
Connection Management Network Protocol (CMNP) Specification - DRAFT 1 of 66

Applied Research Laboratory DRAFT Zeus Project

Connection Management Network Protocol (CMNP) Specification

John DeHart Dakang Wu

Version 1.0 (Still incomplete)
July 3, 1996

Applied Research Laboratory
Department of Computer Science

Washington University
Campus Box 1045

One Brookings Drive
 St. Louis, Missouri 63130-4899

Telephone: 314-935-6160
Email: jdd@arl.wustl.edu

ABSTRACT

This document specifies a Connection Management Network Protocol (CMNP) for managing multipoint multi-
media communications in high-speed packet switched networks. We target CMNP to networks employing the
Asynchronous Transfer Mode (ATM) communication standard. We define a multipoint connection as a commu-
nication channel between two or more clients of the network, where all data sent by one client is received by all
other clients who have elected to receive. A point-to-point connection is a special case of a multipoint connection
involving only two clients. CMNP specifies message formats used to pass the control information among network
nodes to create, modify and delete multipoint connections. CMNP also defines the actions at network nodes when
a message is received. Once a connection is established, network nodes exchange data using protocols other than
CMNP.

1. Introduction
This document describes a communication architecture and an information model for multipoint connections in

a switched Asynchronous Transfer Mode (ATM) network and specifies the Connection Management Network Proto-
col (CMNP) that allows network nodes to work together to create, manipulate and delete multipoint, multiconnection
communication channels. These multiconnection communication channels are called a connection group or a call
from user’s point of view. A call is a concept at the user level or at UNI, whereas a connection group is a concept at
the network level or NNI. A multipoint call is a call involving two or more clients; a point-to-point call is a special
case of a multipoint call involving only two clients. Data sent over a connection by one participant in a call is received
by all other participants electing to receive on this connection, although reliable delivery is not guaranteed by the net-
work. Calls are allowed to change dynamically during their lifetime, in terms of the number of participants, the number
of connections and the reserved bandwidth of the connections.

When a call is created, one or more connections are established between an exterior network node and the client
who created the call. This client is designated the owner of the call. Additional clients, or endpoints, can be added to
the call by: 1) invitation from the owner, where the invited party has the option of refusing the invitation, 2) request
from a client not currently in the call to be added, where the owner has the option of denying the request, or 3) request
from a third party, not necessarily in the call, to add a client, where both the owner and the client being added have the
option to refuse. Once a call has been created, additional connections can be added to the call as well. Receive/transmit
permissions are present to limit the receive/transmit capability of each endpoint on each connection.

Connection Management Network Protocol (CMNP) Specification - DRAFT 2 of 66

Applied Research Laboratory DRAFT Zeus Project

Network nodes have to pass messages in order to realize the external requests such as call creation, call mainte-
nance and connection maintenance. CMNP defines the interface between network nodes to create, manipulate and de-
lete connection groups and connections within a connection group. As such, CMNP is an ATM Network Node
Interface (NNI) signaling protocol [3] [14]. It is layered over a reliable substrate, which we term CTL (CMNP Trans-
port Layer). We do not specify the CTL protocol. Rather, we list the requirements for CTL, which are generally met
by several existing transport protocols (for example, TCP/IP). In this way, CMNP implementors can choose the most
suitable CTL for their implementation environment.

Addressing is another area where CMNP remains flexible by not dictating any one addressing scheme. Rather,
CMNP supports multiple addressing disciplines and multiple routing protocols. Currently defined addresses schemes
include IP addressing [18], public network E.164 addressing [13], and OSI NSAP addressing [17]. An implementation
of CMNP may support any or all of these schemes, plus others.

The remainder of this document is organized as shown in Table 1.

TABLE 1. Document Layout.

Section and Title Description

Section 1: Introduction CMNP overview.

Section 2: ATM Networks Introduction to switched, connection oriented ATM networks.

Section 3: CMNP Concepts Concepts and Information Model

Section 4: Connection Group Model A Connection Group model for CMNP

Section 5: CM Access Protocol Discussion of the relations between access protocols and CMNP

Section 6: CMNP Operations Message formats and state diagrams of all CMNP operations.

Section 7: Future Directions List of enhancements being considered.

Appendix A: References List of related references.

Appendix B: CMNP Field Values Numerical values for CMNP message parameters.

Connection Management Network Protocol (CMNP) Specification - DRAFT 3 of 66

Applied Research Laboratory DRAFT Zeus Project

2. Switched ATM Networks
This section presents an overview of switched network architectures, the ATM standard, ATM network connec-

tions (or cell pipes, as we term them) and uses of the two types of ATM connections: Virtual Path and Virtual Channel.

2.1 Network Architecture
An example ATM network is shown in Figure 1. The network consists of clients, exterior nodes (nodes that in-

terface to clients), and interior nodes (nodes that interface to other nodes only), all interconnected by fiber optic links.
A client signals the network to set up calls with other clients by sending control messages to exterior nodes. The nodes
(exterior and interior), under the control of a network protocol, like CMNP, exchange control messages, in order to
satisfy the request. The access protocol hides the internal topology of the network from clients.

Each node in the network contains one or more ATM switches [29][33][34][36][37][58][61]. The switches route
each ATM cell to the desired destination link(s) based upon header fields in the cell (Section 2.2). In order to keep up
with line speeds, the switches perform all routing in hardware. Since the time interval within which each cell must be
routed is very small, tables in the switches are preconfigured with routing information. This makes ATM networks
more suitable for connection oriented traffic, where the switch tables can be configured during a connection setup pe-
riod. Connectionless traffic can be accommodated via overlay networks utilizing special purpose routers or datagram
processors [5][9].

Figure 2 shows the architecture of one ATM switch, Turner’s Broadcast Packet Switch [58][61]. This switch con-
tains a Copy Network (CN) concatenated to a Routing Network (RN). ATM cells (packets) enter the switch on the left.
Multicast cells, destined for several locations, are replicated by the CN, then routed to the appropriate destination by

N1

N2
N4

N5

N9

N8

A

B

C

D

F

G

N3 E

N6

N7

Figure 1. Example ATM Network.

Clients

Exterior
Nodes

Interior
Nodes

ATM Network

Copy Network Routing Network

Control

SMI

Processor

Figure 2. Architecture of Turner’s Broadcast Packet
Switch Demonstrating Multicast Routing.

Connection Management Network Protocol (CMNP) Specification - DRAFT 4 of 66

Applied Research Laboratory DRAFT Zeus Project

the RN. Point-to-point cells follow an arbitrary path through the CN (following the path of “least resistance”), then are
routed by the RN. Cells leave the switch on the right, where they traverse fiber optic links to other switches or clients.

The switch is controlled by the Control Processor (CP) connected to the switch via a Switch Module Interface
(SMI). The CP configures the switch hardware to route incoming cells to the appropriate outgoing links by modifying
tables within the switch, thus establishing connections. The switch routes signaling cells from clients or other nodes
(as distinguished by the header) to the CP via port 0.

{Add GBN Switch Description}

Figure 3 shows a generalization of the concept of a node, where more than one ATM switch is under the control
of a single CP. The CP is directly connected to one of the switches, giving it direct access to the tables within that
switch. Each of the other switches within the node (to which the CP is not directly connected) are termed satellite
switches. Each of these has a slave control module that is able to modify the tables of its directly connected switch.
These control modules operate under the direction of the CP, where the CP communicates with the satellite switches
by sending ATM cells over the interconnection fiber optic links.

2.2 The ATM Standard
The emerging ATM standard [3][14][ATM UNI Ref] specifies link level cell formats for two interfaces: 1) the

User-Network Interface (UNI), for communication between the client and the network, and 2) the Network-Node In-
terface (NNI), for communication between network nodes. The ATM NNI cell format is shown in Figure 4. It consists
of a 48 byte information (data) field and a five byte header. The header has five fields: a Virtual Path Identifier (VPI,
12 bits), a Virtual Channel Identifier (VCI, 16 bits), a Payload Type (PT, 3 bits), a Cell Loss Priority (CLP, 1 bit) and
a Header Error Check (HEC, 8 bits).

The VPI and VCI fields are used to route cells. The ATM standard provides for two types of connections: Virtual
Path (VP) and Virtual Channel (VC). With a VP connection, the network uses the VPI for routing, remapping this field
at every switching node within the network, until the cells reach their destinations. With VC connections, the network
uses both the VCI and VPI for routing. For VP connections, the VCI is preserved by the network—whatever value the
sending client places in this field is delivered to the destination client(s) and is available for use by the clients, for ex-
ample, as a multiplexing field. With VC connections, the VPI is not necessarily preserved by the network and may
have to be set to a particular value (such as zero). Therefore, VC connections do not allow the client to use the ATM
header for multiplexing. The PT field is used to distinguish data cells from other cells, as shown in Table 2. The net-
work congestion PT marking is used by the network to inform nodes receiving a cell that congestion was encountered

16

16

16

N1

N2
N4

N5

N9

N8

A

B

C

D

F

G

N3 E

N6

N7

N3

64
64

128

N7

64

N1

N2B
Exterior Node

Figure 3. Generalized Node Architecture for Interior and Exterior Network Nodes.

Interior Node

main switch

control processor
satellite switch

Connection Management Network Protocol (CMNP) Specification - DRAFT 5 of 66

Applied Research Laboratory DRAFT Zeus Project

somewhere in the network. The tagged data PT marking can be used by the client to differentiate special cells. This
marking is preserved by the network. One potential use is in delineating segmented frames, where the cell containing
the last fragment of the frame is tagged and all other frames are untagged as in AAL5 [9][42][AAL5 reference]. An
example of this is shown in Figure 5 for IP datagrams. The CLP bit is used to mark low priority cells, where CLP=1
indicates low priority. This bit may be set either by clients or the network. The last header field, the HEC, is a cyclic
redundancy check (CRC) on the header.

TABLE 2. Description of PTI Field Values.

PTI Value
PT Value

(binary form)
Description

0 000 Client data, no congestion experienced by network

1 001 Tagged client data, no congestion experienced by network

2 010 Client data, congestion experienced somewhere in the network

3 011 Tagged client data, congestion experienced somewhere in the network

4 100 OA&M F5 link associated test cell

5 101 OA&M F5 end-to-end associated test cell

6 110 Resource management cell

7 111 Reserved for future use

Figure 4. ATM UNI Cell Format.

ATM Cell Format

Header

Payload (data)

5 Bytes

48 Bytes

VPI

VPI VCI

VCI

VCI PT

HEC

(4) (4)

(4) (3) (1)

(8)

(8)

(8)

CLP

ATM-NNI Header

Figure 5. IP Segmentation/Reassembly Scheme.

IP Datagram

- - e . . .

IP header IP Data

ATM cell #1 ATM cell #2 ATM cell #N
(start cell, PT = 000) (middle cell, PT = 000) (end cell, PT = 001)

ATM
header

ATM
payload

C
R

C

pa
d

Connection Management Network Protocol (CMNP) Specification - DRAFT 6 of 66

Applied Research Laboratory DRAFT Zeus Project

2.3 ATM Cell Pipes
Clients of ATM networks communicate over what we term cell pipes. Our model supports n-way, bidirectional,

multipoint cell-pipes. Point-to-point channels are simply a special case of multipoint channels. Figure 6 shows the con-
ceptual view of a three endpoint cell pipe between clients A, B and C. All data sent by one client is received by all
other clients who have elected to receive on this cell pipe.

2.4 Virtual Path and Virtual Channel Connections
Clients can designate whether they want a virtual path or a virtual channel connection at connection setup time.

Since, in VP connections, the VCI is delivered unchanged from the value assigned by the sender, the VCI can be used
for source discrimination in multipoint connections, provided that each client places a unique VCI in all of its outgoing
cells. Figure 7 shows an expanded view of the cell pipe from Figure 6, where the VCI is used for source discrimination.
The figure shows three endpoints, A, B and C, communicating using a VP connection. Each endpoint is receiving and
transmitting on the connection and all cells sent by a transmitter will arrive in the same order at each receiver. In the
example, the clients have agreed that VCI 1 would be used for client A, 2 for B and 3 for C. Therefore, by using the
VCI, all clients have the capability to distinguish the source of the transmitter.

