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Abstract. There is a growing interest in virtualized net-
work infrastructures as a means to enable experimental 

evaluation of new network architectures on a realistic scale. 

The National Science Foundation’s GENI initiative seeks 

to develop a national experimental facility that would in-

clude virtualized network platforms that can support many 

concurrent experimental networks. Some researchers seek 

to make virtualization a central architectural component of 

a future Internet, so that new network architectures can be 

introduced at any time, without the barriers to entry that 

currently make this difficult. This paper focuses on how to 

extend the concept of virtualized networking through LAN-

based access networks to the end systems. Our objective is 

to allow virtual networks that support new network services 

to make those services directly available to applications, 

rather than force applications to access them indirectly 

through existing network protocols. We demonstrate that 

this approach can improve performance by an order of 

magnitude over other approaches and can enable virtual 

networks that provide end-to-end quality of service. 

1. Introduction 
Today’s Internet has grown far beyond the original design.  

New requirements have grown almost as rapidly as the 

scale of the Internet.  Unfortunately, the Internet is owned 

by no single stakeholder, making it difficult or impossible 

to upgrade the underlying architecture.  [1]  As recognized 

in [3], the inability of the current Internet architecture to 

meet new needs has led to the development of numerous ad 

hoc solutions to legitimate problems.  For example, Net-

work Address Translation provides some measure of solu-

tion to network address depletion. 

The Internet needs a means of deploying potentially dis-

ruptive technologies alongside existing technologies.  Vir-

tualization has been advanced as a way to meet this need.  

Virtualized networks and protocols could be deployed side-

by-side but would be isolated by the virtualization mecha-

nisms.  The GENI [2] initiative seeks to use virtualization 

to create a national experimental facility for experimenta-

tion based on these very ideas. 

Overlay networks have been proposed as one method of 

virtualizing the network.  However, overlay networks exist 

on top of existing networks and protocols.  We believe that 

overlay networks should be regarded as a temporary migra-

tion solution to allow legacy networks to participate in new 

services.  We propose to make network virtualization as a 

core capability of a next generation diversified internet (in 

the remainder of this paper, we use the term diversification, 

in place of virtualization, because the “V-word” has been so 

overloaded, that it is often misinterpreted).  In our diversi-

fied internet model, the underlying network provides a 

minimal set of services and a thin provisioning layer upon 

which new protocols may be developed. More details can 

be found in [4]. 

The fundamental abstractions for a diversified network 

are substrate routers, which are connected to each other by 

point-to-point substrate links; and metarouters, which are 

hosted on substrate routers and are connected to each other 

by point-to-point metalinks carried over substrate links.  

Collectively, a set of connected metarouters form a metanet 

exchanging metaframes adhering to a metaprotocol.  We 

refer to the software components that support these abstrac-

tions as the Network Diversification Architecture (NDA). 

In this paper, we focus on the impact of internet diversi-

fication on the access network and end systems. In section 

2, we provide an overview of related work in this area.  In 

section 3, we characterize the objectives and available fea-

tures of the access portion of the network.  In section 4, we 

present our design and prototype implementation of end-

point diversification, and we present a preliminary evalua-

tion of our prototype in section 5.  We summarize our 

results and give a few words on future directions in section 

6. 

2. Related Work 
Research in the area of network virtualization has focused 

on two general area: large-scale testbeds for development, 

testing, and experimental deployment of novel protocols, 

and overlay networks suitable for general deployment. 

In the testbed arena, PlanetLab [5] is the most signifi-

cant development to date.  PlanetLab provides a shared in-
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frastructure on which overlay services can be provided. 

Access to PlanetLab is handled purely through overlay con-

nections and is either handled transparently (to support leg-

acy applications) or handled explicitly by the application, 

with no system support in the end system. PlanetLab nodes 

provide transparent network traffic isolation using the 

VNET [6] module, which tracks and demultiplexes traffic.  

