


Strong Performance Guarantees for
Asynchronous Buffered Crossbar Schedulers

Jonathan Turner
Washington University
jon.turner@wustl.edu

January 30, 2008

Abstract

Crossbar-based switches are commonly used to implement routers with through-
puts up to about 1 Tb/s. The advent of crossbar scheduling algorithms that provide
strong performance guarantees now makes it possible to engineer systems that perform
well, even under extreme traffic conditions. Up to now, such performance guarantees
have only been developed for crossbars that switch cells rather than variable length
packets. Cell-based crossbars incur a worst-case bandwidth penalty of up to a factor
of two, since they must fragment variable length packets into fixed length cells. In
addition, schedulers for cell-based crossbars may fail to deliver the expected perfor-
mance guarantees when used in routers that forward packets. We show how to obtain
performance guarantees for asynchronous crossbars that are directly comparable to the
performance guarantees previously available only for synchronous, cell-based crossbars.
In particular we define derivatives of the Group by Virtual Output Queue (GVOQ)
scheduler of Chuang et. al. and the Least Occupied Output First Scheduler of Krishna
et. al. and show that both can provide strong performance guarantees in systems
with speedup 2. Specifically, we show that these schedulers are work-conserving and
that they can emulate an output-queued switch using any queueing discipline in the
class of restricted Push-In, First-Out queueing disciplines. We also show that there are
schedulers for segment-based crossbars, (introduced recently by Katevenis and Passas)
that can deliver strong performance guarantees with small buffer requirements and no
bandwidth fragmentation.

1 Introduction

Crossbar switches have long been a popular choice for transferring data from inputs to out-
puts in mid-range performance switches and routers [1]. Unlike bus-based switches, crossbars
can provide throughputs approaching 1 Tb/s, while allowing individual line cards to operate
at speeds comparable to the external links.
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However the control of high performance crossbars is challenging, requiring crossbar
schedulers that match inputs to outputs in the time it takes for a minimum length packet
to be forwarded. The matching selected by the scheduler has a major influence on system
performance, placing a premium on algorithms that can produce high quality matchings in
a very short period of time.

Traditionally, crossbars schedulers have been evaluated largely on the basis of how they
perform on random traffic arrival patterns that do not cause long term overloads at inputs
or outputs. Most often, such evaluations have been carried out using simulation [11]. Re-
cently, there has been a growing body of work providing rigorous performance guarantees
for such systems [9, 12] in the context of well-behaved, random traffic. A separate thread
of research concentrates on schedulers that can provide strong performance guarantees that
apply to arbitrary traffic patterns [2, 6, 15], including adversarial traffic that may overload
some outputs for extended periods of time. The work reported here belongs to this second
category. Since the internet lacks comprehensive mechanisms to manage traffic, extreme
traffic conditions can occur in the internet due to link failures, route changes or simply
unusual traffic conditions. For these reasons, we argue that it is important to understand
how systems perform when they are subjected to such extreme conditions. Moreover, we
argue that strong performance guarantees are desirable in backbone routers, if they can be
obtained at an acceptable cost.

There are two fundamental properties that are commonly used to evaluate crossbar sched-
ulers in this worst-case sense. A scheduler is said to be work-conserving if an output link
is kept busy so long as there are packets addressed to the output, anywhere in the system.
A scheduler is said to be order-preserving if it is work-conserving and it always forwards
packets in the order in which they arrived. A crossbar with an order-preserving scheduler
faithfully emulates an ideal nonblocking switch with FIFO output queues. In their seminal
paper, Chuang, et. al. provided the first example of an order-preserving scheduler [2] for a
crossbar with small speedup, where the speedup of a crossbar switch is the ratio of the ideal
throughput of the crossbar to the total capacity of its external links. So a crossbar with
a speedup of S has the potential to forward data S times faster than the input links can
supply it. In fact, Chuang, et. al. showed a stronger property; that certain schedulers can
be specialized to emulate an output queued switch that implements any one of a large class
of scheduling algorithms at the outputs.

The strong performance guarantees that have been established to date, apply only to
crossbars that forward fixed length data units, or cells. There is a sound practical justifi-
cation for concentrating on such systems, since routers commonly use cell-based crossbars.
Variable length packets are received at input line cards, segmented into fixed length cells for
transmission through the crossbar and reassembled at the output line cards. This simplifies
the implementation of the crossbar and allows for synchronous operation, which allows the
scheduler to make better decisions than would be possible with asynchronous operation. Un-
fortunately, cell-based crossbar schedulers that deliver strong performance guarantees when
viewed from the edge of the crossbar, can fail to deliver those guarantees for the router as a
whole. For example, a system using a work-conserving cell-based scheduler can fail to keep
an outgoing link busy, even when there are complete packets for that output present in the
system.
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We show that strong performance guarantees can be provided for packets, using asyn-
chronous crossbars that directly handle packets, rather than cells, if the crossbars are
equipped with a moderate amount of internal buffer space. Specifically, we define packet-
oriented derivatives of the Group by Virtual Output Queue algorithm (GVOQ) of [2] and
the Least Occupied Output First Algorithm (LOOFA) of [6, 15] and show that they can de-
liver strong performance guarantees for systems with a speedup of 2. Because our crossbar
schedulers operate asynchronously, we have had to develop new methods for analyzing their
performance. These methods now make it possible to evaluate asynchronous crossbars in a
way that is directly comparable to synchronous crossbars.

The use of buffered crossbars is not new. An early ATM switch from Fujitsu used buffered
crossbars, for example [14]. However, most systems use unbuffered crossbars, because the
addition of buffers to each of the n2 crosspoints in an n × n crossbar has been viewed as
prohibitively expensive. There has recently been renewed interest in buffered crossbars [3,
4, 7, 8, 10, 13, 16]. A recent paper by Chuang et. al. [3] advocates the use of buffers in cell-
based crossbars in order to reduce the complexity of the scheduling algorithms. The authors
argue that ongoing improvements in electronics now make it feasible to add buffering to
a crossbar, without requiring an increase in the number of integrated circuit components.
Hence, the cost impact of adding buffering is no longer a serious obstacle. Our results add
further weight to the case for buffered crossbars, as the use of buffering allows inputs and
outputs to operate independently and asynchronously, allowing variable length packets to be
handled directly. Katevenis et. al [7, 8] have also advocated the use of buffered crossbars for
variable length packets and have demonstrated their feasibility by implementing a 32 port
buffered crossbar with 2 KB buffers at each crosspoint.

Section 2 discusses the differences between switching cells and switching packets, and
explains how buffered crossbars are particularly advantageous for systems that directly switch
packets. Section 3 defines the terminology and notation used in the analysis to follow. Section
4 collects several key lemmas that are used repeatedly in the analysis. Section 5 presents
strong performance guarantees for a packet variant of the Group by Virtual Output Queue
crossbar scheduler. Section 6 presents a similar set of guarantees for a packet variant of the
Least Occupied Output First scheduler. Section 7 explains how our asynchronous crossbar
scheduling algorithms can be used in systems that switch variable length segments rather
than cells, reducing the amount of memory required by crossbar buffers by more than order
of magnitude. Finally, section 8 provides some closing remarks, including a discussion of
several ways this work can be extended.

2 Switching Packets vs. Switching Cells

As noted in the introduction, most crossbar-based routers, segment packets into cells at
input line cards, before forwarding them through the crossbar to output line cards, where
they are reassembled into packets. This enables synchronous operation, allowing the crossbar
scheduler to make decisions involving all inputs and outputs at one time.

Unfortunately, cell-based crossbars have some drawbacks. One is simply the added com-
plication of segmentation and reassembly. More seriously, the segmentation of packets into
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cells can lead to degraded performance if the incoming packets cannot be efficiently packed
into fixed length cells. In the worst-case, arriving packets may be slightly too large to fit into
a single cell, forcing the input line cards to forward them in two cells. This effectively doubles
the bandwidth that the crossbar requires in order to handle worst-case traffic. While one can
reduce the impact of this problem by allowing parts of more than one packet to occupy the
same cell, this adds complexity and does nothing to improve performance in the worst-case.

