

| Describing Hardware                                              |                                              |  |
|------------------------------------------------------------------|----------------------------------------------|--|
| <ul> <li>Schematic-based</li> </ul>                              |                                              |  |
| <ul> <li>Can be cumbersome for large project</li> </ul>          | S                                            |  |
| <ul> <li>Requires version control to maintain I</li> </ul>       | ibraries                                     |  |
| <ul> <li>Language-based</li> </ul>                               |                                              |  |
| <ul> <li>Must express parallelism</li> </ul>                     |                                              |  |
| <ul> <li>C does not have explicit commands for p</li> </ul>      | arallism                                     |  |
| <ul> <li>Must allow for <i>fine grain</i> parallelism</li> </ul> |                                              |  |
| Allow gate-level parallelism where possible                      |                                              |  |
| <ul> <li>Must be exact</li> </ul>                                |                                              |  |
| <ul> <li>Eliminate ambiguity</li> </ul>                          |                                              |  |
| <ul> <li>Synthesizable</li> </ul>                                |                                              |  |
| Generate hardware from description                               | Washington                                   |  |
| CSE 535 : Lockwood                                               | SCHOOL OF ENGINEERING<br>& APPLIED SCIENCE 2 |  |







- Architectures describe what is in the black box (i.e., the structure or behavior of entities)
- Descriptions can be either a combination of
  - Structural descriptions
    - Instantiations (placements of logic-much like in a schematic-and their connections) of building blocks referred to as components
  - Behavioral/Dataflow descriptions
    - Algorithmic (or "high-level") descriptions:
    - IF a = b THEN state <= state5;</pre>
    - Boolean equations (also referred to as dataflow):

Washington University in St. Louis School of Engineering

5

• x <= (a OR b) AND c;

|     |     | _   |         | _ |
|-----|-----|-----|---------|---|
| CSE | 535 | - 1 | ockwood |   |



## **Architecture Body Styles : Behavioral**

```
ENTITY compare IS PORT (
       a, b : IN std_logic_vector(0 TO 3);
       equals: OUT std_logic);
END compare;
ARCHITECTURE behavior OF compare IS
BEGIN
  comp: PROCESS (a,b)
 BEGIN
       IF a = b THEN
            equals <= '1';
      ELSE
           equals <= '0';
       END IF ;
  END PROCESS comp;
END behavior;
                                                      Washington
University in St.Louis
School of Engineering
& Applied Science 7
CSE 535 : Lockwood
```

|                                                                                                                                  |                                                                | _       |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------|
| Architecture Body Styles : Structur                                                                                              | al                                                             |         |
| <pre>ENTITY compare IS PORT (</pre>                                                                                              |                                                                |         |
| ARCHITECTURE structure OF compare IS<br>SIGNAL x : std_logic_vector (0 to 3) ;                                                   |                                                                |         |
| BEGIN<br>u0: xnor2 PORT MAP (a(0),b(0),x(0)) ;<br>u1: xnor2 PORT MAP (a(1),b(1),x(1)) ;<br>u2: xnor2 PORT MAP (a(2),b(2),x(2)) ; |                                                                |         |
| <pre>u3: xnor2 PORT MAP (a(3),b(3),x(3)) ; u4: and4 PORT MAP (x(0),x(1),x(2),x(3),ed END structure;</pre>                        | quals) ;                                                       |         |
| CSE 535 : Lockwood                                                                                                               | Washington<br>University in St. Louis<br>School of Engineering | <u></u> |
|                                                                                                                                  | & APPLIED SCIENCE                                              | 0       |



| Native Operators                                                                                                                                                                                                        |                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| <ul> <li>Logical</li> <li>AND, NAND</li> <li>OR, NOR</li> <li>XOR, XNOR</li> <li>NOT</li> </ul>                                                                                                                         |                                               |
| <ul> <li>Relational</li> <li>= (equal to)</li> <li>/= (not equal to)</li> <li>&lt; (less than)</li> <li>&lt;= (less than or equal to)</li> <li>&gt; (greater than)</li> <li>&gt;= (greater than or equal to)</li> </ul> | Washington                                    |
| CSE 535 : Lockwood                                                                                                                                                                                                      | SCHOOL OF ENGINEERING<br>& APPLIED SCIENCE 10 |