Existing Linux queuing disciplines such as Hierarchical 

Token Buckets (HTB) [7], [8] provide bandwidth alloca-

tion.   

Closest to our work in design and spirit is PL-VINI [9], 

a virtualized network architecture implemented in the 

PlanetLab environment.  PL-VINI is designed primarily to 

support networking experiments rather than deployment, 

but adapts well to both uses.  PL-VINI leverages existing 

PlanetLab features for resource isolation and adds the novel 

concept of CPU reservations, where a slice is guaranteed a 

minimum percentage of the CPU despite fluctuations in 

other slices.  Future work on PL-VINI is focused on im-

proving experimental realism, including a non-work-

conserving CPU scheduler to better enable experiment iso-

lation on a single node.   

In the overlay realm, the X-Bone [10], Virtual Internet 

and GX-Bone [11] projects are representative of overlay 

networks which focus on the network layer.  These projects 

define a generalized Internet architecture and provide tools 

for the dynamic construction and management of Internet 

overlay networks.  They assume an underlying IP network 

and rely on the existence of standard Internet services.  

This is distinct from our NDA, where the goal is to provide 

a new underlying architecture on which new protocols can 

be implemented. 

Oasis [12] is an architecture for virtualized network ac-

cess to overlay networks.  It uses a virtual interface for 

packet interception in the kernel.  Packets are routed to a 

user-space application which determines overlay member-

ship and forwards to a second userspace process which 

manages that overlay access point. Oasis is designed to en-

able legacy applications to take advantage of overlay net-

works to obtain improvements in performance. It is not 

intended to bring novel network services to the endpoints. 

3. Diversification of the Access Network 
The access network provides the connection between a 

network endpoint and the first substrate router. We expect 

that Ethernet will continue to be one of the most common 

underlying technologies for access networks, and we focus 

our attention on the Ethernet context in this paper. In the 

future, we expect wireless connection to dominate the ac-

cess, but we do not explicitly address wireless here. We 

also focus on the scenario when there is a substrate router 

connected to the access LAN. Our approach can also be 

extended to handle remote connection of hosts via IP tun-

nels, albeit with some loss of capability. 

3.1. Objectives 

The overarching objective for the access network in a di-

versified network infrastructure is to make it possible for 

end systems to take advantage of any network services that 

may be provided by metanetworks. This objective leads us 

to the following specific goals. 

• Enable provisioned access. To make it possible for 
metanets to support applications with end-to-end QoS 

guarantees, it is important for endpoints to be able to re-

serve capacity for communication with specific meta-

networks. 

• Enable dynamic reallocation of access capacity. Traffic 
in access networks is inherently more dynamic than 

backbone traffic. This makes it important to allow ad-

justments in provisioned bandwidth to accommodate 

changing needs. 

• Support existing Internet protocols. The existing Inter-
net protocols should be able to operate within a diversi-

fied network environment with no loss of functionality 

and no significant performance degradation. 

• Support existing uses of multi-access LAN features. The 
multi-access features of Ethernet are commonly used to 

implement important elements of the Internet protocol 

suite (e.g. ARP, multicast). Such uses should be possi-

ble within the diversified network environment. 

3.2. Data Plane 

The key to enabling provisioned access to metanetworks is 

the use of VLAN mechanisms in Ethernet networks. In the 

last several years, VLAN technology has become standard, 

even on inexpensive commodity Ethernet switches. More-

over, packets with specific tags can be assigned to high pri-

ority queues, effectively isolating them from the effects of 

congestion caused by packets with lower priority. 

To enable provisioned access, we configure a high pri-

ority VLAN connecting all the endpoints to a local sub-

strate router. The usage of this VLAN is restricted to 

diversified network traffic and endpoints are permitted to 

use it only to send to the substrate router (that is, packets 

destined for another endpoint on the same local network are 

required to pass through the substrate router). Packets sent 

on the access link include a substrate header that contains a 

Metalink Identifier (MLI). Each network endpoint is as-

signed an MLI for each metanetwork it is connected to and 

each MLI is used only for communication between its as-

signed endpoint and the substrate router. 