In addition, crossbar schedulers that operate on cells, without regard to packet bound-
aries, can fail to deliver the expected guarantees from the perspective of the system as a
whole. In a system that uses a cell-based crossbar scheduler, an output line card can typ-
ically begin transmission of a packet on its outgoing link only after all cells of the packet
have been received. Consider a scenario in which n input line cards receive packets of length
L at time t, all addressed to the same output. If the length of the cell used by the crossbar
is C, each packet must be segmented into dL/Ce cells for transmission through the fabric.
A crossbar scheduler that operates on cells has no reason to prefer one input over another.
Assuming that it forwards cells from each input in a fair fashion, > n (dL/Ce − 1) cells
will pass through the crossbar before the output line card has a complete packet that it
can forward on the output link. While some delay between the arrival of a packet and its
transmission on the output link, is unavoidable, delays that are substantially longer than
the time it takes to receive a packet on the link are clearly undesirable. In this situation, the
delay is about n times larger than the time taken for the packet to be received. Interestingly,
one can obtain strong performance guarantees for packets using cell-based schedulers that
are packet-aware. We discuss this more fully in Section 7.

Asynchronous crossbars offer an alternative to cell-based crossbars. They eliminate the
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need for segmentation and reassembly and are not subject to bandwidth fragmentation,
allowing one to halve the worst-case bandwidth required by the crossbar. Unfortunately,
there is no obvious way to obtain strong performance guarantees for unbuffered asynchronous
crossbars, since the ability of the scheduler to coordinate the movement of traffic through
the system, seems to depend on its ability to make decisions involving all inputs and outputs
at one time. A scheduler that operates on packets must deal with the asynchronous nature
of packet arrivals, and must schedule packets as they arrive and as the inputs and outputs
of the crossbar become available. In particular, if a given input line card finishes sending a
packet to the crossbar at time t, it must then select a new packet to send to the crossbar.
It may have packets that it can send to several different outputs, but its choice of output
is necessarily limited to those outputs that are not currently receiving packets from other
inputs. This can prevent it from choosing the output that it would prefer, were its choices
not so constrained. One can conceivably ameliorate this situation by allowing an input to
select an output that will become available in the near future, but this adds complication
and sacrifices some of the crossbar bandwidth. Moreover, it is not clear that such a strategy
can lead to a scheduling algorithm with good worst-case performance and small speedup.

The use of buffered crossbars offers a way out of this dilemma. The addition of buffers
to each crosspoint of an n × n crossbar effectively decouples inputs from outputs, enabling
the asynchronous operation that variable length packets seem to require. A diagram of a
system using a buffered crossbar is shown in Figure 1. In addition to the now conventional
Virtual Output Queues (VOQ) at each input, a buffered crossbar has a small buffer at each
of its crosspoints. As pointed out in [3], the buffers allow inputs and outputs to operate
independently, enabling the use of simpler crossbar scheduling mechanisms, but the buffers
have an even greater import for asynchronous crossbars. With buffers, whenever an input
finishes sending a packet to the crossbar, it can select a packet from one of its virtual output
queues, so long as the corresponding crosspoint buffer has room for the packet. We show
that crosspoint buffers of modest size are sufficient to allow strong performance guarantees
with the same speedup required by cell-based schedulers.

3 Preliminaries

To start, we introduce common notations that will be used in the analysis to follow. We say
a packet x is an ij-packet if it arrived at input i and is to be forwarded on output j. We
let s(x) denote the time at which the first bit of x is received on an input link and we let
f(x) be the time at which the last bit is received. We let L(x) denote the number of bits in
x and LM denote the maximum packet length (in bits). The time unit is the time it takes
for a single bit to be transferred on an external link, so f(x) − s(x) = L(x). The time at
which a new packet is selected by an input and sent to the crossbar is referred to as an input
scheduling event. The time at which an output selects a packet from one of its crosspoint
buffers is referred to as an output scheduling event. We use event to refer to either type,
when the type is clear from the context.

We let Vij denote the virtual output queue at input i that contains packets for output
j and we let Vij(t) denote the number of bits in Vij at time t. Similarly, we let Bij denote
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Figure 2: Basic Definitions for Active Periods

the crosspoint buffer for packets from input i to output j, Bij(t) denote the number of bits
in Bij at time t, and B denote the capacity of the crosspoint buffers. For all the quantities
that include a time parameter, we sometimes omit the time parameter when its value can
be understood from the context.

We focus on schedulers for systems in which packets are fully buffered at the input line
cards where they arrive before they are sent to the crossbar. A packet is deemed to have
arrived only when the last bit has arrived. Consequently, an ij-packet that is in the process
of arriving at time t is not included in Vij(t). We say that a VOQ is active, whenever the last
bit of its first packet has been received. For an active VOQ Vij, we refer to the time period
since it last became active as the current active period. For a particular active period of Vij,
we define notations for several quantities. In particular, if x was the first packet to arrive in
the active period, we let sij = s(x), fij = f(x). and Lij = L(x). The time of the first input
event in the active period is denoted τij. We say an input event is a backlog event for Vij if
when the event occurs, Bij is too full to accept the first packet in Vij, and we let βij denote
the time of the first backlog event of an active period. We say that Vij is backlogged if it is
active, and its most recent input event was a backlog event. These definitions are illustrated
in Figure 2. Note that τij < fij +LM/S and that if βij 6= τij, then βij ≥ τij +Lij/S. Figure 2
illustrates the definitions for key points in time in an active period and their relationships.

While we require that packets be fully buffered at inputs, we assume that packets can be
streamed directly though crossbar buffers to outputs, and through output buffers to outgoing
links. The former assumption is the natural design choice. The latter assumption was made
to simplify the analysis slightly, but is not essential. Extending our analyses to the case
where outputs fully buffer packets is straightforward.

To define a specific crossbar scheduler, we must specify an input scheduling policy and
an output scheduling policy. The input scheduling policy selects an active VOQ from which
to transfer a packet to the crossbar. We assume that the input scheduler is defined by
an ordering of the active VOQs. At each input scheduling event, the scheduler selects the
first active VOQ in this ordering that is not backlogged, and transfers the first packet in
this VOQ to the crossbar. We also assume that the output scheduling policy is defined
by an ordering imposed on the packets to be forwarded from each output. At each output
scheduling event, the scheduler selects the crosspoint buffer whose first packet comes first in
this packet ordering.
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Given a VOQ ordering for an input, we say that one VOQ precedes another if it comes
before the other in this VOQ ordering. We extend the precedes relation to the packets in
the VOQs and the bits in those packets by ordering the packets (bits) in different VOQs
according to the VOQ ordering, and packets (bits) in the same VOQ according to their
position in the VOQ. To simplify the language used in the analysis to follow, we also say
that bits in Vij precede Vij. For packets (bits) at different inputs going to the same output,
we say that one precedes the other, if it comes first in the ordering that defines the output
scheduling policy.

For an active VOQ Vij, we let pij(t) equal the number of bits in VOQs at input i that
precede Vij at time t (note, this includes the bits in Vij), plus the number of bits in the
current incoming packet that have been received so far (if there is such a packet). We
define qj(t) to be the number of bits at output j at time t and qij(t) to be the number of
bits at output j that precede the last bit in Vij We define slackij(t) = qj(t) − pij(t) and
marginij(t) = qij(t)− pij(t).

Our worst-case performance guarantees are defined relative to a reference system consist-
ing of an ideal output-queued switch followed by a fixed output delay of length T . An ideal
output queued switch is one in which packets are transferred directly to output-side queues
as soon as they have been completely received. An output-queued switch is fully specified
by the queueing discipline used at the outputs.

In [2], the class of Push in, First Out (PIFO) queueing disciplines is defined to include all
queueing disciplines that can be implemented by inserting arriving packets into a list, and
selecting packets for transmission from the front of the list. That is, a PIFO discipline is
one in which the relative transmission order of two packets is fixed when the later arriving
packet arrives. Most queuing disciplines of practical interest belong to this class. In [3], the
restricted PIFO queueing disciplines are defined as those PIFO disciplines in which any two
ij-packets are transmitted in the same order they were received. Note that this does not
restrict the relative transmission order of packets received at different inputs. Our emulation
results for buffered crossbars apply to restricted PIFO queueing disciplines.

We say that a crossbar T-emulates an output-queued switch with a specific restricted
PIFO queueing discipline if, when presented with an input packet sequence, it forwards each
packet in the sequence at the same time that it would be forwarded by the reference system.
We say that a switch is work-conserving, if whenever there is a packet in the system for
output j, output j is sending data. A crossbar-based system is T -work-conserving if it T -
emulates some work-conserving output-queued switch. Alterntatively, we say that a system
is T -work-conserving if output j is busy whenever there is a packet in the system for output
j that arrived at least T time units before the current time.