With VC connections, the network uses the VCI to route the cells and may also translate the VPI on internal links
(for intertrunk grouping, where multiple VC connections are carried on a preconfigured internal trunk). The VCI used
by a transmitter, therefore, has no end-to-end significance. At some point during communication, all transmitters on a
VC connection may have their cells interleaved. The cells arriving at a receiver will not be distinguishable by the ATM
cell header—the VPI and VCI are the same for all arriving cells regardless of origin. Therefore, if VC connections are
used for multipoint communication, higher level protocol information embedded in the ATM cell payload must be
used for source discrimination (if required). VC connections are desirable for connections that do not need source dis-
crimination, and for connections that want to take advantage of rapid setup (where the network is able to reduce con-
nection setup overhead by using preconfigured trunks).

Figure 6. Three-way Cell Pipe.

ATM
cell pipe

B

A
C

network

network

B

vci 3

vci 2
vci 1

vpi 7

vpi 9
ATM

cell pipe

vpi 3

A

C

vci 3
vci 2
vci 1

vci 3

vci 2

vci 1

B1
B2

B3

B1
B2

B3

A2
A1

C4
C3

C2
C1

C2
C3

C4

C1

A2
A1

C2C1 C4C3

B2B3 B1

A1A2

Figure 7. Sequenced Bidirectional Multipoint VP Connection Using the VCI for Source Discrimination.

Connection Management Network Protocol (CMNP) Specification - DRAFT 7 of 66

Applied Research Laboratory DRAFT Zeus Project

2.5 VPI/VCI Assignment at the NNI
Our model supports both uni-directional and bi-directional assignment of VPIs and VCIs at the NNI. Uni-direc-

tional assignment allows the VPI and VCI to differ for each direction of a receive/transmit connection. Bi-directional
assignment requires the VPI/VCI values to be the same for both directions. In the case of uni-directional assignment,
the receiving party on a link is responsible for assigning the VPI/VCI values that the sending party is to use. This policy
was chosen since the tables that decode VPIs and VCIs in arriving cells are typically located at the receiver’s site and
managed by the receiver. When setting up a connection, one node allocates a VPI/VCI table entry and informs the ad-
jacent node that it is to use the assigned VPI/VCI when sending cells to it. This resource management information is
sent with a request. The adjacent node indicates the VPI/VCI for the opposite direction when it acknowledges the op-
eration. Each node allocates the resources according to this algorithm, obviating the need for VPI/VCI assignment
collision detection, avoidance and recovery.

At the NNI, we allow a node to specify the VPI/VCI pair for both directions. In this way, a bi-directional assign-
ment can be made by choosing identical values for each direction. A node can also leave both pairs empty, in which
case the partner will assign both (choosing identical values, if a strictly bi-directional assignment policy is chosen by
the CMNP implementors).

3. CMNP Concepts
There are several concepts on which CMNP based. In section 3.1, we introduce the Communication Architecture,

which defines the functionality and the scope of CMNP. In section 3.2 we discuss the problem of object layering, how
the objects are defined, organized, and how they communicate each other. Section 3.3 gives a connection-group model.
Section 3.4 discusses some implementation issues such as transaction, naming and addressing.

3.1 Communication Architecture

With respect to network control and signaling, some emerging requirements of the telecommunication industry
have been identified: (1) support for information networking in various media; (2) support for multipoint communica-
tion; (3) support for a diverse set of telecommunication services such as dynamically allocating bandwidth and QOS;
(4) rapid introduction of new services; (5) modularity and interoperability of multi-supplier solutions and so on.

A Communications Architecture has been defined to meet these requirements. It includes the following principles:

(1) separation of communication control from switching and transmission resources

• service development and evolution can be independent of vendor-specific technologies and implementation
architectures

• switching and transmission resources can be represented using a generic managed object approach

(2) separation of call (connection group) control and connection control

• access signaling and call processing can be independent of connection control

• multiple access signaling protocols can be supported

• connection control can be re-used by different services

The Communications Architecture includes the following elements: the Session Management Functional Area
(SMFA), the Connection Management Functional Area (CMFA), Network Resources (NR), and the Customer Premise
Network (CPN). Figure 1 shows the relationship among these elements.

The CPN represents end-user’s telecommunication equipment. A CPN is modeled as a Session Manager (SM)
client. It communicates with the SMFA through the Session Manager Interface (SMI). A single CPN may have one or
more SM clients, each uses a separate SMI. End-user information is transmitted and received across the Transport In-
terface (TI). The TI may support multiple end-user information streams simultaneously, each is referred to as a chan-
nel. Generally, each SMI is implemented as a separate signaling channel which shares a User-Network Interface (UNI)
with all the channels comprising the TI.

The Session Management Functional Area (SMFA) acts on behalf of end-users, or clients, in support of session
(call) establishment, modification, and release. The SMFA interfaces the client at one side through Session Manager

Connection Management Network Protocol (CMNP) Specification - DRAFT 8 of 66

Applied Research Laboratory DRAFT Zeus Project

Interface (SMI). On the other side, it interfaces the CMFA through Connection Management Interface (CMI) to request
network connectivity operations.

The Connection Management Functional Area (CMFA) performs the task of establishing, modifying, and releas-
ing connections in a telecommunication network. The clients of the CMFA may be the SMFA or administrative appli-
cations which manage CMFA. An SMFA interfaces the CMFA through the Connection Management Interface (CMI),
whereas the administrative applications interfaces the CMFA through the Connection Management Administration In-
terface (CMAI). The CMFA interfaces the Network Resources layer through Resource Management Interface (RMI).

Network Resources represent the collection of switches, transmission, and adaptation systems which support the
transport and processing of end-user information.

Figure 8. Communication Architecture

3.1.1 Connection Management Functional Area

The CMFA encompasses the complete functionality necessary to control all network resources for purposes of
establishing, modifying, and releasing network connections.

A CMFA should have following functionalities. It should: provide a simple yet powerful model of abstract net-
work connectivity to clients of the CMFA; flexibly support connections with a wide range of bandwidths, QOS, and
network topologies; select and manage network resources in order to meet a client’s specified connectivity and quality
of service requirements; perform routing between network interfaces; provide connectivity control to the equipment
that lacks that functionality.

Additionally, the CMFA should have the following characteristics: use industry standards as appropriate; support
a distributed implementation.

For practical reasons of processing load, scale, geography, administrative partitioning, flexibility, reliability, etc.,
the CMFA will be implemented as a distributed collection of discrete connection management functional instances
called Connection Managers (CMs). Each CM will exercise exclusive control over a collection of network resources
called a Node. Each Node has one and only one CM.

Connection
Management

CM Interface (CMI)

Network

Resource Management

SM
Interface

SM Client

SM
Interface

(SMI) (SMI)

Interface (RMI)

Customer
Premise
Network

SM Client

Customer
Premise
Network

Resources

Functional Area

Session
Management

Functional Area

Transport
Interface (TI)

Transport
Interface (TI)

Connection Management Network Protocol (CMNP) Specification - DRAFT 9 of 66

Applied Research Laboratory DRAFT Zeus Project

A Node, and hence a CM, has an address which uniquely identifies it and allows other CMs to communicate with
it. A CM address format is shown in Figure 9.

The address size is a constant 24 bytes, regardless of the addressing scheme used. The first four bytes comprise a
type field that tells how the remainder of the address should be interpreted. The remainder is partitioned into three ad-
ditional fields whose sizes vary depending on the type of addressing used: a network address field, local address field
and an unused field. Three example partitionings are shown in Figure 10. The network address field contains the only
portion of the address that the network uses in node identification and routing. The local address field is passed end-
to-end for use by clients and is not interpreted by the network. The remainder of the address is unused.

The first diagram of Figure 10 shows the partitioning used for IP addresses [18]. The network address field is 4
bytes and holds the IP address. The local address field is 2 bytes and contains the higher level port number (for exam-
ple, the TCP or UDP port). The remaining 14 bytes of the address field are unused. CMNP networks using IP addresses
use only the network address field for routing. The local address field information may by used by clients to identify
a particular service (port) at a client to which an operation is directed. The second diagram of Figure 10 shows the par-
titioning for the CCITT E.164 addresses [13] used in the public telecommunications networks. The network address
field is 8 bytes and encodes the 15 decimal digit E.164 address. The local address field is 4 bytes and holds the 4 byte
E.164 subaddress field. The remaining 8 bytes are unused. The bottom diagram of Figure 10 shows the partitioning for
OSI NSAP (Network Service Access Point) addresses [17]. The network address field is 19 bytes and contains all
fields of the NSAP address except for the SEL (selector) field, which is contained in the 1 byte local address field.
Since NSAP addresses are 20 bytes in total length, there is no unused portion.

Figure 9. Node Address Format

type local address fieldnetwork address field unused

4 bytes

24 bytes total

4–20 bytes 0–16 bytes 0–16 bytes

Connection Management Network Protocol (CMNP) Specification - DRAFT 10 of 66

Applied Research Laboratory DRAFT Zeus Project

A CM may have one or more Session Managers attached and/or rooted at it.(See description of SMFA below)

3.1.2 Session Management Functional Area

The SMFA encompasses the complete functionality necessary to manage telecommunication sessions on behalf
of SM Clients.

The SMFA should have following functionalities. It should: terminate an access signaling protocol (e.g.,CMAP,
Q.93B) and support a call model for clients; negotiate call parameters on the behalf of clients; allow clients to subscribe
to and register for various services provided by the SMFA; perform name to logical address translations; publish the
names/addresses of clients; perform security checks; use the CMFA to request network connectivity operations.

For practical reasons of processing load, scale, geography, administrative partitioning, flexibility, reliability, etc.,
the SMFA will be implemented as a distributed collection of discrete session management functional instances called
Session Managers (SMs).

 An SM is of a certain type such as CMAP, Q.93B, etc. SMs may communicate with one another in order to ne-
gotiate on behalf of their respective clients. The SM’s network address is based on the node address and a local iden-

tifier that uniquely identifies it at that node.

A Session Manager uses the CM to which it is attached to manipulate connection groups by utilizing operations
provided by the CM to create, modify and destroy connection groups.

Figure 10. Examples of Client Address Partitioning.

unused

2 sub-Intl | Area | Exchange | Local address

unused (8 bytes)

E.164 bcd

type
(4 bytes)

network address
field (8 bytes) field (4 bytes)

local address

unused

1

unused (14 bytes)

IP

type
(4 bytes)

IP address

network
address

field
(4 bytes)

local
address

field
(2 bytes)

port

unused

3NSAP

type
(4 bytes)

network address
field (19 bytes)

local
address

field
(1 byte)

AFI IDI DFI AA Rsvd RD Area ID Sel

Node_Address Local_SM_id

Connection Management Network Protocol (CMNP) Specification - DRAFT 11 of 66

Applied Research Laboratory DRAFT Zeus Project

3.2 Information Model
Information models are convenient for defining the interface between two systems which must communicate

(e.g., peer-to-peer, client-server, managing-managed). Communicating systems exchange information across their in-
terface, and an information model allows the two systems to view that information identically. While there are several
different information modeling methodologies and tools, we advocate the approach of using “managed objects”.

The clients of CM (e.g., Session Managers) which request its services to manipulate connections access it at a
service interface called CM Interface (CMI) and communicate their requests in terms of an operational view of the CM
information model. In a similar manner, administrative functions which manage CM access it at management interface
called the CM administrative interface (CMAI) and use a management view of the information model when perform-
ing management operations on CM. In this section the objects comprising the CM information model are introduced,
and their relationships are described.

3.2.1 Objects

3.2.1.1 Subnetwork

A subnetwork object represents some collection of network transport resources (e.g., switching and transmission
systems). It defines the domain of a CM. The CM controls the resources represented by the subnetwork for purposes
of establishing, modifying, and releasing connections.

Connections in a subnetwork are established between external interfaces to the subnetwork. These interfaces, or
LTPs, are defined below.

