
CSE 535 : Lockwood 1

CSE 535 : Lecture 2

Language-based Hardware Description

Washington University
Fall 2003

http://www.arl.wustl.edu/arl/projects/fpx/cse535/

Copyright 2003, John W Lockwood
Lockwood@arl.wustl.edu

CSE 535 : Lockwood 2

Describing Hardware
• Schematic-based

– Can be cumbersome for large projects
– Requires version control to maintain libraries

• Language-based
– Must express parallelism

• C does not have explicit commands for parallism

– Must allow for fine grain parallelism
• Allow gate-level parallelism where possible

– Must be exact
• Eliminate ambiguity

– Synthesizable
• Generate hardware from description

CSE 535 : Lockwood 3

VHDL

• VHSIC Hardware Description Language
– VHSIC = Very High Speed Integrated Circuit

– IEEE 1076-1987
• First ratified version of VHDL
• Originally developed to describe digital system

– [not build them!]

– IEEE 1076-1993
• Updated version, as used in textbook

– IEEE 1164
• Package for Synthesis

CSE 535 : Lockwood 4

Example Entity declaration

ENTITY black_box IS PORT (

clk: IN std_logic;

rst: IN std_logic;
d: IN std_logic_vector(7 DOWNTO 0);

q: OUT std_logic_vector(7 DOWNTO 0);

co: OUT std_logic);

END black_box;
BLACK_BOX

rst

d[7:0]

clk

q[7:0]

co

CSE 535 : Lockwood 5

The Architecture

• Architectures describe what is in the black box
(i.e., the structure or behavior of entities)

• Descriptions can be either a combination of
– Structural descriptions

• Instantiations (placements of logic-much like in a
schematic-and their connections) of building blocks
referred to as components

– Behavioral/Dataflow descriptions
• Algorithmic (or “high-level”) descriptions:
• IF a = b THEN state <= state5;
• Boolean equations (also referred to as dataflow):
• x <= (a OR b) AND c;

CSE 535 : Lockwood 6

The Architecture Declaration

ARCHITECTURE arch_name OF entity_name IS

-- optional signal declarations, etc.

BEGIN

--VHDL statements

END arch_name;

– arch_name is an arbitrary name
– optional signal declarations are used for signals local to the

architecture body (that is, not the entity’s I/O).
– entity_name is the entity name
– statements describe the function or contents of the entity

CSE 535 : Lockwood 7

Architecture Body Styles : Behavioral

ENTITY compare IS PORT (

a, b : IN std_logic_vector(0 TO 3);

equals: OUT std_logic);

END compare;

ARCHITECTURE behavior OF compare IS

BEGIN
comp: PROCESS (a,b)

BEGIN

IF a = b THEN

equals <= '1' ;

ELSE

equals <= '0' ;

END IF ;

END PROCESS comp;

END behavior;

CSE 535 : Lockwood 8

Architecture Body Styles : Structural

ENTITY compare IS PORT (

a, b: IN std_logic_vector(0 TO 3);

equals: OUT std_logic);

END compare;

USE WORK.Gate-Library.ALL ;
ARCHITECTURE structure OF compare IS

SIGNAL x : std_logic_vector (0 to 3) ;

BEGIN

u0: xnor2 PORT MAP (a(0),b(0),x(0)) ;

u1: xnor2 PORT MAP (a(1),b(1),x(1)) ;

u2: xnor2 PORT MAP (a(2),b(2),x(2)) ;

u3: xnor2 PORT MAP (a(3),b(3),x(3)) ;

u4: and4 PORT MAP (x(0),x(1),x(2),x(3),equals) ;

END structure;

CSE 535 : Lockwood 9

Mixing Architecture Styles

• The various styles may be mixed in one
architecture.

ENTITY logic IS PORT (

a,b,c: IN std_logic;

f: OUT std_logic);

END logic;

USE WORK.GateLibrary.ALL;
ARCHITECTURE archlogic OF logic IS

SIGNAL d: std_logic;

BEGIN

d <= a AND b; -- Behavioral

g1: nor2 PORT MAP (c, d, f); -- Structural

END archlogic;

a
b

c

d

f

LOGIC

g1

CSE 535 : Lockwood 10

Native Operators

• Logical
• AND, NAND
• OR, NOR
• XOR, XNOR
• NOT

• Relational
• = (equal to)
• /= (not equal to)
• < (less than)
• <= (less than or equal to)
• > (greater than)
• >= (greater than or equal to)

CSE 535 : Lockwood 11

VHDL Statements

• There are two types of statements
– Sequential

• Though hardware is concurrent, it may be modeled
with algorithms, by a series of sequential statements

• By definition, sequential statements are grouped
using a process statement.

