray
indicates accepting node. Dotted lines are failure transitions.

31

character in any given state, the character is consumed if a normal transition for the

character is present at the state; else the failure transition is taken. Due to the

construction, whenever a failure transition is taken the current input character is not

consumed, and used recursively until it is consumed during a normal transition. It is

easy to show via amortized analysis that only two state traversals per character of the

input string are required to process any given input string.

The deterministic version of Aho-Corasick automaton avoids the use of failure pointers

in order to enable one traversal per input character. Instead of using failure pointers,

next state from every state for every character in the alphabet is precomputed, and these

transitions are added to the automaton. For an ASCII alphabet, such a construction

results in 256 transitions at every state, which requires substantial amounts of memory.

A large body of research literature has concentrated on enhancing the Aho-Corasick

algorithm for use in networking. In [Tuck et al. 2004], the authors present techniques to

enhance the worst-case performance of Aho-Corasick algorithm. Their algorithm was

guided by the analogy between IP lookup and string matching and applies bitmap and

path compression to Aho-Corasick. Their scheme has been shown to reduce the

memory required for the string sets used in NIDS by up to a factor of 50 while

improving performance by more than 30%. Many researchers have proposed high-

speed Aho-Corasick based pattern matching hardware architectures. In [Tan, and

Sherwood 2005] the authors propose an efficient algorithm that converts the

deterministic version of Aho-Corasick automaton into multiple binary state machines.

These state machines have significantly fewer transitions per state, which dramatically

reduces the total space requirements. In [Sourdis, and Pnevmatikatos 2004], the authors

present an FPGA-based design which uses character pre-decoding coupled with CAM-

based pattern matching. In [Yusuf, and Luk 2005], authors use hardware sharing at the

bit level to exploit logic design optimizations, thereby reducing the area by a further

30%. Other work [Dharmapurikar et al. 2003][Bakar, and Prasanna 2004][Cho, and

Smith 2004][Gokhale et al. 2002] presents several efficient string matching

32

architectures; their performance and space efficiency are well summarized in [Sourdis,

and Pnevmatikatos 2004].

2.3.2 Regular Expressions in Packet Content Inspection

In [Sommer, and Paxson 2003], the authors note that regular expressions might prove

to be fundamentally more efficient and flexible as compared to exact-match strings

when specifying signatures for packet content inspection. The flexibility is due to the

high degree of expressiveness achieved by using character classes, union, optional

elements, and closures, while the efficiency is due to the effective schemes to perform

pattern matching. Open source NIDS systems, such as Snort and Bro, today use regular

expressions to specify rules. Regular expressions are also the language of choice in

several commercial security products, such as TippingPoint X505 [TippingPoint 2005]

from 3Com and a family of network security appliances from Cisco Systems.

Additionally, layer 7 filters based on regular expressions are available for the Linux

operating system.

The most popular representation of regular expressions is the finite state automata

[Hopcroft, and Ullman 1979]. There are two primary kinds: Deterministic Finite

Automaton (DFA) and Non-deterministic Finite Automaton (NFA). A DFA consists of

an alphabet denoted by Σ, which is a finite set of input symbols, a finite set of states s,

an initial state and a transition function δ, which specifies the transition from every state

for every symbol in the alphabet. In networking applications, the alphabet generally

consists of 256 ASCII characters. A key property of a DFA is that in any given state, the

transition function returns a single next state for any given input symbol; thus at any

time, only one state is active in a DFA. The distinction between an NFA and a DFA lies

in their transition function: instead of returning a single next state, the transition

function of a NFA returns a set of states, which may be an empty set. Thus, multiple

states can be simultaneously active in an NFA.

33

A regular expression containing n characters can be represented by an NFA consisting

of O(n) states. During the execution of an NFA, O(n) states can be active in the worst

case, and the processing complexity for a single input character can be O(n2). When a

DFA is constructed from the same regular expression, it may generate O(Σ n) states in

the worst-case. However, only one state will be active during execution, thereby leading

to O(1) per character processing complexity. Clearly, there is a space-time tradeoff

between NFAs and DFAs. NFAs are compact but slow; DFAs are fast but may require

prohibitive amounts of memory. Current implementations of regular expressions

patterns used in networking require gigabytes of memory, and their performance

remains limited to sub-gigabit parsing rates; which makes this an important and

challenging research area.

In order to enable high parse rates, several researchers have proposed specialized

hardware-based architectures which implement finite automata using fast on-chip logic.

Implementing regular expressions in custom hardware was explored in [Floyd, and

Ullman 1982], in which the authors showed that an NFA can be efficiently implemented

using a programmable logic array. Sindhu et al. [Sidhu, and Prasanna 2001] and Clark et

al. [Clark, and Schimmel 2003] have implemented NFAs on FPGA devices to perform

regular expressions matching and were able to achieve very good space efficiency. In

[Moscola et al. 2003], the authors have used such forms of NFAs that reduce the total

number of simultaneously active states and demonstrated significant improvement in

throughput.

These hardware based implementation approaches have two common characteristics: 1)

due to the limited amount of on-chip storage, they use an NFA to keep the total

number of states small, and 2) they exploit a high degree of parallelism by encoding the

automata in the parallel logic resources. These design choices are guided partly by the

high degree of computation parallelism available on an FPGA/ASIC and partly by the

desire to achieve high throughput. While such choices seem promising for FPGA

34

devices, they might not be acceptable in systems where the expression sets needs to be

updated frequently. More importantly for systems which are already in deployment, it

might prove difficult to quickly re-synthesize and update the regular expressions

circuitry. Therefore, regular expression engines which use memory rather than logic, are

often more desirable as they provide a higher degree of flexibility and programmability.

Commercial content inspection engines like Tarari’s RegEx [LSI Co. 2005] already

emphasize the ease of programmability provided by a dense multiprocessor architecture

coupled to a memory. Content inspection engines from other vendors [SafeXcel

2003][Cavium Octeon 2005], also use memory-based architectures and report packet

scan rates up to 4 Gbps. In this solution space, the transitions of the automaton are

stored in memory in a tabular form, which is addressed with the state number and the

input symbol. Every state traversal requires at least one memory access. Consequently, it

becomes critical to keep as few active states as possible in order to limit the number of

memory accesses and maintain a high parse rate. DFAs are therefore preferred over

NFAs; however a large number of complex regular expressions often creates DFAs

with an exponentially large number of states. Rather than constructing a composite

DFA from the entire regular expressions set, [Yu et al. 2006] have proposed to partition

the set into a small number of subgroups, such that the overall space needed by the

automata is reduced dramatically. The proposed partitioning method keeps the number

of DFAs small while containing the exponential blowup in the number of states. They

also propose architectures to implement the grouped regular expressions on both

general-purpose processor and multi-core processor systems, and demonstrate an

improvement in throughput of up to 4 times. In order to further boost the parsing

performance, a recent paper [Brodie, Taylor, and Cytron 2006] attempts to construct

DFAs that can consume multiple characters during a single state traversal. However, for

the patterns used in networking, such DFAs tend to have exponentially increasing

numbers of states in the number of input characters that are consumed at once. Even

though the authors report an increased parse rate, their datasets were limited and it

remains challenging to use this approach in networking.

35

In this dissertation, we extend these high performance memory-based regular

expressions implementations. We propose a number of novel representations and

algorithms that can enable regular expressions pattern matching at multi-gigabit rates,

while also keeping the memory requirements low and preserving the flexibility provided

by programmability.

36

Chapter 3

IP Packet Forwarding

In this chapter, we propose a number of algorithms and architectures that target an

ASIC implementation, and can enable current Internet routers to forward IP packet at

high speeds. IP packet forwarding routines include IP address lookup and packet

classification, both of which generally require longest prefix match operations.

Conventional methods of longest prefix match require fast computation and high

memory bandwidth to achieve high performance. ASICs can enable such levels of

performance by providing the required computation, and packing multiple embedded

memory modules, which can be accessed in parallel, thereby providing enormous

amounts of bandwidth. With such levels of memory bandwidth and computation

power, it may become challenging to utilize them efficiently. Proper utilization of the

bandwidth provided by multiple memory modules requires that the data-structure be

distributed across these modules in a way that the accesses remain balanced and no

single module becomes a performance bottleneck.

Another dimension to the difficulty arises due to the limited amount of memory bits

available on-chip to handle the large databases; and that these bits are much more

expensive than the commodity off-chip memory bits. It therefore becomes critical to

prudently use the embedded memory, and store only those components of the data-

structures on-chip that are accessed very frequently. If multiple on-chip memory

modules are used to provide high bandwidth, it also becomes important to keep them

nearly uniformly occupied at all times, in order to keep high levels of memory space

utilization. Thus there are three challenges in devising a high-performance alternative

for ASIC implementation: first, on-chip data-structures must be compact; second, they

37

must be uniformly divided and stored across the set of on-chip memories; and third, the

accesses to the memory modules must remain balanced.

We describe two novel and orthogonal architectural solutions which can efficiently

implement longest prefix match in an ASIC and achieve high performance by utilizing

multiple embedded memories. Our solutions – based on a trie data structure –

significantly reduces the on-chip memory compared to the state-of-the art techniques,

and maintains a high degree of memory utilization, both in space and bandwidth. The

first solution is called History based Encoding, eXecution, and Addressing (HEXA),

which is a compact representation of directed acyclic graphs such a tries. HEXA based

encoding of a trie results in between two to four times reduction in on-chip memory

when compared to Eatherton-Dittia tries, and requires slightly increased computation to

maintain the same level of lookup performance, thereby making it ideal for ASIC based

systems. Our second solution is a novel pipelined trie implementation called Circular

Adaptive and Monotonic Pipeline (CAMP), which efficiently utilizes the bandwidth

provided by multiple memory modules to enable fast lookups. Unlike previous

approaches such as linear pipelines, CAMP provides near perfect memory utilization

when mapping the trie nodes to the pipeline stages, thereby using the scarce and

expensive embedded memory bits much more prudently. We begin with HEXA, and

keep our description broad enough so that we can later apply an extension to encode

more complex graph structures such as the Aho-Corasick finite state automaton.

3.1 HEXA –Encoding Structured Graphs

Several common packet processing tasks make use of directed graph data structures in

which edge labels are used to match symbols from a finite alphabet. Examples include

tries used in IP route lookup and string-matching automata used to implement deep

packet inspection for virus scanning. We describe a novel representation for such data

structures that is significantly more compact than conventional approaches. We observe

38

that the edge-labeled, directed graphs used by some packet processing tasks have the

property that for all nodes u, all paths of length k leading to u are labeled by the same

string of symbols, for all values of k up to some bound. For example, tries satisfy this

condition trivially, since for each value of k, there is only one path of length k leading to

each node. The data structure used in the Aho-Corasick string matching algorithm

[Aho, and Corasick 1975] also satisfies this property, even though in this case there may

be multiple paths leading to each node. Since the algorithms that traverse the data

structure know the symbols that have been used to reach a node, we can use this

“history” to define the storage location of the node. Since some nodes may have

identical histories, we need to augment the history with some discriminating

information, to ensure that each node is mapped to a distinct storage location. We find

that in some applications the amount of discriminating information needed can be

remarkably small. For binary tries for example, two bits of discriminating information is

sufficient. This leads to a binary trie representation that requires just two bytes per

stored prefix for IP routing tables with more than 100K prefixes.

3.1.1 Introduction to HEXA

A large fraction of current research literature improves the performance of traversing

directed graph structures such as tries by either reducing the number of child pointers

stored and/or by reducing the number of nodes. With or without the reductions in the

number of nodes or pointers, to our best knowledge, directed graphs are always

implemented in the following conventional manner. Each node in the n node graph is

denoted by a unique log2n bit identifier, which also determines the memory location

of the node. At this memory location, all next node pointers (identifiers of the

subsequent “next nodes”) are stored, along with some auxiliary information. The

auxiliary information may be a flag indicating if the node corresponds to a match in a

string matching automata or a valid prefix in an IP lookup trie, and an identifier for the

string, or the next hop for the matching prefix. The auxiliary information usually

39

requires only a few bits and is kept once for every node; on the other hand, identifiers

of the “next node” use log2n bits each and are required once for every next node

pointer. Thus, in large graphs (say a million nodes) containing multiple next node

pointers per node (say two), the memory required by the identifiers of the “next node”

(20-bits per identifier, 2 such identifiers per node) can be much higher than the memory

required by the auxiliary information.

Another complicating factor in the conventional design approach is that the identifiers

of the “next node” are read for each symbol in the input stream, while the auxiliary

information is read only upon a match. This necessitates that the “next node” identifiers

be stored in a fast embedded memory in order to enable high parsing rate. For instance,

a high performance lookup trie may store the set of “next nodes”, for every node, in a

fast memory along with a flag indicating whether the node corresponds to a prefix. On

the other hand, the next hop information can be kept with a shadow trie, stored in a

slow memory like DRAM. Similarly, in a string matching automaton, in addition to the

“next node” identifiers, only a flag per node is needed in the fast memory, which will

indicate whether the node is a match. The prime motivation for separating the fast and

slow path is to reduce the amount of embedded memory, which is often expensive and

limited in size. The advantages are however undermined as the identifiers of the “next

node” represent a large fraction of the total memory. While there is a general interest in

reducing the total memory, clearly there are increased benefits in reducing the memory

required to store these “next node” identifiers.

We begin the description of a new method to store directed graph structures that we

call HEXA. While conventional methods use log2n bits to identify each of n nodes in a

graph, by taking advantage of the graph structure, HEXA employs a novel method that

can use a fixed constant number of bits per node for structured graphs such as tries.

Thus, when HEXA based identifiers are used to denote the transitions of the graph, the

fast memory needed to store these transitions can be dramatically reduced. The total

40

memory is also reduced significantly, because auxiliary information often represents a

fraction of the total memory.

The key to the identification mechanism used by HEXA is that when nodes are not

accessed in a random ad-hoc order but in an order defined by the paths leading to them,

the nodes can be identified by properties of these paths. For instance, in a trie, if we

begin parsing at the root node, we can reach any given node only by a unique stream of

input symbols. In general, as the parsing proceeds, we need to remember only the

previous symbols in order to uniquely identify each node. To clarify, we consider a

simple trie-based example before formalizing the ideas behind HEXA.

3.1.2 Motivating Example

Let us consider a simple directed graph given by an IP lookup trie. A set of 5 prefixes

and the corresponding binary trie, containing 9 nodes, is shown in Figure 3.1. We

consider first the standard representation. A node stores the identifier of its left and

right child and a bit indicating if the node corresponds to a valid prefix. Since there are

9 nodes, identifiers are 4-bits long, and a node requires total 9-bits in the fast path. The

fast path trie representation is shown below, where nodes are shown as 3-tuples

consisting of the prefix flag and the left right children (NULL indicates no child):

0 1

0 1

0

0

1* P1

00* P2

11* P3

011* P4

0100* P5

1

2 3

54

7

9

P2

(a)

(b)

P5

1

6

P31

8

P4

P1

Figure 3.1 (a) Routing table; (b) corresponding binary trie.

41

Here, we assume that the next hops associated with a matching node are stored in a

shadow trie which is stored in a relatively slow memory. Note that if the next hop trie

has a structure identical to the fast path trie, then the fast path trie need not contain any

additional information. Once the fast path trie is traversed and the longest matching

node is found, we will read the next hop trie once, at the location corresponding to the

longest matching node.

We now consider storing the fast path of the trie using HEXA. In HEXA, a node will

be identified by the input stream over which it will be reached. Thus, the HEXA

identifier of the nodes will be:

These identifiers are unique. HEXA requires a hash function; temporarily, let us assume

we have a minimal perfect hash function f that maps each identifier to a unique number

in [1, 9]. (A minimal perfect hash function is also called a one-to-one function.) We use

this hash function for a hash table of 9 cells; more generally, if there are n nodes in the

trie, ni is the HEXA identifier of the i
th node and f is a one-to-one function mapping ni’s

to [1, n], Given such a function, we need to store only 3 bits worth of information for

each node of the trie in order to traverse it: the first bit is set if node corresponds to a

valid prefix, and the second and third bits are set if the node has a left or right child.

Traversal of the trie is then straightforward. We start at the first trie node, whose 3-bit

tuple will be read from the array at index f(-). If the match bit is set, we will make a note

of the match, and fetch the next bit from the input stream to proceed to the next trie

1. -
2. 0

3. 1

4. 00

5. 01

6. 11

7. 010

8. 011

9. 0100

1. 0, 2

4. 1, NULL, NULL

5. 0, 7, 8

6. 1, NULL, NULL

1. 0, 2, 3

2. 0, 4, 5

3. 1, NULL, 6

7. 0, 9, NULL

8. 1, NULL, NULL

9. 1, NULL, NULL

• 1, P2

42

node. If the bit is 0 (1) and the left (right) child bit of the previous node was set, then

we will compute f(ni), where ni is the current sequence of bits (in this case the first bit of

the input stream) and read its 3 bits. We continue in this manner until we reach a node

with no child. The most recent node with the match bit set will correspond to the

longest matching prefix.

Continuing with the earlier trie of 9 nodes, let the mapping function f, have the

following values for the nine HEXA identifiers listed above:

With this one-to-one mapping, the fast path memory array of 3-bits will be programmed

as follows; we also list the corresponding next hops:

 1 2 3 4 5 6 7 8 9
Fast path 1,0,0 1,0,0 1,0,0 0,1,1 0,1,0 1,0,0 0,1,1 0,1,1 1,0,1
Next hop P3 P2 P4 P5 P1

This array and the above mapping function are sufficient to parse the trie for any given

stream of input symbols.

This example suggests that we can dramatically reduce the memory requirements used

to represent a trie by practically eliminating the overheads associated with node

identifiers. However, we require a minimal perfect hash function, which is hard to

devise. In fact, when the trie is frequently updated, maintaining the one-to-one mapping

may become extremely difficult. We will explain how to enable such one-to-one

mappings with very low cost. We also ensure that our approach maintains very fast

incremental updates; i.e. when nodes are added or deleted, a new one-to-one mapping

can be computed quickly and with very few changes in the fast path array.

1. f(-) = 4

2. f(0) = 7

3. f(1) = 9

4. f(00) = 2

5. f(01) = 8

6. f(11) = 1

7. f(010) = 5

8. f(011) = 3

9. f(0100) = 6

4. 0, 2

43

3.1.3 Devising One-to-one Mappings

We have seen that we can compactly represent a directed trie if we have a minimal

perfect hash function for the nodes of the graph. More generally, we might seek merely

a perfect hash function; that is, we map each identifier to a unique element of [1, m] for

some m ≥ n, mapping the n identifiers into m array cells. For large n, finding perfect hash

functions becomes extremely compute intensive and impractical.

We can simplify the problem dramatically by considering the fact that the HEXA

identifier of a node can be modified without changing its meaning and keeping it

unique. For instance we can allow a node identifier to contain a few additional (say c)

bits, which we can alter at our convenience. We call these c-bits the node’s

discriminator. Thus, the HEXA identifier of a node will be the history of labels used to

reach the node, plus its c-bit discriminator. We use a (pseudo)-random hash function to

map identifiers plus discriminators to possible memory locations. Having these

discriminators and the ability to alter them provides us with multiple choices of memory

locations for a node. Each node will have 2c choices of HEXA identifiers and hence up

to 2c memory locations, from which we have to pick just one. The power of choice in

this setting has been studied and used in multiple-choice hashing [Kirsch, and

Mitzenmacher 2005] and cuckoo hashing [Pagh, and Rodler 2001], and we use results

from these analyses.

Note that when traversing the graph, we need to know a node’s discriminator in order

to access it. Hence instead of storing a single bit for each left and right child, we store

the discriminator if the child exists. In practice, we also typically reserve the all-0 c-bit

word to represent NULL, giving us only 2c−1 memory locations.

This problem can now be viewed as a bipartite graph matching problem. The bipartite

graph G = (V1+V2, E) consists of the nodes of the original directed graph as the left set

of vertices, and the memory locations as the right set of vertices. The edges connecting

44

the left to the right correspond to the edges determined by the random hash function.

Since discriminators are c-bits long, each left vertex will have up to 2c edges connected

to random right vertices. We refer to G as the memory mapping graph. We need to find

a perfect matching (that is, a matching of size n) in the memory mapping graph G, to

match each node identifier to a unique memory location.

If we require that m = n, then it suffices that c is log log n + O(1) to ensure that a perfect

matching exists with high probability. More generally, using results from the analysis of

cuckoo hashing schemes [Pagh, and Rodler 2001], it follows that we can have constant c

if we allow m to be slightly greater than n. For example, using 2-bit discriminators,

giving 4 choices, then m = 1.1n guarantees that a perfect matching exists with high

probability. In fact, not only do these perfect matchings exist, but they are efficiently

updatable, as we describe in Section 3.1.4.

Continuing with our example of the trie shown in Figure 3.1, we now seek to devise a

one-to-one mapping using this method. We consider m = n and assume that c is 2, so a

node can have 4 possible HEXA identifiers, which will enable it to have up to 4 choices

-

0

1

00

01

11

010

011

0100

00 0, 01 0,
10 0, 11 0

00 1, 01 1,
10 1, 11 1

00 -, 01 -,
10 -, 11 -

00 00, 01 00,
10 00, 11 00

00 01, 01 01,
10 01, 11 01

00 11, 01 11,
10 11, 11 11

00 010, 01 010,
10 010, 11 010

00 011, 01 011,
10 011, 11 011

00 0100, 01 0100,
10 0100, 11 0100

0

1

2

3

4

5

6

7

8

h() = 0, h() = 4
h() = 1, h() = 5

h() = 1, h() = 5
h() = 2, h() = 6

h() = 0, h() = 4
h() = 1, h() = 5

h() = 2, h() = 6
h() = 3, h() = 7

h() = 1, h() = 5
h() = 2, h() = 6

h() = 8, h() = 3
h() = 0, h() = 4

h() = 1, h() = 5
h() = 2, h() = 6

h() = 0, h() = 4
h() = 1, h() = 5

h() = 0, h() = 3
h() = 4, h() = 6

Input labels Four choices of
HEXA identifiers

Choices of
memory locations

Bipartite graph and
a perfect matching

1

2

3

4

5

6

7

8

9

Nodes

Figure 3.2 Memory mapping graph, bipartite matching.

45

of memory locations. A complication in computing the hash values may arise because

the HEXA identifiers are not of equal length. We can resolve it by first appending to a

HEXA identifier, its length and then padding the short identifiers with zeros. Finally we

append the discriminators to them. The resulting choices of identifiers and the memory

mapping graph is shown in Figure 3.2, where we assume that the hash function is

simply the numerical value of the identifier modulo 9. In the same figure, we also show

a perfect matching with the matching edges drawn in bold. With this perfect matching, a

node will require only 2-bits to be uniquely represented (as c = 2).

We now consider incremental updates, and show how a one-to-one mapping in HEXA

can be maintained when a node is removed and another is added to the trie.

3.1.4 Updating a Perfect Matching

In several applications, such as IP lookup, fast incremental updates are critically

important. This implies that HEXA representations will be practical for these

applications only if the one-to-one nature of the hash function can be maintained in the

face of insertions and deletions. Taking advantage of the choices available from the

discriminator bits, such one-to-one mappings can be maintained easily.

Indeed, results from the study of cuckoo hashing immediately yield fast incremental

updates. Deletions are of course easy; we simply remove the relevant node from the

hash table (and update pointers to that node). Insertions are more difficult; what if we

wish to insert a node and its corresponding hash locations are already taken? In this

case, we need to find an augmenting path in the memory mapping graph, remapping

other nodes to other locations, which is accomplished by changing their discriminator

bits. Finding an augmenting path will allow the item to be inserted at a free memory

location, and increasing the size of the matching in the memory mapping graph. In fact

for tables sized so that a perfect matching exists in the memory mapping graph,

46

augmenting paths of size O(log n) exist with high probability, so that only O(log n)

nodes need to be re-mapped, and these augmenting paths can be found via a breadth

first search over o(n) nodes [Pagh, and Rodler 2001]. In practice, a random walk

approach, where a node to be inserted if necessary takes the place of one of its

neighbors randomly, and this replaced node either finds an empty spot in the hash table

or takes the place of one of its other neighbors randomly, and so on, finds an

augmenting path quite quickly [Pagh, and Rodler 2001].

We also note that even when m = n, so that our matching corresponds to a minimal

perfect hash function, using c = O(log log n) discriminator bits guarantees that if we

delete a node and insert a new node (so that we still have m = n), an augmenting path of

length O(log n/ log log n) exists with high probability. We omit the straightforward

proof.

We will demonstrate in our experiments in Section 3.4.2 that the number of changes

needed to maintain a HEXA representation with node insertions and deletions is quite

reasonable in practice. Again, similar results can be found in the setting of cuckoo

hashing.

3.1.5 Summarizing HEXA

HEXA is a novel representation for structured graphs such as tries. HEXA uses a

unique method to locate the nodes of the graph in memory, which enables it to avoid

using any “next node” pointer. Since these pointers often consume most of the memory

required by the graph, HEXA based representations are significantly more compact

than the standard representations, and extremely valuable in ASIC implementations. We

now proceed with the description of CAMP, which is a pipelined implementation of

tries to enable high lookup throughput. We will later show that a pipelined trie such as

CAMP with HEXA encoded nodes can result in a longest prefix match solution that is

47

significantly superior to the current state-of-the-art methods in all four performance

metrics defined in Chapter 1.

3.2 CAMP – Pipelining a Trie

Recent advances in optical and signaling technology have pushed network link rates

beyond 40 Gbps, with 160 Gbps links now appearing. A line card terminating a 160

Gbps IP link needs to forward a minimum-sized packet within 2 ns. To do so, a packet

header must be processed within 2 ns. At such speeds, both IP lookup, and packet

classification become very challenging. The performance problem with longest prefix

match is due to the sequential memory accesses required per match, and the growing

global routing tables containing over one hundred thousand prefixes. The dual

challenges of serialized access and large datasets have inspired a number of novel

specialized hardware architectures.

Memory bandwidth is an important concern in any implementation, whether it is based

on off-chip memory or an ASIC. For example, at 160 Gbps rates, a multi-bit trie of

stride 4 requires 8 memory accesses every 2 ns. Achieving this bandwidth using a single

memory is challenging. A number of researchers have proposed a pipelined trie. Such

tries enable high throughput because when there are enough memories in the pipeline,

no memory stage is accessed more than once for a search and each stage can service a

memory request for a different lookup each cycle.

Most recently, [Baboescu, Tullsen, Rosu, and Singh 2005] have proposed a circular

pipelined trie, which is different from the previous ones in that the memory stages are

configured in a circular, multi-point access pipeline so that lookups can be initiated at

any stage. At a high-level, this multi-access and circular structure enables much more

flexibility in mapping trie nodes to pipeline stages, which in turn maintains uniform

memory occupancy. We extend this approach with an architecture called Circular,

48

Adaptive and Monotonic Pipeline (CAMP). Our work, while also exploiting a circular

pipeline, differs from the previous circular pipeline proposals in several ways.

First, CAMP differs in the way the trie is split into sub-tries. While Baboescu et al. aim

at having a large (~4000) number of equally sized sub-tries, our design strives for

simplicity. Thus, CAMP splits a trie into one root sub-trie and multiple leaf sub-tries.

The root sub-trie handles the first few bits (say r) of the IP address, and it is

implemented as a table, indexed by the first r bits of the IP address. With this, there may

be up to 2r leaf sub-tries; each of which can be independently mapped to the pipeline.

By judiciously mappings these, the system maintains near-optimal memory utilization,

not only in memory space but also in the number of accesses per pipeline stage.

Second, having a reduced number of sub-tries of different sizes, we propose a different

heuristic to map them to the pipeline stages. As a matter of fact, our scheme proves to

be much simpler, and also gracefully handles incremental updates.

Finally, our design uses a different mechanism to maximize pipeline utilization and

handle out of order lookup conditions. In particular, we aim at having not more than

one access per pipeline stage for any lookup. CAMP goes further and decouples the

dependence of number of pipeline stages from the number of trie levels. Thus it can

employ a large number of compact and fast pipeline stages to enable high throughput

while consuming low power. With a large number of stages, pipeline utilization may

degrade significantly. To this end, CAMP employs effective schemes to achieve high

utilization.