The subnetwork object is static, in the sense that it is instantiated at configuration time.

3.2.1.2 Link Termination Point (LTP)

An LTP is an object which represents the interface to a subnetwork. An LTP is contained by the subnetwork object
to which it represents an interface. An LTP serves as a container for a collection of Connection Points (CPs) which are
located at the same topological location. In an ATM VC or VP layer network an LTP is an object that represents an
ATM UNI or NNI.

LTPs are static. They are instantiated by configuration management at network initialization.

3.2.1.3 Connection Point (CP)

A CP is an object which represents the origination or termination of information flow (from the subnetwork’s per-
spective). A CP is either a transmitter or a receiver of information. The bandwidth attribute of a CP may be modified
by a CM but not directly by a client of CM. In an ATM VC layer network a CP represents a virtual channel.

CPs are logically static, as far as the clients of CM are concerned. They are instantiated by configuration manage-
ment at network initialization. Their creation and destruction, if they occur, are transparent to the clients of CM.

3.2.1.4 Connection Group (CG)

A connection group is an object that contains several connections. A CG has a network wide unique identifier
consisting of an SM address and a local connection group id which uniquely defines the CG within the SM.

The CG identifier is specified by SM at creation and is verified for uniqueness by CM. (For our implementation
of CMNP, the Local_CG_id will likely be, the local call id LCID from a UNI concatenated with the SM type)

CGs are dynamic. Clients of CM can request the creation, modification, or destruction of CGs.

3.2.1.5 Connection (or Subnetwork Connection)

A connection is an object that represents the association of zero or more CPs (via contained edges) for the purpose
of transferring information across a subnetwork.

SM_Address Local_CG_id

Connection Management Network Protocol (CMNP) Specification - DRAFT 12 of 66

Applied Research Laboratory DRAFT Zeus Project

Receiver CPs receive the merged information streams of all transmitter CPs in the connection. In a VC layer net,
the information streams are merged onto a single channel. In a VP layer net, the information streams are merged onto
a single VP; VCIs retain end-to-end significance.

If a receiver CP and a transmitter CP in the same LTP point to the same edge object (see below), then the receiver
CP can optionally receive or not receive the information stream of its paired transmitter CP. This is referred to as hav-
ing echo on or off, respectively.

Connections are dynamic. Clients of CM can request the creation, modification, or destruction of connections.

3.2.1.6 Edge

An edge is an object that represents the association of CP(s) into a connection. An edge may associate a single
transmitter CP, a single receiver CP, or a transmitter and receiver CP pair into a connection.

Edges have a directionality attribute representing the direction of the information flow: Transmit (Tx) represents
the information flowing into the connection from a Tx CP; Receive (Rx) represents the information flowing out of the
connection from a Rx CP; Transmit/Receive (Tx/Rx) represents the information flowing into and out of the connection
from a pair of Tx and Rx CPs contained in the same LTP. If the directionality attribute is set to Tx/Rx, the edge echo
attribute becomes meaningful and represents whether the received information stream contains a copy of the transmit-
ted information stream.

Edges are dynamic. Clients of CM can request the creation, modification, or destruction of edges.

3.2.2 Containment Hierarchy

Figure 11 shows the containment hierarchy of the objects.

Figure 11. Containment Hierarchy

3.3 Some Implementation Issues
In this section, we discuss some implementation issues related to the CMNP.

Layer Network

Subnetwork

Subnetwork
Connection

Link
Term
Point

Root

Tx
Conn
Point

Rx
Conn
Point

Connection
Group

Edge

Connection Management Network Protocol (CMNP) Specification - DRAFT 13 of 66

Applied Research Laboratory DRAFT Zeus Project

3.3.1 Transaction

A CM provides a capability to SMs for grouping multiple related operations into a transaction. A transaction may
have its state altered as an atomic unit. This gives an SM the ability to make multiple changes and have them all take
effect at once or none at all. In reality, of course, all changes cannot be performed simultaneously but with transactions
the CM can reserve all the operations in one transaction, and then commit them all together.

For example to build a connection that has one transmitter and four receivers, an SM can add all the participants
in one transaction and then commit the transaction. This will allow the CM to do the same with the Switch Side Man-
aged Object (SSMO) level. When the CM commits the transaction in the SSMO, the hardware will be updated for one
broadcast of one to four instead of: first setting up a point to point, then a one to two, then a one to three, and then
finally a one to four.

The reserve and commit operations are asynchronous, meaning that their responses will not be immediate. The
reserve operation will check the validity of the reserve operation. If the operation is not valid, an error indication will
be returned. Otherwise a no-error indication will be returned. Later, the CM will provide to the requester of the oper-
ation an asynchronous response, reporting the result of the operation.

When an SM creates a transaction, its CM returns to it a transaction id. This id is used to identify to which trans-
action each operation belongs. When performing CMNP operations to accomplish an operation in a transaction, the
CM will include the transaction id in the CMNP operation PDU. Multiple transactions may exist at the same time.

An SM may pass a transaction id to other SMs in order to coordinate network wide operations. (e.g. have all edges
added to a connection in one transaction.)

3.3.2 Rendezous

CMs have to synchronize their operations. For example, when a NET_JOIN_CG message is sent, the sender has
to wait until a response comes back. Rendezous provides a means to synchronize among CM operations. When an op-
eration has to synchronize with other operations, it requests a rendezous mark, which is unique in the network system.
The rendezous marks are sent with the message which has to be responsed. When a response comes back, the rende-
zous mark guides the system to find which operation can resume.

Rendezous is not the only way to synchronize in a multiprocess system, but it is a convenient way to implement
the CMNP.

4. Connection Group Model
Connection-Groups (CG) are the basic concept of communication linkage at the network node level. From the

end-user’s point of view, a CG presents as a call. A connection group is a distributed object maintained by network
nodes that describes the communication paths and their attributes. The attributes of CGs and the operations that can
be performed on them define the connection group model.

A CG contains a set of communication channels, which we term connections. Initially, at a CG creation, a con-
nection group has one or more connections. The SM that initiates the CG creation is assigned as the owner of that CG.
The owner of a CG (and other SMs with the owner’s permission) can add connections to or remove connections from
the CG. Multiple connections within a CG are useful for applications such as video conferences, where one connection
may carry video and another audio. CGs are dynamic, in the sense that the number of participates and the number of
connections in the CG can vary over time, while communication is taking place. Additionally, the bandwidth reserved
by a connection can also be modified.

4.1 Connection Group (CG)
Connection Groups (CG) are the primary objects manipulated by CMs. Figure 12 shows an example of a multi-

media CG at a Node. CGs have a number of attributes that are described in the following subsections and summarized
in Table 3.

Connection Management Network Protocol (CMNP) Specification - DRAFT 14 of 66

Applied Research Laboratory DRAFT Zeus Project

4.1.1 CG_Owner

The CG_Owner attribute is an SM identifier indicating who initially created the CG. The SM identifier format
has been defined in section 3.1.2.

4.1.2 CG_Ack_Flag

The CG_Ack_Flag is a numerate variable that indicates who has the right to add a new end-point into a CG.

When CG_Ack_Flag is ON, the CG owner has to approve the addition of a new end-point. When CG_Ack_Flag
is OFF, end-points can be added freely. When CG_Ack_Flag is CLOSED, only the owner of the CG can request to
add a new end-point into the CG.

4.1.3 CG_ID

The CG_ID is the connection group’s identifier which is globally unique. The CG_ID format is defined in section
3.2.1.4.

4.1.4 CG_State

The CG_State attribute gives the CG’s current state at the node.

TABLE 3. Connection Group attributes

attribute Description

CG_Owner the SM id who creates the CG

CG_Ack_Flag indicating whether the owner of the CG has to approve before
a new end-point can be added into the CG

CG_ID Connection Group identifier

CG_State the CM state regarding to the CG

CG_Correlation whether all the connections in the CG have to be routed on the
same path

CG_Trunking use trunk whenever possible

Connection_List Current connections in call

video (in)

data

video (out)

Connections

voice CG

ne
tw

or
k

Figure 12. An Example Multimedia CG at a Node.

CG_Ack_Flag ∈ {ON, OFF, CLOSED}

CG_State ∈ {REQUEST, RESERVE_PENDING, RESERVE,
 COMMIT_PENDING, COMMIT, ABORT_PENDING,
 ABORT}

Connection Management Network Protocol (CMNP) Specification - DRAFT 15 of 66

Applied Research Laboratory DRAFT Zeus Project

4.1.5 CG_Correlation

The correlation attribute controls the way to choose a link for a connection:

If the correlation is YES, all the connections within the CG have to be routed on the same path within a subnet-
work. If the correlation is NO, the connections can be routed separately.

4.1.6 CG_Trunking

The trunking attribute tells if a predefined trunk to be used to route the connections if possible.

4.1.7 Connection_List

The Connection_List is a list of connection objects within the CG. Each connection includes allocated bandwidth,
connection type, and other attributes as described in the next section. The list is dynamic since connections can be add-
ed to or removed from the connection group at any time, and since the attributes of connections can be changed over
time.

4.2 Connections
Connections are the primary information carrying components of a connection group. The attributes associated

with a connection are described in the following subsections and summarized in Table 5. Some of connection attributes
have global meaning. Some have local meaning since they are different at different nodes.

4.2.1 Con_Owner

The Con_Owner attribute is an SM identifier indicating who initially created the connection. The SM identifier
format has been defined in section 3.1.2.

4.2.2 Con_Ack_Flag

The Con_Ack_Flag is a numerate variable that indicates who has the right to add a new end-point into a connec-
tion.

When Con_Ack_Flag is ON, the connection owner has to approve the addition of a new end-point. When Con_-
Ack_Flag is OFF, end-points can be added freely. When Con_Ack_Flag is CLOSED, only the owner of the connection
can request to add a new end-point into the connection.

TABLE 4. Connection attributes.

attribute Description

Con_Owner a SM identifier who created this connection

Con_Ack_Flag indicating whether the owner of the connection has to approve before a new end-point
can be added into the connection

Con_ID connection identifier which is unique within a CG

Con_State connection state

Con_Type a three tuple consisting of VP/VC, dynamic/static bandwidth and quality of service

rx_bw receive bandwidth requirement

tx_bw transmit bandwidth requirement

QOS quality of service

Con_Edge_list a list of edges

CG_Correlation ∈ {YES, NO}

CG_Trunking ∈ {YES, NO}

Con_Ack_Flag ∈ {ON, OFF, CLOSED}

Connection Management Network Protocol (CMNP) Specification - DRAFT 16 of 66

Applied Research Laboratory DRAFT Zeus Project

4.2.3 Con_ID

The Con_ID is an integer which uniquely identifies the connection within the CG.

4.2.4 Con_State

The Con_State attribute gives the connection’s current state at the node.

4.2.5 Con_Type

The con_type attribute gives the type of the connection.

4.2.6 rx_bw

The rx_bw attribute is a three tuple that defines the receive bandwidth.

The peak and average attributes are expressed in cells per second. The peak burst length is measured in cells and in-
dicates the maximum number of cells that the connection can receive at peak rate during a burst.

4.2.7 tx_bw

The tx_bw is a three tuple that defines the transmit bandwidth in the same format as rx_bw.

4.2.8 QOS

The QOS attribute defines the quality of service.

QOS relates to options for cell loss behavior that may vary from network to network. QOS, therefore, is intention-
ally vague. If the network can implement different loss behavior strategies the network control software will group
them into the categories of HIGH, MEDIUM and LOW.

4.2.9 Con_Edge_List

The Con_Edge_List is a list of edge objects. Each edge object defines an input or output port of the connection.
Edge objects are described in detail in next section.

4.3 Edges
 An edge is an object that represents the association of CP(s) into a connection. An edge may associate a single

transmitter CP, a single receiver CP, or a transmitter and receiver CP pair into a connection. The attributes associated
with an edge are described in the following subsections and summarized in Table 5.