– Concurrent
• Statements outside of a process are evaluated

concurrently during simulation
• Processes are concurrent statements

CSE 535 : Lockwood 12

Concurrent Statements

• Concurrent statements include:
– Boolean equations
– Conditional/selective assignments
– Instantiations

-- Examples of boolean equations

x <= (a AND (NOT sel1)) OR (b AND sel1);

g <= NOT (y AND sel2);

-- Examples of conditional assignments

y <= d WHEN (sel1 = '1') ELSE c;

h <= '0' WHEN (x = '1' AND sel2 = '0') ELSE '1';

-- Examples of instantiation

inst: nand2 PORT MAP (h, g, f);

CSE 535 : Lockwood 13

The Process Statement

• An architecture can contain multiple processes.

• Each process is executed concurrently

• Statements within a process are sequential
statements-they execute sequentially during
simulation

• The statements with in a process not be sequential
after synthesis

CSE 535 : Lockwood 14

The Process (cont)

label: PROCESS (sensitivity list)

-- variable declarations

BEGIN

-- sequential statements

END PROCESS label ;

• The process label and variable declarations are
optional

• The process executes when one of the signals in the
sensitivity list has an event (changes value).

CSE 535 : Lockwood 15

Process (cont)

• Processes are executing or suspended (active or
inactive/awake or asleep)

• A process typically has a sensitivity list
– When a signal in the sensitivity list changes value, the

process is executed by the simulator
– e.g., a process with a clock signal in its sensitivity list

becomes active on changes of the clock signal

• All signal assignments occur at the END PROCESS
statement in terms of simulation
– The process is then suspended until there is an event

(change in value) on a signal in the sensitivity list

CSE 535 : Lockwood 16

Selective Signal Assignment: select

• Assignment based on a selection signal
• WHEN clauses must be mutually exclusive
• Use a WHEN OTHERS to avoid latches
• Only one reference to the signal, only one

assignment operator (<=)

WITH selection_signal SELECT

signal_name <= value_1 WHEN value_1,

value_2 WHEN value_2,

...

value_n WHEN value_n,

value_x WHEN OTHERS;

CSE 535 : Lockwood 17

Combinational Logic with select

• The same 4-1 multiplexer is shown below

WITH s SELECT

x <= a when “00” ,

b when “01” ,

c when “10” ,

d when others ;

CSE 535 : Lockwood 18

Conditional Signal Assignment: when-else

• Signal is assigned a value based on conditions
• Any simple expression can be a condition
• Priority goes in order of appearance
• Only one reference to the signal, only one

assignment operator (<=)
• Use a final ELSE to avoid latches

signal_name <= value_1 WHEN condition1 ELSE

value_2 WHEN condition2 ELSE

...

value_n WHEN conditionN ELSE

value_x ;

CSE 535 : Lockwood 19

Combinational Logic (cont)

The same 4-1 multiplexer is shown below

x <= a when (s = “00”) else

b when (s = “01”) else

c when (s = “10”) else

d ;

CSE 535 : Lockwood 20

Combinational Logic (cont)

• The when conditions do not have to be
mutually exclusive (as in with-select-when)

• A priority encoder is shown below

j <= w when (a = ‘1’) else

x when (b = ‘1’) else

y when (c = ‘1’) else

z when (d = ‘1’) else

‘0’ ;

CSE 535 : Lockwood 21

Sequential Statements: if-then-else

• Used to select a set of statements to be
executed

• Selection based on a boolean evaluation of a
condition or set of conditions

IF condition(s) THEN

do something;

ELSIF condition_2 THEN -- optional

do something different;

ELSE -- optional

do something completely different;

END IF ;

CSE 535 : Lockwood 22

Avoiding the latch within an if-then-else

• Absence of ELSE results in implicit memory
• 4-1 mux shown below

mux4_1: process (a, b, c, d, s)

begin

if s = “00” then x <= a ;

elsif s = “01” then x <= b ;

elsif s = “10” then x <= c ;

else x <= d ;

end if;
end process mux4_1 ;

CSE 535 : Lockwood 23

Sequentional Statements: Case-When

CASE selection_signal

WHEN value_1_of_selection_signal =>

(do something) -- set of statements 1

WHEN value_2_of_selection_signal =>

(do something) -- set of statements 2

...
WHEN value_N_of_selection_signal =>

(do something) -- set of statements N

WHEN OTHERS =>

(do something) -- default action

END CASE ;

CSE 535 : Lockwood 24

The CASE Statement: 4-1 Mux

ARCHITECTURE archdesign OF design IS

SIGNAL s: std_logic_vector(0 TO 1);

BEGIN

mux4_1: PROCESS (a,b,c,d,s)

BEGIN

CASE s IS
WHEN "00" => x <= a;

WHEN "01" => x <= b;

