
Department of Computer Science & Engineering

2007-14

Network Access in a Diversified Internet

Authors: M.Wilson, F. Kuhns, J. Turner

Corresponding Author: mlw2@arl.wustl.edu

Abstract: There is a growing interest in virtualized network infrastructures as a means to enable experimental
evaluation of new network architectures on a realistic scale. The National Science Foundation's GENI initiative
seeks to develop a national experimental facility that would include virtualized network platforms that can
support many concurrent experimental networks. Some researchers seek to make virtualization a central
architectural component of a future Internet, so that new network architectures can be introduced at any time,
without the barriers to entry that currently make this difficult. This paper focuses on how to extend the concept of
virtualized networking through LAN-based access networks to the end systems. Our objective is to allow virtual
networks that support new network services to make those services directly available to applications, rather than
force applications to access them indirectly through existing network protocols. We demonstrate that this
approach can improve performance by an order of magnitude over other approaches and can enable virtual
networks that provide end-to-end quality of service.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

- 1 -

Network Access in a Diversified Internet
Michael Wilson, Fred Kuhns, and Jonathan Turner
Department of Computer Science and Engineering

Washington University, St. Louis MO. 63130

{mlw2, fredk, jst}@arl.wustl.edu

Abstract. There is a growing interest in virtualized net-
work infrastructures as a means to enable experimental

evaluation of new network architectures on a realistic scale.

The National Science Foundation’s GENI initiative seeks

to develop a national experimental facility that would in-

clude virtualized network platforms that can support many

concurrent experimental networks. Some researchers seek

to make virtualization a central architectural component of

a future Internet, so that new network architectures can be

introduced at any time, without the barriers to entry that

currently make this difficult. This paper focuses on how to

extend the concept of virtualized networking through LAN-

based access networks to the end systems. Our objective is

to allow virtual networks that support new network services

to make those services directly available to applications,

rather than force applications to access them indirectly

through existing network protocols. We demonstrate that

this approach can improve performance by an order of

magnitude over other approaches and can enable virtual

networks that provide end-to-end quality of service.

1. Introduction
Today’s Internet has grown far beyond the original design.

New requirements have grown almost as rapidly as the

scale of the Internet. Unfortunately, the Internet is owned

by no single stakeholder, making it difficult or impossible

to upgrade the underlying architecture. [1] As recognized

in [3], the inability of the current Internet architecture to

meet new needs has led to the development of numerous ad

hoc solutions to legitimate problems. For example, Net-

work Address Translation provides some measure of solu-

tion to network address depletion.

The Internet needs a means of deploying potentially dis-

ruptive technologies alongside existing technologies. Vir-

tualization has been advanced as a way to meet this need.

Virtualized networks and protocols could be deployed side-

by-side but would be isolated by the virtualization mecha-

nisms. The GENI [2] initiative seeks to use virtualization

to create a national experimental facility for experimenta-

tion based on these very ideas.

Overlay networks have been proposed as one method of

virtualizing the network. However, overlay networks exist

on top of existing networks and protocols. We believe that

overlay networks should be regarded as a temporary migra-

tion solution to allow legacy networks to participate in new

services. We propose to make network virtualization as a

core capability of a next generation diversified internet (in

the remainder of this paper, we use the term diversification,

in place of virtualization, because the “V-word” has been so

overloaded, that it is often misinterpreted). In our diversi-

fied internet model, the underlying network provides a

minimal set of services and a thin provisioning layer upon

which new protocols may be developed. More details can

be found in [4].

The fundamental abstractions for a diversified network

are substrate routers, which are connected to each other by

point-to-point substrate links; and metarouters, which are

hosted on substrate routers and are connected to each other

by point-to-point metalinks carried over substrate links.

Collectively, a set of connected metarouters form a metanet

exchanging metaframes adhering to a metaprotocol. We

refer to the software components that support these abstrac-

tions as the Network Diversification Architecture (NDA).

In this paper, we focus on the impact of internet diversi-

fication on the access network and end systems. In section

2, we provide an overview of related work in this area. In

section 3, we characterize the objectives and available fea-

tures of the access portion of the network. In section 4, we

present our design and prototype implementation of end-

point diversification, and we present a preliminary evalua-

tion of our prototype in section 5. We summarize our

results and give a few words on future directions in section

6.

2. Related Work
Research in the area of network virtualization has focused

on two general area: large-scale testbeds for development,

testing, and experimental deployment of novel protocols,

and overlay networks suitable for general deployment.

In the testbed arena, PlanetLab [5] is the most signifi-

cant development to date. PlanetLab provides a shared in-

- 2 -

frastructure on which overlay services can be provided.