TABLE 5. Edge attributes.

attribute Description

Eg_Owner a SM identifier identical to Con_Owner

Eg_Direction indicating the direction of the edge: in, out, or bidirectional

Eg_echo receive messages of its own or not

Eg_State edge’s current state

rx_bw receive bandwidth requirement

Con_State ∈ {REQUEST, RESERVE_PENDING, RESERVE,
 COMMIT_PENDING, COMMIT, ABORT_PENDING,
 ABORT}

Con_Type ∈ {VP, VC}

rx_bw = < peak, average, peak_burst_length >

QOS ∈ {HIGH, MEDIUM, LOW}

Connection Management Network Protocol (CMNP) Specification - DRAFT 17 of 66

Applied Research Laboratory DRAFT Zeus Project

4.3.1 EG_Owner

The Eg_Owner attribute is an SM identifier indicating who initially created the edge. This is same as the owner
of the connection. The SM identifier format has been defined in section 3.1.2.

4.3.2 Eg_Direction

The Eg_Direction indicates the direction of the edge.

The direction of an edge can be RECEIVE, TRANSMIT, or both receive and transmit that means bidirectional.

4.3.3 Eg_echo

Eg_echo is a boolean variable indicating whether echo is allowed. This attribute is valid only when the edge is a
TRANSMIT edge or a RXTX edge.

4.3.4 Eg_State

The Eg_State attribute gives the edge’s current state.

4.3.5 rx_bw

The rx_bw attribute is a three tuple that defines the receive bandwidth. The format of rx_bw is same as the format
of rx_bw in the connection object (section 4.2.5). The difference is the bandwidth here defines the actual bandwidth
on a specific link, and the bandwidth in the connection object defines the bandwidth requirement which may or may
not exist on the current edge.

4.3.6 tx_bw

The tx_bw is a three tuple that defines the transmit bandwidth in the same format as rx_bw.

4.3.7 Rx_CP and Tx_CP

The Rx_CP and Tx_CP are the receive-connection-point and transmit-connection-point objects respectively. By
containing these objects, the edge object, which is dynamic, sets up a relationship between the connection and the con-
nection points, which are logically static and are related to the resources managed by the node. Connection point object
is described in next section.

4.4 Connection Point
A CP is an object which represents the origination or termination of information flow (from the subnetwork’s per-

spective). A CP is either a transmitter or a receiver of information. A transmit-CP is an information source from which

tx_bw transmit bandwidth requirement

Rx_CP receive connection point

Tx_CP transmit connection point

TABLE 5. Edge attributes.

attribute Description

Eg_Owner a SM identifier identical to Con_Owner

Eg_Direction indicating the direction of the edge: in, out, or bidirectional

Eg_echo receive messages of its own or not

Eg_State edge’s current state

Eg_Direction ∈ {RECEIVE, TRANSMIT, RXTX}

Eg_State ∈ {REQUEST, RESERVE_PENDING, RESERVE,
 COMMIT_PENDING, COMMIT, ABORT_PENDING,
 ABORT}

Connection Management Network Protocol (CMNP) Specification - DRAFT 18 of 66

Applied Research Laboratory DRAFT Zeus Project

the subnetwork receives cells. A receive-CP is an information sink to which the subnetwork sends cells. In each type,
we distinguish VP-CP from VC-CP which represent virtual-path CP and virtual-circuit CP respectively. The attributes
associated with a CP are described in the following subsections and summarized in Table 6.

4.4.1 CP_address

The CP_address attribute gives the link address in which the CP resides. The address format is an implementation
decision.

4.4.2 CP_Type

The CP_Type attribute defines the type of the CP.

A CP has one of the four types: TXVC stands for transmit-virtual-circuit-CP, TXVP for transmit-virtual-path-CP,
RXVC for receive-virtual-circuit-CP, and RXVP for receive-virtual-path-CP.

4.4.3 CP_I

CP_I is an integer that defines the VCI or VPI depends on the CP_Type.

TABLE 6. Connection-Point attributes.

attribute Description

CP_address the link address the CP resides in

CP_Type distinguishes TXCP from RXCP, VC from VP

CP_I either VCI of VPI decided by CP_Type

CP_Type ∈ {TXVC, TXVP, RXVC, RXVP}

Connection Management Network Protocol (CMNP) Specification - DRAFT 19 of 66

Applied Research Laboratory DRAFT Zeus Project

5. Connection Management Access Protocol
Clients of BISDN networks create, manipulate and destroy calls by sending messages to exterior nodes of the net-

work. These messages are transmitted in ATM cells, which are distinguished from data cells by sending them to the
network via the signaling connection. The exterior nodes communicate with one another and with interior nodes by
sending Connection Management Network Protocol (CMNP) messages. Figure 13 shows a layered view of the proto-
col architecture.

Clients have no knowledge or visibility of CMNP. CMNP does not restrict the access protocols used at client side.
It can even support different access protocols in an ATM network simultaneously. For example some clients may use
Q.93B as the access protocol, others may use CMAP. The only restriction is that within a connection group, all the
clients have to use same access protocol.

6. CMNP Message Formats and Operations
This section describes the detailed CMNP message formats and the operations at each node when a message is

received. Section 6.1 outlines the conventions used to diagram CMNP messages. Section 6.2 describes the common
terms, fields and attributes used in CMNP messages. Finally, Section 6.3 gives the message layouts and detailed op-
eration descriptions.

N1

N2
N4

N5

N9

N8

A

B

C

D

F

G

Client Protocols

CMNP

Access Protocol

N3 E

N6

N7

Interior
Nodes

Clients

Exterior
Nodes

Figure 13. Layered View of the Protocol Architecture.

Connection Management Network Protocol (CMNP) Specification - DRAFT 20 of 66

Applied Research Laboratory DRAFT Zeus Project

6.1 Message Layout Conventions
Figure 32 shows a diagram of the NET_JOIN_CG request message.

The example demonstrates how CMNP messages are presented in this document and the conventions used. A
CMNP message is organized as a list of Information Elements (IEs). Each IE contains three fields: an IE code, a data
size field, and the data of the IE. Some IEs are mandatory, others are optional. An optional IE may have a default value.
In Figure 32, the first three columns are the contents of IEs, the fourth column indicate whether this IE is mandatory
or optional, the fifth column gives the default value if the IE is optional.

Related parameters within CMNP messages are grouped into objects. The NET_JOIN_CG REQUEST shown in
Figure 32 contains all five of the different types of objects (some of which appear multiple times and some are com-
ponents of a larger object). The five objects are: 1) the Header object, 2) the Rendezvous object, which resides in the
header object, 3) the CG Attribute object, 4) the Connection Attribute object, and 5) the Edge Attribute object, which
is a subobject of a connection object. IEs in a particular object can appear in random order within that object. The ex-
ceptions are the OP_TYPE has to be the first IE of any message, and the CON_ID has to be the first IE in a connection
object.

The Header object is made up of the operation type (op_type), multiphase, message identifier (msg_id),
transaction_identifier (trans_id), session manager identifier (SM_requester), connection group identifier (cg_id),

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_JOIN_CG
REQUEST

M

MULTIPHASE 1 REQUEST M

MSG_ID 2 1 M

TRANS_ID 28 NODE-2, 1 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 NODE-1, 17 M

Send_REND 28 M

Receive_REND 28 M

CG_ACK_FLAG 1 O OFF

CORRELATION 1 STRONG O STRONG

TRUNKING 1 YES O NO

CON_ID 1 1 M

CON_OWNER 28 SM-1 M

TxBW 12 (5M, 5M, 1) M

RxBW 12 (5M, 5M, 1) M

ACK_FLAG 1 CLOSED O OFF

CON_TYPE 1 VC O VC

QOS 1 HIGH O HIGH

MAPPING 1 RT

NOTIFY 28 SM-2

TxVPI 1 1

TxVCI 2 21

RxVPI 1 1

RxVCI 2 22

CON_ID 1 2

CON_OWNER 28 SM-1

TxBW 12 (30M, 30M, 1)

RxBW 12 (30M, 30M, 1)

ACK_FLAG 1 CLOSED

CON_TYPE 1 VC

QOS 1 HIGH

MAPPING 1 RT

NOTIFY 28 SM-2

TxVPI 1 1

TxVCI 2 23

RxVPI 1 1

RxVCI 2 24

Connection Management Network Protocol (CMNP) Specification - DRAFT 21 of 66

Applied Research Laboratory DRAFT Zeus Project

connection group owner (cg_owner) and a rendezvous object. In the example the op_type and multiphase fields are
filled in with the actual bit values for the net_join_cg and REQUEST respectively.

A Rendezvous object is a component object contained in a header object. It is made up of sender rendezvous
(Send_REND), and receiver rendezvous (Receiver_REND). Rendezous is a synchronization mechanism between asyn-
chronous processes. The rendezous used here is an implementation method rather than a part of the protocol.

The CG Attribute object is made up of the correlation, trunking fields, and connection group acknowledge flag
(cg_ack_flag).

The Connection Attribute object is made up of the connection identifier(con_id), connection owner (con_owner),
connection type (con_type), transmitter bandwidth (tx_bw), receiver bandwidth (rx_bw), acknowledegement flag
(ack_flag), quality of service (qos), transmit and receive mapping (mapping), notify, and an edge-attribute object.

An Edge Attribute object is made up of transmitter vpi (tx_vpi), receiver vpi (rx_vpi), transmitor vci (tx_vci), and
receiver vci (rx_vci),

6.2 Common CMNP Terms, Fields and Parameters
There are several fields or terms which are common to many CMNP messages. This section defines these param-

eters and terms so that the detailed descriptions do not have to be repeated for each operation.

6.2.1 operation type (op_type)

The op_type is a one byte integer field indicating the message type. CMNP defines 20 message types as shown in
table 7.

TABLE 7. CMNP Message Types.

Message Type Description

NET_CREATE_CG from a SM to a CM to request to create a new CG

NET_JOIN_CG from a SM to a CM, or from one CM to another to request to join an existing CG

NET_DROP_CG from a SM to a CM, or from a CM to another to request to drop from a CG

NET_MOD_CG from the owner of a CG to all the CMs participated in the CG to request to mod-
ify the attributes of the CG

NET_DESTROY_CG from the owner of a CG to all the CMs participated in the CG to request to de-
stroy the CG

NET_QUERY_CG_OWNER query the owner of a CG about a CM being added to or deleted from the CG

NET_NOTIFY_CG_LIST from a CM to others or from a CM to a SM to notify the change of a CG

NET_GET_CG from a CM to another to request the information about a CG

NET_ADD_CON from a SM to a CM, or from one CM to some others to request to add a connec-
tion

NET_JOIN_CON from a SM to a CM, or from one CM to another to request to join an existing con-
nection

NET_DROP_CON from a SM to a CM to request to drop from a connection

NET_MOD_CON from a SM to a CM, or from one CM to some others to request to modify the at-
tributes of a connection

NET_DESTROY_CON from the owner of a connection to all the CMs participated in a CG to request to
destroy the connection

NET_QUERY_CON_OWNER query the owner of a connection about an edge being added to deleted from the
connection

NET_NOTIFY_CON_LIST from a CM to others or from a CM to a SM to notify the change of a connection

Connection Management Network Protocol (CMNP) Specification - DRAFT 22 of 66

Applied Research Laboratory DRAFT Zeus Project

6.2.2 multiphase

The multiphase is a one byte long field indicating the phase within an operation. This IE will have one of the two
values: REQUEST or RESPONSE. Basically, the message format for a REQUEST message is different from the mes-
sage format for the same type of RESPONSE message. The op_type and multiphase fields together determine the mes-
sage format.

6.2.3 message identifier (msg_id)

We use the message identifier to distinguish the operations in a transaction. With the msg_id, when a response to
an operation is received, we can know exactly which request it matches. The msg_id is a two byte integer that is unique
within a transaction.

6.2.4 transaction identifier (trans_id)

A transaction is unique globally within a network. To keep a transaction identifier unique globally, a trans_id is
a combination of a node address and a local identifier. The uniqueness of node addresses and the unique selection of
the local identifier at a node guarantees the uniqueness globally.Figure 14 shows the format of a transaction_id.