We also present an extensive analysis of the design tradeoffs and their impact on lookup

rate and power consumption. For real routing tables storing 150,000 prefixes, CAMP

achieves 40 Gbps throughput with a power consumption of 0.3 Watts. Projections on

250,000 prefixes show a power consumption of 0.4 Watts at the same throughput. We

begin with a description of the operation of pipelined tries.

49

3.2.1 Introducing CAMP

Pipelining is an effective way to achieve high lookup rates. Previous pipelined schemes

are based on the assumption that the pipeline is linear, and has a unique entry and exit

point; moreover, it is assumed that a global mapping is performed on the entire trie. We

remove both assumptions, based on the observation that practical prefix-sets present us

considerable opportunity to split a trie into multiple sub-tries; thus, different pipeline

entry points can be assigned to them. This leads to many mapping opportunities, from

which assignments may be chosen to achieve balanced pipeline stages. Moreover, it also

eliminates two important limitations faced by any global mapping based scheme,

namely, 1) the number of pipeline stages is bound to the maximum prefix length, and 2)

adding a memory bank requires a complete remapping (in scenarios of an overflow

generated by a sequence of prefix insertions).

We introduce Circular Adaptive and Monotonic Pipeline (CAMP) using a set of 8 small

prefixes shown in Figure 3.3 along with the corresponding binary trie. Pipelining this

trie will require 6 stages. A level-based mapping [Basu, and Narlikar 2003] will result in

1, 2, 3, 5, 2 and 2 nodes in stages 1 to 6, respectively, while a height-based mapping

[Hasan, and Vijaykumar 2005] will result in 6, 4, 2, 1, 1 and 1 nodes. Thus, both of these

mappings create unbalanced pipeline and the degree of imbalance is dependent upon

the prefix set.

We now consider splitting this trie into four sub-tries. Since prefix P1 is only 1-bit long,

we first expand it to 2 bits using controlled prefix expansion (see Figure 3.3). Now, all

prefixes in the database are longer than 2-bits; therefore, the upper two levels of the trie

can be stored in a direct index table, which leaves us with three sub-tries of at most four

levels each. More generally, when a routing database contains prefixes all of which are

longer than x-bits (shorter prefixes are expanded to x-bits), then the first x levels of the

50

trie can be replaced by a direct index table containing 2x entries, each of which points to

one of the up to 2x sub-tries with height at most 32 – x.

With multiple subtries, we now seek to obtain a balanced mapping of nodes to pipeline

stages. We exploit the fact that requests can enter and exit at any stage, thus roots of

sub-tries can be mapped to any stage. If we also allow a request to wrap-around through

the pipeline (i.e., by taking advantage of the circular pipeline), we can get a high degree

of flexibility in mapping. Nodes descended from the root of a sub-trie can be stored at

subsequent pipeline stages, wrapping around once the final stage is reached. In the

example above, the 3 sub-tries constructed from the 8 prefix table can be mapped to a

four stage circular memory pipeline with dynamic entry points as shown in Figure 3.4.

Note that the first two bits are used to determine the entry stage into the pipeline and

subsequent bits are processed within different pipeline stages.

0 1

0 1

0 1

0 1

11

1

0 0 1

0* P1

000* P2

010* P3

01001* P4

01011* P5

011* P6

110* P7

111* P8

P1

P2 P3

P4 P5

P6 P7 P8

0 1

0 1

11

0 0 1

P1

P2 P3

P4 P5

P6 P7 P8

00* Begin at Subtree 1

01* Begin at Subtree 2

10* No Match

11* Begin at Subtree 3

Subtree 1 Subtree 2 Subtree 3

P1

00* P1

00* P1

000* P2

010* P3

01001* P4

01011* P5

011* P6

110* P7

111* P8

Controlled prefix expansion: P1 is replicated.
All prefixes are now longer than 2-bit

Direct index table handling
the first 2-bit of the address

P1

(a)

(b)

(c) (d)

Figure 3.3 (a) Routing table (prefixes shorter than 2-bits are expanded using controlled prefix
expansion) (b) unibit trie of six levels; (c) Direct index table for first 2-bits, (d) resulting 4 sub-

tries of four levels each.

51

3.2.2 General Dynamic Circular Pipeline

A general circular pipeline may not require a node to be stored in a stage adjacent to the

parent node’s stage. For example, the two nodes of the first sub-trie in the previous

example can be stored at any two distinct stages, because, irrespective of the way they

are stored, a lookup request for this sub-trie will access each stage only once. However,

this will require the pipeline to insert no-ops when a request traverses a stage where the

required node is not present. Supporting no-ops increases the flexibility in storing the

nodes of various sub-tries which can lead to more balanced pipeline stages. On the

other hand, as will be shown later, it may complicate the update scenario.

A general circular pipeline has three important properties, i) it allows dynamic entry and

exit points, ii) it is circular, thus all neighboring stages are connected in one direction,

and iii) it supports no-ops for which requests are simply passed over whenever the

designated node is not found. The corresponding mapping algorithm maps the root of

each sub-trie to some pipeline stage and subsequent nodes are mapped such that, a) a

P3

P4

P5

P6

P7

P8

P1P2

00*
Enter at pipeline

stage 1

01*
Enter at pipeline

stage 2

10* No Match

11*
Enter at pipeline

stage 3

Pipeline stage 3 Pipeline stage 4

Pipeline stage 2 Pipeline stage 1

1

0

10

1

0

0

1 1

P1

Figure 3.4 A four stage circular pipeline and the way the three subtries in Figure 3 are

mapped onto them.

52

node is stored at a stage which is at least one ahead (accounting for wraparound) of the

stage where its parent is stored, and b) all lookup paths terminate before making a circle

through the pipeline. Thus, nodes along any path are mapped in a monotonically

increasing pipeline stage and every lookup is guaranteed to make at most one access to a

memory stage.

It can be argued that the lookup throughput of a general circular pipeline matches that

of any other pipeline because a lookup request accesses a memory at most once.

However, allowing dynamic entry points introduces new problems due to request

conflicts. A request contending to enter the ith stage may have to wait until a bubble

(idle cycle) arises there. In an extreme case, a request may have to wait for such a bubble

indefinitely, if other requests are entering the pipeline every cycle and keeping its entry

stage busy. This may lead to non-deterministic performance, low pipeline utilization and

out-of-order request processing. However, as we will see next, relatively straightforward

techniques coupled with a small speedup in pipeline operating-rate ensure deterministic

performance.

3.2.3 Detailed Architecture of CAMP

The schematic block diagram of a CAMP system is shown in Figure 3.5, which consists

of a direct lookup table and a circular pipeline of memories. The direct table lookup

performs a lookup on the first x-bits of the address (x being the initial stride in the

lookup trie), and determines the stage where the root node of the corresponding sub-

trie is stored. Subsequently, a lookup request to traverse through the sub-trie is

dispatched into that stage. All requests to a pipeline stage are stored in an ingress FIFO

in front the stage. As soon as the stage receives a bubble (idle cycle), the request at the

front of the FIFO is issued into the pipeline. The request traverses through the pipeline

and as it reaches the stage containing the last leaf node, it comes out with either valid

next hop information or a no match.

53

The ingress FIFO in front of each stage is crucial in improving the efficiency. Consider

a system without such queues. It is possible that a stream of n lookup requests enters

some stage resulting in a train of n entries in the pipeline, and subsequent requests

contending to enter the pipeline waits for up to n cycles. Thus, the efficiency can be as

low as 50%, because the pipeline services n requests and then waits for up to n cycles

before servicing subsequent requests. In the worst-case, efficiency can be even lower.

Consider a situation when a request enters at a pipeline stage i. The next request will

wait for 1 cycle if it contents to enter at the pipeline stage i+1. The third will waits for 2

cycles, as it contends to enter at the stage i+2. If this pattern will continue, the ith

request will wait for i–1 cycles, which will lead to a very low efficiency.

The ingress FIFO in front of each pipeline stage serves as a reorder buffer, which

obviates the above issue of head of line blocking. If a request must wait for a few cycles

because its entry stage is busy, it stays in the stage’s ingress FIFO instead of blocking

the subsequent requests. Quite intuitively, large request queues will improve the

efficiency of the pipeline, as they will provide extended immunity against conditions

when a request must wait before being dispatched into the pipeline.

Stage 1

Stage 2

Stage n

00..0* x

00..1* y

. .

. .

. .

to stage 1

request queues

Direct lookup table

for initial prefix bits

destination

address next

hop

reordering buffer

(optional)

Figure 3.5 Schematic block diagram of a CAMP system.

54

A drawback of using these ingress FIFOs is that the requests may leave the pipeline out-

of-order. Therefore, a reorder buffer is required at the output to restore the order of

requests. Reordering is optional because the problem of out-of-order arises only among

the packets destined to different destinations. A single TCP flow will never experience

any reordering, as any two packets having the same prefix (thus designated to the same

“next hop”) always traverse thru the same path in the lookup trie. Hence, these requests

will contend to enter the pipeline at the same stage, where they are serviced in a first-in

first-out order. We now introduce the metric of pipeline efficiency and characterize it

for different pipeline configurations and input traffic patterns.

3.2.4 Characterizing the Pipeline Efficiency

The primary metric to characterize the efficiency of CAMP is pipeline utilization.

Pipeline utilization is the fraction of time the pipeline remains busy provided that there

is a continuous backlog of lookup requests. Another metric, which more directly reflects

the performance, is Lookups per Cycle or LPC, i.e. the rate at which lookup requests are

dispatched into the pipeline.

A linear pipeline guarantees a LPC of 1 however pipeline utilization can remain low if a

majority of prefixes are not 32-bits long (hence they do not use all stages). In a CAMP

pipeline, on the other hand, pipeline utilization can be maintained at 1 and requests may

be dispatched at rates higher than one per cycle. LPC greater than 1 can be achieved, i)

when most requests do not make a complete circle through the pipeline, or ii) when

there are more pipeline stages than there are levels in the trie. Thus, whenever some

pipeline stages are not traversed by a request, new requests contending to enter those

stages can be issued into the pipeline. Note that, practical IP lookups, where a majority

of prefixes are only 24-bits long, will only utilize 75% stages of a 32-stage pipeline.

55

In order to evaluate the efficiency of CAMP, we use software simulations to determine

the pipeline utilization and the resulting LPC. In the first set of experiments, we assume

that all requests make one complete circle through the pipeline and there are as many

pipeline stages as there are levels in the trie (in this case pipeline utilization will be equal

to the LPC). Later we consider scenarios, when requests do not make a complete circle.

We also assume that the requests that find its ingress FIFO full are discarded; in an

actual implementation, to avoid such discards, a large buffer can be allocated which will

feed the ingress FIFOs. The only variable in the arriving requests now is the entry point

in the pipeline. We consider following four different distributions of the entry points of

the arriving requests: i) uniformly random request to each stage, ii) uniformly random

short bursts of requests to each pipeline stage, and iii) uniformly random long bursts of

request to each stage, and iv) weighted random arrivals; thus some stages receive more

requests than the others.

Our representative setup has 24 pipeline stages and requests circle through all stages

before exiting. In Figure 3.6, we report the LPC for different request queue sizes. It is

clear that, a LPC of 0.8 can be achieved for all traffic patterns, once the request queue

size is 32. This suggests that CAMP remains 80% efficient for practically all traffic

patterns. In another experiment, we fixed the request arrival rate at 0.8 per cycle and the

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21 25 29

Request queue size

L
P

C
 (

re
q

u
e
s
ts

 p
e
r

c
y
c
le

)

Uniformly random

Burst length = 2

8

24

40
64

96

Figure 3.6 LPC of CAMP versus request queue size.

56

request queue size at 32 and measured the discard rate and the average delay

experienced by a request. After running the experiment for more than 100 million

iterations, no requests were discarded and the average delay experienced by a request

was only a few tens of cycles.

Not surprisingly, in these experiments, very long bursts of requests to various pipeline

stages result in higher utilization because when many requests arrive at a stage one after

another, they are all serviced without conflict. On the other hand, when the burst

lengths are comparable to the pipeline depth, trains of requests are created and

subsequent bursts may have to wait before getting dispatched into the pipeline.

3.2.5 When is LPC greater than one?

While the LPC of a linear pipeline is always one, the LPC of CAMP can be engineered

to be greater than one, which can improve the throughput. This is possible because

CAMP enables a trie data-structure to be pipelined further, up to a number of stages

much larger than the number of levels in the trie. For example, the mapping of the three

sub-tries shown in Figure 3.3 to a six stage pipeline is shown in Figure 3.7. As we will

soon see, with many sub-tries, it is not difficult to determine an appropriate stage for

P3

P4

P5

P6

P7

P8

P1

P2

Pipeline stage 3 Pipeline stage 4

Pipeline stage 2 Pipeline stage 1

1

0

1

01

0

1 1

P1

0

Pipeline stage 5

NOP

Pipeline stage 6
Figure 3.7 A six stage circular pipeline and the way the three sub-tries in Figure 3.6 are

mapped onto them.

57

the sub-trie’s root so that every stage of the pipeline is nearly uniformly populated.

When there are many stages in the pipeline, each sub-trie (and its lookup requests) will

span only a fraction of all stages. This can lead to a dispatch rate higher than one per

cycle, assuming that all arriving requests do not traverse the same sub-trie. In fact, when

sub-tries and therefore the associated prefixes are nearly uniformly dispersed all around

the stages (because stages are balanced), it is less likely that all lookup requests will

contend to enter one stage. Notice that, an orthogonal factor leading to higher LPC is

the fact that most prefixes have only 24-bits.

From an implementation perspective, it is neither difficult nor expensive to implement

more pipeline stages relative to the trie levels. A multi-bit trie with the appropriate node

encoding (tree-bit map or shape shifting trie), will not only reduce the memory but also

effectively increase the number of stages in the pipeline per trie level. A stride of k will

reduce the number of levels in the trie by a factor of k, which can directly lead to a k-

times higher LPC if we keep the same number of pipeline stages.

We now consider evaluating such scenarios. Our setup consists of a 32-stage pipeline,

and an initial stride of 8 leading to the sub-tries containing at most 24 leftmost prefix

bits. Each sub-trie uses tree-bit map of stride 3, thus a single lookup path spans across

0

1

2

3

4

5

1 5 9 13 17 21 25 29

Request queue size

L
P

C
 (

re
q

u
e
s
ts

 p
e
r

c
y
c
le

)

Burst length = 1

2

4

12 16 20 24 288 32

Figure 3.8 LPC of CAMP versus request queue size. Requests arrive at each pipeline stage in

random bursts (burst length highlighted in the figure).

58

at most 8 pipeline stages. In this experiment, we also assume that the average prefix

length is 24-bits, thus a request on average traverses thru only 6 stages. As reported in

Figure 3.8, the LPC ranges from 3 to 5, even for long bursts of requests contending to

enter the same stage. For smaller bursts, which are more common, LPC is even higher.

3.2.6 Mapping IP Lookup Tries in CAMP

To use CAMP, we need a mapping algorithm which assigns the trie nodes to the

pipeline stages. The primary purpose of the algorithm is to achieve a uniform

distribution of nodes to stages. In particular, the mapping should minimize the size of

the biggest (and bottleneck) stage. This will not only enable high throughout but also

reduce the chances of unbalanced pipeline during updates.

Problem Formulation

We can formulate the above problem as a constrained graph coloring problem, where

colors represent the pipeline stages, and the graph corresponds to the set of sub-tries.

The following two constraints guide the coloring: i) every color should be nearly equally

used, and ii) a relation of order, when traversing a sub-trie from the root to the leaves,

must be associated with the color assignment. The first constraint captures the intent of

achieving a uniform distribution of nodes across the stages. The second constraint arises

due to the fact that nodes must be mapped to the circular pipeline stages in a circular

and monotonic order. Thus, all paths from root to leaf must be assigned distinct colors

in a monotonic order (including wraparound).

If we represent each color by an integer, the relation of order is the “saturated <”

relation. In other words, if we have N colors (1, 2, ..., N) then the following relation will

hold: 1<2<...<N<1. A mapping which doesn’t preserve this order relation is

exemplified in Figure 3.9(a). Such a mapping can cause a lookup to circle through the

59

pipeline more than once, thereby reducing the LPC. A mapping which preserves the

order relation is illustrated in Figure 3.9(b), where all paths from root to leaf (i.e. any

lookup operation) traverse through a color at most once. Naturally there can be several

mapping choices which will preserve the order relation and we are interested in those

which lead to a nearly uniform usage of different colors. Such constrained graph

coloring problem is NP-hard and can be reduced to the well known partition problem

therefore we present a heuristic algorithm to obtain a near optimal solution.

The Largest First Coloring Algorithm

Several simple heuristics can be obtained to perform the coloring which preserves the

order relation. For instance, each sub-trie can be colored by first randomly selecting a

color for the root node and then incrementing the color when proceeding towards the

leaves. While such a randomized scheme may lead to fairly balanced color distributions

in the case of a large number of sub-tries, it may not be satisfactory when there are not

that many sub-tries or when some sub-tries are significantly larger than the others. We

therefore introduce a more effective coloring heuristic. In particular, if we color sub-

tries sequentially, at each coloring step we want to exploit the information about the

current status of the color distribution.

2

444

11

3

4

22

111

44

3

1

2

1 2

34
a

b

c

d d

1 2

34
ab

c

a) b)

P1 P1 P2P2

P3 P4 P3 P4

2

444

11

3

4

22

111

44

3

1

2

1 2

34
a

b

c

d

1 2

34
a

b

c1 2

34
a

b

c

d d

1 2

34
ab

c

a) b)

P1 P1 P2P2

P3 P4 P3 P4

Figure 3.9 a) invalid assignment: matching P1 causes one extra loop of the circular pipeline;

b) valid assignment: the circular pipeline is traversed only once.

60

A largest first coloring heuristic seeks to obtain uniform color usage by coloring the

sub-tries in a sequence such that the larger sub-tries are colored before the smaller ones.

Such a sequence is motivated by the well-known bin-packing heuristic and can be

attributed to the fact that if tries are colored in a decreasing size sequence then the

coloring of smaller tries can effectively correct the unbalances caused by the already

colored bigger tries. Thus, the largest first heuristic first sorts all sub-tries according to

their size and then in a decreasing order, assigns colors to the nodes of the sub-tries.

For the currently selected sub-trie, the coloring needs to restore any discrepancy in the

color usage until now. Since, the choice of a color for the root determines the colors for

all subsequent nodes, the largest first algorithm tries all possible colors for the root node

(subsequent nodes are colored with increasing color values) and finds the color usage

for each choice. Finally, it picks the one which results in the most uniform color usage

and moves on to the next sub-trie. Figure 3.10 illustrates the application of the largest

first heuristic on a set of four sub-tries.

Additional Considerations

The above coloring heuristic only considers unitary increment between colors of a node

and those of its children. It would be possible to add further flexibility in color

assignment by removing this constraint, without affecting the correctness of the system.

The shaded area in Figure 3.11(a) illustrates this possibility. The added flexibility may

lead to more uniform usage of colors however it complicates the coloring. The

1

44444

3333

22

1

11

4

33

2

2222

11

4

3T2T1
T4T3 11

44444

3333

22

1

44444

3333

22

1

11

4

33

2

11

4

33

2

2222

11

4

3

2222

11

4

3T2T1
T4T3

Figure 3.10 Example coloring with largest first heuristic.

61

complexity may be acceptable if the mapping were static; however in practical systems,

updates often add and remove nodes from the tries, in which case, remapping a large

part of the trie may be needed if the unitary increment constraint is not applied. As an

example, let us add a bottom right node to the trie shown in Figure 3.11(a). Since color

4 is already used at the leaf, the colors of the nodes in the shaded area must be

reassigned, as illustrated in Figure 3.11(b). For this reason, we do not consider the

possibility of skipping colors between adjacent levels.

3.3 Coupling HEXA with CAMP

In this section we describe how the HEXA and CAMP techniques can be brought

together to create an efficient and high performance longest prefix match architecture.

HEXA is a compression method that encodes the “next node” pointers in structured

graphs such as tries in a novel way that substantially reduces the amount of memory

required. Memory compression is extremely valuable in ASIC implementations, where

expensive and limited embedded memories are used, however HEXA does not aid in

improving the lookup performance of the trie. In fact, in an optimal setting, HEXA

encoded tries use much smaller stride values than competing approaches, which

increases the number of memory accesses required to lookup any given address. Thus, if

the entire trie is stored using a single embedded memory, HEXA encoding can reduce

the lookup throughput and may not be desirable. Fortunately, it is possible in ASIC

based systems to employ a reasonably large number of compact but independent

44

4433

32

1

44

3333

22

1

4

a) b)

44

4433

32

1

44

3333

22

1

4

a) b)

Figure 3.11 An insertion operation causes a sub-trie remapping in case of skip-level

assignment.

62

memory modules, thereby substantially increasing the amount of memory bandwidth

available. CAMP perfectly complements HEXA in such settings: HEXA provides

memory compression so that larger lookup data structures can be accommodated by the

on-chip memory; CAMP enables bandwidth efficiency by properly utilizing the available

memory bandwidth to enable high lookup throughput.

While HEXA is crucial in reducing the memory required to store a given trie, CAMP

also plays an important role in improving the space efficiency. In CAMP, memory

modules are configured in a novel circular pipeline, which unlike a traditional linear

pipeline, allows multiple entry and exit points. Such a structure provides much greater

flexibility in mapping the trie nodes to the pipeline stages and keeps the pipeline stages

balanced, which helps reduce the amount of memory required to store a given number

of prefixes. In our experiments, we will report that when HEXA is coupled with

CAMP, a longest prefix match engine can be devised which is not only efficient in

space, but also enables high lookup rate and low power dissipation. There are, however

some complications in coupling HEXA with CAMP, which we will discuss before

proceeding with the experimental evaluation.

When we couple CAMP with HEXA, we will obtain nodes from a collection of sub-

tries rather than from a single trie for mapping to memory. This apparent complication

does not pose any serious threat to the mapping process, because nodes within each

sub-trie will maintain unique HEXA identifiers. The real complication arises due to the

use of multiple memory modules. In our description presented in Section 3.1.3, we map

the HEXA encoded nodes to memory words within a single address space. CAMP

however uses multiple memory modules (pipeline stages), thus HEXA encoded trie

nodes are required to be mapped to both “a memory module” and “a word within the

module”. Additionally, when we couple CAMP with HEXA, we will map nodes from a

collection of sub-tries rather than from a single trie. A logical first step is divide the trie

into multiple sub-tries and map sub-trie nodes to memory modules, which can be

accomplished with the algorithm presented in our description of CAMP in Section

63

3.2.6. The next step is to determine the HEXA identifier of nodes within each module,

and then map these identifiers to memory words within the module. Since the HEXA

identifier of every node is unique, the HEXA identifiers of the sub-trie nodes within

each memory module will also be unique. Thus, within each memory module, HEXA

identifiers to memory words mapping can be accomplished, with the construction of a

bipartite graph of the sub-trie nodes to be stored in the module and its memory words,

and subsequently finding a perfect matching in the graph (the procedure is described in

Section 3.1).

Once both – node to pipeline stage, and node to memory word location – mappings are

complete and next node pointers of each node (discriminators of the next nodes) are

stored, the execution of the pipeline will require a slight modification. In a standalone

CAMP system, IP addresses are inserted in the entry stage; subsequently, lookup of a

node in any pipeline stage provides the location of the next node (if it exists) stored in

the next stage. This location is passed over to the next stage along with the IP address

and the current lookup bit position within the IP address. When coupled with HEXA, a

node will not explicitly store the location of its next nodes; rather their discriminator

values will be stored. Therefore, in such a system, a discriminator, an IP address, and

the current lookup bit position are passed between the pipeline stages. Recall that the

discriminator of a node is hashed along with the node’s HEXA identifier to compute its

memory locations, thus each pipeline stage will require a hash function circuit. Other

components of the system will remain unaffected. To summarize, there are two key

differences between a standalone CAMP system, and an integrated HEXA/CAMP

system: the integrated system requires a hash function within each pipeline stage to map

HEXA identifiers to memory locations, and discriminators instead of explicit memory

locations are passed between pipeline stages.

3.4 Experimental Evaluation

64

In this section we evaluate the performance of HEXA and CAMP and compare them

with state-of-the art methods such as Eatherton-Dittia tries, and linear pipelines. We

first consider unibit tries, and show how HEXA can lead to dramatic memory reduction

and how the selection of the initial stride in CAMP keeps the pipeline stages balanced.

Subsequently, we analyze the impact of route updates, and show how both HEXA and

CAMP can gracefully handle them. Thereafter, we extend these analyses to multi-bit trie

implementations and show how our solutions remain effective for such representations.

We conclude with a brief analysis of power dissipation and die area. Our study focuses

mainly on practical databases: we therefore begin with a brief discussion of the IPv4

address allocation process and trends in BGP routing table growth.

3.4.1 Datasets - BGP Routing Tables and Trends

BGP tables have grown steadily over the past two decades from less than 5000 entries

in the early 1990s to nearly 75,000 entries in 2000 to up to 135,000 entries today. The

trends in the growth are well studied in [BGP Table Data 2006][Huston 2001], which

highlight that 16 to 24-bit long prefixes makes up the bulk of the BGP table. It has been

shown that a small fraction (<1%) of prefixes are longer than 24-bits and are likely to

remain so in the near future due to address aggregation and route aggregation

techniques. The use of prefix length filtering also limits the propagation of longer

prefixes throughout the global BGP routing domain.

Another important trend concerns updates in BGP tables. A majority of updates are

linked to network link failure and recovery which removes a set of neighboring prefixes

from the trie and quickly adds them back either due to the link recovery or due to the

discovery of an alternative path.

To summarize the BGP trends: i) the number of prefixes in BGP tables has grown

nearly exponentially and is likely continue to grow; ii) prefixes smaller than 26-bits make

65

up the bulk of the BGP table and this is likely to remain true in the near future; iii) route

updates can be concentrated in short periods of time; however, updates rarely change

the shape of the trie, even after extended periods of time.

We now discuss the memory requirements of pipelined tries. Unless otherwise specified,

the experiments reported in this section are based on a dataset consisting of more than

fifty BGP tables obtained from [BGP Table Data 2006] and [Routing Information

Service], containing from 50,000 to 135,000 prefixes.

3.4.2 Experimental Evaluation of HEXA

We have performed a thorough experimental evaluation of the HEXA representations

of lookup trie. The results shown here demonstrate that, HEXA can dramatically reduce

the memory required by a binary trie; at the same time it can also reduce the memory in

more sophisticated trie implementations like multi-bit trie and tree bit-map.

Binary Tries

0

4

8

12

16

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Number of nodes in the trie

N
u

m
b

e
r

o
f

H
E

X
A

 i
d

e
n

ti
fi

e
r

c
h

o
ic

e
s

no memory over-provisioning
1% memory over-provisioning
3% memory over-provisioning
10% memory over-provisioning

Figure 3.12 For different memory over-provisioning values and trie sizes, the number of
choices of HEXA identifier that is needed to successfully perform the memory mapping.

66

In Figure 3.12, for varying trie sizes, we plot the number of choices of HEXA

identifiers that are needed to find a perfect matching in the memory mapping graph. As

expected, more choices of HEXA identifiers or increased memory over-provisioning

((m−n)/m) helps in finding a perfect matching. In agreement with the theoretical

analysis, for m=n, the required number of HEXA identifier choices remains O(log n).

However, when m is slightly greater than n (results for 1, 3 and 10% are reported here),

the required number of choices becomes constant, independent of the trie size. Recall

that the number of HEXA identifier choices determines the number of discriminator

bits that are needed for a node, thus a small memory over-provisioning is desirable in

order to keep the discriminators constant in size.

From a practical point, we would like to keep the number of choices of HEXA

identifiers a power of two minus one, so that one discriminator value will be used to

indicate a null child node and all remaining permutations of discriminator values will be

used in finding better matching. Thus, we are interested in such choices as 1, 3, 7, etc.