The provisioned access link is configured with a certain 

amount of assignable capacity. The total traffic sent by the 

substrate router on the access link is limited to this assign-

able capacity, and the total traffic sent by the endpoints to 
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the substrate router is also constrained to the assignable ca-

pacity. The assignable capacity should be limited to some 

fraction of the bandwidth (say 50%) of the smallest inter-

switch link used by traffic passing between the endpoints 

and the substrate router, to reserve capacity for lower prior-

ity traffic. In addition, there is a maximum endpoint capac-

ity, which limits the rate at which any single endpoint can 

send on the provisioned access link. This will typically be 

set to some fraction of the slowest access link. In a typical 

network today, the total assignable capacity might be 500 

Mb/s, while the maximum endpoint capacity might be 50 

Mb/s. As 10 gigabit Ethernet becomes commonplace over 

the next several years, these numbers can be expected to 

grow by a factor of ten. 

The substrate router directly controls the flow of outgo-

ing traffic on each metalink. Each metalink has an assigned 

maximum bandwidth, and the sum of these may not exceed 

the assignable capacity of the access link; and the substrate 

router uses per metalink queueing to ensure that these lim-

its are respected. In the upstream direction, the substrate 

router has no direct control over the sending rates, but since 

it does see all the traffic, it can monitor the incoming traffic 

on each metalink to ensure that it does not exceed the al-

lowed maximum rate. Violations are reported through the 

network management system so that network administra-

tors can take the appropriate steps to address them. 

While a provisioned access link can meet the needs of 

metanetworks that require provisioned metalinks, it does 

not meet the needs of metanetworks that need to make use 

of the multicast features of the underlying LAN. In particu-

lar, IPv4 uses multicast to implement ARP and DHCP, as 

well as extending IP multicast to end systems. To enable 

IP-based metanets, it must be possible for an IP metarouter 

to use these features. Moreover, other metanetworks are 

likely to have similar uses for these features, making it es-

sential that they be accessible in the diversified network 

environment.  

These capabilities can be provided using a second 

VLAN. Metanetworks that require access to the multicast 

features of the underlying Ethernet network will send and 

receive data on the multipoint access link implemented by 

this second VLAN. This link can be used just like a normal 

Ethernet network, allowing metanets to implement proto-

cols like ARP exactly as they are implemented today. End-

points may communicate with each other directly over the 

multipoint access link, allowing local traffic to bypass the 

substrate router. To facilitate such direct communication, 

MLIs are assigned using shared mode in the context of 

multipoint access links. Specifically, each metanet is as-

signed a separate MLI and all endpoints sending data using 

that metanet use that MLI. Note that all traffic sent using 

the multipoint access link is purely best effort. 

3.3. Control and Management 

There are two primary control functions required for the 

access network. First, we need a mechanism to allow hosts 

to establish connections to the substrate and the metanets 

with which they want to communicate. Second, we need a 

mechanism to allow metanetworks to reserve bandwidth for 

provisioned access metalinks, and an accompanying 

mechanism to allow the substrate router to advise endpoints 

of their allowed sending rates. We only sketch these 

mechanisms briefly here. 

When a host first connects, it starts by broadcasting a 

substrate discovery packet on its local network. The sub-

strate optionally authenticates the endpoint (as determined 

by substrate domain-specific policies), and responds to the 

endpoint with its MAC address, the VLAN tags to use for 

communicating through the substrate router and the MLI to 

use for control communication. At this point, the endpoint 

can request connection to one or more metanets. The sub-

strate router delivers each such request to the designated 

metanet, which may then request the establishment of a 

metalink to the endpoint. Once the access substrate router 

has been appropriately configured, it informs the endpoint 

of the MLI to use for accessing the metanet and for provi-

sioned metalinks, the maximum sending rate they may use. 