Access to PlanetLab is handled purely through overlay con-

nections and is either handled transparently (to support leg-

acy applications) or handled explicitly by the application,

with no system support in the end system. PlanetLab nodes

provide transparent network traffic isolation using the

VNET [6] module, which tracks and demultiplexes traffic.

Existing Linux queuing disciplines such as Hierarchical

Token Buckets (HTB) [7], [8] provide bandwidth alloca-

tion.

Closest to our work in design and spirit is PL-VINI [9],

a virtualized network architecture implemented in the

PlanetLab environment. PL-VINI is designed primarily to

support networking experiments rather than deployment,

but adapts well to both uses. PL-VINI leverages existing

PlanetLab features for resource isolation and adds the novel

concept of CPU reservations, where a slice is guaranteed a

minimum percentage of the CPU despite fluctuations in

other slices. Future work on PL-VINI is focused on im-

proving experimental realism, including a non-work-

conserving CPU scheduler to better enable experiment iso-

lation on a single node.

In the overlay realm, the X-Bone [10], Virtual Internet

and GX-Bone [11] projects are representative of overlay

networks which focus on the network layer. These projects

define a generalized Internet architecture and provide tools

for the dynamic construction and management of Internet

overlay networks. They assume an underlying IP network

and rely on the existence of standard Internet services.

This is distinct from our NDA, where the goal is to provide

a new underlying architecture on which new protocols can

be implemented.

Oasis [12] is an architecture for virtualized network ac-

cess to overlay networks. It uses a virtual interface for

packet interception in the kernel. Packets are routed to a

user-space application which determines overlay member-

ship and forwards to a second userspace process which

manages that overlay access point. Oasis is designed to en-

able legacy applications to take advantage of overlay net-

works to obtain improvements in performance. It is not

intended to bring novel network services to the endpoints.

3. Diversification of the Access Network
The access network provides the connection between a

network endpoint and the first substrate router. We expect

that Ethernet will continue to be one of the most common

underlying technologies for access networks, and we focus

our attention on the Ethernet context in this paper. In the

future, we expect wireless connection to dominate the ac-

cess, but we do not explicitly address wireless here. We

also focus on the scenario when there is a substrate router

connected to the access LAN. Our approach can also be

extended to handle remote connection of hosts via IP tun-

nels, albeit with some loss of capability.

3.1. Objectives

The overarching objective for the access network in a di-

versified network infrastructure is to make it possible for

end systems to take advantage of any network services that

may be provided by metanetworks. This objective leads us

to the following specific goals.

• Enable provisioned access. To make it possible for
metanets to support applications with end-to-end QoS

guarantees, it is important for endpoints to be able to re-

serve capacity for communication with specific meta-

networks.

• Enable dynamic reallocation of access capacity. Traffic
in access networks is inherently more dynamic than

backbone traffic. This makes it important to allow ad-

justments in provisioned bandwidth to accommodate

changing needs.

• Support existing Internet protocols. The existing Inter-
net protocols should be able to operate within a diversi-

fied network environment with no loss of functionality

and no significant performance degradation.

• Support existing uses of multi-access LAN features. The
multi-access features of Ethernet are commonly used to

implement important elements of the Internet protocol

suite (e.g. ARP, multicast). Such uses should be possi-

ble within the diversified network environment.

3.2. Data Plane

The key to enabling provisioned access to metanetworks is

the use of VLAN mechanisms in Ethernet networks. In the

last several years, VLAN technology has become standard,

even on inexpensive commodity Ethernet switches. More-

over, packets with specific tags can be assigned to high pri-

ority queues, effectively isolating them from the effects of

congestion caused by packets with lower priority.

To enable provisioned access, we configure a high pri-

ority VLAN connecting all the endpoints to a local sub-

strate router. The usage of this VLAN is restricted to

diversified network traffic and endpoints are permitted to

use it only to send to the substrate router (that is, packets

destined for another endpoint on the same local network are

required to pass through the substrate router). Packets sent

on the access link include a substrate header that contains a

Metalink Identifier (MLI). Each network endpoint is as-

signed an MLI for each metanetwork it is connected to and

each MLI is used only for communication between its as-

signed endpoint and the substrate router.

The provisioned access link is configured with a certain

amount of assignable capacity. The total traffic sent by the

substrate router on the access link is limited to this assign-

able capacity, and the total traffic sent by the endpoints to

- 3 -

the substrate router is also constrained to the assignable ca-

pacity. The assignable capacity should be limited to some

fraction of the bandwidth (say 50%) of the smallest inter-

switch link used by traffic passing between the endpoints

and the substrate router, to reserve capacity for lower prior-

ity traffic. In addition, there is a maximum endpoint capac-

ity, which limits the rate at which any single endpoint can

send on the provisioned access link. This will typically be

set to some fraction of the slowest access link. In a typical

network today, the total assignable capacity might be 500

Mb/s, while the maximum endpoint capacity might be 50

Mb/s. As 10 gigabit Ethernet becomes commonplace over

the next several years, these numbers can be expected to

grow by a factor of ten.