Therefore, we fix the number of HEXA choices at these values, and plot the memory

0

0.05

0.1

0.15

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Number of nodes in the trie

M
e
m

o
ry

 o
v
e
r-

p
ro

v
is

io
n

in
g

3 HEXA choices
4 HEXA choices
7 HEXA choices

Figure 3.13 For different number of choices of HEXA identifiers and trie sizes, the memory

over-provisioning that is needed to successfully perform the memory mapping.

67

over-provisioning needed to successfully perform a one-to-one memory mapping

(Figure 3.13). It is clear that that for 3 HEXA identifier choices, the required memory

over-provisioning is 10%. Thus, 2.2 bits are enough to represent each node identifier.

Multi-bit Tries

We now extend our evaluation of HEXA to multi-bit tries where tree bit-maps are used

to represent the multi-bit nodes. Notice that when HEXA is used for such tries, the bit-

masks used for the tree bitmap nodes are not affected; only the pointers to the child

nodes are replaced with the child’s discriminator. The first design issue in such tries is to

determine a stride which will minimize the total memory. We accomplish this

experimentally by applying different strides to our datasets and measuring the total fast

path memory. The results are reported in Figure 3.14. Clearly, strides of 3, 4 and 5 are

the most appropriate choices, when HEXA is not used. When HEXA is employed,

large strides no longer remain effective in reducing the memory. This happens because a

uni-bit HEXA trie requires just 2-bits of discriminator to represent a node, thus there is

little room for further memory reductions by representing a subset of nodes with a

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

Stride

F
a

s
t

p
a

th
 t

ri
e

 m
e

m
o

ry
 (

M
B

)
without HEXA

with HEXA

Figure 3.14 Memory needed to represent the fast path portion of the trie with and without

HEXA. 32 tries are used, each containing between 100-120k prefixes.

68

bitmap. In fact, with increasing stride, the bitmaps grow exponentially and quickly

surpass any memory savings achieved with the tree bitmap based multi-bit nodes.

Note that smaller strides may not be acceptable in off-chip memory based

implementations. However, in an embedded implementation such as pipelined trie

[Basu, and G. Narlikar 2003], small stride may enable higher throughput, as reported in

[Baboescu, Tullsen, Rosu, and Singh 2005]. This happens because with small stride, one

can employ much deeper pipelines and each pipeline stage can be kept compact and

fast.

Incremental Updates

We now present the results of incremental updates on tries represented with HEXA. In

our experiments, we remove a trie node and add another to the trie, and then attempt to

find a mapping for the newly added node. The general objective of triggering minimum

changes in the existing mapping is achieved by finding the shortest augmenting path in

the memory mapping graph, between the newly added node and some free memory

location (as described in Section 3.1.4). We find that the shortest augmenting path

indeed remains small, thus a small number of existing nodes are remapped. In Figure

3.15, we plot the probability distribution of the number of nodes that are remapped

during an update of a single trie node. It is clear that no update is likely to take more

than 19 memory operations and a large majority of updates require less than 10 memory

operations. Thus, when prefixes are added or removed, update operations in a HEXA

encoded trie can be carried out very quickly, irrespective of the trie shape and the

update patterns.

3.4.3 Experimental Evaluation of CAMP

Before reporting our experimental results, we discuss some practical considerations that

arise in a CAMP system.

69

Practical Considerations

Two important issues must be addressed when designing a CAMP pipeline: i) choice of

the number of stages and ii) selection of the initial stride, which divides a trie into

multiple sub-tries. We postpone the discussion of these3e issues to subsequent sections,

and concentrate on another important design issue. For a given number of stages and

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of memory operations per update

P
ro

b
a
b

il
it

y

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of memory operations per update

P
ro

b
a
b

il
it

y

Figure 3.15 Probability distribution of the number of memory operations required to perform

a single trie update. Upper trie size = 100,000 nodes, Lower trie size = 10,000 nodes.

70

initial stride, how to dimension each stage and how does this compare with a linear

pipeline?

To answer these questions, we determine the memory requirement of every pipeline

stage for an array of routing tables in our dataset. Thereafter, from among all these data

points, we compute the maximum memory requirement of every stage. Since some

tables contain fewer prefixes than others, it is likely that they will require relatively less

memory at each stage and hence may not contribute to the maximum computation.

Therefore, we normalize the memory requirement of a stage for a given prefix set

before considering it for the maximum computation. Thus the impact of a prefix set’s

size is eliminated but that of the prefix trends and length distribution are preserved.

This gives us a first order estimate of the memory required at each pipeline stage for the

today’s prefix sets.

In Figure 3.16(a) we plot the normalized size of each stage of a CAMP pipeline for all

routing tables (normalized with respect to the average pipeline stage size). The initial

stride is set to 8, thus all subsequent uni-bit sub-tries require 25 pipeline stages. A “dot”

represents the size of the corresponding pipeline stage for a prefix-set. The maximum

size of each pipeline stage from among all dots is shown as an envelope in solid line. In

Figure 3.16(b) and (c), we draw similar plots for a linear pipeline using a level-to-stage

and height-to-stage mapping, respectively. We then add up the maximum size of each

stage, represented by the envelope. This provides us the total memory overhead of each

scheme (printed in the same plots). It can be noted that CAMP has a total memory

overhead of 2.4% as compared to 23% in the height-to-stage mapping and 31% in level-

to-stage mapping. Thus, not only does CAMP allow a more balanced distribution of

nodes to stages (highlighted by Figure 3.16), but it also reduces the total memory.

Initial Stride and Number of Sub-tries

71

0

0.01

0.02

0.03

0.04

0.05

1 4 7 10 13 16 19 22 25

Pipeline stage #

R
e
la

ti
v
e
 s

iz
e
 o

f
th

e
 p

ip
e
li
n

e

Sum of normalized upper bounds = 1.024

0

0.03

0.06

0.09

0.12

0.15

1 6 11 16 21 26 31

Pipeline stage #

R
e
la

ti
v
e
 s

iz
e
 o

f
th

e
 p

ip
e
li
n

e

Sum of normalized upper bounds = 1.31

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 6 11 16 21 26 31

Pipeline stage #

R
e
la

ti
v
e
 s

iz
e
 o

f
th

e
 p

ip
e
li
n

e

Sum of normalized upper bounds = 1.23

Figure 3.16 Normalized memory requirements of each pipeline stage in a binary trie a)
CAMP using largest first heuristic, b) level to pipeline stage mapping, c) height to stage

mapping. Leaf pushing was not done in these experiments.

The selection of the initial stride determines the number of sub-tries a trie will be

split into. Specifically, an initial stride of k will lead to up to 2
k
 sub-tries. A large

number of sub-tries generally leads to more balanced pipeline stages. On the same

72

dataset used in the previous analysis, we verified that the 2.4% memory overhead

reported for an initial stride of 8 reduces to 0.02% and 0.01% for initial strides of 12

and 16, respectively. Larger initial strides, however, come at a cost. The direct

indexed array which processes the initial k-bits and selects a sub-trie has 2
k
 entries.

Therefore, an initial stride of 12, which requires a 4K entry table, is preferable over

16, which requires a 64K entry table.

Incremental Updates

From the previous discussion it is clear that the CAMP mapping algorithm leads to

uniform pipeline utilization once an appropriate initial stride is chosen. We now study

the effect of updates, which may disturb a balanced system. The goal of the discussion

is twofold: first, we seek to evaluate the degree of imbalance that can be introduced by

incremental updates in extreme scenarios; second, we seek to determine a bound on the

extra memory needed to compensate for the imbalance.

An extreme (and unlikely) scenario is created by considering a subset of BGP tables,

each containing nearly 105,000 prefixes, and simulating a sequence of migrations from

one table to the other. The system begins in a balanced state (an initial stride of 12 is

assumed) and each successive migration incrementally removes all prefixes belonging to

the previous table and adds the ones present in the new table. During migration, the

node to stage assignment of already existing sub-tries is preserved (and extended to the

newly added nodes of the same sub-tries), while the roots of the newly added sub-tries

are assigned a random stage. The results of these experiments are reported in Figure

3.17, where several distinct simulations have been run starting from a different routing

table. The sizes of the smallest and the largest pipeline stage, normalized with respect to

the total table size, are shown by a sequence of min-max data points in black-gray shade.

The upper and lower envelope of all min-max data points is drawn in the same plot. It

is clear that, even in this extreme case, the imbalance leads to only a 4% increase in the

occupancy of the largest stage.

73

A more realistic scenario has been created by considering monthly snapshots of the

rrc00 routing table over time, from 2002 till 2006 [Routing Information Service], during

which, the table grew from 90126 prefixes to 135520 prefixes. Two cases are

considered: in the first one, a balanced node to stage assignment is performed at the

beginning (2002) and incremental updates are carried out until 2006 without any

intermediate rebalancing. In the second case, the system is rebalanced, once every year,

with a new (and balanced) node to stage assignment. Figure 3.18, reporting the result of

this experiment, can be read as Figure 3.17 with the difference that the x-axis now

reports the timestamp of each table snapshot. Without rebalancing, the maximum

variation in the occupancy of the largest memory stage is 6%, while with rebalancing it

is 4%. Note that such variation decreases every year; in particular, it is limited to less

than 1% after 2006. In fact, as the routing table grows and the trie becomes relatively

denser, it becomes more difficult to disturb a balanced system.

We conclude that, even in extreme update scenarios, the occupancy of a CAMP pipeline

stage can increase only marginally. Hence, small memory over-provisioning should be

adequate. Although there are effective methods to rebalance a CAMP system in face of

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.05

1 3 5 7 9 11 13 15 17 19 21

of migrations

R
e

la
ti

v
e

 s
iz

e
 o

f
th

e
 p

ip
e

li
n

e

min

max

Figure 3.17 Successive migrations between a set of 22 distinct BGP tables. The upper and

lower bound of the relative pipeline size are highlighted.

74

real-time incremental updates, the limited amount of imbalance and the infrequent need

of rebalancing renders them not worthwhile.

Multi-bit Tries

Until now, we have only considered a uni-bit trie lookup. We now extend our evaluation

to multi-bit tries where tree-bit maps are used to represent multi-bit nodes. The first

design issue is to determine a stride which minimizes the total memory. We accomplish

this experimentally by applying different strides on our datasets and measuring the total

memory. The results are reported in Figure 3.19. It is obvious that strides of 3, 4 and 5

are the most appropriate choices.

When selecting the stride from among the three choices above, CAMP has relatively

higher flexibility than a linear pipeline. In the case of a linear pipeline, a higher stride will

reduce the number of memory stages, which may increase the size of each stage. A

linear pipelined trie will therefore generally prefer conservative strides (e.g.: 3) so as to

keep the bottleneck stage smaller, even though this may lead to non optimal total

memory. CAMP, on the other hand, may choose a relatively larger stride due to the fact

that pipeline stages are uniformly sized and no single stage is the bottleneck.

0.044

0.045

0.046

0.047

0.048

0.049

0.05

0.051

Jan-02 Nov-02 Sep-03 Jul-04 May-05 Mar-06

time

R
e

la
ti

v
e

 s
iz

e
 o

f
th

e
 p

ip
e

li
n

e

min w /o rebalancing max w /o rebalancing

min w / yearly rebalance max w / yearly rebalance

Figure 3.18 Effect of incremental updates over time; two scenarios are represented: once

without and one with yearly rebalancing.

75

Additionally, as we will show in the next subsection, CAMP exhibits more flexibility in

selecting the number of pipeline stages which can reduce their size independent of the

adopted stride.

Number of Pipeline Stages

A key property of CAMP is that the number of pipeline stages can be different from the

number of trie levels. This enables a trie data-structure to be pipelined to many more

stages. Besides reducing the size of each pipeline stage (thus enabling them to run

faster), more stages also improves the overall LPC, leading to a higher throughput. On

the other hand, a large number of stages may lead to a less balanced distribution of

nodes across different stages.

We experimentally quantify the impact of the number of stages on the node

distribution. We keep an initial stride at 9 and the stride of each sub-trie is 5. In Figure

3.20, we vary the number of pipeline stages from 6 thru 30 and plot the excessive nodes

allocated to the largest pipeline stage (percentage of the average number of nodes in a

stage). Clearly, more stages results in higher imbalance as the largest stage is relatively

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

Stride, k

T
o

ta
l
m

e
m

o
ry

 r
e
q

u
ir

e
m

e
n

t
(M

B
) 150-175k prefixes

100-120k pref ixes

25-50k prefixes

Figure 3.19 Total memory requirements of a tree-bit mapped multi-bit trie with different

stride values (to highlight the properties of CAMP, we do not use HEXA in this experiment).

76

more occupied. However, note that, even for 30 pipeline stages, the largest stage is less

than 1% bigger than the average stage. Therefore, we can conclude that the overall

impact of higher number of pipeline stages on the node distribution is very nominal.

Power Dissipation and Area Estimates

We now characterize the power dissipation and die area of a CAMP and HEXA system.

The analysis is carried out assuming a 0.09µm CMOS process and using CACTI3.2

[Shivakumar, Jouppi 2001]. The evaluation considers large synthetic prefix sets, besides

our original dataset. We allocate an additional 25% memory to account for pathological

conditions which may arise in the future. Wherever there is choice, we pick an optimum

memory configuration (number of banks and clock frequency), which meets a given

throughput objective. Finally, throughout the experiments, we use a tree-bit mapped

multi-bit trie of stride between 2 and 4, whichever.

In Figure 3.21(a), we plot the power dissipation of the system for different link rates. As

shown, the power dissipation for 1 million prefixes is 7 Watts when a 5-stage pipeline is

used, and drops down to 3.4 Watts when a 10-stage pipeline is used. This can be

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35

Number of pipeline stages

%
 o

v
e
rs

h
o

o
t

o
f

th
e
 l

a
rg

e
s
t

s
ta

g
e

Figure 3.20 Percentage overshoot of size of the largest pipeline stage from the average

pipeline stage size.

77

explained as follow. The size of each stage is halved (from 1.6 MB to 0.8 MB) when

doubling the number of stages. A single memory bank of these sizes has an access time

of 4.2 ns and 2.2 ns, respectively. Therefore, achieving a 160 Gbps throughput requires

a 4-bank and 2-bank memory, respectively, the former consuming 33% more energy per

clock cycle. A smaller number of stages also lead to a lower LPC, thus requiring

clocking the memory at higher rates.

Another interesting observation is that 1 million prefixes on a 10 stage pipeline

dissipates less power than 600k prefixes on a 5 stage pipeline. In order to obtain an

optimum number of pipeline stages which minimizes the power dissipation, we measure

the power dissipation while varying the number of stages. In Figure 3.22 we plot the

0

2

4

6

8

2.5 10 40 160

Throughput (Gbps)

P
o

w
e

r
d

is
s

ip
a

ti
o

n
 (

W
a
tt

s
) 100k pref ixes, 10 stages

100k pref ixes, 5 stages
250k pref ixes, 10 stages
250k pref ixes, 5 stages
600k pref ixes, 10 stages
600k pref ixes, 5 stages
1M prefixes, 10 stages
1M prefixes, 5 stages

0

1

2

3

4

2.5 10 40 160

Throughput (Gbps)

T
o

ta
l
a
re

a
 (

c
m

^
2
)

100k prefixes, 10 stages 100k prefixes, 5 stages
250k prefixes, 10 stages 250k prefixes, 5 stages
600k prefixes, 10 stages 600k prefixes, 5 stages
1M prefixes, 10 stages 1M prefixes, 5 stages

Figure 3.21 Power consumption and area estimates of different configurations.

78

power dissipation of a 1 million and 600k prefix system providing 160 Gbps

throughput. Power dissipation clearly drops as we increase the number of stages,

however, beyond 15 stages, the reductions are nominal. It happens because every stage

is 0.5 MB in a 15-stage pipeline, and a single memory bank of this size has access time

of less than 2 ns, sufficient to provide 160 Gbps. Beyond 25 stages, the increase in

power due to the increased number of individual components exceeds the reductions

due to higher LPC. Hence, the overall power dissipation begins to increase.

The cost and yield of an ASIC depends very much on the die size; therefore, we also

quantify the die size of the system. In Figure 3.21(b), we plot the area in cm2, required

by a 5- and 10-stage pipeline for different link rates. As expected, a larger number of

prefixes results in proportionally larger area. We report the area requirements as a

function of the number of pipeline stages in Figure 3.22, which suggests that as the

number of stages increases, area first decreases and then increases after a certain point.

However, the area sensitivity is small, because area is mostly independent of the LPC

and clock frequency and only loosely coupled to the number of banks.

0

2

4

6

8

5 10 15 20 25

No of pipeline stages

P
o

w
e
r

d
is

s
ip

a
ti

o
n

 (
W

a
tt

s
)

Area (1M prefixes)
Area (600k prefixes)
Pow er (1M prefixes)
Pow er (600k prefixes)

T
o

ta
l
a
re

a
 (

c
m

^
2
)

8

6

4

2

0

Figure 3.22 Power consumption of different configurations.

79

3.5 Worst-case Scenarios and Discussion

Since both CAMP and HEXA solutions are probabilistic – HEXA relies upon the

randomness of the hash function; CAMP relies upon the trie shape – we discuss some

worst-case scenarios and the likelihood of their occurrences in order to evaluate the

vulnerability of these solutions. A key distinction between the vulnerability of HEXA

and CAMP is that in HEXA, due to the use of hash function, the likelihood of finding a

mapping of nodes to memory locations becomes independent of the prefix database,

while in CAMP the imbalance in the memory utilization resulting from the node to

pipeline stage mapping depends entirely upon the prefixes (trie shape). Consequently,

memory efficiency in CAMP is vulnerable to the worst-case datasets; to tackle this

problem, we describe an extension of CAMP, which enables robust and balanced

memory mapping independent of the trie shape. In HEXA, the mapping performance

remains robust and independent of the prefix database; therefore, we limit our

evaluation to a brief analysis, which we present first.

The memory mapping process in HEXA uses a (pseudo)-random hash function to map

HEXA identifiers to memory locations; therefore it can be reduced to the well studied

and understood balls and bins problem. For n trie nodes, there are n balls, and for m

memory locations, there are m bins. For a c-bit discriminator, each ball has 2c pseudo-

random choices of bins to pick from, and the goal is to insert each ball in some bin. For

2c = 3, and m = 1.1n, it has been shown that the likelihood that some balls do not find a

bin is a negative exponential in n [Pagh, and Rodler 2001]. (for a million nodes trie, this

probability is lower than the probability that there is a power failure across the entire

globe.) A catch in this analysis is that it assumes a uniformly random hash function;

practical hash functions are however (pseudo)-random. While several well known

pseudo-random hash function exhibit a high degree of randomness, they also present a

security threat. If the hash function is known, an attacker can propagate such IP

prefixes that create a trie whose nodes and their HEXA identifiers lead to too many

hash collisions, and the memory mapping will fail. A standard solution is to use a secret

80

key as an auxiliary input to the hash function. If the secret is sufficiently long, then it

will become difficult for an attacker to create such anomalous conditions.

With this straightforward solution to make HEXA secure and robust, we now shift our

attention to CAMP in which the mapping efficiency relies on the shape of the trie,

leaving it more vulnerable to anomalous conditions. In our experiments, we have solely

considered practical routing tables; we now consider such datasets that present a

potential threat in mapping, and can cause severe imbalance in the memory utilization.

Such worse-case conditions clearly arise when it is not trivial to split a trie into multiple

sub-tries and uniformly map them to different stages. Recall that we divided a single trie

into up to 2k sub-tries by separately considering the initial k-bits of the address. As

shown in Figure 3.23(a), any trie which begins with a long skinny section is difficult to

be split with this mechanism. If we attempt to split such a trie, it will require a large

initial stride, which can make the direct index table (2initial stride entries) prohibitively large.

In order to handle these worst-case conditions, we propose an extension called adaptive

CAMP, which allows a trie to be split into a parent sub-trie and multiple child sub-tries.

This way, not only can we directly control the number and size of the sub-tries

generated, but we can also ensure that the resulting sub-tries are equal in size. The

process begins with assigning rank (total number of its descendents) to each node. We

then distinguish all nodes whose rank is equal to the size of the sub-tries we want to

k

root

k

root

rank of node i =

size of sub-trie

rooted at i

Figure 3.23 a) a worst-case prefix set, b) the way adaptive CAMP splits a trie into a parent

and multiple child sub-tries.

81

generate. These nodes form a sub-trie of which they are the root. We then remove these

sub-tries from the original trie, and iteratively apply the process to this remaining trie.

The procedure is illustrated on the above trie in Figure 3.23(b), where the trie is split

into a parent sub-trie and multiple child sub-tries (the root node of each sub-trie is

highlighted).

Once these sub-tries are generated, their nodes are mapped (both the child and parent

sub-tries) to the pipeline stages. Pipeline stages are expected to be more balanced, as the

sub-tries are of roughly equal size. A direct index table will no longer be required.

Requests will be first dispatched into the pipeline to parse the parent sub-trie, and then

another request will be dispatched to parse one of the child sub-tries. Such multiple

request dispatches will clearly reduce the LPC and more pipeline stages will be required

to mitigate this issue. Extended CAMP, thus, trades-off performance with robustness

and security.

3.6 Concluding Remarks

In this chapter, we described the design of high performance architecture to implement

longest prefix match. A unique characteristic of ASIC is that they can pack a limited

number of memory bits on-chip; however, these bits can be configured in multiple

memory modules to provide enormous amounts of bandwidth. To exploit this limited

but fast pool of embedded memories and enable high performance, we combine two

novel architectures, which we dub HEXA and CAMP. HEXA is a novel representation

for structured graphs such as tries, and uses a unique method to locate the nodes of the

graph in memory, which enables it to avoid using any “next node” pointer. Since these

pointers often consume much of the memory required by the graph, HEXA based

representations are significantly more compact, making them desirable in an ASIC.

CAMP perfectly complements HEXA and utilizes the bandwidth provided by multiple

embedded memories. To do so efficiently, CAMP uses a multi-point access circular

82

pipeline of memories; each stage stores a single or set of levels of the lookup trie and a

stream of lookup requests are issued into the pipeline, one every cycle, in order to

achieve high throughput. Circular structure provides much more flexibility in mapping

nodes of the lookup trie to the stages, which in turn, improves the memory utilization

and also reduces the total memory and power consumption.

83

Chapter 4

Packet Content Inspection I

In this chapter, we continue our endeavor to devise architectures that enable high

performance by developing a novel approach to packet content inspection. Packet

content inspection has recently gained popularity as it provides the capability to

accurately classify and control traffic in terms of content, applications, and individual

subscribers. Forwarding packets based on content (either for the purpose of

application-level load-balancing in a web switch or security-oriented filtering based on

content signatures) requires new levels of support in networking equipment.

Traditionally, this deep packet inspection has been limited to comparing packet content

to sets of strings. State-of-the-art systems, however, are replacing string sets with regular

expressions, due to their increased expressiveness. Several content inspection engines

have recently migrated to regular expressions, including: Snort, Bro, 3Com’s

TippingPoint X505, and various network security appliances from Cisco Systems.

Additionally, layer 7 filters based on regular expressions are available for the Linux

operating system. While flexible and expressive, regular expressions have traditionally

required substantial amounts of memory, which severely limits performance in the

networking context.

To see why, we must consider how regular expressions are implemented. A regular

expression is typically represented by a deterministic finite automaton (DFA). For any

regular expression, it is possible to construct a DFA with the minimum number of

states. The memory needed to represent a DFA is, in turn, determined by the product

of the number of states and the number of transitions from each state. For an ASCII

alphabet, each state will have 256 outgoing edges. Typical sets of regular expressions

84

containing hundreds of patterns for use in networking yield DFAs with tens of

thousands of states, resulting in storage requirements in the hundreds of megabytes.

Standard compression techniques are not effective for these tables due to the relatively

high number of unique ‘next-states’ from a given state. Consequently, traditional

approaches quickly become infeasible as rule sets grow.

We introduce a compact representation for DFAs, which that enables packet content

inspection to be implemented using an ASIC on-chip memory. Our approach reduces

the number of transitions associated with each state. The main observation is that

groups of states in a DFA often have very similar outgoing transitions and we can use

this duplicate information to reduce memory requirements. For example, suppose there

are two states s1 and s2 that make transitions to the same set of states, {S}, for some set

of input characters, {C}. We can eliminate these transitions from one state, say s1, by

introducing a default transition from s1 to s2 that is followed for all the characters in

{C}. Essentially, s1 now only maintains unique next states for those transitions not

common to s1 and s2 and uses the default transition to s2 for the common transitions.

We refer to a DFA augmented with such default transitions as a Delayed Input DFA

(D2FA).

In practice, the proper and effective construction of the default transitions leads to a

tradeoff between the size of the DFA representation and the memory bandwidth

required to traverse it. In a standard DFA, an input character leads to a single transition

between states; in a D2FA, an input character can lead to multiple default transitions

before it is consumed along a normal transition.

Our approach achieves a compression ratio of more than 95% on typical sets of regular

expressions used in networking applications. Although each input character potentially

requires multiple memory accesses, the high compression ratio enables us to keep the

data structure in the on-chip memory modules in an ASIC, where the increased

bandwidth can be provided efficiently. We describe an ASIC architecture that employs a

85

modest of amount on-chip memory, organized in multiple independent modules. We

use multiple embedded memories to provide ample bandwidth. However, in order to

deterministically execute the compressed automata at high rates, it is important that the

memory modules are uniformly populated and accessed over short periods of time. To

this end, we develop load balancing algorithms to map our automata to the memory

modules in such a way that deterministic worst-case performance can be guaranteed.

Our algorithms can maintain throughput at 10 Gbps while matching thousands of

regular expressions.

To summarize, we propose a) the D2FA representation of regular expressions which

significantly reduces the amount of memory required, b) an ASIC architecture that uses

the D2FA representation, and c) a load balancing algorithm which ensures that on-chip

resources on the ASIC are uniformly used, thereby enabling worst-case performance

guarantees.

The remainder of the chapter is organized as follows. Section 4.1 describes the D2FA

representation. Details of our construction algorithm and the compression results are

presented in Section 4.2. Section 4.3 presents the system architecture, load balancing

algorithms and throughput results. We summarize the architecture in Section 4.4.

Finally, in Section 4.5, we present preliminary research results of applying HEXA to

finite automata.

4.1 Delayed Input DFAs

It is well-known that for any regular expression set, there exists a DFA with the

minimum number of states [Hopcroft 1971]. The memory needed to represent a DFA

is determined by the number of transitions from one state to another, or equivalently,

the number of edges in the graph representation. For an ASCII alphabet, there can be

up to 256 edges leaving each state, making the space requirements excessive. Table

86

compression techniques can be applied to reduce the space in situations when the

number of distinct “next-states” from a given state is small. However, in DFAs that

arise in network applications, these methods are typically not very effective because on

average, there are more than 50 distinct “next-states” from various states of the

automaton.

We introduce a modification to the standard DFA that can be represented much more

compactly. Our modifications are based on a technique used in the Aho-Corasick string

matching algorithm [Aho, and Corasick 1975]. We extend their technique and apply it to

DFAs obtained from regular expressions, rather than simple string sets.

4.1.1 Motivating Example

We introduce our approach using an example. The left side of Figure 4.1 shows a

standard DFA defined on the alphabet {a,b,c,d} that recognizes the three patterns,

p1=a
+, p2=b

+c, and p3=c
*d+ (in these expressions, the asterisk represents 0 or

more repetitions of the immediately preceding sub-expression, while the plus sign

represents one or more repetitions). In this DFA, state 1 is the initial state, and states 2,

5 and 4 are match states for the three patterns p1, p2 and p3, respectively.

2

1 3
b

4

5

a

d

a

c

a b

d

a

c

b

c
b

b

a

c

d

d

d

c

2

1 3
b

4

5

a

d

c

c

Figure 4.1 Example of automata which recognize the expressions a+, b+c, and c*d+

87

The right side of Figure 4.1 shows an alternate type of DFA, which includes unlabeled

edges that are referred to as default transitions. When matching an input string, a default

transition is used to determine the next state, whenever the current state has no

outgoing edge labeled with the current input character. When following a default

transition the current input character is retained. Consider the operation of the two

automata on the input string aabdbc. For this input, the sequence of states visited by

the left-hand automaton is 1223435, where the underlined states are the match states

that determine the output value for this input string. The right-hand automaton visits

states 1212314135. Notice that the sequence of match states is the same, so if the

second automaton output associates these states with the same three patterns, it

produces the same output as the first one. Indeed, it is not difficult to show that the two

automata visit the same sequence of match states for any input string. That is, they

produce the same output, for all inputs and are hence equivalent.