A crossbar that T -emulates an output-queued switch will be defined by a specific crossbar
scheduling algorithm and by the output queueing discipline of the switch being emulated.
To achieve the emulation property, the output line cards of the crossbar must hold each
packet until T time units have passed since its arrival. While it is being held, other packets
that reach the output after it, may be inserted in front of it in the PIFO list. Whenever the
output becomes idle, the linecard selects for transmission, the first packet in the list which
arrived at least T time units in the past. This may not be the first packet in the list, since
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the PIFO ordering need not be consistent with the arrival order.

4 Common Properties

We consider only schedulers that keep the inputs and outputs busy whenever possible. In
particular, if an input line card has any packet x at the head of one of its VOQs and the
VOQ is not backlogged, then the input must be transferring bits to some crosspoint buffer
at rate S. Similarly, if any crosspoint buffer for output j is not empty, then output j must
be transferring bits from some crosspoint buffer at rate S. A scheduler that satisfies these
properties is called a prompt scheduler. Prompt schedulers have some common properties
that will be useful in the analysis to follow.

Lemma 1 For any prompt scheduler, qj(t) ≥ (1− 1/S)Bij(t).

proof. If Bij(t) > 0, then Bij became non-empty at some time no later that t − Bij(t)/S,
since Bij can grow at a rate no faster than S. That is, Bij > 0 throughout the interval
[t− Bij(t)/S, t]. For any prompt scheduler, whenever a crosspoint buffer for a given output
is non-empty, the crossbar transfers bits to the output at rate S. Since an output sends bits
from the output queue to the link at rate 1, an output queue grows at rate S − 1 during
any period during which one or more of its crosspoint buffers is non-empty. It follows that
qj(t) ≥ (1− 1/S)Bij(t). �

Lemma 2 Consider an active period for Vij. For any prompt scheduler, if Bij(τij) > 0 then

qj(τij) ≥ (1− 1/S)Bij(τij) + (S − 1)(τij − fij)

proof. Note that since Vij is inactive just before fij, Bij cannot grow between fij and τij,
hence Bij(fij) ≥ Bij(τij) > 0. Consequently, qj must increase at rate S − 1 throughout the
interval [fij, τij], so

qj(τij) ≥ qj(fij) + (S − 1)(τij − fij)

By Lemma 1,
qj(fij) ≥ (1− 1/S)Bij(fij) ≥ (1− 1/S)Bij(τij)

and hence qj(τij) ≥ (1− 1/S)Bij(τij) + (S − 1)(τij − fij). �

Lemma 3 For any prompt, restricted PIFO scheduler, qij(t) ≥ (1− 1/S)(Bij(t)− LM).

proof. The statement is trivially true if Bij(t) ≤ LM . So assume, Bij(t) > LM , and note that
this implies that Bij became non-empty at some time no later that t − Bij(t)/S, since Bij

can grow at a rate no faster than S. Consequently, there must be scheduling event at output
j in the interval [t−Bij(t)/S, (t−Bij(t)/S) + LM/S] and from the time of that event until
t, output j must be receiving bits that precede Vij. Consequently qij increases at rate S − 1
throughout the interval [(t−Bij(t)/S)+LM/S, t] and so qij(t) ≥ (1− 1/S)(Bij(t)−LM). �

8



Lemma 4 Consider an active period for Vij. For any prompt restricted PIFO scheduler, if
Bij(τij) ≥ LM then

qij(τij) ≥ (1− 1/S)(Bij(τij)− LM) + (S − 1)(τij − fij)

proof. Since Bij cannot grow between fij and τij, Bij(fij) ≥ Bij(τij) ≥ LM . Consequently,
Bij became non-empty no later than fij − LM/S, which implies that qij increases at rate
S − 1 throughout the interval [fij, τij]. Hence,

qij(τij) ≥ qij(fij) + (S − 1)(τij − fij)

≥ (1− 1/S)(Bij(fij)− LM) + (S − 1)(τij − fij)

≥ (1− 1/S)(Bij(τij)− LM) + (S − 1)(τij − fij)

�

We say that a scheduling algorithm is stable if it does not change the relative order of
any two VOQs during a period when they are both continuously active.

Lemma 5 Let t1 ≤ t ≤ t2, where t1 is the time of an input scheduling event in an active
period of Vij and t2 is the time of the next event in the same active period if there is one, or
the end of the active period, if there is not. For any prompt and stable scheduler, if B ≥ 2LM

then slackij(t) ≥ slackij(t1) + (S − 2)(t− t1).

proof. If Vij is backlogged at time t1, then Bij(t1) > LM which implies that Bij remains
non-empty until at least t1 +LM/S ≥ t2. Consequently, qj(t) ≥ qj(t1)+(S−1)(t− t1). Since
the VOQ ordering is stable in the interval [t1, t], any increase in pij during this interval can
only result from the arrival of bits on the input link. Consequently, pij(t) ≤ pij(t1) + (t− t1)
and slackij(t) ≥ slackij(t1) + (S − 2)(t− t1).

If Vij is not backlogged at t1, then either Vij or another VOQ that precedes Vij must be
selected at t1. In either case, pij(t) ≤ pij(t1)− (S − 1)(t− t1). Since qj(t) ≥ qj(t1)− (t− t1),
it follows that slackij(t) ≥ slackij(t1) + (S − 2)(t− t1). �

Lemma 5 implies that for any prompt and stable scheduler, if S ≥ 2, slackij does not
decrease after the first event of an active period. However, slackij may decrease before the
first event, and indeed it may be negative.

5 Packet Group by Virtual Output Queue

Group by Virtual Output Queue (GVOQ) is a cell switch scheduling algorithm first described
in [2] and extended to buffered crossbars in [3]. We define the Packet GVOQ (PGV) scheduler
by defining an ordering that it imposes on the VOQs. In this ordering, the relative order
of two VOQs does not change so long as they both remain active. Hence, PGV is stable.
When an inactive VOQ becomes active, it is placed first in the VOQ ordering. When a VOQ
becomes inactive, it is removed from the VOQ ordering. Different variants of PGV can be
defined by specifiying different output scheduling strategies.
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5.1 Work-Conservation of PGV

Our first result shows that regardless of the specific output scheduling policy used, PGV is
work-conserving. Since the VOQ ordering used by PGV is stable, Lemma 5 implies that
slackij does not decrease after the first input scheduling event of an active period, if S ≥ 2.
Our first lemma for PGV shows that there must be a backlog event close to the start of any
active period.

Lemma 6 Consider an active period for Vij in a crossbar using a PGV scheduler with
speedup S. If the duration of the active period is at least 2LM/(S − 1), then it includes
at least one backlog event for Vij and βij ≤ fij + 2LM/(S − 1).

proof. Suppose there is no backlog event in the interval [τij, t] for t = fij+2LM/(S−1). Then,
at each event in this interval, the input scheduler selects either Vij or a VOQ that precedes
Vij. Since the scheduling algorithm is stable, any contribution to increasing pij during this
interval can only result from the arrival of new bits from the input link. Consequently, pij

decreases at a rate ≥ (S − 1) throughout this period. Since pij(τij) ≤ Lij + (τij − fij),

pij(t) ≤ Lij + (τij − fij)− (S − 1)(t− τij)

= Lij + (τij − fij)− (S − 1)((fij + 2LM/(S − 1))− τij)

= Lij + S(τij − fij)− 2LM

< LM + S(LM/S)− 2LM = 0

which contradicts the premise that the duration of the active period is at least 2LM/(S−1).
�

Our next lemma shows that within a short time following the start of an active period,
slackij ≥ 0.

Lemma 7 Consider some active period for Vij that includes the time t ≥ fij +2LM/(S−1).
For any PGV scheduler with speedup S ≥ 2 and B ≥ 3LM , slackij(t) > 0.

proof. We show that slackij(βij) > 0. The result then follows from Lemmas 5 and 6. If Vij

is backlogged at τij, then βij = τij and by Lemma 2, qj(βij) > (1 − 1/S)(B − LM) + (S −
1)(τij − fij). For any PGV scheduler, pij(βij) = pij(τij) ≤ Lij + (τij − fij). Consequently,

slackij(βij) > (1− 1/S)(B − LM) + (S − 2)(τij − fij)− Lij ≥ 0

since S ≥ 2 and B ≥ 3LM .