The substrate router directly controls the flow of outgo-

ing traffic on each metalink. Each metalink has an assigned

maximum bandwidth, and the sum of these may not exceed

the assignable capacity of the access link; and the substrate

router uses per metalink queueing to ensure that these lim-

its are respected. In the upstream direction, the substrate

router has no direct control over the sending rates, but since

it does see all the traffic, it can monitor the incoming traffic

on each metalink to ensure that it does not exceed the al-

lowed maximum rate. Violations are reported through the

network management system so that network administra-

tors can take the appropriate steps to address them.

While a provisioned access link can meet the needs of

metanetworks that require provisioned metalinks, it does

not meet the needs of metanetworks that need to make use

of the multicast features of the underlying LAN. In particu-

lar, IPv4 uses multicast to implement ARP and DHCP, as

well as extending IP multicast to end systems. To enable

IP-based metanets, it must be possible for an IP metarouter

to use these features. Moreover, other metanetworks are

likely to have similar uses for these features, making it es-

sential that they be accessible in the diversified network

environment.

These capabilities can be provided using a second

VLAN. Metanetworks that require access to the multicast

features of the underlying Ethernet network will send and

receive data on the multipoint access link implemented by

this second VLAN. This link can be used just like a normal

Ethernet network, allowing metanets to implement proto-

cols like ARP exactly as they are implemented today. End-

points may communicate with each other directly over the

multipoint access link, allowing local traffic to bypass the

substrate router. To facilitate such direct communication,

MLIs are assigned using shared mode in the context of

multipoint access links. Specifically, each metanet is as-

signed a separate MLI and all endpoints sending data using

that metanet use that MLI. Note that all traffic sent using

the multipoint access link is purely best effort.

3.3. Control and Management

There are two primary control functions required for the

access network. First, we need a mechanism to allow hosts

to establish connections to the substrate and the metanets

with which they want to communicate. Second, we need a

mechanism to allow metanetworks to reserve bandwidth for

provisioned access metalinks, and an accompanying

mechanism to allow the substrate router to advise endpoints

of their allowed sending rates. We only sketch these

mechanisms briefly here.

When a host first connects, it starts by broadcasting a

substrate discovery packet on its local network. The sub-

strate optionally authenticates the endpoint (as determined

by substrate domain-specific policies), and responds to the

endpoint with its MAC address, the VLAN tags to use for

communicating through the substrate router and the MLI to

use for control communication. At this point, the endpoint

can request connection to one or more metanets. The sub-

strate router delivers each such request to the designated

metanet, which may then request the establishment of a

metalink to the endpoint. Once the access substrate router

has been appropriately configured, it informs the endpoint

of the MLI to use for accessing the metanet and for provi-

sioned metalinks, the maximum sending rate they may use.

The access substrate router can adjust the bandwidth for

provisioned access metalinks in response to requests from

the associated metanetworks (depending bandwidth re-

source availability and local substrate policies). Metanets

may include mechanisms that allow endpoints to request

such changes, but such requests come to the substrate

through the metanets. Access link bandwidth is provided on

a leased basis, meaning that metanetworks must periodi-

cally renew their lease in order to retain the reserved band-

width. Metanets may use either a long-term lease, or a

short-term lease. Substrate routers will normally renew

long-term leases as long as the metanet requests renewal.

Short-term leases are provided to allow dynamic redistribu-

tion of bandwidth among metanets on a shorter timeframe.

4. Diversification of the Hosts
Host diversification mechanisms allow the introduction of

new Metanet Protocol Stacks (MPS) that provide metanet-

specific services to applications and users. These mecha-

nisms include a common substrate which is independent of

metanets, but can be configured on behalf of individual

metanets.

4.1. Objectives

There are several key objectives that drive the design of the

host diversification architecture.

• Ease of adding new metanet stacks. We envision a
multiplicity of metanetworks, some of which may be

tailored to specific applications or application classes.

- 4 -

While adding a new MPS is something that users will

do infrequently, we want to minimize barriers to gain-

ing access to a new metanet. The procedure for adding

a new MPS should be no more difficult than installing

an application program.

• OS compatibility. We can’t expect users to use non-
standard operating systems in order to use metanet-

works. The software must run on standard OS plat-

forms, including Linux and Windows and any OS

extensions must make use of existing mechanisms.

• Security. The system must ensure that different MPSs
cannot interfere with the operation of others. An MPS

should not require special system privileges and should

have no more ability to interfere with system operation

than ordinary application programs.