Note that the right-hand automaton in Figure 4.1 has just nine edges, while the one on

the left has 20. We find that for the more complex DFAs that arise in network

applications, we can generally reduce the number of edges by more than 95%,

dramatically reducing the space needed to represent the DFA. There is a price for this

reduction of course, since no input is consumed when default edges are followed. In the

example in Figure 4.1, no state with an incoming default transition also has an outgoing

default transition, meaning that for every two edges traversed, we are guaranteed to

consume at least one input character. Allowing states to have both incoming and

outgoing default transitions leads to a more compact representation, at the cost of some

reduction in the worst-case performance.

4.1.2 Problem Statement

88

We refer to an automaton with default transitions as a Delayed Input DFA (D2FA). We

represent a D2FA by a directed graph, whose vertices are called states and whose edges

are called transitions. Transitions may be labeled with symbols from a finite alphabet Σ.

Each state may have at most one unlabeled outgoing transition, called its default

transition. One state is designated as the initial state and for every state s, there is a

(possibly empty) set of matching patterns, µ(s).

For any input string x∈Σ*, we define the destination state, δ(x) to be the last state

reached by starting at the initial state and following transitions labeled by the characters

of x, using default transitions whenever there is no outgoing transition that matches the

next character of x (so, for the D2FA on the right side of Figure 4.1, δ(abcb)=3 and

δ(dcbac)=1). We generalize δ to accept an arbitrary starting state as a second

argument; so for the D2FA on the right side of Figure 4.1, δ(abcb,2) =3.

Consider two D2FAs with destination state functions δ1 and δ2, and matching pattern

functions µ1 and µ2. We say that the two automata are equivalent if for all strings x,

µ1(δ1(x))=µ2(δ2(x)). In general, given a DFA that recognizes some given set of regular

expressions, our objective is to find an equivalent D2FA that is substantially more

memory-efficient.

We can bound the worst-case performance of a D2FA in terms of the length of its

longest default path (that is, a path comprising only default transitions). In particular, if

the longest default path has k transitions, then for all input strings, the D2FA will

consume at least one character for every k transitions followed. To ensure that a D2FA

meets a throughput objective, we can place a limit on the length of the longest default

path. This leads to a more refined version of the problem, in which we seek the smallest

equivalent D2FA that satisfies a specified bound on default path length.

89

4.1.3 Converting DFAs to D2FAs

Although, we are in general interested in any equivalent D2FA, for a given DFA, we

have no general procedure for synthesizing a D2FA directly. Consequently, our

procedure for constructing a D2FA proceeds by transforming an ordinary DFA, by

introducing default transitions in a systematic way, while maintaining equivalence. Our

procedure does not change the state set, or the set of matching patterns for a given

state. Hence, we can maintain equivalence by ensuring that the destination state

function δ(x), does not change.

Consider two states u and v, where both u and v have a transition labeled by the symbol

a to a common third state w, and no default transition. If we introduce a default

transition from u to v, we can eliminate the a-transition from u without affecting the

destination state function δ(x). A slightly more general version of this observation is

stated below.

Lemma 1. Consider a D2FA with distinct states u and v, where u has a transition labeled

by the symbol a, and no outgoing default transition. If δ(a,u)=δ(a,v), then the D2FA

obtained by introducing a default transition from u to v and removing the transition

from u to δ(a,u) is equivalent to the original DFA.

Note that by the same reasoning, if there are multiple symbols a, for which u has a

labeled outgoing edge and for which δ(a,u)=δ(a,v), the introduction of a default edge

from u to v allows us to eliminate all these edges. Our procedure for converting a DFA

to a smaller D2FA applies this transformation repeatedly. Hence, the equivalence of the

initial and final D2FAs follows by induction. The D2FA on the right side of Figure 4.1

was obtained from the DFA on the left, by applying this transformation to state pairs

(2,1), (3,1), (5,1) and (4,1).

90

For each state, we can have only one default transition, so it’s important to choose our

default transitions carefully to allow us to get the largest possible reduction. We also

restrict the choice of default transitions to ensure that there is no cycle defined by

default transitions. With this restriction, the default transitions define a collection of

trees with the transitions directed towards the tree roots and we can identify the set of

transitions that gives the largest space reduction by solving a maximum weight spanning

tree problem in an undirected graph which we refer to as the space reduction graph.

The space reduction graph for a given DFA is a complete, undirected graph, defined on

the same vertex set as the DFA. The edge joining a pair of vertices (states) u and v is

assigned a weight w(u,v) that is one less than the number of symbols a for which

2

1

3

4

5

3

3

3

2

32

2

2

3

3

Figure 4.2 Space reduction graph for DFA in Figure 4.1.

2

1

3

4

d

c

b

2

1

3

4

c

b

d

a

5 5

a

c

c

Figure 4.3 D2FAs corresponding to two different maximum weight spanning trees.

91

δ(a,u)=δ(a,v). The space reduction graph for the DFA on the left side of Figure 4.1 is

shown in Figure 4.2. Notice that the spanning tree of the space reduction graph that

corresponds to the default transitions for the D2FA in Figure 4.1 has a total weight of

3+3+3+2=11, which is the difference in the number of transitions in the two automata.

Also, note that this is a maximum weight spanning tree for this graph. Figure 4.3 shows

D2FAs corresponding to two different maximum weight spanning trees. Note that while

these two automata use the same number of edges as the one in Figure 4.1, they have

default paths of length 3 and 2, respectively, meaning that their worst-case performance

will not be as good.

4.2 Bounding Default Paths

If our only objective was minimizing the space used by a D2FA, it would suffice to find

a maximum weight spanning tree in the space reduction graph. The tree edges

correspond to the state pairs between which we create default transitions. The only

remaining issue is to determine the orientation of the default transitions. Since each

vertex can have only one outgoing default transition, it suffices to pick some arbitrary

state to be the root of the default transition tree and direct all default transitions towards

this state.

Unfortunately, when this procedure is applied to DFAs arising in typical network

applications, the resulting default transition tree has many long paths, implying that the

D2FA may need to make many transitions for each input character consumed. We can

improve the performance somewhat, by selecting a tree root that is centrally located

within the spanning tree. However, this still leaves us with many long default paths. The

natural way to avoid long default paths is to construct a maximum weight spanning tree

with a specified bounded diameter. Unfortunately, the construction of such spanning

trees is NP-hard [Garey, and Johnson 1979]. It’s also not clear that such a spanning tree

leads to the smallest D2FA. What we actually require is a collection of bounded diameter

92

trees of maximum weight. While this problem can be solved in polynomial time if the

diameter bound is 1 (this is simply maximum weight matching), the problem remains

NP-hard for larger diameters.

Fortunately, we have found that fairly simple methods, based on classical maximum

spanning tree algorithms, yield good results for D2FA construction. One conceptually

straight-forward method builds a collection of trees incrementally. The method (which

is based on Kruskal’s algorithm [Kruskal 1956]) examines the edges in decreasing order

of their weight. An edge {u,v} is selected as a “tree-edge” so long as u and v do not

already belong to the same tree, and so long as the addition of the edge will not create a

tree whose diameter exceeds a specified bound. Once all the edges have been

considered, the tree edges define default transitions. We orient the default transitions in

each tree by directing them towards a selected root for that tree, where the roots are

selected so as to minimize the distance to the root from any leaf.

The one complication with this method is checking the diameter bounds. We can do

this efficiently by maintaining for each vertex u a value d(u) which specifies the number

of edges in the longest tree path from u to a vertex in the same tree. These values can be

used to check that the addition of a new edge will not violate the diameter bound. When

a new tree edge is added, the distance values must be updated for vertices in the tree

formed by the addition of the new edge. This can be done in linear time for each

update. Consequently, the total time needed to maintain the distance values is O(n2).

Since Kruskal’s algorithm, on which our algorithm is based, requires O(n2log n) time on

complete graphs, the diameter checking does not increase the asymptotic running time

of the algorithm.

One refinement to this fairly simple algorithm is shown below. While examining the

edges in decreasing order of their weights, we also look for an edge among all equal

weight edges, which results in the minimum expansion in the diameter of the trees

joined. In practice, since there are only 255 different weight values, at any point in time,

93

there will often be plenty of equal weight edges to choose from. The resulting refined

algorithm begins with the weighted undirected space reduction graph G=(V,W) and

modifies an edge set tree_edges which form the default transition trees. First it

considers all edges of weight 255, and incrementally constructs default trees of small

diameters. Then it repeatedly considers smaller weight edges and adds them to the

default transition trees.

It turns out that the refinement generally leads to default transition trees with

significantly smaller diameter as compared to a normal spanning tree, which remains

oblivious to the diameter of the trees until the diameter bound is reached. In a setup,

where the diameter bound is not applied, the refined spanning tree algorithm creates

default transition trees of equal weight but relatively smaller diameter. When the

procedure refinedmaxspantree (graph G=(V, W), modifies set edge tree_edges);

(1) vertex u, v;

(2) set edges;

(3) set weight-set[255];

(4) tree_edges := {}; edges := W;

(5)

(6) for edge (u, v) ∈ edges ⇒

(7) if weight(u, v) > 0 ⇒

(8) add (u, v) to weight-set[weight(u, v)];

(9) fi
(10)

(11) for integer i = 255 to 1 ⇒

(12) do weight-set[i] ≠ [] ⇒

(13) Select (u, v) from weight-set[i] which leads to the

(14) smallest growth in the diameter of the tree_edges trees

(15) if vertices u and v belongs to different default trees ⇒

(16) if tree_edges U (u, v) maintains the diameter bound ⇒

(17) tree_edges := tree_edges U (u, v);

(18) fi

(19) fi

(20) od

(21) rof

end;

94

diameter bound is applied, the refined algorithm creates trees with higher weight too.

This happens, because a normal spanning tree, in its process, quickly creates several

trees whose diameter is “too large” and hence can not be further linked to any tree. The

refined version ensures that tree diameter remains small; hence more trees can be

linked, resulting in higher weight.

In order to illustrate the effect of this refinement, we take a synthetic DFA, which

consists of 31 states. All pairs of states u and v were assigned transitions on a random

number (drawn from a geometric distribution with success probability, π = 0.05, thus

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
2829

30

31

1

2

3

4
5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

Figure 4.4 Default transition trees formed by the spanning tree algorithm and by the refined

version.

95

mean, E(X) = 19) of symbols a such that δ(a,u)=δ (a,v). Thus the weight of the edges in

the space reduction graph was geometrically distributed. When we ran the normal and

refined versions of the default trees construction algorithms without any diameter

bound, they created spanning trees of weight 1771, as shown in Figure 4.4. While the

weights of both trees are maximum, their diameters are 13 and 10 respectively. If we

choose nodes 28 and 29, respectively, as the roots of these two trees, the longest default

paths contain 7 and 5 edges, while the average length of default paths are 3.8 and 2.8,

respectively.

Clearly, the refinement in the spanning tree algorithm reduces the memory accesses

needed by a D2FA for every character. We will later see that when diameter bounds are

applied, the refined algorithm creates more compact D2FAs as well.

When we bounded the diameter of the trees to 6, and ran our algorithm on the same

synthetic DFA, it created three default transition trees, as shown in Figure 4.5. The total

weight of all three trees was 1653, which suggests that the resulting D2FA will require

slightly more space as compared to the one with no diameter restraint. However,

bounding the diameter to 6 ensures an important property that the length of all default

paths can be easily limited to 4 and hence the D2FA will require at most 4 memory

accesses per character.

1

2

3

456

7

8

910 11

12 1314 15

16

17

18 19

20

21

22

23

24

25

26 27

28

29

30

31

Figure 4.5 Default transition trees (forest) formed by the refined spanning tree with the tree

diameter bounded to 6.

96

4.2.1 Results on Some Regular Expression Sets

In order to evaluate the space reductions achieved by a delayed input DFA, or D2FA,

we performed experiments on regular expression sets used in a wide variety of

networking applications. Our most important datasets are the regular expression sets

used in deep packet inspection appliances from Cisco Systems [Eatherton, and Williams

2005]. This set contains more than 750 moderately complex expressions, which are used

to detect the anomalies in the traffic. It is widely used across several Cisco security

appliances and Cisco commonly employs general purpose processors with a gigabyte or

more of memory to implement them. In addition to this set, we also considered the

regular expressions used in the open source Snort and Bro NIDS, and in the Linux

layer-7 application protocol classifier. The Linux layer-7 protocol classifier consists of

70 expressions. Snort contains more than 1500 expressions, although, they don’t need

to be matched simultaneously. An effective way to implement the Snort rules is to

identify the expressions for each header rule and then group the expressions

corresponding to the overlapping rules (the set of header rules a single packet can match

to). We use this approach. For the Bro NIDS, we present results for the HTTP

signatures, which consist of 648 regular expressions.

Given these regular expression sets, as the first step in constructing DFAs with a small

number of states, we used the set splitting techniques proposed in [Yu, et al. 2005]. This

approach splits the regular expressions into multiple sets so that each set creates a small

DFA. We created 10 sets of rules from the Cisco regular expressions, and were able to

reduce the total memory footprint to 92 MB, as there were a total of 180138 states, and

each individual DFA had less than 64K states, (thus 2 bytes encodes a state). Clearly,

such an efficient grouping resulted in a significant space reduction over more than a

gigabyte space required otherwise. We split the Linux layer-7 expressions into three sets,

such that the total number of states was 28889. For the Snort set, we present results for

the header rule “tcp $EXTERNAL_NET any -> $HTTP_SERVERS

97

$HTTP_PORTS,” which consists of 22 complex expressions. Since Snort rules were

complex, with long length restriction on various character classes, we applied rewriting

techniques proposed in [Yu, et al. 2005] to some rules and split them further into four

sets. Bro regular expressions were generally simple and efficient therefore we were able

to compile all of them in a single automaton. The key properties of our representative

regular expression groups are summarized in Table 4.1.

In order to estimate the reduction objectives of D2FA, we introduce a term redundancy.

There is redundancy if there exist multiple transitions from different states leading to

the same “next state” for the same input character. For example in Figure 4.1, there are

transitions from state 1, 2, 3, 4 and 5 all leading to the same next state on input b. So,

there are 4 redundant states. Even though, it may not be possible to eliminate all

redundant transitions, it still gives a good estimate on the upper bound of the number

of transitions that can be eliminated by constructing a D2FA from the DFA.

After constructing the minimum state DFAs from these regular expressions, we used

both normal and refined versions of the default trees construction algorithms to

construct the corresponding D2FAs. The reduction in the number of transitions is

shown in Table 4.2 with no diameter bounds applied. The length of default paths are

Table 4.1 Our representative regular expression groups.

Source # of regular

expressions

Avg. ASCII

length of

expressions

% expressions

using wildcards

(*, +, ?)

% expressions

length restrictions

{,k,+}

Cisco 590 36.5 5.42 1.13

Cisco 103 58.7 11.65 7.92

Cisco 7 143.0 100 14.23

Linux 56 64.1 53.57 0

Linux 10 80.1 70 0

Snort 11 43.7 100 9.09

Snort 7 49.57 100 28.57

Bro 648 23.6 0 0

98

also shown. It is clear that, D2FAs eliminates nearly all redundancy from the DFAs. It is

also apparent that refined version of algorithm creates substantially smaller default paths

as compared to the basic algorithm. In order to get a sense of the distribution of the

number of labeled transitions per state of a D2FA, we plot this quantity in Figure 4.6,

for the Cisco regular expression group containing 590 expressions. The majority of

states have 2 or fewer labeled transitions. Note that most states have 2 transitions

because most rules are case insensitive, like [d-eD-E0-9\-

_][/\\][^/\\\r\n?\x26\s\t:]*[.][Nn][Uu].

Table 4.2 Original DFA and the D2FA constructed using the basic and the refined default tree

construction algorithm, without any diameter bound.

 Original DFA

 rules Total # of

states

Total # of

transitions

Total # of

distinct

transitions

Total # of

redundant

transitions

%

duplicates

 Cisco590 17,713 4,534,528 1,537,238 4,509,852 99.45

 Cisco103 21,050 5,388,800 1,236,587 5,346,595 99.21

 Cisco7 4,260 1,090,560 312,082 1,063,896 97.55

 Linux56 13,953 3,571,968 590,917 3,517,044 98.46

 Linux10 13,003 3,328,768 962,299 3,052,433 91.69

 Snort11 41,949 10,738,944 540,259 10,569,778 98.42

 Bro648 6,216 1,591,296 149,002 1,584,357 99.56

 Delayed input DFA, D
2
FA

 Basic Algorithm Refined Algorithm

 rules Total # of

transitions

%

reduction

Avg.

default

length

Max.

default

length

Total # of

transitions

%

reduction

Avg.

default

length

Max.

default

length

 Cisco590 36,519 99.2 18.32 57 36,519 99.2 8.47 17

 Cisco103 53,068 99.0 16.65 54 53,068 99.0 7.82 19

 Cisco7 28,094 97.4 19.61 61 28,094 97.4 10.91 23

 Linux56 58,571 98.3 7.68 30 58,571 98.3 5.62 21

 Linux10 285,991 91.3 5.14 20 285,991 91.3 4.64 17

 Snort11 168,569 98.4 5.86 9 168,569 98.4 3.43 6

 Bro648 7,082 99.5 6.45 17 7,082 99.5 2.59 8

99

Since the above results are with no diameter restrictions, default transition paths are

quite long. In order to achieve smaller default paths, we ran our algorithm with the

diameter restricted to a small constant. In this case, we first compare the reductions

achieved by both versions of default tree construction algorithm. In Table 4.3, we

report the number of transitions in the resulting D2FA, with the length of default paths

bounded to 4 edges. Clearly, refined version of spanning tree yields relatively more

compact D2FA.

1

10

100

1000

10000

0 8 16 24 32 40 232 240 248 256

Number of transitions at a state

N
u

m
b

e
r

o
f

s
ta

te
s

Figure 4.6 Distribution of number of transitions per state in the D2FA constructed from the

Cisco590 expression set.

100

In Figure 4.7, we plot the reduction in the number of transitions of a DFA, as a ratio of

number transitions in the D2FA and the number of distinct transitions (transitions

leading to distinct “next states”) in the original DFA, by applying the refined version of

spanning tree and bounding the default paths at different values. It is obvious that

smaller default path restrictions produce D2FAs with a higher number of labeled

transitions. Note that, the reduction numbers plotted are with respect to the total

number of distinct transitions (leading to different “next states”) at various states in the

original DFA, and not all transitions. Clearly this metric is conservative and suggests the

space reduction by D2FA over a DFA using the best (possibly hypothetical) table

compression scheme which enables it to store only the distinct transitions. If we would

use the total transitions in a DFA as our metric, D2FA will result in even higher

reduction.

4.2.2 Summarizing the Results

The results suggest that a delayed input DFA or D2FA can substantially reduce the

space requirements of regular expression sets used in many networking applications.

For example, using a D2FA, we were able to reduce the space requirements of regular

expressions used in deep packet inspection appliances of Cisco Systems to less than

Table 4.3 Number of transitions in D2FA with default path length bounded to 4.

DFA Basic algorithm Refined algorithm

Cisco590 97,873 70,793

Cisco103 115,654 82,879

Cisco7 37,520 36,091

Linux56 69,437 66,739

Linux10 314,915 302,112

Snort11 180,545 178,354

Bro648 11,906 8,078

101

2MB. We also saw significant reduction in the Bro and Linux layer-7 expressions. Snort

expressions resulted in moderate improvements (according to our conservative metric)

as there were fewer distinct transitions per state.

The D2FA reduces the space requirements at the cost of multiple memory accesses per

character. In fact, splitting an expression set into multiple groups adds to the number of

memory accesses as it creates multiple D2FAs, all of which need to be processed.

Although, D2FAs perform equally well on expression sets which are not split, we

decided to split, in order to reduce the total number of states in the DFA to begin with

(e.g. 92 MB for 9 partitions of the Cisco rules versus >1 GB without rule partitioning).

Such a design choice makes sense in our context, because we use multiple embedded

memories available in an ASIC, which provides us with ample bandwidth, but limited

capacity. We now present our architecture and algorithms to map the D2FAs onto them.

4.3 Regex ASIC Architecture

0.01

0.1

1

1 2 3 4 5 6 7

Maximum default path length

#
 t
ra

n
s
iti

o
n

s
 (

a
s
 f
ra

c
ti
o

n
 o

f
th

e
 #

 o
f

d
is

ti
n

c
t
tr

a
n

s
iti

o
n

s
 i
n

 o
ri
g

in
a

l D
F

A
)

Cisco590
Cisco103
Cisco7
Linux56
Linux10
Snort11
Bro648

Figure 4.7 Plotting total number of labeled transitions in D2FAs for various maximum default

path length bounds.

102

In this section, we describe an ASIC architecture and an algorithm that maps the D2FA

nodes onto embedded memory modules. One of our design objectives is flexibility, so

we predominantly use embedded memories in order to store the automata rather than

synthesizing them in logic gates [Floyd, and Ullman 1982]. Using memory rather than

logic allows the architecture to remain flexible in the face of frequently updated regular

expressions. In addition to dense ASIC embedded memory technologies like IBM’s,

modern FPGAs such as the Xilinx Virtex-4 contain several hundreds of 18Kbit memory

blocks providing several megabytes in aggregate. The embedded memories in FPGAs

have multiple ports and clock rates of up to 300 MHz. Of course, ASIC technologies

provide a higher degree of flexibility, with the number of ports, the size of each

memory, and the clock rate all being design specific. Thus, a memory-based scalable

design in an ASIC setting is eminently practical. Given this, we architect our embedded

memory based ASIC with the following points in mind.

• While small memories often clock at higher rates, every additional memory adds
to the overhead of the control circuitry. Therefore, we intend to use an adequate
number of reasonably sized memories, so that the overall bandwidth remains
appropriate while maintaining reasonable control complexity.

• Using multiple, equally-sized embedded memories will enable the architecture to
scale capacity and bandwidth linearly with increasing on-chip transistor density.

• A die with several equally sized memories can achieve efficient placement and
routing, resulting in minimal wasted die area.

Memory Memory Memory Memory....

D2FA

scanner

D2FA

scanner

D2FA

scanner
....

Figure 4.8 Logical structure of the memory subsystem.

103

Therefore, our design will use memories of equal size, independent of the characteristics

of any particular data set. In fact, using several small equally sized memories is a natural

choice given that the kind of expressions and the resulting automata are likely to change

very often.

The resulting architecture consists of a symmetric tile of equally sized embedded

memories; the logical organization of this system is shown in Figure 4.8. Note that

FPGAs, with hundreds of fix-sized memory modules, fall within the scope of this

architecture. As can be seen, there are multiple memories, each accessible by an array of

regular expression engines. Each engine is capable of scanning one packet at a time.

Multiple engines are present to exploit the packet- and flow-level parallelism available in

most packet processing contexts. While throughput for an individual packet will be

limited to that of a single memory, overall system throughput can approach the

aggregate memory bandwidth.

To do so, we must map the D2FA to these memories in such a way that, a) there is

minimal fragmentation of the memory space, so that every memory remains uniformly

occupied; and b) each memory receives a nearly equal number of accesses, so that none

of them becomes a throughput bottleneck. We now propose algorithms to achieve

these objectives.

4.3.1 Randomized Mapping

A straightforward uniformly random mapping of states to memory modules can provide

scalable average-case performance. The expectation is that over a long period of time,

each memory will receive a nearly equal fraction of all references. Thus, with a

reasonable number of concurrent packets, average throughput can remain high.

Consider a case of m memory modules and p concurrently scanned packets. If each

104

packet generates a read request at an interval of l cycles (i.e., the memory read latency),

we need to scan m×l packets concurrently in order to keep the m memories busy. In

practice, we need more packets due to random conflicts. The problem can be modeled

as a balls and bins problem. There are m bins (memory modules) and balls (memory

requests) arrive to them randomly. Only one can be serviced at each bin per cycle, so

any remaining balls must wait for subsequent memory cycles. If m balls arrive randomly,

1-e-1 will be served and rest has to wait for next cycle. Thus only 65% of the memories

will be busy. As more balls arrive, more memories will remain busy. Thus, scanning

many packets concurrently improves the overall throughput, while individual packets

are served relatively slowly.

We report the throughput of such a randomized architecture in Figure 4.9, assuming a

dual-port embedded memory running at 300 MHz and a read access latency of 4 cycles.

In this experiment, we have limited the longest default paths in the D2FA to 7. The

input data was generated from the MIT DARPA Intrusion Detection Data Sets [MIT

DARPA dataset]. We inserted additional data into these sets so that the automaton will

detect approximately 1% matches. It is evident from the plots that as we increase the

number of concurrently scanned packets, the overall throughput scales up. Moreover, as

the number of embedded memories increases, the throughput scales almost linearly up

to 8 memories, beyond which there is little improvement. This saturation is due to

significant spatial locality in the automata traversal in which some states are visited more

often than the others. In fact, in some cases, we found that a single state is visited

almost 30% of the time. If such a state resides in memory module k, it is likely that

memory module k will limit the overall performance irrespective of the number of

modules. However, such situations are rare, and the average performance remains

excellent.

A randomized system is also likely to have a very low worst-case throughput as evident

from Figure 4.9. This can be explained as follows. A D2FA often needs to traverse

multiple default transitions for a character; if the maximum default path length is limited

105

to 7, then 8 state traversals might be needed for a character. Since the state to memory

mapping is random, there may exist default paths along which all states reside in the

same memory module (or in a small number of modules). If the input data is such that

the automaton repeatedly traverses such default paths, then throughput will degrade.

Moreover, when we map multiple automata (one for each regular expression group)

onto memory modules randomly, default paths of different automata may map to the

same memory module. In this case, packets traversing those paths will be processed

serially, and overall system throughput could diminish even further. Since this

randomized approach is subject to these pathological worst-case conditions, we now

propose deterministic mapping algorithms capable of maintaining worst-case

guarantees.

4.3.2 Deterministic and Robust Mapping

The first goal of a robust and deterministic mapping is to ensure that all automata,

which are executed simultaneously, are stored in different memory modules. This will

0

2

4

6

8

10

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of concurrently scanned packets

T
h
ro

u
g
h
p

u
t

(G
b
p
s
)

16 memory modules

1 memory module

4 memory modules

8 memory modules

16 memory modules

average performance

Synthetically generated worst-case input data

Figure 4.9 Throughput with default path length bounded to 7 and using the randomized

mapping.

106

ensure that each executes in parallel without any memory conflicts. Achieving this goal

is straight-forward, provided that there are more memory modules than automata. The

second goal is to ensure that all states along any default path map to different memory

modules. Thus, no pathological condition can arise for long default paths as a memory

module will be referred at most once. Another benefit is that we will need fewer

concurrent packets to achieve a given level of throughput, due to the better utilization

of the bandwidth.

Problem Formulation: We can formulate the above problem as a graph coloring

problem, where colors represent memory modules and default paths of the D2FAs

represent the graph. As we have seen, these paths form a forest, where vertices

represent states and directed edges represent default transitions. Our goal is to color the

vertices of the forest so that all vertices along any path from a leaf to the root are

colored with different colors. Moreover, we need to ensure that every color is nearly

equally used, so that memories remains uniformly occupied. Clearly, if d is the longest

default path, i.e. the depth of the deepest tree, then we need at least d+1 colors1. We

present two heuristic algorithms, to color the trees in the forest.