Now, suppose Vij is not backlogged at τij. Since at least one packet must be sent from
Vij during the active period, in order for it to become backlogged, βij ≥ τij + Lij/S. During
the interval [τij, βij], pij decreases at rate ≥ S − 1. Consequently,

pij(βij) ≤ Lij + (τij − fij)− (S − 1)(βij − τij)

< Lij/S + LM/S

By Lemma 1, qj(βij) > (1−1/S)(B−LM) ≥ 2(1−1/S)LM , so slackij(βij) > 2(1−1/S)LM−
2LM/S ≥ 0. �
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Theorem 1 Any PGV scheduler with S ≥ 2 and B ≥ 3LM is T -work-conserving for T ≥
2LM/(S − 1).

proof. Suppose some output j is idle at time t and no input is currently sending it a packet,
but some input i has a packet x for output j with f(x) + 2LM/(S − 1) < t. By Lemma 7,
slackij(t) > 0. Since, qj(t) = 0, this implies that pij(t) < 0, which contradicts the fact that
Vij is active at t. �

Using a more precise analysis, we can reduce the required crossbar buffer size from 3LM

to 2LM .

Lemma 8 Let t1 ≤ t ≤ t2, where t1 is the time of an input scheduling event in an active
period of Vij and t2 is the time of the next event in the active period if there is one, or the
end of the active period, if there is not. For any PGV scheduler with S ≥ 2 and B ≥ 2LM ,
if slackij(t1) ≥ −Vij(t1) then slackij(t) ≥ −Vij(t).

proof. If Vij(t) ≥ Vij(t1) then the result follows from Lemma 5. Assume then that Vij(t) <
Vij(t1). This implies that Vij was selected at t1. Consequently, during the interval [t1, t], qj is
increasing at rate S − 1, while pij is decreasing at rate ≥ S − 1. Thus, slack(t) ≥ slack(t1) +
2(S−1)(t− t1). Since Vij can decrease at a rate no faster than S, Vij(t) ≥ Vij(t1)−S(t− t1).
Consequently,

slack(t) ≥ slack(t1) + 2(S − 1)(t− t1)

≥ −Vij(t1) + 2(S − 1)(t− t1)

≥ −(Vij(t) + S(t− t1)) + 2(S − 1)(t− t1)

= −Vij(t) + (S − 2)(t− t1)

≥ −Vij(t)

since S ≥ 2. �

Lemma 9 Consider an active period for Vij that includes the time t ≥ fij + 2LM/(S − 1).
For any PGV scheduler with speedup S ≥ 2 and B ≥ 2LM , slackij(t) > −Vij(t).

proof. If Bij(τij) > 0 then by Lemma 2, qj(τij) > τij − fij. Since

pij(τij) ≤ Lij + (τij − fij) ≤ Vij(τij) + (τij − fij)

it follows that slackij(τij) > −Vij(τij). By Lemma 8, slackij(t) > −Vij(t).

Now, suppose that Bij(τij) = 0. By Lemma 6, βij ≤ fij + 2LM/(S − 1) ≤ t. If x is the
first packet in Vij at βij, then βij > τij + (B − L(x))/S. During the interval [τij, βij], pij

decreases at rate ≥ S − 1. Consequently,

pij(βij) < Lij + (τij − fij)− (S − 1)(βij − τij)

≤ (1 + 1/S)LM − (1− 1/S)(B − L(x))
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By Lemma 1, qj(βij) > (1− 1/S)(B − L(x)) so,

slackij(βij) > 2(1− 1/S)(B − L(x))− (1 + 1/S)LM

≥ 4(1− 1/S)LM − (1 + 1/S)LM − 2(1− 1/S)L(x)

= (3− 5/S)LM − (1− 2/S)L(x)− L(x)

> −L(x) ≥ −Vij(βij)

By Lemma 8, slackij(t) > −Vij(t). �

Theorem 2 Any PGV scheduler with S ≥ 2 and B ≥ 2LM is T -work-conserving for T ≥
2LM/(S − 1).

proof. Suppose some output j is idle at time t and no input is currently sending it a packet,
but some input i has a packet x for output j with f(x) + 2LM/(S − 1) < t. By Lemma 9,
slackij(t) > −Vij(t). Since, qj(t) = 0, this implies that pij(t) < Vij(t), which contradicts the
definition of pij. �

5.2 Emulation Results for PGV

The analysis of the previous section can be extended to show that PGV can T -emulate
an ideal output-queued switch using any restricted PIFO queueing discipline. We define a
particular PGV scheduler based on the packet ordering defined by an output-queued switch
using the queueing discipline of interest. That packet order is used by the crossbar’s output
scheduler when selecting crosspoint buffers. The output line card of the crossbar uses the
same PIFO queueing discipline, while also holding each packet until at least T time units
have passed since its arrival.

We refer to a such a PGV scheduler defined by a restricted PIFO queueing discipline
as a PGV-RP sechduler. We show that for any restricted PIFO queueing discipline, the
corresponding PGV-RP scheduler T -emulates an ideal output-queued switch using the same
discipline. Our result for PGV generalizes the corresponding result for cell-based crossbars
given in [3].

The analysis leading to the T -emulation result is similar to the analysis used to estab-
lish work-conservation. We start with two lemmas which establish that marginij does not
decrease and that it becomes positive a short time after the start of an active period.

Lemma 10 Let t1 ≤ t ≤ t2, where t1 is the time of an input scheduling event in an active
period of Vij and t2 is the time of the next event in the active period if there is one, or the end
of the active period, if there is not. For any stable, restricted PIFO scheduler with speedup
S and B ≥ 2LM , marginij(t) ≥ marginij(t1) + (S − 2)(t− t1).

proof. If Vij is backlogged at t1, then Bij(t1) > LM and Bij became non-empty before
t1 − LM/S and will remain non-empty until at least t1 + LM/S. This implies that qij

increases at rate S − 1 throughout the interval [t1, t]. Since pij can increase at a rate no
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faster than 1 during this period, marginij(t) ≥ marginij(t1) + (S − 2)(t − t1). If Vij is not
backlogged at t1, pij decreases at rate ≥ S−1 in the interval [t1, t] and since qij can decrease
at a rate no faster than 1, marginij(t) ≥ marginij(t1) + (S − 2)(t− t1). �

Lemma 11 Consider an active period for Vij that includes t ≥ fij + 2LM/(S − 1). For any
PGV-RP scheduler with speedup S ≥ 2 and B ≥ (3 + 2/(S − 1))LM , marginij(t) > LM/S.

proof. If Vij is backlogged at τij, then by Lemma 4,

qij(τij) > (1− 1/S)(B − (Lij + LM)) + (S − 1)(τij − fij)

and since pij(τij) ≤ Lij + (τij − fij),

marginij(τij) > (1− 1/S)(B − (Lij + LM)) + (S − 1)(τij − fij)− (Lij + (τij − fij))

= (1− 1/S)B − (2− 1/S)Lij − (1− 1/S)LM + (S − 2)(τij − fij)

≥ (1− 1/S)B − (3− 2/S)LM

This is ≥ LM/S so long as B ≥ (S/(S − 1))(3− 1/S)LM = (3 + 2/(S − 1))LM , which is the
condition on B in the statement of the lemma. By Lemma 10, marginij(t) > LM/S.

Now suppose Vij is not backlogged at τij. By Lemma 6, βij ≤ t and by Lemma 3,
qij(βij) > (1− 1/S)(B − 2LM). Since, βij ≥ τij + Lij/S, it follows that

pij(βij) ≤ Lij + LM/S − (1− 1/S)Lij ≤ 2LM/S

and
marginij(βij) > (1− 1/S)(B − 2LM)− 2LM/S = (1− 1/S)B − 2LM

This is ≥ LM/S so long as B ≥ (S/(S−1))(2+1/S)LM = ((2+3/(S−1))LM which is implied
by the condition on B in the statement of the lemma. By Lemma 10 marginij(t) > LM/S.
�

Theorem 3 Let X be an output-queued switch using a restricted PIFO scheduler. A crossbar
using the corresponding PGV-RP scheduler T -emulates X if S ≥ 2, B ≥ (3+2/(S− 1))LM ,
and T ≥ (2/(S − 1) + 1/S)LM .

proof. Suppose that up until time t, the PGV-RP crossbar faithfully emulates the output-
queued switch, but that at time t, the output-queued switch begins to forward an ij-packet
x, while the crossbar does not.