• Traffic Isolation. Provisioned metalinks must be effec-
tively isolated from one another and from other net-

work traffic. This means that hosts must ensure that

outgoing provisioned metalinks are able to get access

to the full reserved bandwidth and that they are con-

strained to send no faster than a specified maximum

bandwidth.

• Enable fine-grained queue management. Metanets
should be able to associate multiple queues with their

outgoing metalinks, and map outgoing traffic flows to

queues in a flexible fashion.

• Minimize constraints on metanets. The software archi-
tecture should not limit the kinds of services that meta-

nets can provide to users.

• Close to native performance. The performance of a
metanet protocol stack should be at least roughly com-

parable to the performance that could be expected if

the stack was integrated into the OS kernel.

Achieving all these objectives simultaneously is challeng-

ing but feasible. In the remainder of this section, we de-

velop an approach to host diversification that we believe

can achieve these objectives, and we describe a prototype

implementation that demonstrates the most important ele-

ments of this approach.

4.2. Software Design

In most systems today, network protocol stacks are inte-

grated within the OS kernel and accessed through an API

defined by the socket interface. This implies that the net-

work code is part of the system’s trusted code base, since it

has unprotected access to key kernel data structures. This is

clearly unacceptable in the metanet environment. We ex-

pect many organizations to develop new metanets and

MPSs. Requiring that new stacks be added to the OS kernel

adds a significant barrier to adding new stacks and brings

unacceptable security risks (in the context of existing popu-

lar operating systems).

There is a rich body of work on alternate implementa-

tion models for network software [13]-[16]. The approach

we take relies on user-space implementation of metanet

protocols together with some generic (metanet-

independent) OS extensions that are implemented by a

loadable kernel module.

Fig. 1 is a block diagram showing the key components

of the design for the Linux environment. The lightly shaded

components are software components required for each

metanet. The more darkly shared components are substrate

software components, while the unshaded components are

implemented using features of the standard Linux distribu-

tion.

The Substrate Kernel Module (SKM) is implemented as

a loadable kernel module that must be installed on a one-

time basis. It implements common substrate services, lev-

eraging existing OS mechanisms as much as possible. In

particular, the SKM uses kernel-resident packet filtering

mechanisms to implement the ingress and egress filter

functions and configures the Linux queue disciplines to

regulate the traffic flowing into outgoing metalinks.

User applications send and receive data using a given

metanet, using a metanet-specific library, which is linked to

the application program. The library uses the standard

socket interface, with the PF_DIVINT protocol family and

a protocol number that identifies the particular metanet.

Each metanet has a user-space daemon that implements

Physical InterfacesPhysical Interfaces

Substrate Kernel Module

Physical Interfaces

Metanet Library

User
Application

Substrate Library

Metanet
Daemon

s
o
c
k
e
t

c
d
e
v

Egress Filter

Queue Mgr.

Ingress Filter

send()recv()

user space

kernel space

Physical InterfacesPhysical Interfaces

Substrate Kernel Module

Physical Interfaces

Metanet Library

User
Application

Substrate Library

Metanet
Daemon

s
o
c
k
e
t

c
d
e
v

Egress Filter

Queue Mgr.

Ingress Filter

send()recv()

user space

kernel space

Fig. 1. Components of the end host Network

Diversification Architecture

- 5 -

certain standard configuration functions and responds to

requests for metanet-specific services from user applica-

tions.

4.3. Operation

Arriving packets use MAC-layer mechanisms to identify

them as diversified internet packets. All such arriving

packets are delivered to the SKM, which processes them

based on the substrate header fields. In particular, it uses

the MLI in the packet header to determine the associated

metanet.

The ingress filter block determines the socket to which

an arriving packet should be delivered, based on the MLI

and the metanet packet header. These filters are defined us-

ing the Linux packet filtering mechanism, which is based

on Berkeley packet filters. The kernel delivers entire meta-

net packets across the socket interface to the metanet li-

brary, which in turn delivers the data to the user application

using a metanet-specific interface.

Outgoing data is passed to the SKM as complete meta-

net packets. The SKM associates packets with the proper

metanet, based on the socket. Outgoing packets are filtered

to provide a check on the validity of the metanet header and

the appropriate substrate header is added. Packets are

placed in Linux queue disciplines. Each metanet has an as-

sociated metalink with one or more queues, and a total re-

served bandwidth, and a maximum bandwidth. When

multiple queues are configured for a metalink, they can be

assigned different shares of the outgoing bandwidth.

When an application opens a socket (with socket())

for an installed metaprotocol, the SKM handles the initial

socket creation and establishes a set of default settings.