Deterministic and Robust Mapping

The largest first algorithm is similar to the first-fit, decreasing bin-packing heuristic

[Liang 1980], one of the best known heuristics for solving the NP-complete bin packing

problem. The algorithm is formally described above, where the directed graph D

represents the default transitions and C the set of all colors. The algorithm proceeds by

ordering the default transition trees according to their size (i.e., the number of vertices

times the size of each vertex). Then, in decreasing order of size, it colors each tree such

that all vertices at different depths are colored with one of the d+1 colors. Since there

are a total of d+1 colors and the maximum depth of a tree is d, vertices along all default

1
 A natural way to construct a D

2
FA is to limit the default path length to the number of memory

modules (colors) available to it

107

procedure largest-first-coloring (dgraph D(V, W), set color C);

(1) heap h, c, l;

(2) for tree t ∈ D ⇒

(3) for vertex u ∈ t ⇒ size(t) := size(t) + size(u); rof

(4) h.insert(t, size(t));

(5) rof

(6) for color j ∈ C ⇒ c.insert(j, 0); rof

(7) do h ≠ [] ⇒

(8) t := h.findmax(); h.remove(t);

(9) for all depth values i ∈ t ⇒

(10) l.insert(i, size of all vertices at depth i);

(11) rof
(12) color j := c.findmax();

(13) do l ≠ [] ⇒

(14) depth i := l.findmin(); size s := l.key(i); l.remove();

(15) Color vertices at depth i in tree t with color j;

(16) c.changekey(j, c.key(j) + s);

(17) j := c.findnextmax();

(18) od

(19) od

end;

paths are guaranteed to get different colors. In order to ensure that colors are nearly

equally used, largest first heuristics are used. For a currently selected tree, it groups the

vertices at different depths and sorts the group with respect to the size of all vertices in

the group. Then, it assigns the most used color to the smallest group and the least used

color to the largest group.

When the forest consists of a large number of trees, largest first coloring ensures that

colors are nearly equally used; thereby ensuring that different memory modules will

remain uniformly occupied. However, when there are a small number of trees, the

largest first algorithm often leads to uneven memory usage. A simple example is shown

on the left hand side of Figure 4.10, where there are two trees which are colored with 4

colors. With the largest first algorithm, color 3 is used to color 7 vertices, while colors 1,

2 and 4 are each used to color only 3 vertices. An alternative coloring, which uses each

108

color uniformly and also ensures that vertices along a default path uses different colors,

is shown on the right hand side in the same figure. We now propose an algorithm which

produces such coloring.

Adaptive Coloring Algorithm

The largest first algorithm performs poorly because it does not exploit situations when

multiple colors are available to color a vertex. For instance, in the example shown in

Figure 4.10, the largest first algorithm assigned color 3 to all vertices at depth 3,

although five of these six vertices can be colored with either color 3 or 4. In practice, a

D2FA creates default trees with many such opportunities. This adaptive algorithm

exploits this power of multiple choices and results in a more uniform color usage.

It begins by assigning a set of all C colors to all vertices and then removes colors from

each set until every vertex is fully colored (i.e. a single color left in their set). In order to

remove appropriate colors, it keeps track of two variables for every color. The first

variable used tracks the total number of vertices colored by each color, and the second

variable deprived tracks the future choices of colors that remain in the sets of those

vertices not yet fully colored. More specifically, for every color, deprived maintains the

number of the vertices, which are deprived of using it, as it has been removed from

their color set and used maintains the number of vertices colored with it. Clearly, the

4

2

4

33 233 3

3

2 1

4

1

1

3

3

23 43 2

2

4

1

4

1 1

2

3

41

Figure 4.10 Left diagram shows two trees colored by largest first algorithm. Right diagram shows

a better coloring.

109

procedure adaptive-coloring (dgraph D(V, W), set color C);

(1) heap h;

(2) for color c ∈ C ⇒ used[c] := 0; deprived[c] := 0; rof

(3) for vertex u ∈ V ⇒

(4) set color colors[u] := C;

(5) h.insert(u, depth(u));

(6) rof

(7) do h ≠ [] ⇒

(8) u := h.findmax(); h.remove(u);

(9) if |colors[u]| > 1 ⇒ assign-color(u, D, C); fi

(10) od

end;
procedure assign-color (vertex u, dgraph D(V, W) , set color C);

(1) color c;

(2) Pick c from colors[u] with min used[c] and max deprived[c];

(3) colors[u] := c;

(4) used[c] := used[c] + size(u);

(5) for v ∈ descendents(u) ⇒ colors[v] := colors[v] − c; rof

(6) for v ∈ ancestors(u) ⇒ colors[v] := colors[v] − c; rof

(7) calculate-deprived(D, C);

(8) if def-trans(u) ≠ NULL ⇒ assign-color(def-trans(u), D, C); fi

end;
procedure calculate-deprived (dgraph D(V, W) , set color C);

(1) for color c ∈ C ⇒ deprived[c] := 0; rof

(2) for vertex u ∈ V ⇒

(3) if |colors[u]| = 1 ⇒

(4) color c := colors[u];

(5) for v ∈ descendents(u) ⇒

(6) if |colors[v]| > 1 ⇒ deprived[c] += size(v); fi

(7) rof

(8) fi

(9) rof

end;

goal is to more often use colors a) which most of the vertices are deprived of and b)

with which fewest vertices are fully colored with.

After initializing the color sets of each vertex, the next step is to decide an ordering of

the vertices, in which colors will be removed from their color set. An effective ordering

110

is to first choose vertices which do not have a high degree of freedom in choosing

colors. Since vertices along longer default paths have fewer choices (e.g. vertices along x

deep default paths can pick one of d−x+1 colors), they should be colored first.

Therefore, adaptive algorithm processes vertices of all trees simultaneously, in a

decreasing order of the depth values. It chooses a vertex, and removes all but one color

from its color set, thus effectively coloring it. Whenever a vertex u is colored with color

c, color c is removed from the color set of all ancestors and descendents of u, since it

can’t be used to color any of them. Then, all ancestor vertices of u are recursively

colored. The algorithm is formally presented above. A set colors is kept for every vertex

and initially it contains all C colors. Once all but one color is removed from this set, the

vertex gets colored. The steps involved in the coloring of two trees by the adaptive

algorithm using four colors are illustrated in Figure 4.11.

Coloring Results

In order to evaluate, how uniformly the largest first and adaptive algorithms utilize

various colors, we generated D2FA such that they have different numbers of default

transition trees in the corresponding forest. This was achieved by limiting the default

path length to different values. We also limited ourselves to use only d+1 colors (where

d is the longest default path), as allowing the use of more colors makes the coloring far

easier. Our principal metric of coloring efficiency is the maximum discrepancy in color

usage. If used(i) is the size (number of vertices times the number of transitions it has) of

all vertices using the i-th color, then the maximum color usage discrepancy will be,

)(max))(min)(max(iusediusediused
iii

−

Clearly, smaller values of discrepancy reflect more uniform usage of various colors. We

plot the maximum discrepancy in color usage in Figure 4.12, for different number of

default transition trees in the forest. It is apparent that adaptive algorithm uses colors

more uniformly. Using the adaptive coloring algorithm, once we limited the default

111

paths to 7 or less, we were able to map all of our D2FA to memory modules such that

there was a maximum discrepancy of less than 7 bytes in the memory occupancy.

used[1] = 0 deprived[1] = 0

used[2] = 0 deprived[2] = 0

used[3] = 0 deprived[3] = 0

used[4] = 0 deprived[4] = 0

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}{1,2,3,4}{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

{1,2,3,4}{1,2,3,4}

2

3

1

4

used[1] = 2 deprived[1] = 0

used[2] = 2 deprived[2] = 1

used[3] = 2 deprived[3] = 2

used[4] = 3 deprived[4] = 6

{4}

{3} {1,2,3}

{2}

{1}

{1,2} {1,2} {1,2,3} {1,2,3} {1,2,3}

Colored implicitly

as its color set is left

with a single color

4

3

2

1

{2}

{1,3,4} {1}

{3}

{4}{4}

2

12 32 3

3

1

4

1

used[1] = 4 deprived[1] = 0

used[2] = 4 deprived[2] = 0

used[3] = 4 deprived[3] = 0

used[4] = 4 deprived[4] = 0

{4}

{3} {2}

{2}

{1}

{2} {1} {3} {1} {3}

4 4

3

2

14

{2}

{4} {1}

{3}

{4}{4}

{1,2,3,4}

2

3

1

4

used[1] = 1 deprived[1] = 0

used[2] = 1 deprived[2] = 0

used[3] = 1 deprived[3] = 2

used[4] = 1 deprived[4] = 6

{4}

{3} {1,2,3}

{2}

{1}

{1,2} {1,2} {1,2,3} {1,2,3} {1,2,3}

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

{1,2,3,4}{1,2,3,4}

2

2 2 3

3

1

4

1

used[1] = 3 deprived[1] = 0

used[2] = 4 deprived[2] = 3

used[3] = 3 deprived[3] = 0

used[4] = 3 deprived[4] = 2

{4}

{3} {2}

{2}

{1}

{2} {1} {3} {1,3} {1,3}

4 4

3

2

1

{2}

{1,3,4} {1}

{3}

{4}{4}

2 2

3

1

4

1

used[1] = 3 deprived[1] = 0

used[2] = 4 deprived[2] = 1

used[3] = 3 deprived[3] = 0

used[4] = 3 deprived[4] = 4

{4}

{3} {1,2,3}

{2}

{1}

{2} {1} {1,2,3} {1,2,3} {1,2,3}

4 4

3

2

1

{2}

{1,3,4} {1}

{3}

{4}{4}

Figure 4.11 Various steps involved in the coloring of two trees with adaptive algorithm

(assuming equally sized vertices).

112

We finally report the throughput of the D2FAs generated from the Cisco rules, with the

default path length limited to 7, in Figure 4.13. Note that since we are using coloring, we

need at least 8 memory modules. We assume a dual-port embedded memory running at

300 MHz, read access latency of 4 cycles and the previous MIT intrusion detection data

set. The performance achieved by deterministic mapping is clearly superior to the

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Number of default transition trees in the forest

M
a
x
 d

is
c
re

p
a
n
c
y
 in

 c
o
lo

r
u
s
a
g
e

Figure 4.12 Plotting maximum discrepancy in color usage, circles for max-min and squares for

adaptive algorithm.

0

2

4

6

8

10

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of concurrently scanned packets

T
h
ro

u
g
h
p
u
t

(G
b
p
s
)

8 memory modules

8 memory modules

16 memory modules

average performance

Synthetically generated worst-case input data

Figure 4.13 Throughput with default path length bounded to 7 and using adaptive-coloring based

deterministic mapping.

113

randomized mapping, as a) it ensures good worst-case throughput, and b) it requires

fewer concurrent packets to achieve high average throughput.

4.4 Summarizing the D2FA based ASIC

We have introduced a new representation for regular expressions, called the delayed

input DFA or D2FA, which significantly reduces the space requirements of a DFA by

replacing its multiple transitions with a single default transition. By reduction, we show

that the construction of an efficient D2FA from a DFA is NP-hard. We therefore

present heuristics for D2FA construction that provide deterministic performance

guarantees. Our results suggest that a D2FA constructed from a DFA can reduce

memory space requirements by more than 95%. Thus, the entire automaton can fit in

the on-chip memories in an ASIC. Since embedded memories provide ample

bandwidth, further space reductions are possible by splitting the regular expressions into

multiple groups and creating a D2FA for each of them.

As a side effect, a D2FA introduces a cost of possibly several memory accesses per input

character, since D2FAs require multiple default transitions to consume a single

character. Therefore, a careful implementation is required to ensure good, deterministic

performance. We present a memory-based ASIC architecture, which uses multiple

embedded memories, and show how to map the D2FAs onto them in such a way that

each character is effectively processed in a single memory cycle. As a proof of concept,

we were able to construct D2FAs from regular expression sets used in many widely used

systems, including those employed in the widely used security appliances from Cisco

Systems that required less than 2 MB of embedded memory and provided up to 10

Gbps throughput at a modest clock rate of 300 MHz. The proposed architecture can

provide deterministic performance guarantees with today’s VLSI technology, and a

worst-case throughput of OC192 can be achieved while simultaneously executing

several thousands of regular expressions.

114

4.5 Future Direction (Bounded HEXA)

In Chapter 3, we presented HEXA, which is a novel method to encode “next nodes” in

a directed acyclic graph. We now extend HEXA to represent nodes of finite automata

to facilitate further memory compression desired in ASICs. Our current extension is

applicable only to automata that recognize exact match strings, such as Aho-Corasick.

Although HEXA can be extended further to represent general finite automata; we leave

it to the future work, with the exception of a brief description of some components of

the design and the challenges involved.

One potential problem with exact match string automata is that, due to the presence of

cycles, HEXA identifiers of nodes may become unbounded if we continue traversing a

loop and receiving input symbols. One way to enable bounded HEXA identifiers is to

restrict each identifier to say previous k symbols, where k may vary for different nodes.

This, however, requires that all incoming k-long paths into all nodes of the graph have

identical sequences of labels. Clearly, nodes of a general graph will not meet this

requirement even for k=1 as there may be multiple incoming transitions into a node

labeled with different symbols. Fortunately string based automata such as Aho-Corasick,

Wu-Manber and Commentz-Walter do not exhibit this property and all incoming

transitions into a node are labeled with identical symbols. In fact, all incoming k-long

paths into a node are labeled with identical sequence of symbols, thus potentially

creating long unique identifiers; notice that here k is different for different nodes. Even

high performance networking specific variants of these well known automata such as

the bit-split Aho-Corasick [Tan, and Sherwood 2005] exhibit similar characteristics.

For such graphs, we introduce an extension called bounded HEXA (bHEXA) which uses

a variable but finite number of symbols in the history to identify a node, instead of

examining the entire history. Since the number of history symbols that we examine may

115

be different for different nodes, bHEXA identifiers require additional bits to indicate

this length. While these bits add to the memory needed, having variable length

identifiers also opens up another dimension of multiple choices of identifiers for the

nodes, which helps in finding a one-to-one mapping and reduces the dependence on

discriminator bits or even avoid using them. To clarify, we consider a simple string-

based example.

4.5.1 Motivating Example

Let us consider the Aho-Corasick automaton for the 3 strings: abc, cab and abba, defined

over the alphabet {a, b, c}. The automaton (shown in Figure 4.14) consists of 9 nodes

(all symbols for which a transition is not shown in the figure are assumed to lead to

state 1). A standard implementation of this automaton will use 4-bit node identifiers.

These identifiers will determine the memory location where the transitions of the node

will be stored. There are three transitions per node (over symbols a, b and c,

respectively) and assuming that a match flag is required for every node, the fast path

memory will store four entries for each of the nine nodes, as shown below:

1

a

2 b

c
7 a 8 b 9

3

b
4 a 5

6
c

c

b

b

a

c

c
c c

c

a
a c

a

a

a

c

Figure 4.14 Aho-Corasick automaton for the three strings abc, cab and abba. Gray indicates
accepting node.

116

Since node identifiers are 4-bits, in this case a node requires 13-bits of fast path

memory. We now attempt to use bHEXA to represent this automaton. Since bHEXA

allows identifiers to contain variable number of input symbols from the history, our first

objective is to identify the legitimate bHEXA identifiers for the nodes. Clearly, we

would like to keep the identifier unique for each node, irrespective of the path that leads

to the node. The identifier of the root node is “−”, as it is visited without receiving any

input symbol (zero path length). The identifiers of the nodes which are one transition

away from the root may contain up to one symbol from the history because all single

transition paths that lead to such nodes are labeled with the same symbol. As an

example, all incoming edges into node 2 are labeled with a; thus its identifier can either

be − or a. Similarly, the identifier of node 7 can be − or c. In general, a node which is k

transitions away from the root may have the bHEXA identifier of any length up to k

symbols. For example, both paths 321 →→ ba

 and 3549 →→→ bab

 lead

to the node 3, and the last two symbols in these paths are identical; consequently, its

bHEXA identifier can either be − or b or ab. Choices of bHEXA identifiers for the

remaining nodes are listed below:

Notice that each of the above bHEXA identifiers is legitimate. However, we must

ensure that, the ones we choose are unique, so that no two nodes end up with identical

identifiers. If we employ c-bit discriminators with bHEXA identifiers then we may allow

up to 2c nodes to pick identical identifiers and then use different discriminator values to

make them unique. The memory mapping method that we present in the next section

1. −

2. −, a

3. −, b, ab

4. −, b, bb, abb

5. −, a, ba, bba, abba

6. −, c, bc, abc

7. −, c

8. −, a, ca

9. −, b, ab, cab

4. no, 5, 1, 7

5. match, 2, 3, 7

6. match, 8, 1, 7

1. no, 2, 1, 7

2. no, 2, 3, 7

3. no, 2, 4, 6

7. no, 8, 1, 7

8. no, 2, 9, 7

9. match, 2, 4, 6

10.

117

enforces these constraints and ensures that the bHEXA identifier of each node is

unique.

4.5.2 Memory Mapping

The next step is to select a bHEXA identifier for every node to ensure that each

identifier is mapped to a unique memory location. A large fraction of nodes, being away

from the root node, are likely to have several choices of bHEXA identifiers, which will

improve the probability of a one-to-one mapping. These choices however come at a

cost; if a node has k choices (can have up to k−1 symbols long bHEXA identifiers) then

up to log2k additional bits may be needed to indicate the length of its identifier.

During the graph traversal, these bits will be required to determine the exact number of

history symbols that forms the bHEXA identifier of the node. In our example

automaton, node 5 has 5 choices; hence 3-bits may be needed to indicate the length of

its bHEXA identifier. We can however omit the last choice from its set of legitimate

identifiers, thereby keeping the bHEXA identifiers within four symbols and requiring

only 2-bits. For completeness, we also keep c-bit discriminators (c may be zero, if we do

not need them). Notice that instead of storing the complete bHEXA identifier, only

c+log2k bits worth of information is required to be stored; this information along with

the history of input symbols is sufficient to re-generate the complete bHEXA identifier

of any given node.

Continuing with our example, we construct a memory mapping graph (as described in

Chapter 3), which is shown in Figure 4.15. In the graph we use m=10, thus an extra

memory cell is available for the nine nodes. We also limit the bHEXA identifiers to

contain up to three history symbols and do not use discriminators. The edges of the

graph are determined by the hash function h, which is:

() k

k

i i ssish …×= ∑ = 11
 10mod identifierbHEXA for the

118

In this formula, the input symbols are assumed to take these numerical values: −=0,

a=1, b=2, c=3. In the same figure, a maximum matching in the memory mapping

graph is highlighted, which assigns a unique memory location to each node of the

automaton. According to this matching, the bHEXA identifiers of the nodes are chosen

as:

Nodes 1 2 3 4 5 6 7 8 9

bHEXA − a ab bb bba bc c ca b

Length 0 1 2 2 3 2 1 2 1

Notice again that we only store the length of bHEXA identifiers in the memory (and

discriminators, if they are used). During the graph traversal, the length and the history

of input symbols are sufficient to reconstruct the complete bHEXA identifier. Since the

length can be encoded with 2-bits in this case and there are no discriminators, the fast

–, a

–, a, ab

–

–, b, bb, abb

–, a, ba, bba

–, c, bc, abc

–, c

–, a, ca

–, b, ab, cab

0

1

2

3

4

5

6

7

8

h(–) = 0

h(–) = 0
h(a) = 1

h(–) = 0 h(a) = 1
h(ab) = 5

h(–) = 0 h(b) = 2
h(bb) = 6 h(abb) = 1

h(–) = 0 h(a) = 1
h(ba) = 4 h(bba) = 9

h(–) = 0 h(c) = 3
h(bc) = 8 h(abc) = 4

h(–) = 0
h(c) = 3

h(–) = 0 h(a) = 1
h(ca) = 4

h(–) = 0 h(b) = 2
h(ab) = 5 h(cab) = 9

Choices of
bHEXA identifiers

Choices of
memory locations

Bipartite graph and
a maximum matching

1

2

3

4

5

6

7

8

9

Nodes

9

Figure 4.15 Memory mapping graph, bipartite matching.

119

path will require total 7 bits per node: a match flag and 2-bits each to indicate the length

of the bHEXA identifiers of the three “next nodes” for the symbols a, b and c,

respectively. The resulting programming of the fast path memory is shown below:

Memory location node match flag a b c

0 1 0 01 00 01

1 2 0 01 10 01

2 9 1 01 10 01

3 7 0 10 00 01

4 8 0 01 01 01

5 3 0 01 10 10

6 4 0 11 00 01

7 -

8 6 1 10 00 01

9 5 1 01 10 01

Compared to a standard implementation (13-bits per node), bHEXA uses about half the

memory (7-bits per node). There may however be circumstances when a perfect

matching does not exist in the memory mapping graph. There are two possible

solutions to resolve this problem. The first solution is upward expansion, in which

additional memory cells are allocated; each new cell improves the likelihood of a larger

matching. The second solution is sideways expansion, in which an extra bit is added,

either to the discriminator of the bHEXA identifier or to its length, whichever leads to

larger matching. Notice that each such extra bit doubles the number of edges in the

memory mapping graph, which is likely to produce a significantly larger matching.

Unfortunately, sideways expansion also increases the memory rapidly. For example, if

the current bHEXA identifiers require 3-bits, then a single bit of sideways expansion

will increase the total memory by 33%.

A memory efficient way of finding one-to-one mapping should iterate between two

phases. In the first phase, upward expansion will be applied until the added memory

exceeds the memory needed by a single bit of sideways expansion. If one-to-one

mapping is not yet found then the second phase will begin, which will reset the previous

upward expansion and perform a bit of sideways expansion. If a one-to-one mapping is

120

still not found, the first phase is repeated (without resetting the sideways expansion).

This method is expected to find a one-to-one mapping while also minimizing the

memory.

4.5.3 Practical Considerations

The challenges that may appear during the implementation of bHEXA are likely to

depend primarily on the characteristics of the directed graph. The first challenge may

arise when the directed graph contains long paths, all of whose edges have identical

labels. Consider the Aho-Corasick automaton for l characters long string such as

aaaaa… There will be l+1 nodes in the automaton and the legitimate bHEXA

identifier for the ith node will be any such string (aaa…) of length less than i. In this

case, if we attempt to find a one-to-one mapping without using any discriminator then

the bHEXA identifier of any ith node will be i−1 characters long. Since there are l+1

nodes, the longest bHEXA identifier will contain l symbols and log2l bits will be

required to store its length. If we employ c discriminator bits then the longest bHEXA

identifiers can be reduced by a factor of 2c, nevertheless the total number of bits that

will be stored per bHEXA identifier will remain the same. Clearly, large l will undermine

the memory savings achieved by using bHEXA. While such strings are not common, we

would still like to decouple the performance of bHEXA from the characteristics of the

strings sets.

One way to tackle the problem is to allow the length bits to indicate superlinear

increments in bHEXA identifier length. For instance, if there are three length bits

available then they may be used to represent the bHEXA lengths of 0, 1, 2, 3, 5, 7, 12,

and 16, thereby covering a much larger range of bHEXA lengths. Of course, the exact

values that the length bits will represent will depend upon the strings database. A

second way to tackle the problem is to employ a small on-chip CAM to store those

nodes of the automaton that could not be mapped to a unique memory location due to

121

the limited number of length and discriminator bits. In our previous example, if l is 9,

and the bHEXA lengths are represented with 3-bits, then at least 2 nodes of the

automaton cannot be mapped to any unique memory location. These nodes can be

stored in the CAM and can be quickly looked up during parsing. We refer to the

fraction of total nodes that can not be mapped to unique memory location as the spill

fraction. In our experiments, we find that for real world string sets, the spill fractions

remains low, hence a small CAM will suffice.

4.5.4 Some Results on String Sets

We now report the results obtained from experiments in which we use bHEXA to

implement string based pattern matchers, in which we find that bHEXA representations

achieve between 2-5 fold reductions in the memory. We use string sets obtained from a

collection of sources: peptide protein signatures [Comprehensive Peptide Signature

Database], Bro signatures, and string components of the Cisco security signatures. We

have also used randomly generated signatures whose lengths were kept comparable to

the real world security signatures. These strings were implemented with Aho-Corasick

automata; in most experiments we did not use failure pointers as they reduce the

throughput. Without failure pointers, an automaton has 256 outgoing transitions per

node, and may require large amounts of memory. In order to cope up with such high

fan-out issue, we have considered the recently proposed bit-split version of Aho-

Corasick, wherein multiple state machines are used, each handling a subset of the 8-bits

in each input symbol. For example, one can use eight binary state machines, with each

machine looking at a single bit of the 8-bit input symbols, thereby reducing the total

number of per node transitions to 16.

First, we report the results on randomly generated sets of strings consisting of a total

64,887 ASCII characters. In Figure 4.16(a), we plot the spill fraction (number of

automaton nodes that could not be mapped to a memory location) as we vary the

122

memory over-provisioning. It is clear from the plot that it is difficult to achieve zero

spill without using discriminators. With a single bit of discriminator and less than 10%

memory over-provisioning, spill fraction becomes zero, even when the bHEXA lengths

are limited to 4. Thus, total 3-bits are needed in this case, to identify any given node:

one for its discriminator and two to indicate the length of its bHEXA identifier. This

represents more than five fold reduction in the memory when compared to a standard

implementation, which will require 16-bits to represent a node.

Next we report similar results for real world string sets. In Figure 4.16(b), we plot the

spill fraction for the set of protein strings, and the strings extracted from the Bro

signatures, and Cisco security signatures. We only report results of those bHEXA

configurations (number of discriminator bits and maximum bHEXA length) that keep

the spill fraction at an acceptably low value. For the Bro strings, about 10% memory

over-provisioning is needed in order to keep the spill fraction below 0.2%. The spill

level corresponds to 11 nodes which remain unmapped in the automaton consisting of

total 5,853 nodes. The bHEXA configuration in this case does not use any

discriminator and limits the length to 8, thus total of 3-bits are needed to identify any

given node. For the protein patterns, again a 10% memory over-provisioning is needed

in a configuration that uses 1-bit discriminator and up to 8 characters long bHEXA

identifiers. Thus, in this case, 4-bits are needed to represent a node.

In the Cisco string set containing total 622 strings, there was one string that consisted of

the \x04 ASCII symbol repeated 50 times, which creates up to 50 states with identical

bHEXA identifiers. This is precisely the issue that we have described in Section 4.5.3.

With restricted bHEXA length and limited discriminator bits, it is impossible to

uniquely identify each of the resulting 51 nodes. Consequently, in a configuration where

we employ 4-bits per bHEXA identifier, 35 nodes remain unmapped even if we

arbitrarily increase the memory over-provisioning (refer to third set of vertical columns

in Figure 4.16(b)). As we remove this string from the database, we were able to reduce

123

the spill fraction to 0.1% with no memory over-provisioning and for an identical

bHEXA configuration (last set of vertical columns in Figure 4.16(b)).

These results suggest that bHEXA based representations reduces the memory by

between 3 to 5 times, when compared to standard representations. In our final set of

experiments, we attempted to represent bit-split Aho-Corasick automaton with

bHEXA. We employed four state-machines, each handling two bits of the 8-bit input

character. To our surprise, we found that bit-split versions were more difficult to map

to the memory, and required longer discriminators and bHEXA identifiers, which

increases the number of bits per node. In spite of employing the techniques we have

discussed in Section 4.5.3 (e.g. using superlinear increase in the bHEXA length), we

generally require 5 bits to represent each node of a bit-split automaton. This represents

0

0.03

0.06

0.09

0.12

0 0.1 0.2 0.3 0.4 0.5

Memory over-provisioning

S
p

il
l

fr
a
c
ti

o
n

bHEXA length=4, no discriminator

bHEXA length=8, no discriminator

bHEXA length=4; 1-bit discriminator

0

0.01

0.02

0.03

0 0.1 0.2 0.3 0.4 0.5

Memory over-provisioning

S
p

il
l

fr
a
c
ti

o
n

Bro (bHEXA length=8, no discriminator)

Protein (bHEXA length=8; 1-bit discriminator)

Cisco622 (bHEXA length=8, 1-bit discriminator)

Cisco621 (bHEXA length=8, 1-bit discriminator)

0

0.002

0.004

0.006

0.008

0 0.1 0.2 0.3 0.4 0.5

Memory over-provisioning

S
p

il
l

fr
a
c
ti

o
n

Random (bHEXA length=8, 3-bit discriminator)

Protein (bHEXA length=8; 3-bit discriminator)

Bro (bHEXA length=8, 2-bit discriminator)

Cisco621 (bHEXA length=16, 2-bit discriminator)

Figure 4.16 Plotting spill fraction: a) Aho-Coroasick automaton for random strings sets, b) Aho-
Coroasick automaton for real world string sets, and c) random and real world strings with bit-split

version of Aho-Corasick.