Now suppose that one or more bits of x have reached Bij by time t− LM/S. Note that
the interval [t−LM/S, t) must contain at least one scheduling event at output j and all such
events must select packets that precede x. However, this implies that during some non-zero
time interval [t1, t], output j is continuously receiving bits that precede x at a faster rate
than it can forward them to the output. This contradicts the fact that by time t the crossbar
forwards all bits that precede x (since it faithfully emulates the output-queued switch up
until time t).
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Assume therefore that at time t − LM/S, no bits of x have reached Bij. Since the
output queued switch has an output delay of T , it follows that f(x) ≤ t−T , so t−LM/S ≥
f(x)+2LM/(S−1). Since the crossbar has sent everything sent by the output-queued switch
up until t, it follows that qij(t−LM/S) ≤ LM/S. By Lemma 11, marginij(t−LM/S) > LM/S
and hence pij(t− LM/S) < 0, which is not possible. �

The analysis of Lemma 11 requires a crossbar buffer of size at least 5LM when S =
2. We conjecture that this can be reduced to 3LM using a more sophisticated analysis.
Unfortunately, the technique used in Lemma 9 cannot be applied here in a straightforward
way, because qij does not increase whenever Bij > 0.

6 Packet LOOFA

The Least Occupied Output First Algorithm (LOOFA) is a cell scheduling algorithm de-
scribed in [6]. We define an asynchronous crossbar scheduling algorithm based on LOOFA,
called Packet LOOFA (PLF). Like PGV, PLF is defined by the ordering it imposes on the
VOQs at each input. The ordering of the VOQs is determined by the number of bits in the
output queues. In particular, when a VOQ Vij becomes active, it is inserted immediately
after the last VOQ Vih, for which qh ≤ qj. If there is no such VOQ, it is placed first in the
ordering. At any time, VOQs may be re-ordered, based on the output occupancy. We allow
one VOQ to move ahead of another during this re-ordering, only if its output has strictly
fewer bits. The work-conservation result for PLF is comparable to that for PGV, but the
required analysis is technically more difficult because in PLF, the relative orders of VOQs
can change. Because they can change, PLF is also more responsive to changes in output
queue lengths than PGV. While this has no effect on work-conservation when S ≥ 2, it can
be expected to yield better performance for smaller speedups.

6.1 Work-Conservation for PLF

To analyze PLF, we need some additional terminology. A non-empty interval for input i, is
any continuous time period during which there is some non-empty VOQ at input i. We say
that a VOQ V is older than a VOQ W at time t if both are active, and V last became active
before W did. We say that Vij is mature at time t if t− fij ≥ TM = (2/(S − 1))LM . We say
that a VOQ V passes a VOQ W during a given time interval, if W precedes V at the start
of the interval and V precedes W at the end of the interval.

We also need to generalize our notation for pij. In particular, we let pij(t, I) be the
number of bits at input i that precede Vij at time t and that arrived in the interval I.
So for example, pij(t, [0, sij)) counts those bits that precede Vij that arrived before sij,
and pij(t, [sij, t]) counts those bits that precede Vij that arrived since sij. We also define
pi(t, I) to be the number of bits at input i at time t that arrived in the interval I, and
we define pij(t) = pij(t, [0, sij)) + pi(t, [sij, t]). Note that pij(t) ≤ pij(t). Finally, we let
slackij(t) = qj(t) − pij(t) and marginij(t) = qij(t) − pij(t). Note that slackij(t) ≥ slackij(t)
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and marginij(t) ≥ marginij(t). Our first lemma plays essentially the same role as Lemma 5,
in the work-conservation result for PGV.

Lemma 12 Let C ≥ 0 be a constant and let t1 ≤ t ≤ t2, where t1 is the time of an
input scheduling event in an active period of Vij and t2 is the time of the next event in the
active period if there is one, or the end of the active period, if there is not. For any PLF
scheduler, if B ≥ 2LM , slackij(t1) ≥ C and all VOQs Vih, that are older than Vij at t1 satisfy
slackih(t) ≥ C, then slackij(t) ≥ C + (S − 2)(t− t1).

proof. To establish the lemma, we need to account for the bits in VOQs that pass Vij in the
interval [t1, t]. Note that we need not account for the bits in VOQs that are younger than
Vij, since the relative ordering of these VOQs with Vij does not affect pij and hence does not
affect slackij. In fact, we also need not account for bits in older VOQs that arrived after sij.
Therefore, let P be the set of VOQs that are older than Vij and that pass Vij during [t1, t],
and let r be the number of bits in VOQs in P that arrived before sij and are still present at
input i at time t. Let ∆ = t− t1.

Assume first that r = 0. If Vij is backlogged at t1, then output j receives S∆ bits during
the interval [t1, t]. If Vij is not backlogged at t1, then S∆ bits that precede Vij at t1, leave
input i during [t1, t]. This implies that slackij(t) ≥ slackij(t1) + (S − 2)∆ ≥ C + (S − 2)∆.

Next, assume that r > 0. Let Vih be the VOQ in P that comes latest in the VOQ ordering
at t1, let k = pih(t1, [0, sij))− pij(t1, [0, sij)), and note that r ≤ k. Also, note that since

pij(t1) = pij(t1, [0, sij)) + pi(t1, [sij, t1])

and
pih(t1) = pih(t1, [0, sih)) + pi(t1, [sih, t1]) ≥ pih(t1, [0, sij)) + pi(t1, [sij, t1])

it follows that, k ≤ pih(t1)− pij(t1).

Since Vih passes Vij, output h must receive fewer bits than output j does during [t1, t],
and since output j can receive no more than S∆ bits during [t1, t], output h receives fewer
than S∆. This implies that Bih(t1) < LM ≤ B − LM . Consequently, Vih is eligible for
selection at t1, which implies that some packet x with ≥ S∆ bits, that precedes Vih at t1
leaves input i during [t1, t].

We consider three cases. First, if x arrived after sij then, the departure of x reduces
pi(t1, [sij, t1]) by S∆. Consequently,

pij(t) ≤ pij(t1) + r + ∆− S∆ ≤ pij(t1) + k − (S − 1)∆

Similarly, if x arrived before sij and x precedes Vij at t1 then the departure of x reduces
pij(t1, [0, sij)) by S∆. Consequently,

pij(t) ≤ pij(t1) + r + ∆− S∆ ≤ pij(t1) + k − (S − 1)∆

Finally, if x arrived before sij and x does not precede Vij at t1 then r + S∆ ≤ k and

pij(t) ≤ pij(t1) + r + ∆ ≤ pij(t1) + k − (S − 1)∆
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So, in all three cases pij(t) ≤ pij(t1) + k − (S − 1)∆. Since Vih passes Vij, qj(t) > qh(t) ≥
qh(t1)−∆ and so,

slackij(t) > (qh(t1)−∆)− (pij(t1) + k − (S − 1)∆)

≥ (qh(t1)− pih(t1)) + (S − 2)∆

= slackih(t1) + (S − 2)∆

≥ C + (S − 2)∆

�

Our next lemma establishes a lower bound on slack for all mature VOQs.

Lemma 13 Given a crossbar with S ≥ 2, B ≥ max{2 + 1/(S − 1), (1/(2S − 1))(3S + 5 +
4/(S − 1))}LM and a PLF scheduler. If Vij is mature at time t, slackij(t) ≥ 0.

proof. Note that at the start of a non-empty period at input i, no VOQs are mature. So
initially, all mature VOQs have slack ≥ 0. Assume then that t is the earliest time in the non-
empty period when there is some mature VOQ with slack < 0 and let Vij be the oldest VOQ
for which slackij(t) < 0. Let t1 < t be the time of the most recent event at input i before
t. Suppose first that Vij was mature at t1. Since t1 < t, this implies that slackij(t1) ≥ 0.
Since all VOQs older than Vij are also mature at t1, then these all satisfy slack ≥ 0 at t1.
Consequently, by Lemma 12, slackij(t) ≥ 0.

Assume then that Vij was not mature at t1. This implies that

t1 < fij + TM ≤ t ≤ t1 + LM/S < fij + TM + LM/S

We divide the remainder of the analysis into three cases.

Case 1. pij(t, [0, sij)) = 0 and Vij was backlogged at τij. Since Vij was backlogged at τij,
Lemma 2 implies that qj(τij) ≥ (1− 1/S)(B −LM) + (S − 1)(τij − fij) and qj grows at rate
S − 1 until at least τij + (B − LM)/S.