The access substrate router can adjust the bandwidth for 

provisioned access metalinks in response to requests from 

the associated metanetworks (depending bandwidth re-

source availability and local substrate policies). Metanets 

may include mechanisms that allow endpoints to request 

such changes, but such requests come to the substrate 

through the metanets. Access link bandwidth is provided on 

a leased basis, meaning that metanetworks must periodi-

cally renew their lease in order to retain the reserved band-

width. Metanets may use either a long-term lease, or a 

short-term lease. Substrate routers will normally renew 

long-term leases as long as the metanet requests renewal. 

Short-term leases are provided to allow dynamic redistribu-

tion of bandwidth among metanets on a shorter timeframe. 

4. Diversification of the Hosts 
Host diversification mechanisms allow the introduction of 

new Metanet Protocol Stacks (MPS) that provide metanet-

specific services to applications and users. These mecha-

nisms include a common substrate which is independent of 

metanets, but can be configured on behalf of individual 

metanets.    

4.1. Objectives 

There are several key objectives that drive the design of the 

host diversification architecture. 

• Ease of adding new metanet stacks. We envision a 
multiplicity of metanetworks, some of which may be 

tailored to specific applications or application classes. 
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While adding a new MPS is something that users will 

do infrequently, we want to minimize barriers to gain-

ing access to a new metanet. The procedure for adding 

a new MPS should be no more difficult than installing 

an application program. 

• OS compatibility. We can’t expect users to use non-
standard operating systems in order to use metanet-

works. The software must run on standard OS plat-

forms, including Linux and Windows and any OS 

extensions must make use of existing mechanisms. 

• Security. The system must ensure that different MPSs 
cannot interfere with the operation of others. An MPS 

should not require special system privileges and should 

have no more ability to interfere with system operation 

than ordinary application programs. 

• Traffic Isolation. Provisioned metalinks must be effec-
tively isolated from one another and from other net-

work traffic. This means that hosts must ensure that 

outgoing provisioned metalinks are able to get access 

to the full reserved bandwidth and that they are con-

strained to send no faster than a specified maximum 

bandwidth. 

• Enable fine-grained queue management. Metanets 
should be able to associate multiple queues with their 

outgoing metalinks, and map outgoing traffic flows to 

queues in a flexible fashion. 

• Minimize constraints on metanets. The software archi-
tecture should not limit the kinds of services that meta-

nets can provide to users. 

• Close to native performance. The performance of a 
metanet protocol stack should be at least roughly com-

parable to the performance that could be expected if 

the stack was integrated into the OS kernel. 

Achieving all these objectives simultaneously is challeng-

ing but feasible. In the remainder of this section, we de-

velop an approach to host diversification that we believe 

can achieve these objectives, and we describe a prototype 

implementation that demonstrates the most important ele-

ments of this approach. 

4.2. Software Design 

In most systems today, network protocol stacks are inte-

grated within the OS kernel and accessed through an API 

defined by the socket interface. This implies that the net-

work code is part of the system’s trusted code base, since it 

has unprotected access to key kernel data structures. This is 

clearly unacceptable in the metanet environment. We ex-

pect many organizations to develop new metanets and 

MPSs. Requiring that new stacks be added to the OS kernel 

adds a significant barrier to adding new stacks and brings 

unacceptable security risks (in the context of existing popu-

lar operating systems). 

There is a rich body of work on alternate implementa-

tion models for network software [13]-[16]. The approach 

we take relies on user-space implementation of metanet 

protocols together with some generic (metanet-

independent) OS extensions that are implemented by a 

loadable kernel module. 

Fig. 1 is a block diagram showing the key components 

of the design for the Linux environment. The lightly shaded 

components are software components required for each 

metanet. The more darkly shared components are substrate 

software components, while the unshaded components are 

implemented using features of the standard Linux distribu-

tion. 