124

approximately 2-3 fold reduction in memory as compared to a standard implementation.

The results are plotted in Figure 4.16(c).

4.5.5 Challenges with General Finite Automaton

Modern network security appliances use regular expressions matching and employ finite

automata to represent them. Since complex regular expressions generally lead to large

and complex automaton, it is important to reduce their memory footprint to enable an

on-chip implementation and high parsing speed. Therefore, we investigate if it is

possible to use some variant of bHEXA be to represent a general finite automata and

save memory. Unfortunately, our early analysis suggests that for the finite automata, it is

difficult to save memory by using bHEXA. The primary reason is the extensive use of

character classes in these regular expressions. We consider the following simple example

to illustrate this. Consider the simple regular expression [ab][ca][bc]; such expressions

are commonly used. The resulting automaton is shown below.

1 a,b 2 c,a 3 b,c 4

^c,a
^b,c

*^a,b

In this automaton, none of the nodes have all of its incoming paths labeled with unique

sequence of symbols. Thus, it is difficult to use bHEXA identifiers to identify them.

One may add new symbols in the alphabet, which will represent those character classes

that are present in the regular expressions, thereby enabling paths with unique

sequences of symbol. This however is likely to significantly expand the alphabet size,

which will significantly increase the number of outgoing transitions from every node2.

For instance, we find that, the regular expressions sets used in modern security

2
 Notice that in a DFA, at any given node, there is an outgoing transition for every symbol in the

alphabet.

125

appliance from Cisco Systems have several thousand different character classes. Other

sets of regular expressions in Snort and Bro exhibit similar characteristics. This is likely

to offset any memory reduction achieved with the bHEXA identifiers.

An orthogonal complication concerns the performance. With the expanded alphabet,

one may require additional memory lookups to map any given input symbol into the

alphabet symbol representing the appropriate character class. Such additional lookups

for every input symbol will adversely affect the parsing performance, and additional

memory bandwidth will be required to maintain a given level of parsing rate. Memory

bandwidth being more expensive than memory size, such trade-offs may not be

desirable (assuming that we were able to save some memory with bHEXA).

To conclude, it appears plausible to employ bHEXA for the general finite automata

used to represent regular expressions rules used in modern networking equipments.

However, we believe that it will not lead to significant memory saving due for complex

patterns, due to the added complexity in parsing and symbol resolution to the character

classes. Nevertheless, we leave further investigation of the issue for the future research.

126

Chapter 5

Packet Content Inspection II

In Chapter 4, we focused on algorithms and architectures to implement packet content

inspection functions in an ASIC setting. ASICs are custom tailored devices designed

specifically for a given function which results in an unparalleled efficiency and

performance. However, at low unit volumes, they are becoming unattractive as NRE

(Non-Recurring Engineering) costs are skyrocketing today, turnaround times are getting

longer and yield is a major challenge. Besides, ASICs lack in programmability and the

practice of extensive use of embedded memory keeps a design from reaping the benefits

of continuously growing density and declining per-bit cost in commodity off-chip

memory components. Consequently, network processors (NP) have emerged to provide

the required programmability while maintaining an acceptable level of performance.

Systems, where cost and economics are more important than raw performance, are

therefore increasingly using NPs as the platform of choice.

An NP is a software programmable device whose feature set is specifically customized

for network specific operations. A typical architecture consists of a dense array of

simple and efficient micro-processors connected to a number of specialized hardware

units, a limited number of embedded memory blocks, and external memory modules. A

variety of external memories are supported, and each processor supports multiple

hardware thread contexts to tolerate the potentially long memory access latencies. In

such setting, memory bandwidth is a precious resource, which often limits the

throughput; therefore, it becomes critical for any implementation to be thrifty in

memory bandwidth usage. We introduce two novel methods to efficiently implement

127

packet content inspection functions in such memory bandwidth constrained

environments.

Our first method is called Content Addressed Delayed input DFA (CD2FA), which provides

a compact representation of regular expressions yet requires equal amount of memory

bandwidth as a traditional uncompressed DFA for its execution. A CD2FA builds upon

D2FA and addresses successive states of D2FA using their content, rather than a

“content-less” identifier. This makes selected information available earlier in the state

traversal process, which makes it possible to avoid unnecessary memory accesses. We

demonstrate that such content-addressing can be effectively used to obtain automata

that are very compact and can achieve high throughput. Specifically, we show that

CD2FAs use as little as 10% of the space required by a conventional compressed DFA,

and match the throughput of an uncompressed DFA.

Our second solution is a novel machine called a History based Finite Automata (H-FA),

which can recognize complex regular expressions at a given parse speed using memory

bandwidth comparable to that of a DFA and CD2FA, but only a fraction of memory

space. In fact, the memory space reduction can be so dramatic that we find that the

addition of a small data cache (such as 4 KB) can significantly improve the packet

throughput by keeping high cache hit rate. We begin with the description of CD2FAs.

5.1 Introduction to CD2FAs

5.1.1 Content Addressing

In a conventional DFA implementation, states are identified by numbers and these

numbers are used to locate a table entry that contains information defining the given

state. Content-addressed D2FAs replace state identifiers with content labels that include

part of the information that would normally be stored in the table entry for the state.

128

The content labels can be used to skip past default transitions that would otherwise

need to be traversed before reaching a labeled transition that matches the current input

character. Using hashing, we can also use the content labels to locate the table entry for

the next state.

We illustrate the idea of content addressing with the example shown in Figure 5.1. This

figure shows three states of a D2FA, R, U and V. The heavy-weight edges in the figure

represent default transitions and R is the root of one of the trees defined by the default

transitions. State U has labeled transitions for characters c and d, in addition to its

default transition to R. State V has labeled transitions for characters a and b, in

addition to its default transition to U. The arrows coming in from the left represent

transitions from other states to states R, U and V. For each such predecessor state, we

store a content label that includes the information shown in the figure, in addition to

some auxiliary information that will be discussed later. The content label for transitions

entering state U is cd,R. This label tells us that state U has outgoing transitions labeled

by the characters c and d, and that its parent is R, which is the root of a default

transition tree. The content label for transitions entering state V is ab,cd,R. This tells

us that state V has outgoing transitions labeled by the characters a and b, and that its

parent (in the default transition tree) has outgoing transitions labeled by the characters c

and d, and that its parent’s parent is R, which is the root of a default transition tree.

R

c

d

a

b

all

ab,cd,R

cd,R

R find node R
at location R

V

U
find node U at
hash(c,d,R)

find node V at

hash(a,b,hash(c,d,R))

R

c

d

a

b

all

ab,cd,R

cd,R

R find node R
at location R

V

U
find node U at
hash(c,d,R)

find node V at

hash(a,b,hash(c,d,R))
Figure 5.1 Content-Addressing.

129

Suppose that the current state of the D2FA is one of the predecessors of state V and

that the current input character selects a content label for a transition to state V and

that the next input character is x. While V is the next state, since V has no labeled

transition for x, we would like to avoid visiting state V so that we can skip the

associated memory access. Similarly, we would like to avoid visiting state U, since it also

has no labeled transition for x. Assume that we have a hash function h for which

h(cd,R)=U and for which h(ab,U)=V. Given the content label ab,cd,R (which is

stored at the predecessor state), we can determine that neither our immediate next state

(V) nor its parent (U) has an outgoing transition for x. Hence, we can proceed directly

to R. If on the other hand, the next input character is c or d, then we can proceed

directly to U by computing h(cd,R). Similarly, if the next input character is a or b, we

can proceed directly to V by computing h(ab,h(cd,R)).

Summarizing, we associate a content label with every state in a D2FA. Each label

includes a character set for the state and each of its ancestors in the default transition

tree, plus a number identifying the state at the root of the tree. We augment the content

label with a bit string that indicates which of the states on the path from the given state

to the root of its tree are matching states for the automaton. In our examples, we use

underlining of the character set for a given state to denote that the state is a matching

state. So, if state U in our example matched an input pattern of interest, we would write

the content label for U as cd,R and the content label for V as ab,cd,R. Content labels

are stored at predecessor states, and hashing is used to map the labels to the next state

that we need to visit.

5.1.2 Complete Example

We now turn to a more complete example. Figure 5.2a shows a DFA that matches the

patterns a[aA]+b+, [aA]+c+, b+[aA]+, b+[cC] and dd+. Part b of the figure shows a

corresponding space reduction graph and part c shows a D2FA constructed using this

130

space reduction graph. The default transitions are shown as bold edges. Note that states

1 and 8 are roots of their default transition trees and that the longest sequence of

default transitions that can be followed without consuming an input character is 2. If we

use the D2FA to parse an input string, the number of memory accesses can be as large

as three times the number of characters in the input string. Consider a parse of the

string aAcba. Using the original DFA, we can write this in the form

956441 →→→→→ abcAa

1

4

5

8

9

6

a,A

b

c

b

a,A

b

c

a,A

b

c

b

a,A

a,A

2

b

d

7

c,C
a,A

b

a,A

b

d

1

4

5

8

9

6

2

7

6

5

6

5 7 6
7

7

7

5

8

7

5

c,C

6

a,A

5

7
d

From

states 4-9
3

d
a,A

b

3

8

5

7

6

7

1

4

5

8

9

6

a,A

b

b
c

a,A

b

c

2

b

d

7

c,C

d

From

state 8
3

d

C
to state 1

Figure 5.2 a) DFA recognizing patterns [aA]+b+, [aA]+c+, b+[aA]+, b+[cC], and dd+ over
alphabet {a, b, c, d, A, B, C, D} (transitions for characters not shown in the figure leads to state
1). b) Corresponding space reduction graph (only edges of weight greater than 4 are shown). c)
A set of default transition trees (tree diameter bounded to 4 edges) and the resulting D2FA.

131

Here, the underlined state numbers indicate matching states. Using the D2FA, we the

parse of the string will be

98156661441 →→→→→ abcAa

Here, we are showing the intermediate states traversed by the D2FA. To specify the

CD2FA, we first need to write the content labels for each of the states. These are listed

below.

Note that since states 3 and 7 have no labeled outgoing transitions in the D2FA, their

content labels include empty character sets that are indicated by dashes. The dash in the

content label for state 3 is underlined to indicate that state 3 is a matching state. The

complete representation of the CD2FA is shown below.

6. c: c,1

7.
8. a: cC,8

b: 8

c: –,1

d: 1

A: cC,8

B: 1

C: –,1

D: 1

9. c: c,1

C: 1

6. c,1

7. –,1

8. 8

9. cC,8

1. 1

2. d,1

3. –, d,1

4. b,c,1

5. b,8

1. a: b,c,1

b: b,8

c: 1

d: d,1

A: b,c,1

B: 1

C: 1

D: 1

2. d: –,d,1

3.
4. b: 8

5. b: b,8

132

Here, for each state, we list the content labels associated with the character for which

there is an outgoing labeled transition from the state. Note that only states 1 and 8 have

labeled outgoing transitions for every character and states 3 and 7 have no labeled

transitions.

Let’s use this representation to parse the input string aAcba. In state 1, we find that

the content label for the first input character (a) is b,c,1. This tells us that the next state is

h(b,h(c,1))=4, where h is an assumed hash function that maps content labels to the

original state numbers. Since state 4 has no defined transition for the next input

character (A), we proceed directly to state 1, skipping intermediate states h(b,h(c,1))=4

and h(c,1)=6. We are now ready to process A. We see that its content label is also b,c,1.

In this case however, the parent of the next state does have a defined transition for the

next character (c), so we proceed to that state, which we find by computing h(c,1)=6. In

state 6, we process character c using the content label c,1. Since the label indicates that

the next state h(c,1)=6 is a match state, we make note of the match, but since state 6 has

no labeled transition for the next input character (b), we proceed to state 1. Continuing

in this way produces the parse

1 461 46 61 58 9a A c b c→ → → → →

If we compare this parse with the parse for the D2FA, we see that the transitional states

are simply shifted to the left, reflecting the fact that the CD2FA skips past these states as

it processes each input character.

5.1.3 Details and Refinements

In our examples, we have assumed the existence of a hash function that we could use to

map content labels to state numbers. Since the numbers used to identify states are

arbitrary, any hash function that produces distinct state numbers for each content label

133

can be used. Note that hash values are only needed for those states that are not roots of

their default transition trees. The root states can simply be numbered sequentially and

since there are only a few such states; the number of bits needed to represent these

states can also be small.

There are some tricks that can be used to ensure uniqueness of the hash values

computed for each content label. Specifically, for each character set in a content label,

the order in which the characters are listed is arbitrary. Consequently, we can change the

order of the characters in order to avoid conflicting hash values. If content labels are

packed into words of fixed size, we can sometimes pad short label by repeating some

characters, thus changing the hash value without changing the label’s meaning. In some

cases it may be necessary to augment the hash values with additional bits to ensure

uniqueness. We refer to such extra bits as discriminators. As we report later, we have

found that very few discriminator bits are needed in practice.

To find the content label for the current input character, we need to know where it

appears in the list of content labels for the current state. States that are at the roots of

their default transition trees have content labels for every symbol in the alphabet, so we

can use simple indexing to find the appropriate label in this case. For states that are not

roots, we have content labels only for those characters for which there is a labeled

outgoing transition. The content label used to reach the state tells us which characters

the state has outgoing transitions for. If our next character is the i-th one in the list of

characters found in the content label at the predecessor state, then the next content

label we need to consult will be at position i in the list of content labels for the current

state. So, given the starting location of the list of content labels for the state, we can use

indexing to find the specific content label of interest, without having to scan past the

other content labels defined for the current state.

5.1.4 Memory Requirements of a CD2FA

134

The memory required for a CD2FA depends directly upon the D2FA from which it is

constructed and the size of the resulting content labels. If we let a(s) denote the number

of ancestors of state s in its default transition tree (including s) and c(s) denote the

number of characters for which s and its non-root ancestors have labeled transitions,

then we need at least () ()c s b a s r+ + bits to represent the content label for state s,

where b is the number of bits needed to represent a character and r is the number of

bits needed to represent the identifier for a root. In addition, to identify which

characters in the content label correspond to transitions from which ancestors of state s,

we can use an additional bit per character, giving ()(1) ()c s b a s r+ + + . Additional bits

may be needed for discriminators, which we ignore for now. Note that if we require that

content labels be packed into a fixed size word, then the depth of the default transition

trees will be limited by the word size, since both c(s) and a(s) get large for states that are

far from the roots of their trees.

If we allow the content labels to have variable lengths, then we can potentially reduce

the overall space requirement, since nodes close to the roots of their trees will have

smaller content labels. If the nodes with larger content labels have relatively few

incoming transitions, then the impact of these larger content labels on the overall

memory requirements will be limited. Of course, allowing variable length content labels

also means that we have to include length information in content labels, adding to the

space needed to represent each label. In our experimental results, we allow content

labels of two sizes: 32 bits and 64 bits. This adds approximately c(s) bits to each content

label (details in section 5.2), but does lead to a significant overall space savings.

This discussion makes it clear that the problem of constructing D2FAs that lead to small

CD2FA is non-trivial. As shown in Chapter 4, bounding the default paths to a small

constant in general leads to larger D2FAs than if we allow the depth to become large.

However, small depth D2FAs will have relatively small content labels. The use of

variable length content labels adds another dimension to the problem, since it makes it

desirable for states with many incoming transitions to have small content labels. Hence,

135

it makes sense to position these states close to the roots of their default transition trees.

Unfortunately, we don’t know in advance, which states will have large numbers of

incoming transitions, since the introduction of default transitions can dramatically

change the number of labeled transitions entering a state. In the next section, we focus

on a simple heuristic approach, which we have found produces good results

experimentally.

5.2 Construction of Good D2FAs

In this section, we attempt to construct D2FAs, which lead to compact CD2FAs. We

need to ensure the size of content labels is bounded so that they can be fetched in a

single memory access (in our experiments, we limit them to 64-bits), hence we only

consider edges of the space reduction graph, whose weights are sufficiently large (in our

case larger than 252). Our general objective is to create compact CD2FAs and not

compact D2FAs (which can be created by solving a maximum weight spanning tree

problem as described in Chapter 4), therefore we take proper care that default paths do

not grow too deep and that content labels do not become too big.

To meet these objectives, we have developed a simple yet effective heuristic called CRO,

which runs in three phases, called creation, reduction and optimization. The creation phase

creates a set of initial default transition trees whose default paths are limited to one

default transition. The reduction phase reduces the number of trees by iteratively

dissolving and merging trees, while maintaining the default length bound of one transition.

The optimization phase attempts to reduce the total space requirement further, by

allowing some default paths to grow longer than just one default transition.

5.2.1 Creation Phase

136

During the creation phase, a forest on the space reduction graph which consists of trees

whose diameter is limited to 2. The algorithm is based on Kruskal’s algorithm [Kruskal

1956], thus it examines all edges in the space reduction graph in a decreasing order of

weight. An edge is chosen to be part of the forest if adding the edge to the forest

neither creates a cycle nor violates the diameter bound of two. In order to achieve

maximum reduction in this phase, the selections made by the algorithm also aims to

ensure that those states, where there is higher number of incoming labeled transitions,

are more likely to become tree roots. Therefore, an in-degree, equal to the total number of

incoming labeled transitions to a state, is assigned to all states. As the algorithm

proceeds, from among all unexamined edges of equal weights, the ones, whose joining

vertices have higher cumulative in-degree are examined earlier than those edges whose

joining vertices have lower in-degree.

1

4

5

8

9

6

2

7

6

5

6

5 7 6 7

7

7

5

8

7

5

6
5

7

3

8

5

7

6

7

1

4

5

8

9

6

2

7

6

5

6

5 7 6
7

7

7

5

8

7

5

6
5

7

3

8

5

7

6

7

1

4

5

8

9

6

2

7

6

5

6

5 7 6 7

7

7

5

8

7

5

6
5

7

3

8

5

7

6

7

Figure 5.3 a) A set of default transition trees created by Kruskal’s algorithm with tree diameter
bounded to 2. b) After dissolving tree 2-3 and joining its vertices to root vertex 1. c) After

dissolving tree 9-4-6 and joining its vertices to root vertices 8, 1 and 1.

137

In Figure 5.3a, we illustrate the outcome of the creation phase, when applied to the

space reduction graph shown in Figure 5.2b. Four default transition trees form, three of

which contain a single edge. In general, the creation phase forms a large number of trees

which contain a single edge because, once such a tree forms, it can not be linked to

other trees containing one or more edges (because diameter bound of 2). Consequently,

the weight of the forest can be increased further by reducing the number of trees. For

instance, if, instead of selecting the edge 2-3 in Figure 5.3a, we select edges 1-2 and 1-3,

then the weight can be increased by 6, while maintaining the diameter bound.

Therefore, the creation phase is followed by a reduction phase, which reduces the

number of trees.

5.2.2 Reduction Phase

During the reduction phase, the number of trees is reduced in an attempt to increase the

weight of the spanning forest. Trees in the current forest are repeatedly examined in an

order of decreasing weight (sum of weight of all edges in the tree). For any tree under

examination, it is first dissolved and all its edges are removed from the forest.

Afterwards, each vertex u of the dissolved tree is joined to the root vertex r of one of

the tree among all trees in the forest, for which edge (u, r) has the highest weight. If the

result of dissolving and reconnecting the vertices does not lead to an increase in the

weight of the forest then the dissolved tree is restored. The reduction phase stops when

the forest remains unaffected after a pass in which all trees are examined.

The outcome of the reduction phase is illustrated in Figure 5.3b and 3c. Initially, tree 5-8

is examined, however it is not dissolved because dissolving it and connecting its vertices

to one of the tree roots doesn’t increase the weight of the forest. Afterwards, tree 2-3 is

dissolved and vertices 2 and 3 are joined to the root vertex 1. This increases the weight

of the forest by 6. Thereafter, tree 4-6-9 is dissolved, and its vertices 4, 6, and 9 are

138

joined to root vertices 8, 1, and 1 respectively. The weight again increases by 6. None of

the two remaining trees can be dissolved further, therefore the reduction phase stops.

The reduction phase, in this instance, has reduced the number of trees from 4 to 2 and

increased the weight of the forest from 36 to 48. Thus, the total number of labeled

transitions in the D2FA has been reduced from 36 to 24. In large automata, reduction

phase is much more effective in reducing the number of default transition trees and

therefore the total number labeled transitions in a D2FA.

The CD2FA synthesized immediately after the reduction phase is generally compact as i)

there is a reduced number of labeled transitions in the D2FA and ii) all default paths are

limited to a single default transition leading to compact content labels. However, even

more compact CD2FA can be created by allowing longer default paths for certain states,

specifically the states where not many labeled transitions enter. The optimization phase

carries out these optimizations, where the diameter of the certain parts of the trees is

expanded.

5.2.3 Optimization Phase

Prior to the optimization phase, a CD2FA is constructed and content labels are

associated with all labeled transitions. At this point, some states may have many labeled

outgoing transitions because their default paths are limited to a single default transition.

We may reduce the number of labeled transitions at these states by allowing them to

have longer default paths. This, however, may increase the size of the content label of

transitions entering those states, as labels associated with those transitions will store all

characters for which transitions are defined at all states along the default path.

Therefore, it is important to selectively increase the default path of only those states

which results in an overall space reduction.

139

To accomplish this, the optimization phase proceeds with an assignment of in-degree

(size of content label of transitions entering into the state) and out-degree (size content

label of transitions leaving the state) to all states. The eligible candidates for the default

path expansion are those states which have high out-degree and low in-degree. Therefore,

states are repeatedly examined in decreasing order of their (out-degree – in-degree) values.

For a state under examination, a new default state from among all states, whose default

path contains a single default transition, is evaluated. If one such default state results in

an overall reduction in the memory, then it becomes the new default transition of the

examined state. The time needed to examine a state is O(n), thus the time to once

examine all n states is O(n2).

After all states are examined once, the default paths contain up to two default

transitions. The procedure is repeated until a pass doesn’t result in any reduction in the

total memory. Note that during a pass, default paths grow by at most one default

transition. In practice, we found that the algorithm stops after 1-2 passes, thus the

resulting default paths contain at most 2-3 default transitions and the asymptotic run

time of optimization phase remains O(n2).

5.3 Optimizing Content Labels

In this section, we present optimizations to compactly encode CD2FA content labels.

We begin these with an attempt to reduce the number of symbols in the alphabet.

5.3.1 Alphabet Reduction

A CD2FA consists of root states, which do not have a default transition, and non-root

states, which have a valid default transition. Even though, root states have labeled

transitions defined for all characters in the alphabet, a large fraction of these lead to the

same next state. We refer to the most frequently occurring “next state” from any given

140

state as its common transition. If we let A denote the original alphabet, let C(s) denote the

characters, for which common transitions are present at a root state s, then its alphabet

can be reduced to A-C(s), if we explicitly store the common transition of the state. In

general, alphabet of the root states can be reduced to U statesroot
)(

∈
−

s
sCA . For example,

root states 1 and 8 of the D2FA in Figure 5.2c, have common transitions (over

characters B and D) leading to state 1. Note that these transitions are not explicitly

shown in the figure, assuming that all transitions which are not explicitly shown in the

figure leads to state 1. Once we remove the characters for these common transitions

from the alphabet, it can be reduced to {a,b,c,d,A,C}.

It turns out that in all CD2FAs we consider in our experiments, the reduced alphabet of

the root states contains less than 128 characters. Moreover, even though there are up to

a thousand root states, there are less than 64 distinct common transitions at these states;

thus, we only need a 64 entry table to store the content labels associated with the

common transitions. We also need to associate each root to one of the table entries,

which can be done efficiently by appropriately numbering the root states. For instance if

all root states with identical common transition are assigned a series of contiguous

integers, then we only need to associate the first and last integer value to the common

transition.

The second step is to reduce the alphabet of non-root states, which have a small

number of labeled transitions and a default transition. If L(s) is the set of characters for

which labeled transitions are present at a non-root state s, then the alphabet of non-root

states can become U statesroot
)(

−∈nons
sL . Using this procedure, alphabet of the non-root

states of the D2FA shown in Figure 5.2c can be reduced to {b,c,d,C}.

If we take the union of the reduced alphabet of root and non-root states, the resulting

set (referred as Ar) still contains much fewer characters than the ASCII alphabet, thus

characters of the reduced alphabet may require fewer bits to represent. For instance we

were able to represent them by 7-bits in our experiments, as Ar contained between 64

141

and 128 characters. In order to translate a character from ASCII alphabet to the reduced

alphabet, an alphabet translation table is needed, which contains 256 entries and is indexed

by the ASCII character. Entries, which correspond to the characters in the reduced

alphabet, contain a 7-bit translated character, while entries, for which a character is not

present in the reduced alphabet, contain a special symbol. This table requires less than

256 bytes and therefore can be easily stored either in the data cache or in the instruction

cache via a function call.

5.3.2 Optimizing Content Label of Non-root States

The content labels of non-root states may have variable lengths, which depend upon the

number of labeled transitions leaving the state and its non-root predecessors. At

present, we intend to restrict the content labels to two words (8-bytes), so that they can

be fetched in a single memory access3. Thus, a content label may require 3 additional

bits to store its length. We can perform an optimization by considering that memories

often allow addressing at 4-byte boundaries; in other words, memory is organized as 4-

byte words, in which case content labels will either be one or two words long, and a

single bit will be sufficient to store its length.

When content labels have variable length, a complication may arise, as we need to

know, where the content label for an input character appears in the list of content labels

for the current state. In order to appropriately index this list, with the content label of

each state, we need to store the length of the content labels of the states where its

labeled transition enters. Thus, the content label of a state s with c(s) labeled transitions

requires c(s) additional bits. As we have already mentioned, we need two additional bits

per content label in the list, one to indicate whether it associates with a match and

another to indicate the depth of the associated next state, in its default transition tree.

3
 These schemes can be easily extended to memory technologies, where minimum access size is

different from 8-bytes.

142

Consider an example, where we seek to store the list of content labels for state 9 of the

CD2FA in Figure 5.2c. State 9 has 2 labeled transitions, one leading to state 1 on input C

and another leading to state 6 on input c. If we assume that that content label of the first

transition is 1 word long, while the second is 2 words, then the content label of state 9

(more specifically of labeled transitions entering state 9), will be 8,
1

0

2

1 Cc ; here we indicate

length of the content label as a superscript and the depth (in its default transition tree)

of the next state as a subscript. The resulting memory structure is shown in Figure 5.4;

state 9 requires total 3 memory words at an address determined by applying a hash on

its content label (we discuss more about hashing in section 6).

With an ASCII alphabet, (8-bit characters), the content label for a state will require 11-

bits per labeled transition, plus log2t bits to represent the root of its default transition

tree (t is the number of default transition trees). In our experiments, we reduce the

alphabet to fewer than 128 characters, thus, 7-bits represent a character, which enables

us to use only 10-bits per labeled transition. Also there are fewer than a thousand root

states, thus 10-bits are enough to represent them. Therefore, the content label of a state,

which has up to 2 labeled transitions, fits in a 4-byte word, while states with between 3

and 5 labeled transitions require two words. Note that, we only allow a state to have up

to five labeled transitions, thus, we only consider those edges of the space reduction

graph, whose weight is higher than 251.

8,
1

0

2

1 Cccontent label of

state 9: 2 words

C

1content label of

state 1: 1 word

Aa,

From state 8
1,

2

1c
content label of

state 6: 2 words

c

c

hash (c, C, 8)

Memory

1,
2

1cc

C 1

Figure 5.4 Storing list of content labels for state 9 in memory.

143

5.3.3 Numbering Root States

With only log2t bits to represent root states, transitions leaving root states are stored in

a two dimensional table with t rows and |Ar| columns. The table is indexed using the

root state number as row index and the input character as the column index. Each cell

of the table is two words long (even though content label of many transitions may be

just 1 word long); thus a root state requires 2|Ar| memory words.

5.4 Memory Packing

When we introduced CD2FA, we assumed that there exists a hash function that maps

content labels to the required state numbers. In this section, we present algorithms to

devise such mapping. While associating state numbers to content labels, we are

interested in not only associating unique numbers but also such numbers that can be

directly used as an index into the memory. Thus, we would like to associate a unique

memory address to the content label of each state, so that the list of content labels for

all labeled transitions leaving the state is stored at that address. This will truly enable us

to require a single memory access per input character. Throughout this section, we refer

to the state number as the memory address where it is stored and storing a state means

storing the content labels for its labeled transitions. We focus on storing non-root

states, as root states are simply stored as a two dimensional table.