The appropriate control daemon is notified of the socket

creation request. Based purely on this metaprotocol, the

daemon may refuse the request, allow it, allow it and attach

initial packet filters, etc. Once a socket is opened, a typical

applicaton sequence might be to bind() to a local ad-

dress, connect() to a remote address, and send() ap-

plication data. At bind(), the SKM would notify the

control daemon, which might apply egress validation filters

to enforce use of the local address in outgoing metaframes.

At connect(), the SKM would notify the control dae-

mon, which might supply any necessary routing informa-

tion to the SKM. Finally, at send(), the SKM already

has all the information needed to process the request with-

out further recourse to the control daemon.

After the application finishes with the socket, the appli-

cation calls close(). The SKM marks the socket as

closed and notifies the control daemon. However, the

SKM maintains the socket until such time as the control

daemon notifies the SKM to actually deallocate it, thus

supporting protocols like TCP where sockets linger after

close().

Before any application can open sockets for a given

metaprotocol, that metaprotocol must be registered by a

control daemon. The control daemon opens the SKM char-

acter device and registers the new metaprotocol with the

SKM. The registration consists of a set of function calls to

support operations on sockets within this metaprotocol.

The substrate library spawns a reader thread that waits for

messages from the SKM and dispatches these messages as

upcalls to metaprotocol operations. The control daemon

normally must request the SKM to create one or more

metalinks. Later, at application connect() requests, the

control daemon can attach a socket to a metalink for rout-

ing.

When the metaprotocol is shut down, the control dae-

mon can simply close the SKM character device. The

SKM is notified of the file release and closes all associated

structures. Because the SKM is also notified by the OS

even on abnormal termination of the control daemon, there

is no potential for unattended metanets.

4.4. Prototype Implementation

Our initial prototype was developed on Linux 2.6.16. We

currently support a subset of the socket operations. Some

operations are not necessary to support a minimal metapro-

tocol. For example, we do not currently pass listen()

and accept(). These can both be implemented directly

in a metaprotocol library linked into the user application.

sendpage() has no useful analogue, since it is designed

for zero-copy sending, and copying the data into the control

daemon defeats the purpose. We also do not currently sup-

port per-packet interception of send() or recv(), be-

cause this violates the model by returning the control

daemon to the datapath instead of restricting it to manage-

ment only. Metaprotocol developers should avoid the use

of this functionality as much as possible to achieve maxi-

mum efficiency.

Our initial implementation is restricted to the SKM and

substrate library. Bandwidth management relies on com-

ponents already in place in the Linux kernel [7], and we

manage the settings manually with tc. Similar functional-

ity exists in Windows, the most popular desktop OS today

[17]. Finally, while our model includes a variety of sub-

strate link types, we currently only implement a point-to-

point GRE tunnel with no multi-access substrate link.

4.5. Alternate Approaches

The main difficulty in implementing efficient frameworks

for metaprotocol development is that metaprotocol code

must be isolated from other metaprotocols, unrelated proc-

esses, or the base operating system, but metaprotocol data

is opaque to the substrate. We have chosen to use Berkeley

Packet Filters (BPFs) [18], an interpreted filtering mecha-

nism, to perform very simple packet validation and demul-

tiplexing. We encourage metaprotocol designers to accept

- 6 -

this limited solution and to keep more complex functional-

ity in the management daemon and not in the datapath.

In Oasis, the authors use user-space processes to deter-

mine routing in overlay networks on a per-packet basis.

Packets are sent by a user application, then forwarded by

the kernel to user-space processes that forward via an over-

lay network. While this allows for maximal flexibility in

the overlay processing, the authors found that packet inter-

ception overhead resulted in a CPU-bound maximum send-

ing rate of 3 Mb/s.

There are several approaches to enabling untrusted code

to be added to the kernel in a safe way. In OS Sandboxing

techniques, such as SFI [20], instructions are inserted to

dynamically verify memory accesses and jump instructions.

The Open Kernel Environment (OKE) project [22], SPIN

[23], and Microsoft’s Singularity [24] use type-safe lan-

guages and restricted access to kernel interfaces to enforce

isolation. This requires careful language design and a

method of validating that the extension code was compiled

with the type-safe language. Palladium [25] is an architec-

ture for safe kernel extensions that isolates extensions by

preventing memory accesses outside the extension. Another

alternative for isolating kernel extensions is proof carrying

code [26].

The various mechanisms for adding untrusted code to

the OS kernel offer promise for future systems in which

metanet protocol stacks are more closely integrated with

the OS. However, none of these approaches is directly ap-

plicable to existing operating systems, a clear requirement

if we are to make endpoint diversification as painless as

possible for users. We believe that the approach taken here

can deliver acceptable performance and offer some pre-

liminary evidence for that in the next section.

5. Preliminary Evaluation

5.1. Instantiating a new metaprotocol

Given an end system supporting the substrate, installing a

new metaprotocol is very simple. A control daemon should

be installed as a typical system daemon and added to the

appropriate startup scripts. Because we may not unreserv-

edly trust the control daemon, it can be run as a non-root

user with an authorized group membership.