The Substrate Kernel Module (SKM) is implemented as 

a loadable kernel module that must be installed on a one-

time basis. It implements common substrate services, lev-

eraging existing OS mechanisms as much as possible. In 

particular, the SKM uses kernel-resident packet filtering 

mechanisms to implement the ingress and egress filter 

functions and configures the Linux queue disciplines to 

regulate the traffic flowing into outgoing metalinks. 

User applications send and receive data using a given 

metanet, using a metanet-specific library, which is linked to 

the application program. The library uses the standard 

socket interface, with the PF_DIVINT protocol family and 

a protocol number that identifies the particular metanet. 

Each metanet has a user-space daemon that implements 
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Fig. 1.  Components of the end host Network 

Diversification Architecture 
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certain standard configuration functions and responds to 

requests for metanet-specific services from user applica-

tions. 

4.3. Operation 

Arriving packets use MAC-layer mechanisms to identify 

them as diversified internet packets. All such arriving 

packets are delivered to the SKM, which processes them 

based on the substrate header fields. In particular, it uses 

the MLI in the packet header to determine the associated 

metanet. 

The ingress filter block determines the socket to which 

an arriving packet should be delivered, based on the MLI 

and the metanet packet header. These filters are defined us-

ing the Linux packet filtering mechanism, which is based 

on Berkeley packet filters. The kernel delivers entire meta-

net packets across the socket interface to the metanet li-

brary, which in turn delivers the data to the user application 

using a metanet-specific interface. 

Outgoing data is passed to the SKM as complete meta-

net packets. The SKM associates packets with the proper 

metanet, based on the socket. Outgoing packets are filtered 

to provide a check on the validity of the metanet header and 

the appropriate substrate header is added. Packets are 

placed in Linux queue disciplines. Each metanet has an as-

sociated metalink with one or more queues, and a total re-

served bandwidth, and a maximum bandwidth. When 

multiple queues are configured for a metalink, they can be 

assigned different shares of the outgoing bandwidth. 

When an application opens a socket (with socket()) 

for an installed metaprotocol, the SKM handles the initial 

socket creation and establishes a set of default settings.  

The appropriate control daemon is notified of the socket 

creation request.  Based purely on this metaprotocol, the 

daemon may refuse the request, allow it, allow it and attach 

initial packet filters, etc.  Once a socket is opened, a typical 

applicaton sequence might be to bind() to a local ad-

dress, connect() to a remote address, and send() ap-

plication data.  At bind(), the SKM would notify the 

control daemon, which might apply egress validation filters 

to enforce use of the local address in outgoing metaframes.  

At connect(), the SKM would notify the control dae-

mon, which might supply any necessary routing informa-

tion to the SKM.  Finally, at send(), the SKM already 

has all the information needed to process the request with-

out further recourse to the control daemon. 

After the application finishes with the socket, the appli-

cation calls close().  The SKM marks the socket as 

closed and notifies the control daemon.  However, the 

SKM maintains the socket until such time as the control 

daemon notifies the SKM to actually deallocate it, thus 

supporting protocols like TCP where sockets linger after 

close(). 

Before any application can open sockets for a given 

metaprotocol, that metaprotocol must be registered by a 

control daemon.  The control daemon opens the SKM char-

acter device and registers the new metaprotocol with the 

SKM.  The registration consists of a set of function calls to 

support operations on sockets within this metaprotocol.  

The substrate library spawns a reader thread that waits for 

messages from the SKM and dispatches these messages as 

upcalls to metaprotocol operations.  The control daemon 

normally must request the SKM to create one or more 

metalinks.  Later, at application connect() requests, the 

control daemon can attach a socket to a metalink for rout-

ing.  

When the metaprotocol is shut down, the control dae-

mon can simply close the SKM character device.  The 

SKM is notified of the file release and closes all associated 

structures.  Because the SKM is also notified by the OS 

even on abnormal termination of the control daemon, there 

is no potential for unattended metanets. 