Figure 14. trans_id (28 bytes)

6.2.5 session manager requester (SM_requester)

A session manager requester indicates a unique session manager. See section 3.1.2.

6.2.6 connection group owner (cg_owner)

A CG owner is a SM who creates the CG. The cg_owner is a SM id with the format defined in 3.1.2.

6.2.7 sender rendezvous (Send_REND)

A rendezvous mark is unique in the network system. A concatenation of the node id and a local id which is unique
at the node (4 bytes integer) guarantees the global uniqueness.

6.2.8 receiver rendezvous (Receiver_REND)

The format of Receiver_REND is same as Send_REND.

NET_COMMIT_TRANS from a SM to a CM, or from one CM to some others to request to commit a trans-
action

NET_ABORT_TRANS from a SM to a CM, or from one CM to some others to request to abort a trans-
action

NET_RESET inform the neighbors that the current CM has been reset

NET_PING bounce a message to a neighbor node to make sure it is still alive

NET_STATUS from a SM to a CM, or from a CM to another to request the status information

TABLE 7. CMNP Message Types.

Message Type Description

node_addr (24 bytes) lcid (4 bytes)

Connection Management Network Protocol (CMNP) Specification - DRAFT 23 of 66

Applied Research Laboratory DRAFT Zeus Project

6.2.9 connection group identifier (cg_id)

A CG identifier is unique in a SMFA. The format of cg_id is a concatenation of the node id and a local id which
is unique within the SM who creates the CG.

6.2.10 correlation

The correlation parameter takes one of two values: STRONLY or WEAKLY. STRONGLY means all the connec-
tions in a CG have to be routed on same path. WEAKLY does not impose that restriction.

6.2.11 trunking

The trunking parameter is a boolean variable. If trunking is YES, each node will try to use a trunk whenever pos-
sible.

6.2.12 connection group acknowledge flag (cg_ack_flag)

The cg_ack_flag is a numerate variable that indicates who has the right to add a new end-point into a CG.

When cg_ack_flag is ON, the CG owner has to approve the addition of a new end-point. When cg_ack_flag is
OFF, end-points can be added freely. When cg_ack_flag is CLOSED, only the owner of the CG can request to add a
new end-point into the CG.

6.2.13 connection identifier (con_id)

Each connection is assigned a con_id, unique within a connection group, at the time of the connection’s creation.
The con_id is subsequently used to identify which connection is being operated on in any of the connection oriented
operations. The con_id is a two byte integer.

6.2.14 connection type (con_type)

Either VC or VP.

6.2.15 transmitter bandwidth (txbw)

Same as defined in 4.2.6.

6.2.16 receiver bandwidth (rxbw)

Same as defined in 4.2.6.

6.2.17 acknowledge flag (ack_flag)

Same as defined in 4.2.2.

6.2.18 quality of service (qos)

Same as defined in 4.2.8.

6.2.19 mapping

The mapping attribute indicates EchoOn or EchoOff at a RxTx edge.

6.2.20 notify

A SM id indicating who will be notified when a new end-node joins athe connection.

6.2.21 transmitter virtual path identifier

Transmitter VPI.

cg_ack_flag ∈ {ON, OFF, CLOSED}

mapping EchoOn EchoOff{ , }∈

Connection Management Network Protocol (CMNP) Specification - DRAFT 24 of 66

Applied Research Laboratory DRAFT Zeus Project

6.2.22 transmitter virtual circuit identifier

Transmitter VCI.

6.2.23 receiver virtual path identifier

Receiver VPI.

6.2.24 receiver virtual circuit identifier

Receiver VCI.

6.2.25 CG_cause

CG_cause and Con_cause are two IEs contained in a response message to report the execution status of a request.

The CG_cause field is divided into three subfields. The high order two bits are used to indicate whether there were
errors in the CG or connection specifications. If there were errors in the CG specification, the highest order bit is set
to 1 (CG_SPEC_ERROR). If there were errors in any of the connection specifications the second highest order bit is
set to 1 (CON_SPEC_ERROR). It is possible for both bits to be set in the same response. If the cg_status_bit is

set(cg_status_bit = CG_SPEC_ERROR), the client should check the status subfield (lowest 14 bits of CG_cause) to
determine the type of error that occurred. If the connection_status_bit is set(connection_status_bit =
CON_SPEC_ERROR), the client should check each of the Con_cause fields (Section 6.2.26) in the response to de-
termine which connection specification was in error.

In a positive response both error bits are set to 0 (cg_status_bit = CG_SPEC_OK, connection_status_bit =
CON_SPEC_OK, the rest of the CG_cause field should be set to OK), is referred to as an ACK. A negative response,
one with at least one of the error bits set, is referred to as a NACK.

Appendix B contains the values for all of these status fields and sub-fields, and Appendix C describes the error
conditions.

6.2.26 Con_cause

The Con_cause field will contain a value of OK if the corresponding connection specification was acceptable. If
the connection specification contained an error that caused the request to fail, the Con_cause field will contain a value
describing the error.

Appendix B contains the values for all of these status fields and sub-fields, and Appendix C describes the error
conditions.

6.3 CMNP Operation Definitions
Following subsections define the individual CMNP operations. Each operation is defined using three sections:

Synopsis, Data, Message Formats and Operation. The Synopsis section gives a very brief description of the operation.

status (14 bits)

cg_status_bit (1 bit)

connection_status_bit (1 bit)

Figure 15. CG_cause (16 bits)

Connection Management Network Protocol (CMNP) Specification - DRAFT 25 of 66

Applied Research Laboratory DRAFT Zeus Project

The Data section lists the individual fields used in the messages of the operation. The Operation section describes by
prose and state diagrams how the network nodes that received a request should operate.

Connection Management Network Protocol (CMNP) Specification - DRAFT 26 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.1 NET_CREATE_CG

Synopsis:
A NET_CREATE_CG request is a message initiated by a SM. A NET_CREATE_CG response is a message sent

by a CM to response to a NET_CREATE_CG request. Having Received a NET_CREATE_CG request, the CM
checks its resources. If the resources required are available, the CM will create a new CG, and send an ACK to the SM
who initiated the request. Otherwise, a NACK is sent with failure reason in the cause fields. Only when a
NET_COMMIT_TRANS request for the transaction in which the NET_CREATE_CG resides is received, the new
created CG becomes permanent.

Message Formats:
NET_CREATE_CG request:

NET_CREATE_CG response:

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_CREATE_CG M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CG_ACK_FLAG 1 O OFF

CORRELATION 1 O STRONG

TRUNKING 1 O YES

CON_ID 1 M

CON_OWNER 28 M

TxBW 12 M

RxBW 12 M

ACK_FLAG 1 O OFF

CON_TYPE 1 O VC

QOS 1 O HIGH

MAPPING 1

NOTIFY 28

TxVPI 1

TxVCI 2

RxVPI 1

RxVCI 2

CON_ID 1

...

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_CREATE_CG M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_CONTEXT 1 M

CON_CAUSE 1 O OK

Connection Management Network Protocol (CMNP) Specification - DRAFT 27 of 66

Applied Research Laboratory DRAFT Zeus Project

Operation:
A node starts a net_create_cg operation by receiving a net_create_cg request. Included in the request are a cg_id,

a set of connection group parameters, and a set of connection parameters. Figure 16. is the state transition diagram of
a CM at a node activated by receiving a net_create_cg request.

Figure 16. net_create_cg state transition diagram

State transitions start at state 0 (no net_create_cg request has been received yet). When a net_create_cg request is
received, the node sets up a timer T1, then it goes to the state 1, net_create_cg request pending. At state 1, the node
checks its resources to see if the request can be satisfied at the node. If it has enough resources to support the new CG,
it will create a temporary CG, reserve the bandwidth on the link where the net_create_cg request came from, and then
send an ACK to the requester. Otherwise, a negative net_create_cg response is sent to the requester, and the node goes
back to state 0.

When the commit_trans request comes, it goes to state 3, where it cimmits the reservations and sends a positive
response back, and then it goes to state 4, the end state for a successful net_create_cg request. At state 2, if the timer
T1 expires, the node will release all the resources reserved for the pending connection group, and go back to state 0.
In the meanwhile, a net_abort_trans request is sent to the SM to inform the activity.

TxVPI 1

TxVCI 2

RxVPI 1

RxVCI 2

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

 0 1

2 3

4

Rcv
create_cg
Req

Snd
NACK Snd ACK

Rcv
Commit
Req

Snd
Commit
ACK

0 -- initial state
1 -- net_create_cg request pending
2 -- waiting for commit request
3 -- commit request processing
4 -- successful net_create_cg

Timeout
Snd
Abort_trans

Connection Management Network Protocol (CMNP) Specification - DRAFT 28 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.2 NET_JOIN_CG

Synopsis:
If the connection group indicated by the cg_id in the incoming NET_JOIN_CG request exists and the current node

has the required resources available, a positive NET_JOIN _CG response is sent to the sender of the request message,
which forwards the response back to the origin of the request.

 If the connection group has not been created yet, the CM checks its own resources. If the resources required are
available, a new connection group will be created temporarily. A new NET_JOIN_CG message, let’s call it the second
net_jon_cg request, is sent on the link towards the owner of the connection group. A NET_JOIN_CG response will be
sent to the origin of the request based on the success or failure of the second NET_JOIN_CG operation. An initial set
of connections within that connection group are established as a part of a successful net_jon_cg operation. If the op-
eration fails by receiving a negative response, the reason of the failure will be shown in the cg_cause and con_cause
fields in the net_join_cg response.

Message Formats:
NET_JOIN_CG request:

NET_JOIN_CG response:

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_JOIN_CG M

MULTIPHASE 1 REQUEST M

MSG_ID 2 1 M

TRANS_ID 28 NODE-2, 1 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 NODE-1, 17 M

Send_REND 28 M

Receive_REND 28 M

CG_ACK_FLAG 1 O OFF

CORRELATION 1 STRONG O STRONG

TRUNKING 1 YES O YES

CON_ID 1 1 M

CON_OWNER 28 SM-1 M

TxBW 12 (5M, 5M, 1) M

RxBW 12 (5M, 5M, 1) M

ACK_FLAG 1 CLOSED O OFF

CON_TYPE 1 VC O VC

QOS 1 HIGH O HIGH

MAPPING 1 RT

NOTIFY 28 SM-2

TxVPI 1 1

TxVCI 2 21

RxVPI 1 1

RxVCI 2 22

CON_ID 1 2

...

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_JOIN_CG M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 1 M

TRANS_ID 28 NODE-2, 1 M

SM_Requester 28 M

CG_CAUSE 1 O OK

Connection Management Network Protocol (CMNP) Specification - DRAFT 29 of 66

Applied Research Laboratory DRAFT Zeus Project

Operation:
A node starts a net_join_cg operation by receiving a net_join_cg request. We refer the sender of the request as

requester. Included in the request are a cg_id, a set of connection group parameters, and a set of connection parameters.
Based on the cg_ack_flag and ack_flags in connection objects, the state transition diagram can be different.

Figure 17 is the state transition diagram of a CM at a node activated by receiving a NET_JOIN_CG request where
all the cg_ack_flag and ack_flags are off.

Figure 17. net_join_cg state transition diagram

CG_Owner 28 M

CG_ID 28 NODE-1, 17 M

Send_REND 28 M

Receive_REND 28 M

CON_CONTEXT 1 1 M

CON_CAUSE 1 O OK

TxVPI 1 1

TxVCI 2 21

RxVPI 1 1

RxVCI 2 22

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

8

 0 1

2 3

4

5

6

7

Rcv
join_con
Req

Snd
NACK

Snd ACK

Rcv
Commit
Req

Snd
Commit
NACK Snd

Commit
ACK

Snd
join_cg
Req

Time out or Rcv NACK

Rcv ACK
Snd ACK

Snd NACK

Time out

Rcv & Snd
commit
Req

Rcv & Snd
Commit
ACK

Rcv Commit NACK
Snd Commit NACK

Time out

Snd Abort Trans Req

0 -- initial state
1 -- join_cg request pending
2 -- waiting for commit request
3 -- commit request processing
4 -- successful join_cg

5 -- waiting for join_cg_response
6 -- waiting for commit request
7 -- waiting for commit response
8 -- commit response time out

Snd Abort Trans
Req

Snd Commit NACKTimeout
Snd
Abort_trans

Connection Management Network Protocol (CMNP) Specification - DRAFT 30 of 66

Applied Research Laboratory DRAFT Zeus Project

State transitions start at state 0, no net_join_cg request has been received yet. When a net_join_cg request is re-
ceived, the node sets up a timer T1, then it goes to the state 1 (a net_join_cg_request pending). At state 1, the node
checks its resources to see if the request can be satisfied at the current node. If there is enough spare bandwidth on the
link where the request came from, it reserves the bandwidth on that link. Otherwise, a negative net_join_cg response
is sent to the requester, and the node goes back to state 0.