| Concurrent Statements                                                                                                                                                |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| <ul> <li>Concurrent statements include:         <ul> <li>Boolean equations</li> <li>Conditional/selective assignments</li> <li>Instantiations</li> </ul> </li> </ul> |                          |
| <pre> Examples of boolean equations x &lt;= (a AND (NOT sell)) OR (b AND sell) g &lt;= NOT (y AND sel2);</pre>                                                       | );                       |
| <pre> Examples of conditional assignments y &lt;= d WHEN (sell = '1') ELSE c; h &lt;= '0' WHEN (x = '1' AND sel2 = '0')</pre>                                        | ELSE '1';                |
| Examples of <i>instantiation</i><br>inst: nand2 PORT MAP (h, g, f);                                                                                                  | Washington               |
| CSE 535 : Lockwood                                                                                                                                                   | SCHOOL OF ENGINEERING 12 |





















## **Sequentional Statements: Case-When**

```
CASE selection_signal

WHEN value_1_of_selection_signal =>

(do something) -- set of statements 1

WHEN value_2_of_selection_signal =>

(do something) -- set of statements N

WHEN value_N_of_selection_signal =>

(do something) -- set of statements N

WHEN OTHERS =>

(do something) -- default action

END CASE ;

CSE 535:Lockwood Weakington University in Stlows
```

| The CASE Statement: 4-1 Mux                    |                                            |    |
|------------------------------------------------|--------------------------------------------|----|
|                                                |                                            |    |
| ARCHITECTURE archdesign OF design IS           |                                            |    |
| <pre>SIGNAL s: std_logic_vector(0 TO 1);</pre> |                                            |    |
| BEGIN                                          |                                            |    |
| <pre>mux4_1: PROCESS (a,b,c,d,s)</pre>         |                                            |    |
| BEGIN                                          |                                            |    |
| CASE s IS                                      |                                            |    |
| WHEN "00" => x <= a;                           |                                            |    |
| WHEN "01" => x <= b;                           |                                            |    |
| WHEN "10" => $x \le c;$                        |                                            |    |
| WHEN OTHERS $\Rightarrow x \leq d;$            |                                            |    |
| END CASE;                                      |                                            |    |
| END PROCESS mux4_1;                            |                                            |    |
| END archdesign;                                |                                            |    |
|                                                |                                            |    |
|                                                | NT7 1                                      |    |
|                                                | Washington<br>University in St. Louis      |    |
| CSE 535 : Lockwood                             | SCHOOL OF ENGINEERING<br>& APPLIED SCIENCE | 24 |





## Components

```
architecture structural of my_module is
 component flop32
   port(clk : in std_logic;
         Din
                  : in std_logic_vector(31 downto 0);
                  : out std_logic_vector(31 downto 0));
         Dout
 end component;
  ... other components ...
 DataReg: flop32
   port map (clk
                         => clk,
               Din
                       => d_mod_in,
               Dout => d_mod_out);
  ... other connections ...
end structural;
                                                      Washington
University in St. Louis
School of Engineering
& Applied Science
CSE 535 : Lockwood
                                                                   27
```

| Finite State Machine (FSM)                        |                                            |    |
|---------------------------------------------------|--------------------------------------------|----|
|                                                   |                                            |    |
| Terminology                                       |                                            |    |
| – Time: t                                         |                                            |    |
| – State: S                                        |                                            |    |
| • State variables: $S = \{ S_1, S_2 \dots S_k \}$ |                                            |    |
| <ul> <li>Current state: S(t)</li> </ul>           |                                            |    |
| <ul> <li>Next state: S(t+1)</li> </ul>            |                                            |    |
| – State transition function $\delta()$            |                                            |    |
| <ul> <li>Assigns next state</li> </ul>            |                                            |    |
| State Transition                                  |                                            |    |
|                                                   |                                            |    |
| $-S(t+1) = \delta(X, S(t))$                       |                                            |    |
|                                                   | Washington<br>University in St. Louis      |    |
| CSE 535 : Lockwood                                | SCHOOL OF ENGINEERING<br>& APPLIED SCIENCE | 28 |









## **State Transition**



| State Assignment Transition                                                                                                                                                                                                              |                                            |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----|
| <pre>clkd: process(clk) begin     if (clk'event and clk='1') then         if (reset='1') then             state &lt;= init;         else             state &lt;= next_state;         end if;     end if; end if; end process clkd;</pre> |                                            |    |
|                                                                                                                                                                                                                                          | Washington<br>University in StLouis        |    |
| CSE 535 : Lockwood                                                                                                                                                                                                                       | SCHOOL OF ENGINEERING<br>& Applied Science | 34 |