The size of the list of content labels for a state depends both upon the number of

labeled transitions leaving the state as well as length of their content labels (1 or 2

words). Traditional table compression schemes [Hopcroft, and Ullman 1979] may be

applied to associate a unique address to each state’s content label, however these

schemes are known to be NP-hard, and they also incur sizeable overheads as they

144

require i) additional pointer per state, and ii) a marker for every content label. They also

require an additional memory access per character, which may reduce the throughput.

We present a novel method which enables, i) an optimal memory utilization with zero

space overhead, and ii) single memory access per input character. It is based on classical

bipartite graph matching, with running time of O(n3/2), where n is the number of states.

Our method proceeds by forming groups of states so that states with identical memory

requirement belong to the same group. Since we allow a non-root state to have at most

5 labeled transitions, the memory requirement of a non-root state can vary from one

word to up to ten words; hence there can be up to 10 groups of states. Afterwards,

memory is partitioned in 10 regions and states of each group are stored in different

regions. Note that, in a CD2FA, states can be easily mapped to their memory regions as

the memory requirements of a state can be directly inferred from the states’ content

label.

Afterwards, our algorithm handles a group at a time and, as described below, stores its

states into its memory region.

5.4.1 Packing Problem Formulation

Let there are n states in a group and each state requires s memory words to store its

labeled outgoing transitions. Clearly, the group’s memory region must contain at least ns

words. We consider a slight memory over-provisioning, so the memory region consists

of ms words (where m = n+∆, and ∆/n is the over-provisioning). The content labels of

all states of the group needs to be uniquely mapped to one of the m memory locations

(which become the content labels’ state number). We apply a hash function (with

codomain = [1, m]) to the content labels to compute this mapping. As traditional

hashing is subject to collisions, multiple content labels may be mapped to a single state

number. Collision resolution policies can be applied however they are likely to degrade

145

the performance by requiring additional memory accesses. They will also incur space

overheads by unnecessarily storing the content labels (as the hash keys).

Our algorithm eliminates both these deficiencies by enabling a collision free hashing, i.e.

content labels are mapped to unique state number. This is achieved by exploiting the

possibility of renaming a content label, without changing its meaning, thus effectively

changing its hash value. There are three ways to rename content labels without changing

their meanings. a) The simplest way is to modify the value of discriminator. b) An

alternative is to change the order in which characters appear in the content label; thus a

content label with t characters can have t ! different possible names. c) In fixed size word

length restricted content labels, yet another possibility is to pad short label by repeating

some characters already present in the content label, or by modifying the unused bits.

With these facilities to modify the name of a content label without changing its

meaning, a naïve mapping may arbitrarily rename them whenever a collision occurs. We

develop a more systematic approach to select the appropriate names.

Our approach progresses by evaluating all possible names (called candidate names) that

can be assigned to a content label by employing the three mentioned methods. A hash is

then applied to the candidate names, and the result is a set of candidate state numbers

for the content label. Once all candidate state numbers are known, a bipartite graph G =

(V1+V2, E) is constructed, where vertex set V1 corresponds to the n content labels and

V2 the m state numbers. Edge set E contains all edges (u, v) such that u ∈ V1, v ∈ V2

and v is a candidate state number for u.

After constructing the bipartite graph G, the next step is to seek a perfect matching, i.e.

match each content label to a unique state number. It is likely that no perfect matching

exists. A maximum matching M in G, which is the largest set of pairwise non-adjacent

edges, may not contain n edges, in which case some content labels will not be assigned

any state number. However using theoretical analysis, it has been shown that, when the

number of candidate names per content label is Ω(log n), then a perfect matching will

146

exist with high probability, even if ∆ = 0. As ∆ increases slightly, probability of perfect

matching grows very quickly, which guarantees that little over-provisioning will always

result in a perfect matching.

Once a perfect matching is found, for each content label, we fix its name to the one, for

which its state number corresponds to a matching edge. These content labels are

guaranteed to enable a collision free hashing during lookup.

5.4.2 An Illustrating Example

Before presenting the analysis of our memory packing, we consider a simple example to

illustrate the basic ideas. We consider the CD2FA shown in Figure 2c. There are 9 states,

and the content labels of labeled transitions entering these states are shown in Figure

5.5a. There are 7 non-root states. States 3 and 7 do not require any memory, as they do

not have any labeled outgoing transition (their content labels, however, may be stored at

other states, from where a labeled transition enters these states). State 9 is the only state

in its group, thus its packing is trivial. States 2, 4, 5 and 6, as shown in Figure 5.5b, each

requires one word; therefore these are packed in a memory region containing 4 or more

words.

First, we consider no memory over-provisioning (m = n = 4), and a single bit

discriminator. We limit ourselves to using discriminators to rename content labels and

do not use other methods. Thus, there are two candidate names for each state’s content

label, and the candidate state numbers by applying hash over these are shown in Figure

5.5c. The resulting bipartite graph is shown in Figure 5.5d; there are two perfect

matching in this graph, one containing edges, 4-2, 2-1, 5-4 and 6-3 and another

containing edges, 4-4, 2-2, 5-1 and 6-3. Either of these will suffice in mapping unique

state numbers to the content labels. Note that, in this case, we have not used memory

over-provisioning; indeed, we find that, we can generally avoid memory over-

147

provisioning and also avoid discriminators because the other two methods of renaming

content labels creates enough edges in the bipartite graph so that a perfect matching

most likely exists.

5.4.3 Analysis of the Packing Problem

The possibility of an optimal packing depends on the likelihood of finding a perfect

matching on the above bipartite graph. A necessary and sufficient condition that a

perfect matching exists is given by Hall’s Matching Theorem [Hall 1936].

State
Content labels of

transitions entering
the state

size of
content

label

1 1 1

2 d, 1 1

3 Ζ, d, 1 1

4 b, c, 1 1

5 b, 8 1

6 c, 1 1

7 Ζ, 1 1

8 8 1

9 cC, 8 1

4

5

8

6

b

c

2

b

3

d

8

c, 1

b, 8

Ζ, d, 1

4

5

2

6

1

3

2

4

State hash (discriminator, content label)

4
 hash (0, b, c, 1) = 2

 hash (1, b, c, 1) = 4

2
 hash (0, d, 1) = 1

 hash (1, d, 1) = 2

5
 hash (0, b, 8) = 1

 hash (1, b, 8) = 4

6
 hash (0, c, 1) = 2

 hash (1, c, 1) = 3

Content State
 label number

b, c, 1

d, 1

Using 1-bit discriminator in a content label

Figure 5.5 a) Content labels of states of the CD2FA shown in Figure 2. b) Non-root states requiring one

word to store the content labels associated with their labeled transitions. c) Candidate content labels (using

1-bit discriminators) and the resulting candidate state numbers. d) Corresponding bipartite graph.

148

Hall’s Matching Theorem: Given a set of n items, and a set of identifiers for each

item (called its candidate set), each item can be assigned a unique identifier from its

candidate set if, and only if, for every k ∈ [1, n], the union of candidate sets of any k

items, contains at least k identifiers.

Thus, we have to show that, for every k content labels, the union of their candidate

state numbers contains k or more distinct numbers. For k=1, this is obvious, as the

candidate set of any content label is non-empty. For k>1, Hall’s theorem can be

unsatisfied. This is due to the use of hashing in determining the state numbers. Even

though a content label can have many (say l) names, its candidate set may still contain a

single state number, due to collisions. In general, k content labels will have a total of kl

random state numbers in the union of their candidate set. Thus, in order to compute the

likelihood of a perfect matching, we compute the probability with which a set of kl

randomly chosen numbers ∈ [1, m] contains k or more distinct numbers.

The problem of finding perfect matchings in such bipartite graphs is well studied. In

[Motwani 1994], author shows that a perfect matching in a symmetric bipartite graph

with n left and right vertices and with random edges, exists with high probability when

the number of edges are O(n log n). In fact, this threshold is sharp, which means that the

probability of perfect matching increases very quickly, as we add slightly more edges

after threshold. In an asymmetric case, (when m > n), [Fotakis, et al. 2003] shows that

the probability of a perfect matching again increases quickly, as m is greater than n. For

instance, when m/n = 1.01, (implies 1% memory over-provisioning), a perfect matching

exists with high probability, if there are more than 7n edges in the bipartite graph.

With these results we can conclude that if we have the flexibility to assign O(log n)

different names to each content label, then we will most likely find a perfect matching

without any memory over-provisioning. O(log n) corresponds to approximately 16

choices of names for each content label in a 64K state CD2FA; this can be easily

achieved even without using discriminators. As expected, in our experiments, we found

149

a perfect matching in all CD2FAs without using memory over-provisioning or

employing the discriminators.

5.5 Experimental Evaluation of CD2FA

In order to evaluate the effectiveness of a CD2FA, we perform experiments using the

same datasets that we used in our evaluation of D2FA (described in Chapter 4). The

properties of the representative regular expression groups drawn from this dataset are

summarized in Table 5.1.

We applied CRO algorithm on these regular expression groups to create CD2FAs. In

Table 5.2 and 5.3, we report the properties of the original DFA and the outcome of the

CD2FA construction algorithm after every phase; we report the number of trees in the

CD2FA, total number of labeled transitions, and memory needed by the CD2FA. We

also report the size of the reduced alphabet. While reduction phase is most effective in

reducing memory, alphabet reduction also reduces memory by nearly two times. It is

clear that, memory reduction achieved by CD2FA, constructed from the CRO

algorithm, is between 2.5 to 20 times, when compared to a table compressed DFA. If

we compare CD2FA to uncompressed DFA (which is a fair comparison because a

Table 5.1 Our representative regular expression groups.

Source # of

regular

expressio

ns

Avg. ASCII

length of

expressions

% expressions

using

wildcards (*,

+, ?)

% expressions

length

restrictions

{,k,+}

Cisco 590 36.5 5.42 1.13

Cisco 103 58.7 11.65 7.92

Cisco 7 143.0 100 14.23

Linux 56 64.1 53.57 0

Linux 10 80.1 70 0

Snort 11 43.7 100 9.09

Bro 648 23.6 0 0

150

CD2FA matches an uncompressed DFA in throughput), the memory space reductions

are much higher, between 5 to 60 times.

While CD2FAs match uncompressed DFAs in terms of throughput, in a practical

system with an on-chip cache, a CD2FA may surpass a DFA by achieving higher cache

hits due to its smaller memory footprint. In Figure 5.6, we report the throughput results,

Table 5.2 Properties of the original DFA from out dataset.

Original DFA

Memory (MB) Dataset # of

states

distinct

transition

s
No

compress

ion

With table

compression

Cisco590 17,713 1,537,238 9.07 6.23

Cisco103 21,050 1,236,587 10.77 9.56

Cisco7 4,260 312,082 2.18 1.14

Linux56 13,953 590,917 7.14 3.62

Linux10 13,003 962,299 6.65 3.35

Snort11 37,167 441,414 19.03 3.55

Bro648 6,216 149,002 3.18 1.26

Table 5.3 CD

2
FA constructed after each phase of the CRO algorithm. Last column is the

ratio of memory size of a CD2FA and that of a table compressed DFA (DFATC)

CD2FA

After creation phase After reduction phase After optimization phase and alphabet

reduction

of trees # of

transitions

Memory

(MB)

of trees # of

transitions

Memory

(MB)

of trees # of

transitions

Memory

(MB)

Alphabet

size

4,227 1,099,809 8.87 243 117,743 0.80 243 62,043 0.39 98

4,617 1,205,978 9.72 684 253,239 1.87 684 122,679 0.86 106

838 220,705 1.76 194 59,077 0.44 194 32,842 0.23 126

1,741 459,215 3.73 266 156,485 1.17 266 85,444 0.61 123

3,361 870,623 7.27 994 382,464 3.01 994 183,237 1.48 118

3,024 806,790 6.31 257 188,913 1.28 257 65,629 0.36 37

370 100,341 0.77 24 15,183 0.08 24 9,779 0.05 83

151

where we have performed a trace driven cache based memory model simulation using

Dinero IV simulator [Hill, and Elder 1998]. In order to create near worst-case

conditions for a cache, the input data stream contained a high concentration of

matching patterns (around 10% matches), which resulted in very low spatial locality in

automata traversal. Even under these conditions, we found that cache hit rates were

moderately good (25-50%), enough to improve the throughput. Hit rates of CD2FA

were noticeably higher (>60%) as it had much smaller memory footprint. Hence its

throughput is also much higher. Note that the throughput of a table compressed DFA

is much lower as it requires more than one memory access per input character.

5.6 H-FA: Compact yet Fast Machines

In this section, we propose a novel machine that deals with the problem of DFA state

explosion in a unique way. State explosion in a DFA occurs because the DFA states

must encode partial match information for many constituent patterns. The regular

expressions that are typically used in networking comprise simple patterns with one or

many closures over characters classes embedded in between (e.g. abc.*cde or ab[a-

16-bit wide, 250MHz DDR RLDRAM (access size 8B)

0

1

2

3

4

5

DFA-TC DFA CD2FA

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

no cache

1 KB, 1-way, 8B blocks, Dcache

4 KB, 1-way, 8B blocks, Dcache

Figure 5.6 Throughput results on Cisco rules, without and with data cache. Table compressed DFA (DFA-

TC), uncompressed DFA and CD2FA are considered and the Input data stream results in a very high

matching rate (~10%).

152

z]*ef). The prefix portion in these patterns can be matched with a stream of suitable

characters and the subsequent characters can be consumed without moving beyond the

closure. These characters can begin to match either the same or some other reg-ex, and

such situations of multiple partial matches have to be followed. In fact, every

combination of multiple partial matches has to be followed. A DFA represents each

such combination with a separate state due to its inability to remember anything other

than its current state of execution. With multiple closures, the number of combinations

of the partial matches can be exponential, thus the number of DFA states can also

explode exponentially.

An intuitive solution to avoid such exponential explosions is to construct a machine,

which can remember more information than just a single state of execution. NFAs fall

in this genre; they are able to remember multiple execution states, thus they avoid state

explosion. NFAs, however, are slow; they may require O(n2) state traversals to consume

a character. In order to preserve the fast execution, we would like to ensure that the

machine maintains a single state of execution. One way to enable a single execution

state and yet avoid the memory blowup that normally accompanies state explosion, is to

equip the machine with a small and fast auxiliary data which we call history, that registers

the key events which occurs during the parse history, such as encountering a closure.

Recall that the state explosion occurs because parsing get stuck at a single or multiple

closures; thus if the history buffer registers these events then the automaton may avoid

the need to explicitly represent these states in the lookup table. We call this class of

Control FA

Auxiliary data

conditionsactions

Input characters match indications

Figure 5.7 History based Finite Automaton.

153

machines History based Finite Automaton (H-FA). It is illustrated in Figure 5.7. Overall

state of the HFA includes state of the control DFA and the values of the history data.

The execution of H-FA is augmented with the conditions within the history buffer. The

control automaton is similar to a traditional DFA and consists of a set of states and

transitions. Multiple transitions on a single character may leave from a state (like in a

NFA), however, only one of these transitions is taken during the execution, which is

determined by the contents of the history buffer. Thus, certain transitions in an H-FA

have an associated condition. The contents of the history buffer may be updated during

the machine execution. The challenge is deciding what to place in the auxiliary data. We

want a small amount of data stored in the history buffer as well as a small number of

distinct conditions and actions, such that the control automaton does not explode in the

number of states.

Fortunately there is direct connection between the size of an H-FA control automaton

(number of states and transitions) and the partial matches in the regular expressions

pattern that are registered in the history buffer. If we judiciously choose these partial

matches then the H-FA states can be limited. The next obvious questions are: i) how to

determine these key partial matches? ii) Having determined these partial matches, how

to construct the automaton? iii) How to execute the automaton and update the history

buffer? We now proceed with comprehensive description of H-FA where we attempt to

answer these questions.

5.6.1 Motivating Example

We introduce the construction and executing of H-FA with a simple example. Consider

two reg-ex patterns listed below:

r1 = .
*ab[^a]*c; r2 = .

*def;

154

These patterns create a NFA with 7 states, which is shown below:

1 2 3b c

^a

4 5 6e f

0

d

a
*

NFA: ab[^a]*c; def

Let us examine the corresponding DFA, which is shown below (some transitions are

omitted from the figure to keep it readable; missing transitions usually lead to state 0):

0

0,4

d

0,1

a

0,2b

a

a
d

0,5e

0,2,4

d

a

e

0, 3c

d 0,2,5 f 0,2,6

0, 6f

a

d

d

[^ad]
c c c

The DFA has 10 states; each DFA state corresponds to a subset of NFA state numbers,

as shown above. There is a small blowup in the number of states, which occurs due to

the presence of the Kleene closure [^a]* in the expression r1. Once the parsing reaches

the Kleene closure (NFA state 2), subsequent input characters can begin to match the

expression r2, hence the DFA requires three additional states (0,2,4), (0,2,5) and (0,2,6)

to follow this multiple match. There is a subtle difference between these states and the

states (0,4), (0,5) and (0,6), which corresponds to the matching of the reg-ex r2 alone:

DFA states (0,2,4), (0,2,5) and (0,2,6) comprise the same subset of the NFA states as the

DFA states (0,4), (0,5) and (0,6) plus they also contain the NFA state 2 (meaning that

NFA state 2 is also active).

155

In general, those NFA states which represent a Kleene closure appear in several DFA

states. The situation becomes more serious when there are multiple reg-exes containing

closures. If a NFA consists of n states, of which k states represents closures, then

during the parsing of the NFA, several permutations of these closure states can become

active; 2k permutations are possible in the worst case. Thus the corresponding DFA,

each of whose states will be a set of the active NFA states, may require total n2k states.

Such an exponential explosion clearly occurs because the DFA needs to remember that

it has reached these closure NFA states during the parsing. Intuitively, the simplest way

to avoid the explosion is to equip the DFA to remember those closures which have

been reached during the parsing. In the above example, if the machine can maintain an

additional flag which indicates if the NFA state 2 has been reached or not, then the total

number of DFA states can be reduced. One such machine is shown below:

0

0,4

d

0,1

a

d

0,5
e

0, 3

d

0, 6f

a

d

d

b, flag<=1

a, flag<=0

c,if flag=1, flag<=0

a, flag<=0

c, flag=0

flag

This machine makes transitions like a DFA; is addition it maintains a flag, which is

either set or reset (indicated by <=1, and <=0 in the figure) when certain transitions are

taken. For instance transition on character a from state (0) to state (0,1) resets the flag,

while transition on character b from state (0,1) to state (0) sets the flag. Some transitions

also have an associated condition (flag is set or reset); these transitions are taken only

when the condition is met. For instance the transition on character c from state (0) leads

to state (0,3) if the flag is set, else it leads to state (0). This machine will accept the same

156

language which is accepted by our original NFA, however unlike the NFA, this machine

will make only one state traversal for an input character. Consider the parse of the string

“cdabc” starting at state (0), and with the flag reset.

() () () () () ()

 flagset flagreset

3,001,04,000

set is flag because reset is flag because

↑↑
→→→→→ cbadc

In the beginning the flag is reset; consequently the machine makes a move from state

(0) to state (0) on the input character c. On the other hand, when the last input

character c arrives, the machine makes a move from state (0) to state (0,3) because the

flag is set this time. Since the state (0,3) is an accepting state, the string is accepted by

the machine.

Such a machine can be easily extended to multiple flags; each flag indicating a Kleene

closure. The transitions will be made depending upon the state of all flags and the flags

will be updated during certain transitions. As illustrated by the above example,

augmenting an automaton with these flags can avoid state explosion. However, we need

a more systematic way to construct these H-FAs, which we describe now.

5.6.2 Formal Description of H-FA

History based Finite Automata (H-FA) consists of an automaton and a set called history

buffer. The transition of the automaton has i) an associated condition based upon the

contents of the history, and ii) an associated action which either inserts into the history set,

removes from it, or both. H-FA can thus be represented by a 6-tuple M = (Q, q0, Σ, A,

δ, H), where Q is the set of states, q0 is the start state, Σ is the alphabet, A is the set of

accepting states, δ is the transition function, and H is the history set. The transition

157

function δ takes in a character, a state, and a history value as its input and returns a new

state and a new history value.

δ : Q × Σ × H → Q × H

H-FAs can be synthesized either directly from a NFA or from a DFA. For clarity, we

explain the construction from a combination of NFA and DFA. We consider our

previous example of two reg-exes. First, we determine those NFA states of the reg-exes,

which we will register in the history buffer. We defer the formal method to pick such

NFA states, and at present just pick the closure states. Since, the first reg-ex, r1 contains

a closure represented by the NFA state 2; we keep a flag in the history for this state.

Next, we identify those DFA states, which contain this closure NFA state number, and

call these DFA states fading states, which are highlighted below.

0

0,4

d

0,1

a

0,2b

a

a
d

0,5e

0,2,4

d

a

e

0, 3c

d 0,2,5 f 0,2,6

0, 6f

a

d

d

Afterwards, we attempt to remove the NFA state 2 from the fading DFA states. Notice

that, if we will make a note that the NFA state 2 has been reached by setting the history

flag, then we can remove the NFA state 2 from the fading states subset. The

consequence of removing the NFA state 2 from the fading states is that these fading

states may overlap with some DFA states in the non-fading region, thus they can be

removed. Transitions which originated from a non-fading state and led to a fading state

and vice-versa will now set and reset the history flag, respectively. Furthermore, all

transitions that remain in the fading region will have an associated condition that the

158

flag is set. Let us illustrate the removal of the NFA state 2 from the fading state (0, 2).

After removal, this state will overlap with the DFA state (0); the resulting conditional

transitions are shown below:

0

0,4

d

0,1

a

a

a d

0,5e

0,2,4 e

0, 3

c,|2,-2

d
0,2,5 f 0,2,6

0, 6f

a

d

d

b,+
2

d,|2

a,|2,-2

Here a transition with “|s” means that the transition is taken when history flag for the

state s is set; “+s” implies that, when this transition is taken, the flag for s is set, and “-s”

implies that, with this transition, the flag for s is reset. Notice that all outgoing

transitions of the fading state (0,2) now originate from state (0) and have the associated

condition that the flag is set. Also those transitions which led to a non-fading state reset

the flag and incoming transitions into state (0,2) originating from a non-fading state

now has an action to set the flag. Once we remove all states in the fading region, we

have the following H-FA:

0

0,4

0,1

a

a

a

d

0,5e

0, 3

d

0, 6f

a

d

d

b,+2

a,|2,-2

c,|2,-2

a,|2,-2

d,|2
d

e,|2 f,|2

159

Notice that several transitions in this machine can be pruned. For example the two

transitions on character d from state (0) to state (0,4) can be reduced to a single

unconditional transition (the pruning process is later described in greater detail). Once

we completely prune the transitions, the H-FA will have total 4 conditional transitions;

remaining transitions will be unconditional. When there are multiple closures, then

multiple flags can be employed in the history buffer and the above procedure can be

repeatedly applied to synthesize the H-FA.

The above example demonstrates a general method for the H-FA construction from a

DFA. In order to achieve the maximum space reduction, the algorithm should only

register those NFA state numbers in the history buffer which appear most frequently in

the DFA states. Thus, if the history buffer has room for say 16 flags, then those 16

NFA states should be identified which appear most often in the DFA states.

Afterwards, the above procedure can be repeatedly applied. With multiple flags in the

history buffer, some transitions may have conditions over multiple history flags. Some

transitions may also set or reset multiple flags. If there are k flags in the history buffer

and h represents this vector, then a condition C will be a k-bit vector, which becomes

true if all those bits of h are found set whose corresponding bits in C are also set.

The representation of conditions as vectors eases the pruning process, which is carried

out immediately after the construction. The pruning process eliminates any transition

with condition C1, if another transition on condition C2 exists between the same pair of

states, over the same character such that the condition C1 is a subset of the condition C2

(i.e. C2 is true whenever C1 is true) and the actions associated with both the transitions

are identical. In general, the pruning process eliminates a large number of transitions,

and it is essential in reducing the memory requirements of the H-FA. After pruning,

there may remain a small amount of blowup in the number of transitions. In the worst-

case, if we eliminate k NFA states from the DFA by employing k history flags then

there can be up to 2k additional conditional transitions in the resulting H-FA. However,

160

such worst-case conditions are rare; normally there is only a small blowup in the

number of transitions. We now present a brief analysis of these blowups.

5.6.3 Analysis of the Transition Blowup

Consider a set k of regular expressions each containing a closure. Let the ith expression

be denoted by iiiii
rcccr 22

*

101][, where r1c0 and c2r2 are prefix and suffix parts of the

expression; here the closure is over set of characters denoted by c1, c0 denotes the set of

characters preceding the closure and c2 denotes the set of characters following the

closure. For such an expression, if c1 contains a large number of characters, then there is

likely to be a state blowup in the DFA. On the other hand, if we construct an H-FA,

and allow each of the k closures to be represented by flags in the history buffer, then

the blowup in the number of conditional transitions will depend directly upon c2.

First, if none of the c2’s overlaps with each other, then there will be at most one

conditional transition per character per state and in total there will be up to k additional

conditional transitions per state. On the other hand, when c2’s are overlapping then

there may be an exponential blowup in the number of conditional transitions.

To better understand the nature of the transition blowup, let us consider the transitions

leaving DFA state (i,j,k), which comprises three NFA states. We assume that the NFA

state i corresponds to a closure and needs to be represented by a history flag. Let the

closure be over a character set c1, and the character set which moves the parsing past the

closure is c2. If we remove the NFA state i from all DFA states then the state (i,j,k) may

be merged with a pre-existing DFA state (j,k). Let the transition on a character c from

state (i,j,k) lead to state (p,q,r). For c ∈ c1, p must be i; p may differ from i only when c ∈

c2 or c ∉ c1. Hence, after i is removed from the DFA states, the newly added conditional

transitions from the state (i,j) over characters c ∈ c1 will be identical to the transitions

leaving state (i,j); hence they will be removed during pruning. Only those conditional

161

transitions will remain, which are over the characters c ∈ c2 or c ∉ c1. In situations when

there are multiple closures, there may be multiple permutations of the conditional

transitions only if character sets ic2 , over which parsing progresses ahead of the closures

are overlapping. For instance, if each ic2 is {a} then there can be up to 2
k conditional

transitions over the character a, and the conditions will be every possible combination

of the k flags in the history buffer.

The actions (insert/remove from history) associated with the conditional transitions will

depend upon the characteristics of c0 and c1. Flags will be set by the transitions over

character c0, and reset by the transitions on characters not from the set c1. Thus, if c0 is

small and c1 is large, then only a small number of transitions will have an associated

action. If we examine the regular expressions used in practical signatures, the sets c0 and

c2 are usually small, thus the H-FA will be extremely effective is reducing the number of

state. On the other hand, the set c1 is large; hence, there will be minimal blowup in the

number of conditional transitions. We present detailed results of the nature of H-FA

constructed from current reg-ex signatures in the next section; here we resume with the

discussion of certain concerns with the implementations of H-FA’s history buffer and

the associated conditional transitions.

5.6.4 Implementing History and Conditional Transitions

It is clear that, if there is no overlap between the sets of the characters which moves the

parsing past the closure, then a state will have at most two transitions on any character,

one unconditional, and another conditional. When certain characters of these sets are

overlapping, say t-times then there may be up to 2t conditional transitions per state over

that character. In most of our experiments, t remains smaller than 3. Thus, there are at

most 8 conditional transitions per state. In rare situations, where t is greater than 3, we

split the reg-ex sets into multiple sets, so that t becomes smaller than 3, which keeps the

maximum number of conditional transitions at 8.

162

With up to 8 transitions per character per state, they can be stored together at some

memory location, and can be fetched in a single memory access. For 16K states, 16-bits

will represent a transition, and for 16-bit history buffer, conditions and actions can be

represented with 32-bits, thus 6-bytes will represent a conditional transition, and 48-bit

wide logical memory will be sufficient. Such logical bus widths can be achieved in NPs

as well as in an ASIC/FPGA based system.