If the connection group indicated by the cg_id in the net_join_cg message has already existed at the node and there
are enough resources available at the current node to satisfy the request, the node will send a positive net_join_cg re-
sponse to the requester, then it goes to state 2 (waiting for a net_commit_trans request). When the net_commit_trans
request comes, it goes to state 3, where it commits all the reservations and sends a positive response back, and then it
goes to state 4 (the end state of a successful net_join_cg request). At state 2, if no net_commit_trans message comes
before the timer T1 expires, the node will release all the resources reserved for the pending connection group, and go
back to state 0. In the meanwhile, a net_abort_trans message is sent to the requester of net_join_cg to inform the failure
of the transaction.

At state 1, if the connection group has not yet existed, the CM at the node calls the routing algorithm to find the
next node towards the owner of the CG. The CM forwards the net_join_cg request to the next node. Then it goes to
state 5 (waiting for a net_join_cg response back). If a negative net_join_cg response comes back or a time out occurs,
the CM releases all the resources reserved and sends a negative net_join_cg response to the requester, and then it goes
to state 0.

When a positive net_join_cg response is received at state 5, the CM goes to state 6 (waiting for commit request).
If a time out occurs at state 6, the CM releases all the resources reserved and sends a net_abort_trans request to both
the net_join_cg requester and the next_node, then it goes to state 0. If a commit_trans request is received, it forwards
the commit request to the next_node, and then it goes to state 7 (waiting for commit_trans response).

When a positive commit_trans response is received at state 7, the CM commits all the reservations and sends a
positive commit_trans response to the requester, then it goes to state 4. If a negative commit_trans response is received,
the CM releases all the resources reserved and sends a negative commit_trans response to the requester, and it then
goes to state 0. When a time out occurs at state 7, the CM releases all the resources reserved and sends a negative
commit_trans response to the requestor and a net_abort_trans request to the next_node, and then it goes to state 0.

** Time out always makes confusion. No matter what actions taken when a timeout occurs, we may face some
inconsistency in the network. The only way going around this is to make two assumptions: 1) the underlying transport
protocol will correctly report the link status; 2) the timer is set long enough such that no timeout will occur for normal
operations. If we make the second assumption, then we don’t have to put the time issue in CMNP specification. Just
let it be an implementation issue. We may mention this in the previous section. For the correctness proof, we can use
the word “eventually”. CMNP is not only a protocol, it also manages the resources. It has to interface with the lower
level, say the transport layer. Do we have to consider the reactions when a link failure information is received as a part
of CMNP specification? dakang’s comment **

Connection Management Network Protocol (CMNP) Specification - DRAFT 31 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.3 NET_DROP_CG

Synopsis:
A NET_DROP_CG is initiated by an SM to drop an end-point from a CG. If the connection group indicated by

the cg_id in the incoming NET_DROP_CG request does not exist at the current node, a negative response is sent back
to the sender of the request with cg_cause set to CG_NOT_EXIST. If there is only one other edge evolved in the con-
nection group at the current node, the resources for the connection group at the node will be marked as waiting-for-
release, and a NET_DROP_CG request is forwarded along that edge. If the node has more than one other edges that
are involved in the CG, an ACK is sent to the requester. When a COMMIT_TRANS is received, all the resources for
that CG along the net_drop_cg path are released.

Figure 18. A NET_DROP_CG Example

 Figure 18 shows an example of a successful drop_cg activity. Node n5 initiates the net_drop_cg request. Since
there is only one other link in the CG at n4, n4 forwards the request to n2. At n2, there are more than one other links
in the CG. So n2 stops the propagation of net_drop_cg request. It sends an ACK back. The commit requests and re-
sponses, which are not shown in the figure, will go the same way as the net_drop_cg requests and the responses. After
the commitment, link (n2, n4) and (n4, n5) are removed from the CG.

Message Formats:
NET_DROP_CG request:

NET_DROP_CG response:

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_DROP_CG M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_DROP_CG M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

n1
n2

n3

n4

n5

net_drop_cg req

net_drop_cg req
net_drop_cg
ACK

net_drop_cg
ACK

Connection Management Network Protocol (CMNP) Specification - DRAFT 32 of 66

Applied Research Laboratory DRAFT Zeus Project

Operation:
A node starts a net_drop_cg operation by receiving a net_drop_cg request. We refer the sender of the request as

the requester.

Figure 19 is the state transition diagram of a CM at a node activated by receiving a NET_DROP_CG request.

Figure 19. net_drop_cg state transition

State transitions start at state 0 (no net_drop_cg request has been received yet). When a net_drop_cg request is
received, the node sets up a timer, then it goes to the state 1 (a net_drop_cg request pending). If there are more than
two other edges are involved in the CG, an ACK is sent back, and then it goes to state 2, waiting for commit request.
When the net_commit_trans request comes, the node release the resources for the edge and sends an ACK back, then
it goes to state 4, the end of a successful net_drop_cg action. If the CG does not exist at the node, an NACK with
CG_NOT_FOUND is sent back. If there is only one other edge in the CG, the CM will forward the net_drop_cg request
along that edge, and it goes to state 5, waiting for the response.

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

0 -- initial state
1 -- drop_cg request pending
2 -- waiting for commit request
3 -- commit request processing
4 -- successful drop_cg

5 -- waiting for drop_cg_response
6 -- waiting for commit request
7 -- waiting for commit response
8 -- commit response time out

8

 0 1

2 3

4

5

6

7

Rcv
drop_cg
Req

Snd
NACK

Snd ACK

Rcv
Commit
Req

Snd
Commit
NACK Snd

Commit
ACK

Snd
drop_cg
Req

Time out

Rcv ACK or CG_NOT_FOUND
Snd ACK

Snd NACK

Time out

Rcv & Snd
commit
Req

Rcv & Snd
Commit
ACK

Rcv Commit NACK
Snd Commit NACK

Time out

Snd Abort Trans Req

Snd Abort Trans
Req

Snd Commit NACK

Time out

Connection Management Network Protocol (CMNP) Specification - DRAFT 33 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.4 NET_DESTROY_CG

Synopsis:
 A NET_DESTROY_CG is initially sent by a CG’s owner to request to release all the resources for a connection

group. The NET_DESTROY_CG messages propagate along the connection tree to all the nodes involved in the CG.
When committed, all the resources for that CG are released.

Message Formats:
NET_DESTROY_CG request:

NET_DESTROY_CG response:

Figure 20. destroy_cg transition diagram

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_DESTROY_CG M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_DESTROY_CG M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

Connection Management Network Protocol (CMNP) Specification - DRAFT 34 of 66

Applied Research Laboratory DRAFT Zeus Project

Operation:

State transitions start at state 0, no net_destroy_cg request has been received yet. When a net_destroy_cg request
is received, the node sets up a timer T1, then it goes to the state 1 (a net_destroy_cg_request pending). At state 1, the
node checks the validity of the net_destroy_cg request. If the request is not a valid one, a negative net_destroy_cg re-
sponse is sent to the requester with the CG_cause or con_cause fields setting to a particular reason of failure, and the
node goes back to state 0.

If the request is valid and there are no edges in the connection group other than the edge where the request came
from, the node will send a positive net_destroy_cg response to the requester, then it goes to state 2 (waiting for a
net_commit_trans request). When the net_commit_trans request comes, it goes to state 3, where it releases all the re-
sources for that CG and sends a positive response back, and then it goes to state 4 (the end state of a successful
net_destroy_cg request). At state 2, if no net_commit_trans message comes before the timer T1 expires, the node will
release all the resources for the connection group, and go back to state 0.

If there are edges other than the edge where the request came from in the connection group, the CM will send
net_destroy_cg requests along all the edges, it then goes to state 5, waiting for all the acknowledgements back. When
the CM receives acknowledgements from all the nodes to whom it has sent net_destroy_cg requests, it will send
net_destroy_cg ack to the requester, then it goes to state 6, waiting for the commit_trans request. When the
net_commit_trans request comes, it forwards the net_commit_trans request to all the nodes where it sent
net_destroy_cg requests to. When it receives all the acknowledgements, it sends net_commit_trans ack to the request-
er, releases all the resources for the cg, and goes to state 4.

8

 0 1

2 3

4

5

6

7

Rcv
destroy_cg
Req

Snd
NACK

Snd ACK

Rcv
Commit
Req

Snd
Commit
ACK

Snd
destroy_cg
Reqs to all

Time out or Rcv one NACK

Rcv ACK from all children
Snd ACK

Snd NACK & Abort Trans

Time out

Rcv & Snd
commit
Req

Rcv & Snd
Commit
ACK

Rcv Commit NACK
Snd Commit NACK

Time out

Snd Abort Trans Req

0 -- initial state
1 -- destroy_cg request pending
2 -- waiting for commit request
3 -- commit request processing
4 -- successful destroy_cg

5 -- waiting for destroy_cg_response
6 -- waiting for commit request
7 -- waiting for commit response
8 -- commit response time out

Snd Abort Trans
Req

Snd Commit NACK

children

Timeout
Role back

Connection Management Network Protocol (CMNP) Specification - DRAFT 35 of 66

Applied Research Laboratory DRAFT Zeus Project

If a nack is received when the node is in state 5, the node will send nack to the requester and sends abort_trans to
all the nodes to whom it has sent net_destroy_cg requests to abort the transaction.

Connection Management Network Protocol (CMNP) Specification - DRAFT 36 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.5 NET_MOD_CG

Synopsis:
 A NET_MOD_CG is initially sent by a CG’s owner to request to modify CG attributes. The NET_MOD_CG

messages propagate along the connection tree to all the nodes involved in the CG to modify the CG attributes.

Message Formats:
NET_MOD_CG request:

NET_MOD_CG response:

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_MOD_CG M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CG_ACK_FLAG 1 O OFF

CORRELATION 1 STRONG O STRONG

TRUNKING 1 YES O YES

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_MOD_CG M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

Connection Management Network Protocol (CMNP) Specification - DRAFT 37 of 66

Applied Research Laboratory DRAFT Zeus Project

Operation:

Figure 21. net_mod_cg transition diagram

State transitions start at state 0, no net_mod_cg request has been received yet. When a net_mod_cg request is re-
ceived, the node sets up a timer T1, then it goes to the state 1 (a net_mod_cg_request pending). At state 1, the node
checks the validity of the net_mod_cg request. If the request is not a valid one, a negative net_mod_cg response is sent
to the requester with the cg_cause or con_cause fields setting to a particular reason of failure, and the node goes back
to state 0.

If the request is valid and there are no edges in the connection group other than the edge where the request came
from, the node will send a positive net_mod_cg response to the requester, then it goes to state 2 (waiting for a
net_commit_trans request). When the net_commit_trans request comes, it goes to state 3, where it make all the mod-
ifications permenant for that CG and sends a positive response back, and then it goes to state 4 (the end state of a suc-
cessful net_mod_cg request). At state 2, if no net_commit_trans message comes before the timer T1 expires, the node
will abort all the modifications, and go back to state 0.