Bundled with the control daemon should be a metapro-

tocol library. Developers implementing applications that

use this metaprotocol should just link with the metaprotocol

library.

One complication is that every metaprotocol is identi-

fied by a number within the diversified network family.

Because there is no central authority for assigning these

numbers, user configuration on installing a new metaproto-

col may include selecting an unused number. It would be

simple to add a dynamic name to number mapping service

to the system in the future.

Finally, the bandwidth settings for the new metaproto-

col might be established by the user on installation. While

our model assumes that a LAN-based bandwidth manager

component will eventually deal with this process, we as-

sume that the user should have some ability to specify

bandwidth limits.

5.2. Performance of new protocol

To test the performance of the system, we created a mini-

mal metaprotocol similar to a combined UDP/IP. We in-

stalled this metaprotocol and control daemon on a pair of

2.4 GHz machines running Linux 2.6.16 and connected via

a 1000 Mb/s switch. To test the maximum available

throughput, we wrote a simple sender/receiver application

on top of the new metaprotocol.

With only a single metaprotocol, single socket and sin-

gle application running, we tested our configuration at

various bandwidth limits from 1 Mb/s to 1000 Mb/s. For

each test, we ran the sender on a completely idle system

and monitored the total system idle time with top(1). A

series of samples were taken at 3 second intervals, discard-

ing the first 9 seconds of readings. From an average of

these values, we could determine a total system utilization

percentage.

We found that our maximum achievable bandwidth was

779 Mb/s. Because the CPU usage at peak was only 83%

at this point, it is clear that the sender is I/O-bound, not

CPU-bound. To confirm this, we ran a similar test using

UDP from a user application, and achieved a maximum

bandwidth of 780 Mb/s.

As shown in Fig. 2, our sender application CPU utiliza-

tion is largely linear with respect to bandwidth consumed.

An unusual phenomenon around 600 Mb/s is due to the

CPU Utilization

0

20

40

60

80

100

0 200 400 600 800 1000

Sending rate (mb/s)

C
P
U
 U
ti
li
z
a
ti
o
n
 (
%
)

UDP Utilization

Metanet Utilization

Fig. 2. CPU utilizations vs. sending rate as limited by

the egress queues

- 7 -

way in which the Linux Token Bucket is implemented.

When there are insufficient tokens to allow sending traffic,

the token bucket first dequeues the packet, checks the

length, and sets a callback timer for when the queue will be

ready, and finally requeues the packet for the next attempt.

However, as an optimization, every time a packet is

queued, a dequeue attempt is made (in case the packet is

immediately ready). At speeds of 600 mb/s, this results in

upwards of 50,000 failed dequeue attempts per second. At

higher speeds, the queue never has a chance to run out of

tokens.

We also ran a similar test with a small UDP sender.

The UDP sender suffered the same problem near 600 Mb/s.

More interesting is to compare the CPU utilization of our

metanet application with the UDP application. While our

utilization is always higher, the difference (83% vs 55% at

peak bandwidth) is sufficiently small that our framework is

competitive with native applications.

The performance of our prototype contrasts strongly

with that of OASIS, which consumes the 100% of the CPU

capacity at sending rates of under 10 Mb/s. While our pro-

totype is less efficient than the native IP stack, it beats OA-

SIS by well over an order of magnitude. Another

comparative system is PL-VINI, which performs much bet-

ter than OASIS, but still becomes CPU-bound near 200

Mb/s due to system call overhead. We avoid this by very

strictly separating management of metaprotocols into the

control daemon, data-related metaprotocol functionality in

a metaprotocol library, and keeping the datapath clean of

upcalls by allowing the control daemon to insert minimal

vital services into the kernel in protected ways.

5.3. Traffic isolation

Our traffic isolation mechanisms consist of two pieces: we

isolate metaprotocols from each other and from legacy traf-

fic running current IP protocols on the local machine, and

we isolate provisioned metaprotocol traffic from legacy

traffic running current IP protocols within the network.

For the first case, we used two machines connected to

the same 100 Mb/s switch as sender/receiver. Our sender

was configured with two different metanet stacks, one with

a provisioned 15 Mb/s metalink and another with a 30 Mb/s

metalink. An additional flow was configured with legacy

traffic running over current IP protocols. We began the

flows 10 seconds apart in sequence and ran each one for 30

seconds. All bandwidth was measured at the receiver.