If t ≤ τij + (B − LM)/S, qj(t) ≥ (1 − 1/S)(B − LM) + (S − 1)(t − fij) and since
pij(t, [0, sij)) = 0, pij(t) ≤ t− sij. Hence

slackij(t) ≥ (1− 1/S)(B − LM) + (S − 1)(t− fij)− (t− (fij − Lij))

= (1− 1/S)(B − LM) + (S − 2)(t− fij)− Lij

≥ (1− 1/S)(B − LM)− LM

= (1− 1/S)B − (2− 1/S)LM

This is ≥ 0, so long as B ≥ (2 + 1/(S − 1))LM , which is implied by the condition on B in
the statement of the lemma.

Assume then that t > τij + (B − LM)/S. In this case,

qj(t) ≥ 2(1− 1/S)(B − LM) + (S − 1)(τij − fij)− [t− (τij + (B − LM)/S)]

≥ (2− 1/S)(B − LM)− (t− τij)
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and

slackij(t) ≥ [(2− 1/S)(B − LM)− (t− τij)]− [t− (fij − Lij)]

≥ (2− 1/S)(B − LM)− 2(fij + TM + LM/S) + τij + fij − LM

≥ (2− 1/S)(B − LM) + (τij − fij)− 2TM − (2/S)LM − LM

≥ (2− 1/S)B − [(2− 1/S) + (4/(S − 1)) + (2/S) + 1]LM

= (2− 1/S)B − [3 + 4/(S − 1) + 1/S]LM

which is ≥ 0 if B ≥ (1/(2S − 1))(3S + 5 + 4/(S − 1))LM , which is implied by the condition
on B in the statement of the lemma. This completes Case 1.

Case 2. pij(t, [0, sij)) = 0 and Vij is not backlogged at τij. Suppose there is no backlog
event for Vij in [τij, t]. Then,

pij(t) ≤ Lij + (τij − fij)− (S − 1)(t− τij)

< Lij + LM/S − (S − 1)(TM − LM/S)

≤ 2LM − (S − 1)TM ≤ 0

This contradicts the fact that Vij is active at t, so there must be some backlog event in [τij, t].
Note that βij ≥ τij + Lij/S, so

pij(βij) ≤ Lij + (τij − fij)− (S − 1)(βij − τij)

< Lij + LM/S − (1− 1/S)Lij

= Lij/S + LM/S ≤ 2LM/S

By Lemma 1, qj(βij) ≥ (1−1/S)(B−LM), so slackij(βij) ≥ (1−1/S)(B−LM)−2LM/S and
this is ≥ 0 so long as B ≥ (1 + 2/(S − 1))LM , which is implied by the condition on B in the
statement of the lemma. If βij + (B −LM)/S ≥ t, then qj continues to grow at rate (S − 1)
until t. This is enough to compensate for any growth in pij. Hence, slackij(t) ≥ LM/S.

Assume then that βij +(B−LM)/S < t. In this case, qj continues to grow at rate (S−1)
until βij + (B − LM)/S giving qj(βij + (B − LM)/S) > 2(1− 1/S)(B − LM). Thus,

qj(t) > 2(1− 1/S)(B − LM)− (t− (βij + (B − LM)/S)) ≥ (2− 1/S)(B − LM)− (t− βij)

and since pij(t) ≤ t− sij.

slackij(t) ≥ (2− 1/S)(B − LM)− (t− βij)− (t− sij)

≥ (2− 1/S)(B − LM)− 2t + (τij + Lij/S) + (fij − Lij)

≥ (2− 1/S)(B − LM)− 2(fij + TM + LM/S) + (τij + Lij/S) + (fij − Lij)

≥ (2− 1/S)(B − LM)− 2(TM + LM/S) + (τij − fij)− (1− 1/S)Lij

≥ (2− 1/S)B − [(2− 1/S) + 4/(S − 1) + 2/S + (1− 1/S)]LM

≥ (2− 1/S)B − [3 + 4/(S − 1)]LM

which is ≥ 0 if B ≥ (1/(2S − 1))(3S + 4 + 4/(S − 1))LM , which is implied by the condition
on B in the statement of the lemma. This completes Case 2.
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Case 3. pij(t, [0, sij)) > 0. This implies that there is some VOQ that precedes Vij at t
and is older than Vij. Let Vih be one such VOQ and assume further, that among all such
VOQs, it comes latest in the VOQ ordering at t. Note that since Vij is the oldest VOQ with
slack < LM/S at t, slackih(t) ≥ 0.

Let K be the set of bits that precede Vij at time t but not Vih and let k = |K| =
pij(t) − pih(t). Note that all bits in K must have arrived since sij (otherwise, there would
be some VOQ older than Vij that precedes Vij and comes later in the VOQ ordering than
Vih). Since Vih is older than Vij, these bits also arrived after sih. Let R be the set of
bits that arrived after sij and are still present at time t and do not precede Vij and let
r = |R| = pij(t)− pij(t). Note that K and R have no bits in common. Now, let X be the set
of bits that arrived since sih and do not precede Vih. Note that both K and R are subsets
of X and so k + r ≤ |X| = pih(t)− pih(t). Consequently,

slackih(t) = qh(t)− pih(t) ≥ qh(t)− pih(t) + (k + r) ≥ k + r

and
slackij(t) = qj(t)− (pij(t) + r) ≥ qh(t)− ((pih(t) + k) + r)) ≥ 0

�

Note that Lemma 13 implies that that slackij(t) ≥ LM/S for all mature Vij. From this
we obtain the work-conservation theorem for PLF.

Theorem 4 A buffered crossbar with S ≥ 2 and B ≥ max{2+1/(S− 1), (1/(2S− 1))(3S +
5 + 4/(S − 1))}LM using any PLF scheduler is T -work-conserving for any T ≥ TM .

proof. Suppose some output j is idle at time t, but some input i has a packet x for output j
with f(x)+T < t. By Lemma 13, slackij(t) ≥ 0. Since qj(t) = 0, this implies that pij(t) ≤ 0,
which contradicts the fact that Vij contains x at t. �

6.2 Emulation

In this section we show that a variant of the PLF algorithm is capable of emulating an output
queued switch using any restricted PIFO queueing discipline. This variant differs from the
standard PLF algorithm in that it orders VOQs based on the values of qij, rather than qj.
That is, when Vij becomes non-empty, it is inserted into the VOQ ordering after the last
VOQ Vih for which qih ≤ qij. If there is no such VOQ, Vij is placed first in the ordering.
Strictly speaking, this variant is different from PLF, so to avoid confusion we refer to it as
Refined PLF or RPLF.

Lemma 14 Let C ≥ 0 be a constant and let t1 ≤ t ≤ t2, where t1 is the time of an
input scheduling event in an active period of Vij and t2 is the time of the next event in the
active period if there is one, or the end of the active period, if there is not. For any RPLF
scheduler, if B ≥ 2LM , marginij(t1) ≥ C and all VOQs Vih, that are older than Vij at t1
satisfy marginih(t) ≥ C, then marginij(t) ≥ C + (S − 2)(t− t1).
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proof. As in the proof of Lemma 12, we need to account for the bits in VOQs that pass Vij

in the interval [t1, t] and that arrived before sij. Therefore, let P be the set of VOQs that
are older than Vij and that pass Vij during [t1, t], and let r be the number of bits in VOQs
in P that arrived before sij and are still present at input i at time t. Let ∆ = t− t1.

Assume first that r = 0. If Vij is backlogged at t1, then Bij became non-empty before
t1 − LM/S, which means that at the time of the most recent scheduling event at output
j before t1, Bij contained a packet that precedes Vij. Consequently, output j receives S∆
bits that precede Vij during the interval [t1, t]. If Vij is not backlogged at t1, then S∆
bits that precede Vij at t1, leave input i during [t1, t]. This implies that marginij(t) ≥
marginij(t1) + (S − 2)∆ ≥ C + (S − 2)∆.

Next, assume that r > 0, let Vih be the VOQ in P that comes latest in the VOQ ordering
at t1, let k = pih(t1, [0, sij))− pij(t1, [0, sij)), and note that r ≤ k. Also, note that since

pij(t1) = pij(t1, [0, sij)) + pi(t1, [sij, t1])

and
pih(t1) = pih(t1, [0, sih)) + pi(t1, [sih, t1]) ≥ pih(t1, [0, sij)) + pi(t1, [sij, t1])

it follows that, k ≤ pih(t1)− pij(t1).