WHEN "10” => x <= c;

WHEN OTHERS => x <= d;

END CASE;

END PROCESS mux4_1;

END archdesign;

CSE 535 : Lockwood 25

Synchronous Storage Elements

• Values change at
times governed by
clock

Clock Transition

t=0 t=1 t=2
0
1Clock

time

Clock Transition

S0Dout

t=0

A B

A B

CDin

t=0

Clock

Din DoutQD

– Clock
• Input to circuit

– Clock Event
• Example: Rising edge

– Flip/Flop
• Transfers Value From Din

to Dout on Clock event

CSE 535 : Lockwood 26

Edge Triggered Flop
entity flop is

port (clk : in std_logic;

Din : in std_logic;
Dout : out std_logic);

end flop;

architecture behavioral of flop is

begin

flop:process(clk)

begin

if (clk='1' and clk'event) then

Dout <= Din;

end if;
end process flop;

end behavioral;

Clock

Din DoutQD

CSE 535 : Lockwood 27

Components
architecture structural of my_module is

component flop32
port(clk : in std_logic;

Din : in std_logic_vector(31 downto 0);

Dout : out std_logic_vector(31 downto 0));

end component;

… other components …

DataReg: flop32

port map (clk => clk,

Din => d_mod_in,
Dout => d_mod_out);

… other connections …

end structural;

CSE 535 : Lockwood 28

Finite State Machine (FSM)

• Terminology
– Time: t
– State: S

• State variables: S = { S1, S2 … Sk }
• Current state: S(t)
• Next state: S(t+1)

– State transition function δ()
• Assigns next state

• State Transition
– S(t+1) = δ(X , S(t))

CSE 535 : Lockwood 29

State Declaration

type states is (init, pad, dout);

doutinit pad

signal state, next_state : states;

CSE 535 : Lockwood 30

State Declaration

doutinit pad

• Binary Encoding

doutinit pad

• One-Hot Encoding

“00” “01” “10”

“001” “010” “100”

• Number
of Flops
= 2

• Number
of Flops
= 3

CSE 535 : Lockwood 31

State Encoding

• Given state machine with K states
• Choose encoding to maintain state

– Binary Encoding
• Number of Flops: O(log2 k)
• Minimizes number of Flops

– One-Hot Encoding
• Number of Flops: O(k)
• Reduces the next-state logic
• Uses fewer levels of logic cells
• Enables high-speed state machines

– Automatic Encoding
• Feature of many synthesis tools

CSE 535 : Lockwood 32

Implementation of the FSM
Copyright 2001, John W. Lockwood, All Rights Reserved

Combinational Logic

Inputs (X)

S(t) δ
S(t+1)=
(X,S(t))

Outputs (Z)

State
Next

State Storage

...

[Moore]
(S(t))=λ

=λ
[Mealy]
(X,S(t))

-or-

Q D

Q D

CSE 535 : Lockwood 33

State Transition
state_trans:process(state, soc_in, cntr, data_in)

begin
case state is

when init =>

if (soc_in='1') then

if (data_in(19 downto 4)=x"0005") then

nxt_state <= pad;

else

nxt_state <= dout;

end if;

else
nxt_state <= init;

end if;

...

end case;

end process state_trans;

doutinit pad

SOC_IN=1 AND VCI=5

SOC_IN=1 AND VCI<>5

SOC_IN<>1

CSE 535 : Lockwood 34

State Assignment Transition

clkd: process(clk)

begin

if (clk'event and clk='1') then

if (reset='1') then

state <= init;

else
state <= next_state;

end if;

end if;

end process clkd;

CSE 535 : Lockwood 35

Technology Mapping

• Map function into library of gates
• Timing optimization

4 LUT

G4

G3

G2

G1

G

4 LUT

F4

F3

F2

F1

F

3 LUT

H

S

R

D Q

S

R

D Q

H1

Din Clk

YQ

Y

XQ

X

M

M

M

M

CLB

CSE 535 : Lockwood 36

Reprogrammable Device Configuration

GRM
Local Routing

CLB PIP

• Routing Module :
• Interconnection of Blocks

4 LUT

G4

G3

G2

G1

G

4 LUT

F4

F3

F2

F1

F

3 LUT

H

S

R

D Q

S

R

D Q

H1

Din Clk

YQ

Y

XQ

X

M

M

M

M

CLB • CLB :
• Primitive element of FPGA

...

...

...

... ...

......

3rd Generation LUT-based FPGA

Pad Routing CLB Matrix I/O

Macro
Block
(uP,
Mem)

• FPGA :
• Matrix of CLBs and

Routing Modules

CSE 535 : Lockwood 37

Final Design

• Physical
Synthesis
– Cell

placement
– Signal

routing