4.4. Prototype Implementation 

Our initial prototype was developed on Linux 2.6.16.  We 

currently support a subset of the socket operations.  Some 

operations are not necessary to support a minimal metapro-

tocol.  For example, we do not currently pass listen() 

and accept().  These can both be implemented directly 

in a metaprotocol library linked into the user application.  

sendpage() has no useful analogue, since it is designed 

for zero-copy sending, and copying the data into the control 

daemon defeats the purpose.  We also do not currently sup-

port per-packet interception of send() or recv(), be-

cause this violates the model by returning the control 

daemon to the datapath instead of restricting it to manage-

ment only.  Metaprotocol developers should avoid the use 

of this functionality as much as possible to achieve maxi-

mum efficiency. 

Our initial implementation is restricted to the SKM and 

substrate library.  Bandwidth management relies on com-

ponents already in place in the Linux kernel [7], and we 

manage the settings manually with tc. Similar functional-

ity exists in Windows, the most popular desktop OS today 

[17]. Finally, while our model includes a variety of sub-

strate link types, we currently only implement a point-to-

point GRE tunnel with no multi-access substrate link. 

4.5. Alternate Approaches 

The main difficulty in implementing efficient frameworks 

for metaprotocol development is that metaprotocol code 

must be isolated from other metaprotocols, unrelated proc-

esses, or the base operating system, but metaprotocol data 

is opaque to the substrate.  We have chosen to use Berkeley 

Packet Filters (BPFs) [18], an interpreted filtering mecha-

nism, to perform very simple packet validation and demul-

tiplexing.  We encourage metaprotocol designers to accept 
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this limited solution and to keep more complex functional-

ity in the management daemon and not in the datapath. 

In Oasis, the authors use user-space processes to deter-

mine routing in overlay networks on a per-packet basis.  

Packets are sent by a user application, then forwarded by 

the kernel to user-space processes that forward via an over-

lay network.  While this allows for maximal flexibility in 

the overlay processing, the authors found that packet inter-

ception overhead resulted in a CPU-bound maximum send-

ing rate of 3 Mb/s. 

There are several approaches to enabling untrusted code 

to be added to the kernel in a safe way. In OS Sandboxing 

techniques, such as SFI [20], instructions are inserted to 

dynamically verify memory accesses and jump instructions.   

The Open Kernel Environment (OKE) project [22], SPIN 

[23], and Microsoft’s Singularity [24] use type-safe lan-

guages and restricted access to kernel interfaces to enforce 

isolation.  This requires careful language design and a 

method of validating that the extension code was compiled 

with the type-safe language. Palladium [25] is an architec-

ture for safe kernel extensions that isolates extensions by 

preventing memory accesses outside the extension. Another 

alternative for isolating kernel extensions is proof carrying 

code [26]. 

The various mechanisms for adding untrusted code to 

the OS kernel offer promise for future systems in which 

metanet protocol stacks are more closely integrated with 

the OS. However, none of these approaches is directly ap-

plicable to existing operating systems, a clear requirement 

if we are to make endpoint diversification as painless as 

possible for users. We believe that the approach taken here 

can deliver acceptable performance and offer some pre-

liminary evidence for that in the next section. 

5. Preliminary Evaluation 

5.1. Instantiating a new metaprotocol 

Given an end system supporting the substrate, installing a 

new metaprotocol is very simple.  A control daemon should 

be installed as a typical system daemon and added to the 

appropriate startup scripts.  Because we may not unreserv-

edly trust the control daemon, it can be run as a non-root 

user with an authorized group membership. 

Bundled with the control daemon should be a metapro-

tocol library.  Developers implementing applications that 

use this metaprotocol should just link with the metaprotocol 

library. 

One complication is that every metaprotocol is identi-

fied by a number within the diversified network family.  

Because there is no central authority for assigning these 

numbers, user configuration on installing a new metaproto-

col may include selecting an unused number.  It would be 

simple to add a dynamic name to number mapping service 

to the system in the future. 