Since Vih passes Vij, output h must receive fewer bits than output j does during [t1, t],
and since output j can receive no more than S∆ bits during [t1, t], output h receives fewer
than S∆. This implies that Bih(t1) < LM ≤ B − LM . Consequently, Vih is eligible for
selection at t1, which implies that the packet x that is selected at t1 precedes Vih.

We consider three cases. First, if x arrived after sij then, the departure of x reduces
pi(t1, [sij, t1]) by S∆. Consequently,

pij(t) ≤ pij(t1) + r + ∆− S∆ ≤ pij(t1) + k − (S − 1)∆

Similarly, if x arrived before sij and x precedes Vij at t1 then the departure of x reduces
pij(t1, [0, sij)) by S∆. Consequently,

pij(t) ≤ pij(t1) + r + ∆− S∆ ≤ pij(t1) + k − (S − 1)∆

Finally, if x arrived before sij and x does not precede Vij at t1 then r + S∆ ≤ k and

pij(t) ≤ pij(t1) + r + ∆ ≤ pij(t1) + k − (S − 1)∆

So, in all three cases pij(t) ≤ pij(t1) + k − (S − 1)∆. Since Vih passes Vij, qij(t) > qih(t) ≥
qih(t1)−∆ and so,

marginij(t) > (qih(t1)−∆)− (pij(t1) + k − (S − 1)∆)

≥ (qih(t1)− pih(t1)) + (S − 2)∆

= marginih(t1) + (S − 2)∆

≥ C + (S − 2)∆

�

Our next lemma establishes a lower bound on margin for all mature VOQs.
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Lemma 15 Given a crossbar with S ≥ 2, B ≥ max{3+2/(S− 1), (1/(S− 1))(2S +(3/2)+
2/(S − 1))}LM and a RPLF scheduler. If Vij is mature at time t, marginij(t) ≥ LM/S.

proof. Note that at the start of a non-empty period at input i, no VOQs are mature. So
initially, all mature VOQs have margin ≥ LM/S. Assume then that t is the earliest time in
the non-empty period when there is some mature VOQ with margin < LM/S and let Vij be
the oldest VOQ for which marginij < LM/S at time t. Let t1 < t be the time of the most
recent event at input i before t. Suppose first that Vij was mature at t1. Since t1 < t, this
implies that marginij(t1) ≥ LM/S. Since all VOQs older than Vij are also mature at t1, then
these all satisfy margin ≥ LM/S at t1. Consequently, by Lemma 14, marginij(t) ≥ LM/S.

Assume then that Vij was not mature at t1. This implies that

t1 < fij + TM ≤ t ≤ t1 + LM/S < fij + TM + LM/S

We divide the remainder of the analysis into three cases.

Case 1. pij(t, [0, sij)) = 0 and Vij was backlogged at τij. Since Vij was backlogged at τij,
by Lemma 4 qij(τij) ≥ (1 − 1/S)(B − 2LM) + (S − 1)(τij − fij) and qij continues to grows
at rate (S − 1) until τij + (B − LM)/S.

If t ≤ τij + (B − LM)/S, qij(t) ≥ (1 − 1/S)(B − 2LM) + (S − 1)(t − fij) and since
pij(t, [0, sij)) = 0, pij(t) ≤ t− sij. Hence

marginij(t) ≥ (1− 1/S)(B − 2LM) + (S − 1)(t− fij)− (t− (fij − Lij))

≥ (1− 1/S)(B − 2LM) + (S − 2)(t− fij)− LM))

≥ (1− 1/S)B − (3− 2/S)LM

This is ≥ LM/S, so long as B ≥ (3 + 2/(S − 1))LM , which is implied by the condition on B
in the statement of the lemma.

Assume then that t > τij + (B − LM)/S. In this case,

qij(t) ≥ (1− 1/S)(2B − 3LM) + (S − 1)(τij − fij)− (t− (τij + LM/S))

≥ (1− 1/S)(2B − 3LM) +−((fij + TM + LM/S)− (τij + LM/S))

= (1− 1/S)(2B − 3LM) + (τij − fij)− 2LM/(S − 1)

≥ 2(1− 1/S)B − (3 + 2/(S − 1)− 3/S)LM

and

marginij(t) ≥ 2(1− 1/S)B − (3 + 2/(S − 1)− 3/S)LM − (t− sij)

≥ 2(1− 1/S)B − (3 + 2/(S − 1)− 3/S)LM

−((fij + TM + LM/S)− (fij − Lij))

≥ 2(1− 1/S)B − (3 + 2/(S − 1)− 3/S)LM − ((2/(S − 1)) + (1 + 1/S))LM

= 2(1− 1/S)B − (4 + 4/(S − 1)− 2S)LM

This is ≥ LM/S if B ≥ (1/(S − 1))[2S + (3/2) + 2/(S − 1)]LM , which is implied by the
condition in the statement of the lemma. This completes Case 1.
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Case 2. pij(t, [0, sij)) = 0 and Vij is not backlogged at τij. Suppose there is no backlog
event for Vij in [τij, t]. Then,

pij(t) ≤ Lij + (τij − fij)− (S − 1)(t− τij)

< Lij + LM/S − (S − 1)(TM − LM/S)

≤ 2LM − (S − 1)TM ≤ 0

This contradicts the fact that Vij is active at t, so there must be some backlog event in [τij, t].
Note that βij ≥ τij + Lij/S, so

pij(βij) ≤ Lij + (τij − fij)− (S − 1)(βij − τij)

< Lij + LM/S − (1− 1/S)Lij

= Lij/S + LM/S ≤ 2LM/S

Since qij(βij) > (1− 1/S)(B − 2LM),

marginij(βij) ≥ (1− 1/S)(B − 2LM)− 2LM/S = (1− 1/S)B − 2LM

which is ≥ LM/S so long as B ≥ (2+3/(S−1))LM , which is implied by the condition on B in
the statement of the lemma. If βij+(B−LM)/S ≥ t, then qij continues to grow at rate (S−1)
until t. This is enough to compensate for any growth in pij. Hence, marginij(t) ≥ LM/S.

Assume then that βij +(B−LM)/S < t. In this case, qij continues to grow at rate (S−1)
until βij + (B − LM)/S giving qij(βij + (B − LM)/S) > (1− 1/S)(2B − 3LM). Thus,

qij(t) > 2(1− 1/S)B − 3(1− 1/S)LM − (t− (βij + (B − LM)/S))

≥ (2− 1/S)B − (3− 2/S)LM − (t− βij)

and since pij(t) ≤ t− sij.

marginij(t) ≥ (2− 1/S)B − (3− 2/S)LM − (t− βij)− (t− sij)

≥ (2− 1/S)B − (3− 2/S)LM − 2(fij + TM + LM/S) + βij + sij

≥ (2− 1/S)B − (3− 2/S)LM − 2(2/(S − 1)LM + LM/S)

+(τij + Lij/S)− fij − Lij

≥ (2− 1/S)B − (3− 2/S)LM − 2(2/(S − 1)LM + LM/S)− (1− 1/S)Lij

≥ (2− 1/S)B − (4 + 4/(S − 1)− 1/S)LM

which is ≥ LM/S if B ≥ (4S/(2S − 1))(1 + 1/(S − 1))LM , which is implied by the condition
on B in the statement of the lemma. This completes Case 2.

Case 3. pij(t, [0, sij)) > 0. This implies that there is some VOQ that precedes Vij at t
and is older than Vij. Let Vih be one such VOQ and assume further, that among all such
VOQs, it comes latest in the VOQ ordering at t. Note that since Vij is the oldest VOQ with
margin < LM/S at t, marginih(t) ≥ LM/S.
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Let K be the set of bits that precede Vij at time t but not Vih and let k = |K| =
pij(t) − pih(t). Note that all bits in K must have arrived since sij (otherwise, there would
be some VOQ older than Vij that precedes Vij and comes later in the VOQ ordering than
Vih). Since Vih is older than Vij, these bits also arrived after sih. Let R be the set of
bits that arrived after sij and are still present at time t and do not precede Vij and let
r = |R| = pij(t)− pij(t). Note that K and R have no bits in common. Now, let X be the set
of bits that arrived since sih and do not precede Vih. Note that both K and R are subsets
of X and so k + r ≤ |X| = pih(t)− pih(t). Consequently,

marginih(t) = qih(t)− pih(t) ≥ qih(t)− pih(t) + (k + r) ≥ LM/S + (k + r)

and
marginij(t) = qij(t)− (pij(t) + r) ≥ qih(t)− ((pih(t) + k) + r)) ≥ LM/S

�

Note that Lemma 15 implies that that marginij(t) ≥ LM/S for all mature Vij. From this
we obtain the emulation theorem for RPLF.