As shown in Fig. 3a, the 15 Mb/s flow begins and re-

ceives exactly the provisioned bandwidth of 15 Mb/s. The

second flow enters at 10 seconds and also receives exactly

the provisioned bandwidth of 30 Mb/s. At 20 seconds, the

legacy flow enters and receives the balance remaining. At

30 seconds, the 15 Mb/s flow ends, and legacy traffic re-

ceives the remaining slack. At 40 seconds, the 30 Mb/s

flow ends, and the legacy traffic receives the full link.

It is important to note that the sending applications did

not have an established bandwidth limit. The only rate

limit is supplied directly from the meta-interface. At no

time did either legacy traffic or other metaprotocols inter-

fere with allocated metaprotocol bandwidth.

For the second case, we added a third machine. The

first machine ran the exact same flows in the same se-

quence. The second sender initiated a legacy flow to the

receiver at 100 Mb/s.

The switch was configured with 802.1P/Q priority

queuing. Because our provisioned metaprotocol traffic is

marked at a higher priority than the legacy traffic, the

metaprotocol traffic is sent preferentially to the bottleneck

link, while legacy traffic is dropped.

Network Traffic Isolation

0

20

40

60

80

100

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

Time (s)

T
h
ro
u
g
h
p
u
t
(M
b
/s
)

Legacy (Remote)

15 Mb/s Metalink

30 Mb/s Metalink

Legacy (Local)

Fig. 3b. Isolation in the network. Legacy traffic (local and

remote) is in low-priority queues. Metanet traffic is in high-

priority queues and is not impacted by legacy traffic.

Local Traffic Isolation

0

20

40

60

80

100

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Time (s)

T
h
ro
u
g
h
p
u
t
(M
b
/s
)

15 Mb/s Metalink

30 Mb/s Metalink

Legacy Traffic

Fig. 3a. Isolation at the end system. Bandwidth is limited

by egress queues. Metanet bandwidth is not impacted by

other local traffic.

- 8 -

As shown in Fig. 3b, the provisioned flows continue to

receive their bandwidth allotments, while the legacy flows

are reduced to the balance of the link.

5.4. Next steps

Several aspects of this system need further evaluation.

Because we have avoided placing the management por-

tions of our architecture in the critical path, we have not

undertaken performance analysis of these components.

Particularly for applications that handle large numbers of

connections, such as a web server, this overhead may be-

come significant, and we need to analyze this futher.

We also have restricted our initial metaprotocol imple-

mentation to a minimal test case. Before we can confi-

dently assert that this framework can meet the needs of an

evolving Internet, we must validate it by implementing

other protocol stacks and evaluating their performance. A

complete IPv4 implementation would provide a strong en-

dorsement of the framework. Likewise, analysis of existing

transport and application protocols should be considered.

Our current schemes for ingress demultiplexing and

egress validation use BPFs, interpreted code in the kernel.

For the egress case, this limits the metaprotocol developer

to those protocols which can be validated by purely state-

less, single-frame filters. While of course a metaprotocol

developer may eschew egress validation completely, this

may allow a nefarious application developer to cause havoc

within this metanetwork.

The ingress situation is more difficult. We suffer the

limitation of a stateless, simplistic demultiplexing scheme,

but we also have a potential performance impact from the

ingress filters. Every packet arriving for a metanet will be

checked against the ingress filter of every open socket for

that metanet, an O(N) operation. For end systems with a

small number of open sockets per metanet, this is likely to

have little impact on system performance, but for systems

with many open sockets (such as servers), it could become

a serious issue, and clearly needs to be evaluated. We are

exploring general mechanisms to allow metanets to pre-

classify packets for comparison against a smaller set of fil-

ters, so as to reduce the number of filters that must be

examined. We are also studying how performance might be

improved by using a compiled filtering system, like DPF

[19] in place of BPF.

6. Closing Remarks
In this paper, we have introduced a model for the diversifi-

cation of the access network. We have created an initial

prototype, and have presented preliminary evidence that

performance considerations do not prevent serious adoption

of network diversification. Our framework’s strict adher-

ence to keeping management and policy outside the critical

path of sending and receiving results in near-native per-

formance.

We have also demonstrated that existing quality of ser-

vice mechanisms are adequate for enabling provisioned

metalinks in the access network. This makes it possible to

deliver network services requiring end-to-end QoS across

appropriately designed metanets.

REFERENCES

[1] Anderson, Tom, Larry Peterson Scott Shenker and Jona-

than Turner. “Overcoming the Internet Impasse through

Virtualization,” IEEE Computer Magazine, April 2005.

[2] GENI web site. http://www.nsf.gov/cise/geni/

[3] Report of NSF Workshop on Overcoming Barriers to

Disruptive Innovation in Networking. [Online], Avail-

able: http://www.arl

.wustl.edu/netv/noBarriers_final_report.pdf, January

2005.

[4] Turner, J. and D. Taylor. “Diversifying the Internet,”

Proceedings of Globecom, November 2005.