If there are edges other than the edge where the request came from in the connection group, the CM will send
net_mod_cg requests along all the edges, it then goes to state 5, waiting for all the acknowledgements. When the CM
receives acknowledgements from all the nodes to whom it has sent net_mod_cg requests, it will send net_mod_cg ack
to the requester, then it goes to state 6, waiting for the commit_trans request. When the net_commit_trans request
comes, it forwards the net_commit_trans request to all the nodes where it sent net_mod_cg requests to. When it re-
ceives all the acknowledgements, it sends net_commit_trans ack to the requester, makes all the modifications perme-
nent for the cg, and goes to state 4.

8

 0 1

2 3

4

5

6

7

Rcv
mod_cg
Req

Snd
NACK

Snd ACK

Rcv
Commit
Req

Snd
Commit
ACK

Snd
mod_cg
Reqs to all

Time out or Rcv one NACK

Rcv ACK from all children
Snd ACK

Snd NACK & Abort Trans

Time out

Rcv & Snd
commit
Req

Rcv & Snd
Commit
ACK

Rcv Commit NACK
Snd Commit NACK

Time out

Snd Abort Trans Req

0 -- initial state
1 -- mod_cg request pending
2 -- waiting for commit request
3 -- commit request processing
4 -- successful mod_cg

5 -- waiting for mod_cg_response
6 -- waiting for commit request
7 -- waiting for commit response
8 -- commit response time out

Snd Abort Trans
Req

Snd Commit NACK

children

Timeout
Role back

Connection Management Network Protocol (CMNP) Specification - DRAFT 38 of 66

Applied Research Laboratory DRAFT Zeus Project

If a nack is received when the node is in state 5, the node will send nack to the requester and sends abort_trans to
all the nodes to whom it has sent net_mod_cg requests to abort the transaction.

Connection Management Network Protocol (CMNP) Specification - DRAFT 39 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.6 NET_QUERY_CG_OWNER

Synopsis:
 When a NET_JOIN_CG, or NET_DROP_CG request is received and the current node has the CG_Ack_Flag set,

the node has to query the CG owner to get the permission to add or drop a CG at the node. A
NET_QUERY_CG_OWNER message serves this purpose. When a NET_QUERY_CG_OWNER acknowledgement
is received, the previous operation can continue. Otherwise, an NACK will be sent with CG_OWNER_DISAPPROVE
in CG_cause. NET_QUERY_CG_OWNER does not relate to any resource allocation or deallocation, so that it will
not be included in a transaction.

Message Formats:
NET_QUERY_CG_OWNER request:

NET_QUERY_CG_OWNER response:

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_QUERY_CG_OWNER M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CG_ACK_FLAG 1 O OFF

CORRELATION 1 STRONG O STRONG

TRUNKING 1 YES O YES

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_QUERY_CG_OWNER M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

Connection Management Network Protocol (CMNP) Specification - DRAFT 40 of 66

Applied Research Laboratory DRAFT Zeus Project

Operation:

Figure 22. net_query_cg_owner transition diagram

State transitions start at state 0, no net_query_cg_owner request has been received yet. When a
net_query_cg_owner request is received, the node sets up a timer T1, then it goes to the state 1 (a
net_query_cg_owner_request pending). If the current node is the owner of the cg, it sends ACK or Nack based on its
decision. If it is not the owner, the will forward the request towards the owner. Then it will pass the response to the
requester. It a timeout occurs when it’s waiting for the response, it will send a negative response to the requester.

 0 1

2

3

Rcv
query_owner
Req

Snd
NACK

Snd ACK

Snd
query_owner

Time out or Rcv one NACK
Snd NACK

0 -- initial state
1 -- query_cg_owner request pending
2 -- successful query_cg_owner
3 -- waiting for response

Rcv ACK
Snd ACK

Connection Management Network Protocol (CMNP) Specification - DRAFT 41 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.7 NET_ADD_CON

Synopsis:
A NET_ADD_CON request is a message initiated by a SM to request to add one or more new connections into

an existing CG. When a NET_ADD_CON request is received, the CM checks the resources. If the resources required
are available, the CM will reserve the resources for the new connections, and send NET_ADD_CON to all other CMs
who are in the CG and have an edge to the current node. When the CM receives all ACKs from the CMs whom it has
sent requests to, it sends an ACK to the sender of the NET_ADD_CON. When a NET_COMMIT_TRANS is received,
all the reserved resources for the new connections become permanent.

Message Formats:
NET_ADD_CON request:

NET_ADD_CON response:

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_ADD_CON M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_ID 1 M

CON_OWNER 28 M

TxBW 12 M

RxBW 12 M

ACK_FLAG 1 O OFF

CON_TYPE 1 O VC

QOS 1 O HIGH

MAPPING 1

NOTIFY 28

TxVPI 1

TxVCI 2

RxVPI 1

RxVCI 2

CON_ID 1

...

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_ADD_CON M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_CONTEXT 1 M

CON_CAUSE 1 O OK

TxVPI 1

TxVCI 2

RxVPI 1

Connection Management Network Protocol (CMNP) Specification - DRAFT 42 of 66

Applied Research Laboratory DRAFT Zeus Project

Operation:

Figure 23. net_add_con transition diagram

State transitions start at state 0, no net_add_con request has been received yet. When a net_add_con request is
received, the node sets up a timer T1, then it goes to the state 1 (a net_add_con_request pending). At state 1, the node
checks its resources to see if the request can be satisfied. If the request is no enogh resources to support the connection,
a negative net_add_conadd_con response is sent to the requester with the con_cause fields setting to the reason of fail-
ure, and the node goes back to state 0.

If there is enough resources, it reserves the resources. If there are no edges in the connection group other than the
edge where the request came from, the node will send a positive net_add_con response to the requester, then it goes
to state 2 (waiting for a net_commit_trans request). When the net_commit_trans request comes, it goes to state 3,
where it make all the reservation permenant for that connection and sends a positive response back, and then it goes
to state 4 (the end state of a successful net_add_con request). At state 2, if no net_commit_trans message comes before
the timer T1 expires, the node will abort all the transaction, and go back to state 0.

RxVCI 2

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

8

 0 1

2 3

4

5

6

7

Rcv
add_con
Req

Snd
NACK

Snd ACK

Rcv
Commit
Req

Snd
Commit
ACK

Snd
add_con
Reqs to all

Time out or Rcv one NACK

Rcv ACK from all children
Snd ACK

Snd NACK & Abort Trans

Time out

Rcv & Snd
commit
Req

Rcv & Snd
Commit
ACK

Rcv Commit NACK
Snd Commit NACK

Time out

Snd Abort Trans Req

0 -- initial state
1 -- add_con request pending
2 -- waiting for commit request
3 -- commit request processing
4 -- successful add_con

5 -- waiting for add_con_response
6 -- waiting for commit request
7 -- waiting for commit response
8 -- commit response time out

Snd Abort Trans
Req

Snd Commit NACK

children

Timeout
Role back

Connection Management Network Protocol (CMNP) Specification - DRAFT 43 of 66

Applied Research Laboratory DRAFT Zeus Project

If there are edges other than the edge where the request came from in the connection group, the CM will send
net_add_con requests along all the edges, it then goes to state 5, waiting for acknowledgements. When the CM receives
acknowledgements from all the nodes to whom it has sent net_add_con requests, it will send net_add_con ack to the
requester, then it goes to state 6, waiting for the commit_trans request. When the net_commit_trans request comes, it
forwards the net_commit_trans request to all the nodes where it sent net_add_con requests to. When it receives all the
acknowledgements, it sends net_commit_trans ack to the requester, makes the reservation permenent for the connec-
tion, and goes to state 4.

If a nack is received when the node is in state 5, the node will send nack to the requester and sends abort_trans to
all the nodes to whom it has sent net_add_con requests to abort the transaction.

Connection Management Network Protocol (CMNP) Specification - DRAFT 44 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.8 NET_JOIN_CON

Synopsis:
A NET_JOIN_CON request is a message initiated by a SM to request to join an existing connection. When a

NET_JOIN_CON request is received, the CM checks if the connection exists at the current node. If the connection
does exist, it will send an ACK to the sender. If the connection does not exist, the CM will forward the message towards
the owner of the connection and make the resource reservation temporarily. When a NET_COMMIT_TRANS is re-
ceived, all the reservations become permanent.

Message Formats:
NET_JOIN_CON request:

NET_JOIN_CON response:

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_JOIN_CON M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_ID 1 M

CON_OWNER 28 M

TxBW 12 M

RxBW 12 M

ACK_FLAG 1 O OFF

CON_TYPE 1 O VC

QOS 1 O HIGH

MAPPING 1

NOTIFY 28

TxVPI 1

TxVCI 2

RxVPI 1

RxVCI 2

CON_ID 1

...

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_JOIN_CON M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_CONTEXT 1 M

CON_CAUSE 1 O OK

TxVPI 1

TxVCI 2

RxVPI 1

RxVCI 2

Connection Management Network Protocol (CMNP) Specification - DRAFT 45 of 66

Applied Research Laboratory DRAFT Zeus Project

Operation:
A node starts a net_join_con operation by receiving a net_join_con request. We refer the sender of the request as

requester. Included in the request are a cg_id, a set of connection group parameters, and a set of connection parameters.
Based on the cg_ack_flag and ack_flags in connection objects, the state transition diagram can be different.

Figure 16. is the state transition diagram of a CM at a node activated by receiving a NET_join_con request where
all the cg_ack_flag and ack_flags are off.

Figure 24. net_join_con state transition diagram

State transitions start at state 0, no net_join_con request has been received yet. When a net_join_con request is
received, the node sets up a timer T1, then it goes to the state 1 (a net_join_con_request pending). At state 1, the node
checks its resources to see if the request can be satisfied at the current node. If there is enough spare bandwidth on the
link where the request came from, it reserves the bandwidth on that link. Otherwise, a negative net_join_con response
is sent to the requester, and the node goes back to state 0.

If the connections indicated by the con_ids in the net_join_con message have already existed at the node and there
are enough resources available at the current node to satisfy the request, the node will send a positive net_join_con
response to the requester, then it goes to state 2 (waiting for a net_commit_trans request). When the net_commit_trans
request comes, it goes to state 3, where it sends a positive response back, and then it goes to state 4 (the end state of a
successful net_join_con request). At state 2, if no net_commit_trans message comes before the timer T1 expires, the

8

 0 1

2 3

4

5

6

7

Rcv
join_con
Req

Snd
NACK

Snd ACK

Rcv
Commit
Req

Snd
Commit
NACK Snd

Commit
ACK

Snd
join_con
Req

Time out or Rcv NACK

Rcv ACK
Snd ACK

Snd NACK

Time out

Rcv & Snd
commit
Req

Rcv & Snd
Commit
ACK

Rcv Commit NACK
Snd Commit NACK

Time out

Snd Abort Trans Req

0 -- initial state
1 -- join_con request pending
2 -- waiting for commit request
3 -- commit request processing
4 -- successful join_con

5 -- waiting for join_con_response
6 -- waiting for commit request
7 -- waiting for commit response
8 -- commit response time out

Snd Abort Trans
Req

Snd Commit NACKTimeout
Snd
Abort_trans

Connection Management Network Protocol (CMNP) Specification - DRAFT 46 of 66

Applied Research Laboratory DRAFT Zeus Project

node will release all the resources reserved for the pending connections, and go back to state 0. In the meanwhile, a
net_abort_trans message is sent to the requester of net_join_con to inform the failure of the transaction.

At state 1, if the connection group has not yet existed, the CM finds the next node towards the owner of the CG.
The CM forwards the net_join_con request to the next node. Then it goes to state 5 (waiting for a net_join_con re-
sponse back). If a negative net_join_con response comes back or a time out occurs, the CM releases all the resources
reserved and sends a negative net_join_con response to the requester, and then it goes to state 0.

When a positive net_join_con response is received at state 5, the CM goes to state 6 (waiting for commit request).
If a time out occurs at state 6, the CM releases all the resources reserved and sends a net_abort_trans request to both
the net_join_con requester and the next_node, then it goes to state 0. If a commit_trans request is received, it forwards
the commit request to the next_node, and then it goes to state 7 (waiting for commit_trans response).