Once the conditional transitions are fetched from the memory, the next step involves

the selection of appropriate transitions. This selection will depend upon the contents of

the history buffer. First those transitions are filtered out whose condition do not satisfy

(a condition is false if some flags which are set in the condition, are not set in the

history); unconditional transitions are never filtered. Afterwards, from among remaining

transitions, the one whose condition required most set flags is selected. Note that there

can never be a tie (multiple conditional transitions with equal number of set flags). In

terms of the hardware cost, the logic to compute if the conditions are met or not will

require k gates per condition, and the logic to decide among the chosen transitions will

require k adders, log2k priority encoders, and a few gates to glue them together. In total,

the circuitry will require less than 1000 gates for a 16-bit history buffer; and will be able

to make decisions in a few nano-seconds (there will be roughly 2log2k+3 gates in the

critical path).

5.6.5 H-cFA: Handling Length Restrictions

We now propose an extension called History based counting finite Automata (H-cFA), which

efficiently solves the limitations of finite automata in efficiently implementing length

restriction on sub-expressions within the regular expression. We begin with an example,

in which we consider the same set of two reg-exes in our previous example with the

closure in the first reg-ex replaced with a length restriction of 4, as shown below:

163

r1 = .
*ab[^a]4c; r2 = .

*def;

A DFA for these two reg-exes will require 20 states. The blowup in the number of

states in the presence of the length restriction occurs due to the inability of the DFA to

keep track of the length restriction. Let us now construct an H-cFA for these reg-exes.

The first step in this construction replaces the length restriction with a closure, and

constructs the H-FA, with the closure represented by a flag in the history buffer.

Subsequently with every flag in the history buffer, a counter is appended. The counter is

set to the “length restriction value” by those conditional transitions which set the flag,

while it is reset by those transitions which reset the flag. Furthermore, those transitions

whose condition is a “set flag” are attached with an additional condition that the

counter value is 0. During the executing of the machine, all positive counters are

decremented for every input character. The resulting H-cFA is shown below:

0

0,4

d

0,1

a

d

0,5
e

0, 3

d

0, 6f

a

d

d

a; flag<=0

a; flag<=0

c; if flag=0

 or ctr≠ 0

ctr

d if (ctr >0)

decrement

b; flag<=1,

ctr<=4

c;if flag=1 & ctr=0; flag<=0

Consider the parse of the string “abdefdc” by this machine starting at the state (0),

and with the flag and counter reset.

() () () () () () () ()

0flag 0ctr 1ctr 2ctr 3ctr 4ctr1;flag

3,05,06,05,04,001,00
0ctr and 1 flag because

<=<=<=<=<=<=<=

↑↑↑↑↑↑
→→→→→→→

==

cdfedba

164

As the parsing reaches the state (0,1), and makes transition to the state (0), the flag is

set, and the counter is set to 4. Subsequent transitions decrements the counter. Once

the last character c of the input string arrives, the machine makes a transition from state

(0,5) to state (0,3), because the flag is set and counter is 0; thus the string is accepted.

This example illustrates the straightforward method to construct H-cFAs from H-FAs.

Several kinds of length restrictions including “greater than i”, “less than i” and “between

i and j” can be implemented. Each of these conditions will require an appropriate

condition with the transition. For example, “less than i” length restriction will require

that the conditional transition becomes true when the history counter is greater than 0.

From the hardware implementation perspective, a greater than or less than condition

requires approximately equal number of gates needed by an equality condition, hence

different kinds of length restrictions are likely to have identical implementation cost. In

fact, a reprogrammable logic can be devised equally efficiently, which can check each of

these conditions. Thus, the architecture will remain flexible in face of the frequent

signature updates. This simple solution is extremely effective is reducing the number of

states, specifically in the presence of long length restrictions. Snort signatures comprises

of several long length restrictions, hence H-cFA is extremely valuable in implementing

these signatures. We now present our detailed experimental results, where we highlight

the effectiveness of our solutions.

5.6.6 Experimental Results

In this section, we report the effectiveness of H-FA and H-cFA in reducing memory on

a selected set of reg-exes datasets. In Table 5.4 and 5.5, we report the results from our

representative set of experiments, and highlight the number of flags and counters that

we employ in the history buffer. Snort rules comprise of several long length restrictions;

we find that, for these datasets, H-cFAs are extremely effective in keeping the memory

small. Without employing the counting capability, a composite automaton for Snort reg-

165

exes explodes in size. For Cisco rules, we show how varying the number of flags affects

the H-FA size (first two rows of the Table 5.5 use different number of flags). In general,

with more history flags, the H-FA is more compact.

Notice that the traditional DFA compression techniques including the D2FA can also

be applied to H-FA, thereby further reducing the memory. The results also demonstrate

that with H-FAs, we always require a single composite automaton as opposed to the

Table 5.4 Properties of the DFA constructed from our key reg-ex datasets.

DFA Source Avg. ASCII

length

of closures,

of length

restriction # of

automata

total # of states

Cisco64 19.8 14, 1 1 132,784

Snort rule 1 36.9 6, 6 3 62,589

Snort rule 2 16 1, 2 1 12,703

Snort rule 3 13.8 5, 1 2 4,737

Linux70 21.4 11, 0 2 20,662

Table 5.5 Results of the H-FA and H-cFA construction

Composite H-FA / H-cFA Source

of (flags,

counters)

in history

Total #

of states

Max # of

transitions /

character

Total # of

transitions

% space

reduction

with H-FA

H-FA

parsing

rate

speedup

Cisco64 6, 0 3,597 2 1,215,450 94.69 1x

Cisco64 13, 0 1,861 8 682,718 96.77 1x

Snort rule 1 5, 6 583 8 238,107 97.40 3x

Snort rule 2 1, 2 71 2 27,498 98.58 1x

Snort rule 3 5, 1 116 4 46,124 93.48 2x

Linux70 9, 0 1,304 8 546,378 81.63 2x

166

DFA approach, where we may require multiple automata, leading to a reduced

performance. Thus, H-FA approach also helps in improving the parsing speed.

The table highlights another important result: the blowup in the number of conditional

transitions in the H-FA generally remains very small. In a DFA there are 256 outgoing

transitions, while in most of the H-FAs these are less than 500. Thus, there is less than

2-fold blowup in the number of transitions; on the other hand reduction in the number

of states is generally a few orders of magnitude, thus the net effect is a significant

memory reduction.

5.7 Summarizing CD2FA and H-FA

In this chapter, we introduce the Content Addressed Delayed Input DFA (CD2FA),

which provides compact representation of regular expressions. A CD2FA is built upon

the recently proposed delayed input DFA (D2FA), whose state numbers are replaced

with content labels. The content labels compactly contain information which are

sufficient for the CD2FA to avoid any default traversal, thus avoiding unnecessary

memory accesses and hence achieving higher throughput in a network processor setting.

While a CD2FA requires equal number of memory accesses to those required by an

uncompressed DFA, in systems with a small data cache, CD2FA surpasses

uncompressed DFA in throughput, due to their small memory footprint and high cache

hit rate. We find that with a modest 1 KB data cache, that can be easily provided in

today’s NPs, CD2FA achieves two times increased throughput as compared to an

uncompressed DFA, and at the same time requires only 10% of the memory required

by a table compressed DFA. Thus, CD2FAs can implement regular expressions much

more economically and improve throughput and scalability in the number of rules. A

recent development [Becchi, and Crowley 2007] constructs compact D2FA with an

amortized parsing complexity of less than 2 memory accesses per input character. Such

structures can be coupled with content addressing to enable further space compression.

167

Our second contribution is H-FA, which is a novel machine that solves the problem

of DFA state explosions while maintaining a high parsing performance. In one way,

H-FA is similar to a NFA, in that the per character execution complexity of the

machine is O(k), where k is the maximum number of concurrent partial matches, say

due to the presence of k Kleene closures in the regular expressions. H-FA, however,

achieves high parsing performance by partitioning itself into two components, a

finite automaton and a history buffer containing a set of flags. The automaton

requires a single state traversal per character, thus can be stored in off-chip memory

and still be executed at high rates; the history buffer on the other hand requires k

parallel examinations, however it is extremely compact (requires only k-bits) and can

be stored in fast on-chip registers. Thus, even though the theoretical execution

complexity of H-FA is O(k) for k closures in the regular expressions, it can run as

fast as a DFA in practice, while avoiding the state explosions of the DFA.

168

Chapter 6

Summary

IP header lookup and packet content inspection are two important and well-studied

topics. Despite the enormous amount attention of the research community, there

remain a number of ripe areas for contribution. In this thesis, we describe a number of

novel algorithms and architectures for realizing these two functions that aim at

advancing the current state-of-the art in a number of different ways. While our focus is

throughput, primarily due to the persistent concern over rapidly increasing data rates in

the Internet, we also give a fair amount of attention to the other important aspects of

implementation such as power consumption, silicon die area, scalability, and robustness.

It is often critical that the desired level of throughput is achieved with a reasonably low

power consumption, and die area. Scalability and robustness of the architecture, on the

other hand, decides how long the architecture will remain relevant and adaptable to

meet the newly emerging performance pressures, and how well it will cope with the

unforeseeable security threats and changing usage patterns. In today’s competitive

networking device marketplace, and due to a plethora of existing solutions, these issues

become a decisive factor in the success and wide adoption of any architecture.

Centered on the aforementioned four performance aspects, the platforms that we use to

evaluate our algorithms are ASICs and network processors. These two platforms are the

most commonly used by current network equipment vendors, and each has their own

benefits and drawbacks. What differentiates these platforms is a tradeoff between

performance and programmability. Network processors provide an unparalleled level of

programmability, which enables quicker implementation, and upgrades of any given

function. ASICs, on the other hand, are known to provide a high degree of parallel

169

computation capability, which can be used to achieve high performance and efficiency.

Consequently, there are marked differences in the implementation approach employed

in ASICs and network processors. Algorithms that require ample parallel computation

are preferable in an ASIC. Current ASICs also provide a moderate amount of high

bandwidth on-chip memory. Thus, such algorithms can be practically implemented that

require compact data-structures but demands high memory bandwidth to enable high

performance. Unlike ASICs, current network processors have very limited or no on-

chip memory for data storage and off-chip memory is used as the primary storage for all

data-structures. Even though off-chip memory size has grown substantially recently, its

bandwidth has remained a premium, hence the algorithms used in network processors

often seek to keep the number of memory accesses small, even though it requires an

increased memory size. While developing our algorithms, we keep these implementation

tradeoffs in mind. In addition to these platform specific evaluations, we also conduct a

preliminary evaluation of our algorithms in an abstract sense, where our primary metrics

are computation complexity, and memory bandwidth and space required.

In IP lookup, which is one of our primary topics, we introduce two novel architectures

that complement each other and can be used to design an ASIC can enable high lookup

throughput at low levels of power consumption and memory size. The first architecture

is called CAMP, which is a pipelined IP lookup architecture based on multi-point access

circular pipeline of traditional memories. A key feature of the architecture is that the

number of stages in the pipeline is decoupled from the number of levels in the trie.

Hence, a large number of smaller memory stages can be employed, leading to a higher

throughput at lower die area and power dissipation. The architecture also allows near

optimal memory utilization and also ensures that all pipeline stages are equal in size.

CAMP also ensures fast incremental updates, which has been validated on a collection

of real and synthetic prefix sets. To complement the high lookup throughput made

possible with CAMP, we develop HEXA, which is a novel representation for structured

graphs such as IP lookup tries that substantially reduces the memory required. HEXA

uses a unique method to locate the nodes of the trie in memory, which enables it to

170

avoid using any “next node” pointer. Since these pointers often consume most of the

memory required by the lookup trie, HEXA based representations are significantly

more compact than the standard representations. We validate HEXA with a number of

well known IP lookup databases which results in a memory reduction of up to 3-times

over the state-of-the art methods. Such memory reductions are essential in an ASIC

setting, where fast but limited amount of embedded memories are available, and can be

used to dramatically improve the packet throughput and reduce the power dissipation.

As part of the experimental evaluation, we thoroughly present and discuss the die area,

power consumption, and lookup throughput achieved when a combination of HEXA

and CAMP is used to implement IP lookup function in an ASIC setting. Additionally,

we also present a preliminary theoretical analysis of the algorithms used in the two

architectures. More specifically, in HEXA, we derive an approximate bound on the

memory requirements, by borrowing analyses from the Cuckoo hashing. The analysis

establishes that the memory requirements in HEXA is O(n), for n node IP lookup trie,

as compared to the O(n logn) memory required in standard solutions. The analysis of the

CAMP has been limited to a number of experiments carried over a set of synthetic IP

lookup tables, which establishes an approximate experimental bound on the memory

requirement and pipeline imbalance.

In the area of deep packet inspection using regular expressions signatures, we introduce

a number of new representations for regular expressions. The first representation is

delayed input DFA (D2FA), which significantly reduces the memory requirements of a

DFA by replacing its multiple transitions with a single default transition. By reduction,

we show that the construction of an efficient D2FA from a DFA is NP-hard. We

therefore present heuristics for D2FA construction that provide deterministic

performance guarantees. Our results suggest that a D2FA constructed from a DFA can

reduce memory space requirements by more than 95%. Thus, the entire automaton can

possibly fit in on-chip memories of an ASIC. Since embedded memories provide ample

bandwidth, further space reductions are possible by splitting the regular expressions into

171

multiple groups and creating a D2FA for each of them, and storing and executing them

independently.

As a side effect, a D2FA introduces a cost of possibly several memory accesses per input

character, since it requires multiple default transitions to consume a single character.

Therefore, a careful implementation is required to ensure deterministic, and good

performance. We present a memory-based architecture, which uses multiple embedded

memories, and show how to map the D2FAs onto them in such a way that each

character is effectively processed in a single memory cycle. As a proof of concept, we

construct D2FAs from regular expression sets used in many widely used systems,

including those employed in the widely used security appliances from Cisco Systems,

that required less than 2 MB of embedded memory and provided up to 10 Gbps

throughput at a modest clock rate of 300 MHz. Our ASIC architecture provides

deterministic performance guarantees and suggests that with today’s VLSI technology, a

worst-case throughput of OC192 can be achieved while simultaneously executing

several thousands of regular expressions.

Our second contribution is Content Addressed Delayed Input DFA (CD2FA), which

provides a compact representation of regular expressions suitable for implementation in

network processor platforms. A CD2FA is built upon the D2FA, whose state numbers

are replaced with content labels. The content labels compactly contain information

which are sufficient for the CD2FA to avoid any default traversal, thus avoiding

unnecessary memory accesses and hence achieving higher throughput. While a CD2FA

requires number of memory accesses equal to those required by an uncompressed DFA,

with the addition of small data caches that are increasingly becoming available in current

network processors, CD2FA surpasses uncompressed DFA’s in throughput, due to its

small memory footprint and therefore higher cache hit rate. We find that with a modest

1 KB data cache, CD2FA achieves almost two times higher throughput as compared to

an uncompressed DFA, and also requires less than 10% of the memory required by a

DFA compressed with standard table compression. Consequently, CD2FAs can

172

implement regular expressions much more economically and improve the throughput

and scalability in the number of rules in a network processor based implementation

environment. Given the anticipated effect of Internet growth, increasing number of

security threats and diversification of the regular expression signature sets, both D2FA

and CD2FA based solutions are expected to gain wide adoption and popularity in the

immediate future.

173

References

 [1] V. Aho, and M. J. Corasick. Efficient string matching: An aid to bibliographic search.
Communications of the ACM, 18(6):333–340, 1975.

 [2] S. Antonatos, et al. Generating realistic workloads for network intrusion detection systems.

ACM Workshop on Software and Performance, 2004.

 [3] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh. A Tree Based Router Search

Engine Architecture with Single Port Memories. Proc. ISCA, 2005.

 [4] Z. K. Baker, and V. K. Prasanna. Automatic Synthesis of Efficient Intrusion Detection

Systems on FPGAs. Proc. Field Prog. Logic and Applications, pp. 311-321, Aug.
2004.

 [5] A. Basu and G. Narlikar. Fast Incremental Updates for Pipelined Forwarding Engines.

Proc. IEEE INFOCOM, 2003.

 [6] M. Becchi, and P. Crowley: An improved algorithm to accelerate regular

expression evaluation. ANCS 2000.

 [7] Y. H. Cho, and W. H. Mangione-Smith. Deep Packet Filter with Dedicated Logic and

Read Only Memories. Proc. Field Prog. Logic and Applications, pp. 125-134, Aug.
2004.

 [8] C. R. Clark and D. E. Schimmel. Efficient reconfigurable logic circuit for matching

complex network intrusion detection patterns. Proc. 13th International Conference on
Field Program, 2003.

 [9] M. Degermark, A. Brodnik, S. Carlsson and S. Pink. Small Forwarding Tables for Fast

Routing Lookups. Proc. ACM SIGCOMM 1997.

 [10] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep Packet

Inspection using Parallel Bloom Filters. Proc. IEEE Hot Interconnects 12, IEEE
Computer Society Press, August 2003.

 [11] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor. Longest prefix matching

using Bloom filters. Proc. ACM SIGCOMM, 2003.

174

 [12] W. Eatherton, Z. Dittia, and G. Varghese. Tree bitmap: Hardware/software ip
lookups with incremental updates. ACM SIGCOMM Computer Communications
Review, 34(2), 2004.

 [13] W. Eatherton, and J. Williams. An encoded version of reg-ex database from cisco systems

provided for research purposes. 2005.

 [14] R. W. Floyd, and J. D. Ullman. The Compilation of Regular Expressions into Integrated

Circuits. Journal of ACM, vol. 29, no. 3, pp. 603-622, July 1982.

 [15] D. Fotakis, et al. Space efficient hash tables with worst case constant access time. Proc.

STACS, 2003.

 [16] M. R. Garey, and D. S. Johnson. Bounded Component Spanning Forest. Computers

and Intractability: A Guide to the Theory of NP-Completeness, pp. 208, 1979.

 [17] M. Gokhale, et al. Granidt: Towards Gigabit Rate Network Intrusion Detection

Technology. Proc. Field Programmable Logic and Applications, pp. 404-413, Sept.
2002.

 [18] R. Graham, F. Graham, and G. Varghese. Parallelism versus Memory Allocation in

Pipelined Router Forwarding Engines. Proc. SPAA'04, Barcelona, Spain, 2004.

 [19] J. Hasan and T.N. Vijaykumar. Dynamic Pipelining: Making IP-Lookup Truly

Scalable. Proc. ACM SIGCOMM, pp. 205-216, 2005.

 [20] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison Wesley, 1979.

 [21] J. E. Hopcroft. An nlogn algorithm for minimizing states in a finite automaton. Theory

of Machines and Computation, J. Kohavi, Ed. New York: Academic, 1971, pp.
189-196.

 [22] G. Huston. Analyzing the Internet's BGP routing table. Internet Protocol Journal,

4(1), 2001.

 [23] A. Kirsch, and M. Mitzenmacher. Simple Summaries for Hashing with Multiple

Choices. Proc. Forty-Third Annual Allerton Conference on Communication,
Control, and Computing, 2005.

 [24] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman

problem. Proc. American Mathematical Society, Vol. 7, pp. 48-50, 1956.

175

 [25] S. Kumar, et al. Algorithms to Accelerate Multiple Regular Expressions Matching for
Deep Packet Inspection. Proc. ACM SIGCOMM, Pisa, Italy, September 12-15,
2006.

 [26] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study of Internet Stability and

Wide-Area Backbone Failures. Proc. 29th Annual International Symp. on Fault-
Tolerant Computing, Madison, June 1999.

 [27] C. Labovitz, G. R. Malan, and F. Jahanian. Origins of Internet Routing Instability.

Proc. Infocom, New York, NY, March 1999.

 [28] N. J. Larsson. Structures of string matching and data compression. PhD thesis, Dept. of

Computer Science, Lund University, 1999.

 [29] J. Levandoski, E. Sommer, and M. Strait. Application Layer Packet Classifier for

Linux. http://l7-filter.sourceforge.net/.

 [30] F. M. Liang. A lower bound for on-line bin packing. Information Processing letters,

pp. 76-79, 1980.

 [31] A. J. McAuley, and P. Francis. Fast Routing Table Lookup Using CAMs. Proc.

INFOCOM, 1993.

 [32] J. Moscola, et al. Implementation of a content-scanning module for an internet firewall.

IEEE Workshop on FPGAs for Custom Comp. Machines, Napa, USA, April
2003.

 [33] S. Nilsson and G. Karlsson. Fast Address Lookup for Internet Routers. Proc. IEEE

Conf. on BroadBand Communications Tech., 1998.

 [34] R. Pagh, and F. F. Rodler. Cuckoo Hashing. Proc. 9th Annual European

Symposium on Algorithms, pp.121-133, August 28-31, 2001.

 [35] V. Paxson, et al. Flex: A fast scanner generator.

http://www.gnu.org/software/flex/.

 [36] R. Prim. Shortest connection networks and some generalizations. Bell System Technical

Journal, Vol. 36, pp. 1389-1401, 1957.

 [37] M. Roesch. Snort: Lightweight intrusion detection for networks. Proc. 13th Systems

Administration Conference (LISA), USENIX Association, pp. 229-238, Nov
1999.

 [38] S. T. Shafer, and Mark Jones. Network edge courts apps.

http://infoworld.com/article/02/05/27/020527newebdev_1.html.

176

 [39] R. Sidhu, and V. K. Prasanna. Fast regular expression matching using FPGAs. Proc.

IEEE Symposium on Field- Programmable Custom Computing Machines,
Rohnert Park, CA, USA, April 2001.

 [40] R. Sommer, and V. Paxson. Enhancing Byte-Level Network Intrusion Detection

Signatures with Context. Proc. ACM conf. on Computer and Communication
Security, 2003, pp. 262-271.

 [41] H. Song, J. Turner, and J. Lockwood. Shape Shifting Tries for Faster IP Route

Lookup. Proc. IEEE ICNP, 2005.

 [42] H. Song, and J. Turner. Fast Filter Updates in TCAMs for Packet Classification. Proc.

IEEE Globecom, San Francisco, CA, Nov 27 – Dec 1, 2006.

 [43] I. Sourdis, and D. Pnevmatikatos. Pre-decoded CAMs for Efficient and High-Speed

NIDS Pattern Matching. Proc. IEEE Symp. on Field-Prog. Custom Computing
Machines, pp. 258–267, Apr. 2004.

 [44] E. Spitznagel, D. Taylor and J. Turner. Packet Classification Using Extended

TCAMS. Proc. ICNP, November 2003.

 [45] V. Srinivasan, and G. Varghese. Fast Address Lookups using Controlled Prefix

Expansion. ACM Transactions on Computer Systems, vol. 17, no. 1, pp. 1-40,
1999.

 [46] S. Suri, G. Varghese, and P. Warkhede. Multiway range trees: Scalable IP lookup with

fast updates. Proc. GLOBECOM, 2001.

 [47] L. Tan, and T. Sherwood. A High Throughput String Matching Architecture for

Intrusion Detection and Prevention. Proc. ISCA, 2005.

 [48] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S. Sproull, and D. B. Parlour.

Scalable IP Lookup for Internet Routers. IEEE Journal on Selected Areas in
Communications, 2003.

 [49] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-efficient

string matching algorithms for intrusion detection. Proc. IEEE Infocom, pp. 333-340,
2004.

 [50] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable High Speed IP

Routing Lookups. Proc. ACM SIGCOMM, pp. 25-37, 1997.

 [51] S. Wu, and U. Manber. A fast algorithm for multi-pattern searching. Tech. R. TR-94-

17, Dept. of Comp. Science, Univ of Arizona, 1994.

177

 [52] F. Yu, et al. Fast and Memory-Efficient Regular Expression Matching for Deep Packet

Inspection. UCB tech. report, EECS-2005-8.

 [53] S. Yusuf and W. Luk. Bitwise Optimised CAM for Network Intrusion Detection Systems.

Proc. IEEE FPL, 2005.

 [54] F. Zane, G. Narlikar, and A. Basu. CoolCAMs: Power-Efficient TCAMs for

Forwarding Engines. Proc. INFOCOM, 2003.

 [55] BGP Table Data. http://bgp.potaroo.net, April 2006.

 [56] Bro: A System for Detecting Network Intruders in Real-Time.

http://www.icir.org/vern/bro-info.html.

 [57] CACTI. www.research.compact.com/wrl/people/jouppi/CACTI.html.

 [58] Cisco IOS IPS Deployment Guide. www.cisco.com.

 [59] Comprehensive Peptide Signature Database. Institute of Genomics and

Integrative Biology. http://203.90.127.70/copsv2/.

 [60] Cu-11 standard cell/gate array ASIC. IBM. www.ibm.com.

 [61] MIT DARPA Intrusion Detection Data Sets. http://www.

ll.mit.edu/IST/ideval/data/2000/2000_data_index.html.

 [62] Network Services Processor. OCTEON CN31XX. CN30XX Family.

 [63] Routing Information Service. http://www.ris.ripe.net.

 [64] SafeXcel Content Inspection Engine. Hardware regex acceleration IP.

 [65] Tarari RegEx. www.tarari.com/PDF/RegEx_FACT_SHEET.pdf.

 [66] TippingPoint X505. www.tippingpoint.com/products_ips.html.

 [67] Virtex-4 FPGA. Xilinx. www.xilinx.com.

178

Vita

Sailesh Kumar

Date of Birth April 15, 1980

Place of Birth Bokaro Steel City, India

Degrees B.Tech. IIT Kanpur, Electrical Engineering, May 2000
 D.Sc. Computer Science, December 2007

Publications S. Kumar, J. Turner, and P. Crowley. Peacock Hash: Fast and

Updatable Hashing for High Performance Packet Processing
Algorithms. Proc. IEEE INFOCOM, Arizona, 2008.

S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese.
Curing Regular Expressions Matching Algorithms from
Insomnia, Amnesia, and Acalulia. Proc. IEEE/ACM ANCS,
Orlando, Florida, December, 2007.

S. Kumar, J. Turner, P. Crowley, and M. Mitzenmacher. HEXA:
Compact Data Structures for Faster Packet Processing. Proc.
IEEE ICNP, Beijing, China, October, 2007.

J. Turner, P. Crowley, J. Dehart, A. Freestone, B. Heller, F.
Kuhns, S. Kumar, J. Lockwood, J. Lu, M.Wilson, C. Wiseman,
and D. Zar. Supercharging PlanetLab - High Performance,
Multi-Application, Overlay Network Platform. Proc. ACM
SIGCOMM, Kyoto, Japan, August, 2007.

S. Kumar, J. Turner, and J. Williams. Advanced Algorithms for
Fast and Scalable Deep Packet Inspection. Proc. IEEE/ACM
ANCS, San Jose, California, December, 2006.

S. Kumar, M. Becchi, P. Crowley, and J. Turner. CAMP: Fast
and Efficient IP Lookup Architecture. Proc. IEEE/ACM
ANCS, San Jose, California, December, 2006.

S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner.
Algorithms to Accelerate Multiple Regular Expressions

179

Matching for Deep Packet Inspection. Proc. ACM SIGCOMM,
Pisa, Italy, September 12-15, 2006.

S. Kumar, J. Maschmeyer, and P. Crowley. Queuing Cache:
Exploiting Locality to Ameliorate Packet Queue Contention and
Serialization. Proc. ACM ICCF, Ischia, Italy, May 2-5, 2006.

S. Kumar, and P. Crowley. Segmented Hash: An Efficient Hash
Table Implementation for High Performance Networking
Subsystems. Proc. IEEE/ACM ANCS, Princeton, October,
2005.

S. Kumar, P. Crowley, and J. Turner. Buffer Aggregation:
Addressing Queuing Subsystem Bottlenecks at High Speeds.
Proc. IEEE Hot-Interconnects-13, Stanford, August 17-19,
2005.

S. Kumar, P. Crowley, and J. Turner. Design of Randomized
Multichannel Packet Storage for High Performance Routers.
Proc. IEEE Hot-Interconnects-13, Stanford, August 17-19,
2005.

 Jan 2008

180

Short Title: Network Processing Algorithms Kumar, D.Sc. 2008