Theorem 5 Let X be an output-queued switch using a restricted PIFO scheduler. A crossbar
using the corresponding RPLF scheduler T -emulates X if S ≥ 2, B ≥ max{3 + 2/(S −
1), (1/(S − 1))(2S + (3/2) + 2/(S − 1))}LM and T ≥ TM + LM/S.

proof. Suppose that up until time t, the PLF crossbar faithfully emulates the output-queued
switch with added delay T , but that at time t, the output-queued switch begins to forward
an ij-packet x, while the crossbar does not.

Now suppose that one or more bits of x have reached Bij by time t− LM/S. Note that
the interval [t−LM/S, t) must contain at least one scheduling event at output j and all such
events must select packets that precede x. However, this implies that during some non-zero
time interval [t1, t], output j is continuously receiving bits that precede x at a faster rate
than it can forward them to the output. This contradicts the fact that by time t the crossbar
forwards all bits that precede x (since it faithfully emulates the output-queued switch up
until time t).

Assume therefore that at time t−LM/S, no bits of x have reached Bij. Since the output-
queued switch has a delay of T , it follows that f(x) ≤ t− T and so t−LM/S ≥ f(x) + TM .
Since the crossbar has sent everything sent by the output-queued switch up until time t,
it follows that qij(t − LM/S) ≤ LM/S. By Lemma 15, marginij(t1) ≥ LM/S and hence
pij(t1) < 0, which is not possible. �

7 Segment-Based Switching

As mentioned earlier, Chuang, et. al. [2] showed that cell-based crossbars can emulate an
output-queued switch using any push-in, first-out (PIFO) queueing discipline. It is straight-
forward to define PIFO scheduling policies that keep the cells of a packet together (simply
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insert later arriving cells of a given packet right after their immediate predecessors). This
makes it possible to provide strong performance guarantees for packets not just cells, using
variants of standard crossbar schedulers that are packet-aware. (Thanks to the anonymous
referee who made this observation in his insightful review of an earlier version of this pa-
per [17].) Note that this method may require that the output line card forward cells that
form the initial part of a packet, before all cells in the packet are received, but this is feasible
in this context, since the crossbar scheduler can guarantee that the remaining cells are re-
ceived by the time they are needed. While packet-aware schedulers can provide packet-level
performance guarantees in systems that use cell-based crossbars, such systems still suffer
from bandwidth fragmentation, since packet lengths are generally not even multiples of the
cell length. To achieve the desired performance guarantees in the worst-case, one must still
double the speedup implied by the idealized analysis, significantly adding to the system cost.

One possible objection to the use of crosspoint buffers that are large enough to hold
packets is that they might be too expensive, even for modern integrated circuit components.
A 32 port crossbar equipped with buffers large enough to hold two 1500 byte packets would
require a total of more than 3 MB of SRAM. A buffer large enough to hold the 7.5 maximum
size packets needed to emulate any restricted PIFO discipline using RPLF would require
close to 11 MB. In [8], the authors propose switching variable length segments rather than
cells, as a way of addressing the fragmentation problem with fixed-size cells. If this is
coupled with a packet-aware crossbar scheduler that provides performance guarantees for
variable length packets, we can reduce the crossbar buffer size to a multiple of the maximum
segment length. For IP routers, a maximum segment length of 80 bytes is sufficient to
eliminate bandwidth loss due to fragmentation effects. Even after adding 20 bytes for header
information the required buffer size is reduced by a factor of 15, making it small enough to
be easily accommodated within the constraints of current circuit technologies.

Also observe that in a segment-based system, an input line card can forward segments to
an output line card before all segments of the packet have been received. The performance
guarantee for the crossbar will ensure that remaining segments are transferred through the
crossbar in time to be forwarded on the outgoing link, if the system is operated with a
speedup of 2. Thus, we not only reduce the amount of buffering required, but we reduce the
delay as well.

8 Concluding Remarks

The results of sections 5 and 6 can be extended to systems that place different constraints
on where and when packets are buffered. In particular, most routers buffer packets at both
input and output line cards, not just at the inputs. Buffering packets at the inputs allows
error checks to be performed on the packets before forwarding them to the switch. Buffering
them at the outputs allows similar checks to be performed, but is arguably less essential,
since packet errors are less likely to occur within a router than on the external links. Having
said that, other considerations may dictate that packets be buffered at outputs, as well as
inputs and this raises the question of how the performance guarantees are affected. It turns
out that the effect is fairly minor, requiring only that the value of T be increased by LM/S,
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to accommodate the added delay for a maximum length packet to be fully buffered at the
outputs.

With an asynchronous crossbar, it is possible to build a system in which packets pass
from inputs to outputs without ever being fully buffered. This is known as cut-through
switching [5] and can provide superior delay performance. While cut-through switching is
not typically used in routers, it can be useful in system contexts where it is important to
minimize latency. While our results cannot be directly applied to such systems, it seems
likely that similar results could be developed for this model. Indeed, the segment-based
switches discussed in the previous section already approach the behavior of a cut-through
switch, and there seems little reason to suppose that the results would not generalize to the
cut-through model. The key requirement needed to obtain work-conservation is that once
a packet has been selected to advance from an input line card to the crossbar or from the
crossbar to an output line card, the flow of bits in that packet must not be interrupted until
the end of the packet is reached. Inputs (outputs) must also be able to forward multiple
packets to (from) the crossbar concurrently in certain cases. Consider for example, an input
that is forwarding bits of a packet x to the crossbar as they come in. Since the bits are
arriving at the link rate, the transfer of the bits of x to the crossbar uses only half the
crossbar bandwidth (assuming S = 2). If another packet y at the input becomes eligible
for forwarding while x is still coming in (because its crossbar buffer has drained sufficiently
to accommodate it), the input must be able to forward y to the crossbar concurrently with
x in order to fully exploit the crossbar bandwidth. Without the ability to transfer packets
concurrently to and from the crossbar, it will not be possible to achieve work-conservation.

There are several ways the work described here can be extended. First, there are oppor-
tunities for tightening the results shown here, particularly with respect to the crossbar buffer
size. Our analysis showing that a PGV scheduler can emulate an output-queued switch with
a restricted PIFO scheduler requires a buffer size of 5LM . As noted earlier, it seems likely
that this can be reduced to 3LM . The buffer size results for PLF are also not as strong as
one might expect. There seems no intrinsic reason to suppose that PLF requires a larger
crossbar buffer size than PGV. An analysis that directly compares the behavior of a PLF
scheduler to the PGV scheduler may be able to reduce the buffer size requirement for PLF.
Another worthwhile direction for further work is developing performance guarantees for other
scheduling algorithms.

It would also be interesting to see if the analysis techniques can be extended to provide
stronger performance guarantees. In particular, it would be useful to show that an asyn-
chronous buffered crossbar can emulate an output-queued switch using any PIFO queueing
discipline, not just any restricted PIFO discipline. The difficulty in making the transition
from restricted PIFO queueing disciplines to unrestricted PIFO disciplines is that once a
packet is in a crossbar buffer, there is no way for a later arriving packet from the same input
to reach the output line card before it does, even if the queueing discipline gives it higher
priority. Reference [3] describes several techniques that can be used to allow cell switches
using buffered crossbars to overcome this crosspoint blocking phenomenon. One involves
increasing the speedup and allowing later arriving packets to displace packets already in
crossbar buffers. Another method requires no increase in speedup, but uses a more complex
form of buffering in the crossbar. It seems likely that these methods can be generalized to

24



accommodate asynchronous crossbars.

Still another direction to explore is how scheduling algorithms that deliver strong perfor-
mance guarantees when operated with a speedup of 2 perform when operated with a smaller
speedup. Since the crossbar cost increases in direct proportion to the speedup, there are
practical reasons to be interested in the performance of systems with smaller speedup, even
if they are not able to deliver strong performance guarantees. A comprehensive simulation
study exploring how such systems perform under a wide range of conditions would have
considerable practical value.
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