Finally, the bandwidth settings for the new metaproto-

col might be established by the user on installation.  While 

our model assumes that a LAN-based bandwidth manager 

component will eventually deal with this process, we as-

sume that the user should have some ability to specify 

bandwidth limits. 

5.2. Performance of new protocol 

To test the performance of the system, we created a mini-

mal metaprotocol similar to a combined UDP/IP.  We in-

stalled this metaprotocol and control daemon on a pair of 

2.4 GHz machines running Linux 2.6.16 and connected via 

a 1000 Mb/s switch.  To test the maximum available 

throughput, we wrote a simple sender/receiver application 

on top of the new metaprotocol. 

With only a single metaprotocol, single socket and sin-

gle application running, we tested our configuration at 

various bandwidth limits from 1 Mb/s to 1000 Mb/s.  For 

each test, we ran the sender on a completely idle system 

and monitored the total system idle time with top(1).  A 

series of samples were taken at 3 second intervals, discard-

ing the first 9 seconds of readings.  From an average of 

these values, we could determine a total system utilization 

percentage. 

We found that our maximum achievable bandwidth was 

779 Mb/s.  Because the CPU usage at peak was only 83% 

at this point, it is clear that the sender is I/O-bound, not 

CPU-bound.  To confirm this, we ran a similar test using 

UDP from a user application, and achieved a maximum 

bandwidth of 780 Mb/s. 

As shown in Fig. 2, our sender application CPU utiliza-

tion is largely linear with respect to bandwidth consumed.  

An unusual phenomenon around 600 Mb/s is due to the 
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way in which the Linux Token Bucket is implemented.  

When there are insufficient tokens to allow sending traffic, 

the token bucket first dequeues the packet, checks the 

length, and sets a callback timer for when the queue will be 

ready, and finally requeues the packet for the next attempt.  

However, as an optimization, every time a packet is 

queued, a dequeue attempt is made (in case the packet is 

immediately ready).  At speeds of 600 mb/s, this results in 

upwards of 50,000 failed dequeue attempts per second.  At 

higher speeds, the queue never has a chance to run out of 

tokens. 

We also ran a similar test with a small UDP sender.  

The UDP sender suffered the same problem near 600 Mb/s.  

More interesting is to compare the CPU utilization of our 

metanet application with the UDP application.  While our 

utilization is always higher, the difference (83% vs 55% at 

peak bandwidth) is sufficiently small that our framework is 

competitive with native applications. 

The performance of our prototype contrasts strongly 

with that of OASIS, which consumes the 100% of the CPU 

capacity at sending rates of under 10 Mb/s. While our pro-

totype is less efficient than the native IP stack, it beats OA-

SIS by well over an order of magnitude. Another 

comparative system is PL-VINI, which performs much bet-

ter than OASIS, but still becomes CPU-bound near 200 

Mb/s due to system call overhead.  We avoid this by very 

strictly separating management of metaprotocols into the 

control daemon, data-related metaprotocol functionality in 

a metaprotocol library, and keeping the datapath clean of 

upcalls by allowing the control daemon to insert minimal 

vital services into the kernel in protected ways. 

5.3. Traffic isolation 

Our traffic isolation mechanisms consist of two pieces: we 

isolate metaprotocols from each other and from legacy traf-

fic running current IP protocols on the local machine, and 

we isolate provisioned metaprotocol traffic from legacy 

traffic running current IP protocols within the network. 

For the first case, we used two machines connected to 

the same 100 Mb/s switch as sender/receiver.  Our sender 

was configured with two different metanet stacks, one with 

a provisioned 15 Mb/s metalink and another with a 30 Mb/s 

metalink.  An additional flow was configured with legacy 

traffic running over current IP protocols.  We began the 

flows 10 seconds apart in sequence and ran each one for 30 

seconds.  All bandwidth was measured at the receiver. 