[5] Chun, Brent, David Culler, Timothy Roscoe, Andy

Bavier, Larry Peterson, Mike Wawrzoniak, and Mic

Bowman. “PlanetLab: An Overlay Testbed for Broad-

Coverage Services,” ACM Computer Communications

Review, vol. 33, no. 3, July 2003.

[6] M. Huang, “VNET: PlanetLab Virtualized Network Ac-

cess,” Tech. Rep. PDN–05–029, PlanetLab Consortium,

June 2005.

[7] Linux Advanced Routing and Traffic Control, [Online],

Available: http://lartc.org/

[8] Hierarchical token bucket for Linux, [Online], Avail-

able: ttp://luxik.cdi.cz/ ~devik/qos/htb

[9] Andy Bavier, Nick Feamster, Mark Huang, Larry Peter-

son, and Jennifer Rexford. “In VINI Veritas: Realistic

and Controlled Network Experimentation,” SIGCOMM

2006.

[10] J. Touch, "Dynamic Internet Overlay Deployment and

Management Using the X-Bone", Computer Networks,

July 2001, pp. 117-135.

[11] J. Touch, Y. Wang, V. Pingali, L. Eggert, R Zhou and

G. Finn, "A Global X-Bone for Network Experiments",

In Proceedings of the TRIDENTCOM, February 2005,

pp. 194-203

[12] Madhyastha, H. V., Venkataramani, A., Krishnamurthy,

A., and Anderson, T. “Oasis: an overlay-aware network

stack,” SIGOPS Oper. Syst. Rev. 40, 1 (Jan. 2006), pp.

41-48.

- 9 -

[13] Chandramohan A. Thekkath , Thu D. Nguyen , Evelyn

Moy , Edward D. Lazowska, "Implementing network

protocols at user level", IEEE/ACM Transactions on

Networking (TON), v.1 n.5, pp. 554-565, October 1993

[14] Chris Maeda, Brian Bershad, "Protocol Service Decom-

position for High-Performance Networking", Proceed-

ings of the 14th ACM Symposium on Operating

Systems Principles. December 1993, pp. 244-255.

[15] Aled Edwards , Steve Muir, "Experiences implementing

a high performance TCP in user-space", Proceedings of

the conference on Applications, technologies, architec-

tures, and protocols for computer communication, pp.

196-205, 1995

[16] G. Ganger, D. Engler, M. F. Kaashoek, H. Briceno, R.

Hunt, and T. Pinckney, "Fast and Flexible Application-

Level Networking on Exokernel Systems", ACM Trans-

actions on Computer Systems, Vol. 20, No. 1, February

2002, pp. 49-83.

[17] Microsoft Corp., (1999, September) Quality of Service

Technical White Paper, [Online]. Available:

http://www.microsoft.com/windows2000/techinfo/howit

works/communications/trafficmgmt/qosover.asp

[18] S. McCanne and Van Jacobson, "The BSD Packet Fil-

ter: A New Architecture for User-Level Packet Cap-

ture", In Proceedings of the USENIX Winter Technical

Conference, San Diego, CA. 1993, pp. 259-269.

[19] D. Engler, M. F. Kaashoek, "DPF: Fast, Flexible Mes-

sage Demultiplexing using Dynamic Code Generation",

In ACM SIGCOMM 1996, pp. 53-59.

[20] R. Wahbe, S. Lucco, T. Anderson, and S. Graham, "Ef-

ficient Software-Based Fault Isolation", in Proceedings

of the Fourteenth ACM Symposium on Operating Sys-

tem Principles, pp. 203-216, December 1993

[21] M. Swift, B. Bershad, and H. Levy, "Improving the Re-

liability of Commodity Operating Systems", in Proceed-

ings of the 19th ACM Symposium on Operating

Systems Principles, Bolton Landing, NY, October 2003.

[22] Herbert Bos, Bart Samwel, "Safe Kernel Programming

in the OKE", Proceedings of the fifth IEEE Conference

on Open Architectures and Network Programming, June

2002

[23] Marc Fiuczynski, Brian Bershad, "An Extensible Proto-

col Architecture for Application-Specific Networking",

Proceedings of the Winter USENIX Technical Confer-

ence, pp. 55-64, January 1996

[24] G. Hunt, et al, “An Overview of the Singularity Pro-

ject,” Microsoft Research Technical Report MSR-TR-

2005-135

[25] T. Chiueh, G. Venkitachalam, P. Pradhan. “Integrating

segmentation and paging protection for safe, efficient

and transparent software extensions,” Proc. ACM SOSP

1999

[26] G. Necula, "Proof-carrying Code", In Proceedings of the

twenty-fourth Annual Symposium on Principles Pro-

gramming Languages, pp. 106-119, January 1997