As shown in Fig. 3a, the 15 Mb/s flow begins and re-

ceives exactly the provisioned bandwidth of 15 Mb/s.  The 

second flow enters at 10 seconds and also receives exactly 

the provisioned bandwidth of 30 Mb/s.  At 20 seconds, the 

legacy flow enters and receives the balance remaining.  At 

30 seconds, the 15 Mb/s flow ends, and legacy traffic re-

ceives the remaining slack.  At 40 seconds, the 30 Mb/s 

flow ends, and the legacy traffic receives the full link. 

It is important to note that the sending applications did 

not have an established bandwidth limit.  The only rate 

limit is supplied directly from the meta-interface.  At no 

time did either legacy traffic or other metaprotocols inter-

fere with allocated metaprotocol bandwidth. 

For the second case, we added a third machine.  The 

first machine ran the exact same flows in the same se-

quence.  The second sender initiated a legacy flow to the 

receiver at 100 Mb/s. 

The switch was configured with 802.1P/Q priority 

queuing.  Because our provisioned metaprotocol traffic is 

marked at a higher priority than the legacy traffic, the 

metaprotocol traffic is sent preferentially to the bottleneck 

link, while legacy traffic is dropped. 

Network Traffic Isolation
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Fig. 3b.  Isolation in the network.  Legacy traffic (local and 

remote) is in low-priority queues.  Metanet traffic is in high-

priority queues and is not impacted by legacy traffic. 
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Fig. 3a.  Isolation at the end system. Bandwidth is limited 

by egress queues.  Metanet bandwidth is not impacted by 

other local traffic. 
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As shown in Fig. 3b, the provisioned flows continue to 

receive their bandwidth allotments, while the legacy flows 

are reduced to the balance of the link. 

5.4. Next steps 

Several aspects of this system need further evaluation. 

Because we have avoided placing the management por-

tions of our architecture in the critical path, we have not 

undertaken performance analysis of these components.  

Particularly for applications that handle large numbers of 

connections, such as a web server, this overhead may be-

come significant, and we need to analyze this futher. 

We also have restricted our initial metaprotocol imple-

mentation to a minimal test case.  Before we can confi-

dently assert that this framework can meet the needs of an 

evolving Internet, we must validate it by implementing 

other protocol stacks and evaluating their performance.  A 

complete IPv4 implementation would provide a strong en-

dorsement of the framework.  Likewise, analysis of existing 

transport and application protocols should be considered. 

Our current schemes for ingress demultiplexing and 

egress validation use BPFs, interpreted code in the kernel.  

For the egress case, this limits the metaprotocol developer 

to those protocols which can be validated by purely state-

less, single-frame filters.  While of course a metaprotocol 

developer may eschew egress validation completely, this 

may allow a nefarious application developer to cause havoc 

within this metanetwork. 

The ingress situation is more difficult.  We suffer the 

limitation of a stateless, simplistic demultiplexing scheme, 

but we also have a potential performance impact from the 

ingress filters.  Every packet arriving for a metanet will be 

checked against the ingress filter of every open socket for 

that metanet, an O(N) operation. For end systems with a 

small number of open sockets per metanet, this is likely to 

have little impact on system performance, but for systems 

with many open sockets (such as servers), it could become 

a serious issue, and clearly needs to be evaluated. We are 

exploring general mechanisms to allow metanets to pre-

classify packets for comparison against a smaller set of fil-

ters, so as to reduce the number of filters that must be 

examined. We are also studying how performance might be 

improved by using a compiled filtering system, like DPF 

[19] in place of BPF. 

6. Closing Remarks 
In this paper, we have introduced a model for the diversifi-

cation of the access network.  We have created an initial 

prototype, and have presented preliminary evidence that 

performance considerations do not prevent serious adoption 

of network diversification.  Our framework’s strict adher-

ence to keeping management and policy outside the critical 

path of sending and receiving results in near-native per-

formance. 

We have also demonstrated that existing quality of ser-

vice mechanisms are adequate for enabling provisioned 

metalinks in the access network.  This makes it possible to 

deliver network services requiring end-to-end QoS across 

appropriately designed metanets. 
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