When a positive commit_trans response is received at state 7, the CM commits all the reservations made and sends
a positive commit_trans response to the requester, then it goes to state 4. If a negative commit_trans response is re-
ceived, the CM releases all the resources reserved and sends a negative commit_trans response to the requester, and it
then goes to state 0. When a time out occurs at state 7, the CM releases all the resources reserved and sends a negative
commit_trans response to the requester and a net_abort_trans request to the next_node, and then it goes to state 0.

Connection Management Network Protocol (CMNP) Specification - DRAFT 47 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.9 NET_DROP_CON

Synopsis:
A NET_DROP_CON request is initiated by an SM to drop an end-point from a connection. If the connection does

not exist at the current node, a negative response is sent back to the sender of the requester with con_cause set to
CON_NOT_EXIST. If there is only one other edge evolved in the connection group, the resources for the connection
group at the node will be marked as waiting-for-release, and a NET_DROP_CON request is forwarded along that edge.
When a NET_COMMIT_TRANS is received, all the resources for the connection is released.

Message Formats:
NET_DROP_CON request:

NET_DROP_CON response:

Operation:
A node starts a net_drop_con operation by receiving a net_drop_con request. We refer the sender of the request

as the requester.

Figure 25 is the state transition diagram of a CM at a node activated by receiving a net_drop_con request.

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_DROP_CON M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_ID 1 M

CON_ID 1

...

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_DROP_CON M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_ID 1 M

CON_CAUSE 1 O OK

Connection Management Network Protocol (CMNP) Specification - DRAFT 48 of 66

Applied Research Laboratory DRAFT Zeus Project

Figure 25. net_drop_con state transition

State transitions start at state 0 (no net_drop_con request has been received yet). When a net_drop_con request is
received, the node sets up a timer, then it goes to the state 1 (a net_drop_con request pending). If there are more than
two other edges are involved in the CG, an ACK is sent back, and then it goes to state 2, waiting for commit request.
When the net_commit_trans request comes, the node release the resources for the edge and sends an ACK back, then
it goes to state 4, the end of a successful net_drop_con action. If the CG does not exist at the node, an NACK with
CG_NOT_FOUND is sent back. If there is only one other edge in the CG, the CM will forward the net_drop_con re-
quest along that edge, and it goes to state 5, waiting for the response.

0 -- initial state
1 -- drop_con request pending
2 -- waiting for commit request
3 -- commit request processing
4 -- successful drop_con

5 -- waiting for drop_con_response
6 -- waiting for commit request
7 -- waiting for commit response
8 -- commit response time out

8

 0 1

2 3

4

5

6

7

Rcv
drop_con
Req

Snd
NACK

Snd ACK

Rcv
Commit
Req

Snd
Commit
NACK Snd

Commit
ACK

Snd
drop_con
Req

Time out

Rcv ACK or CG_NOT_FOUND
Snd ACK

Snd NACK

Time out

Rcv & Snd
commit
Req

Rcv & Snd
Commit
ACK

Rcv Commit NACK
Snd Commit NACK

Time out

Snd Abort Trans Req

Snd Abort Trans
Req

Snd Commit NACK

Time out

Connection Management Network Protocol (CMNP) Specification - DRAFT 49 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.10 NET_DESTROY_CON

Synopsis:
 A NET_DESTROY_CON is initiated by the connection owner SM to request to release all the resources for a

connection. The NET_DESTROY_CON messages propagate along the connection tree to all the nodes involved in the
CG. When committed, all the resources for the connection are released.

Message Formats:
NET_DESTROY_CON request:

NET_DESTROY_CON response:

Operation:

Figure 26. destroy_con transition diagram

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_DESTROY_CON M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_ID 1 M

CON_CAUSE 1 O OK

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_DESTROY_CON M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_ID 1 M

CON_CAUSE 1 O OK

Connection Management Network Protocol (CMNP) Specification - DRAFT 50 of 66

Applied Research Laboratory DRAFT Zeus Project

State transitions start at state 0, no net_destroy_con request has been received yet. When a net_destroy_con re-
quest is received, the node sets up a timer T1, then it goes to the state 1 (a net_destroy_con_request pending). At state
1, the node checks the validity of the net_destroy_con request. If the request is not a valid one, a negative
net_destroy_con response is sent to the requester with the CG_cause or con_cause fields setting to a particular reason
of failure, and the node goes back to state 0.

If the request is valid and there are no edges in the connection group other than the edge where the request came
from, the node will send a positive net_destroy_con response to the requester, then it goes to state 2 (waiting for a
net_commit_trans request). When the net_commit_trans request comes, it goes to state 3, where it releases all the re-
sources for that connection and sends a positive response back, and then it goes to state 4 (the end state of a successful
net_destroy_con request). At state 2, if no net_commit_trans message comes before the timer T1 expires, the node will
release all the resources for the connection, and go back to state 0.

If there are edges other than the edge where the request came from in the connection group, the CM will send
net_destroy_con requests along all the edges, it then goes to state 5, waiting for all the acknowledgements back. When
the CM receives acknowledgements from all the nodes to whom it has sent net_destroy_con requests, it will send a
net_destroy_con ack to the requester, then it goes to state 6, waiting for the commit_trans request. When the
net_commit_trans request comes, it forwards the net_commit_trans request to all the nodes where it sent
net_destroy_con requests to. When it receives all the acknowledgements, it sends net_commit_trans ack to the request-
er, releases all the resources for the connection, and goes to state 4.

8

 0 1

2 3

4

5

6

7

Rcv
destroy_con
Req

Snd
NACK

Snd ACK

Rcv
Commit
Req

Snd
Commit
ACK

Snd
destroy_con
Reqs to all

Time out or Rcv one NACK

Rcv ACK from all children
Snd ACK

Snd NACK & Abort Trans

Time out

Rcv & Snd
commit
Req

Rcv & Snd
Commit
ACK

Rcv Commit NACK
Snd Commit NACK

Time out

Snd Abort Trans Req

0 -- initial state
1 -- destroy_con request pending
2 -- waiting for commit request
3 -- commit request processing
4 -- successful destroy_con

5 -- waiting for destroy_con_response
6 -- waiting for commit request
7 -- waiting for commit response
8 -- commit response time out

Snd Abort Trans
Req

Snd Commit NACK

children

Timeout
Role back

Connection Management Network Protocol (CMNP) Specification - DRAFT 51 of 66

Applied Research Laboratory DRAFT Zeus Project

If a nack is received when the node is in state 5, the node will send nack to the requester and sends abort_trans to
all the nodes to whom it has sent net_destroy_con requests to abort the transaction.

Connection Management Network Protocol (CMNP) Specification - DRAFT 52 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.11 NET_MOD_CON

Synopsis:
 A NET_MOD_CON request is initiated by a connection owner SM to request to modify the attributes for the

connections. The NET_MOD_CON messages propagate along the connection tree to all the nodes involved in the con-
nection. When committed, all the modifications become permanent.

Message Formats:
NET_MOD_CON request:

NET_MOD_CON response:

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_MOD_CON M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_ID 1 M

CON_OWNER 28 M

TxBW 12 M

RxBW 12 M

ACK_FLAG 1 O OFF

CON_TYPE 1 O VC

QOS 1 O HIGH

MAPPING 1

NOTIFY 28

TxVPI 1

TxVCI 2

RxVPI 1

RxVCI 2

CON_ID 1

...

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_MOD_CON M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_CONTEXT 1 M

CON_CAUSE 1 O OK

TxVPI 1

TxVCI 2

Connection Management Network Protocol (CMNP) Specification - DRAFT 53 of 66

Applied Research Laboratory DRAFT Zeus Project

Operation:

Figure 27. net_mod_con transition diagram

State transitions start at state 0, no net_mod_con request has been received yet. When a net_mod_con request is
received, the node sets up a timer T1, then it goes to the state 1 (a net_mod_con_request pending). At state 1, the node
checks the validity of the net_mod_con request and its resources. If the request is not a valid one or the resources at
the current node does not allow the modifications, a negative net_mod_con response is sent to the requester with the
cg_cause or con_cause fields setting to a particular reason of failure, and the node goes back to state 0.

When the request is valid and there exists enough resources to support the modifications, if there are no edges in
the connection group other than the edge where the request came from, the node will send a positive net_mod_con
response to the requester and reserve the resources required, then it goes to state 2 (waiting for a net_commit_trans
request). When the net_commit_trans request comes, it goes to state 3, where it make all the modifications permenant
for the connections and sends a positive response back, and then it goes to state 4 (the end state of a successful
net_mod_con request). At state 2, if no net_commit_trans message comes before the timer T1 expires, the node will
abort all the modifications, and go back to state 0.

RxVPI 1

RxVCI 2

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

8

 0 1

2 3

4

5

6

7

Rcv
mod_con
Req

Snd
NACK

Snd ACK

Rcv
Commit
Req

Snd
Commit
ACK

Snd
mod_con
Reqs to all

Time out or Rcv one NACK

Rcv ACK from all children
Snd ACK

Snd NACK & Abort Trans

Time out

Rcv & Snd
commit
Req

Rcv & Snd
Commit
ACK

Rcv Commit NACK
Snd Commit NACK

Time out

Snd Abort Trans Req

0 -- initial state
1 -- mod_con request pending
2 -- waiting for commit request
3 -- commit request processing
4 -- successful mod_con

5 -- waiting for mod_cg_response
6 -- waiting for commit request
7 -- waiting for commit response
8 -- commit response time out

Snd Abort Trans
Req

Snd Commit NACK

children

Timeout
Role back

Connection Management Network Protocol (CMNP) Specification - DRAFT 54 of 66

Applied Research Laboratory DRAFT Zeus Project

If there are edges other than the edge where the request came from in the connection group, the CM will send
net_mod_con requests along all the edges, it then goes to state 5, waiting for all the acknowledgements. When the CM
receives acknowledgements from all the nodes to whom it has sent net_mod_con requests, it will send net_mod_con
ack to the requester, then it goes to state 6, waiting for the commit_trans request. When the net_commit_trans request
comes, it forwards the net_commit_trans request to all the nodes where it has sent net_mod_con requests to. When it
receives all the acknowledgements, it sends net_commit_trans ack to the requester, makes all the modifications perme-
nent for the connections, and goes to state 4.

If a nack is received when the node is in state 5, the node will send nack to the requester and sends abort_trans to
all the nodes to whom it has sent net_mod_con requests to abort the transaction.

Connection Management Network Protocol (CMNP) Specification - DRAFT 55 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.12 NET_QUERY_CON_OWNER

Synopsis:
 When a NET_JOIN_CON, or NET_DROP_CON request is received and the current node has the CON_Ack_-

Flag set, the node has to query the connection owner to get the permission to add or drop a connection at the node. A
NET_QUERY_CON_OWNER message serves this purpose. When a NET_QUERY_CON_OWNER acknowledge-
ment is received, the previous operation can continue. Otherwise, an NACK will be sent with CG_OWNER_DISAP-
PROVE as the failure cause. NET_QUERY_CON_OWNER does not initiated by an SM, so that it will not be included
in a transaction.

Message Formats:
NET_QUERY_CON_OWNER request:

NET_QUERY_CON_OWNER response:

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_QUERY_CON_OWNER M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

CON_ID 1 M

CON_OWNER 28 M

TxBW 12 M

RxBW 12 M

ACK_FLAG 1 O OFF

CON_TYPE 1 O VC

QOS 1 O HIGH

MAPPING 1

NOTIFY 28

TxVPI 1

TxVCI 2

RxVPI 1

RxVCI 2

CON_ID 1

...

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_QUERY_CON_OWNER M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

CG_Owner 28 M

CG_ID 28 M

Send_REND 28 M

Receive_REND 28 M

Connection Management Network Protocol (CMNP) Specification - DRAFT 56 of 66

Applied Research Laboratory DRAFT Zeus Project

Operation:

Figure 28. net_query_con_owner transition diagram

State transitions start at state 0, no net_query_con_owner request has been received yet. When a
net_query_con_owner request is received, the node sets up a timer T1, then it goes to the state 1 (a
net_query_con_owner_request pending). If the current node is the owner of the cg, it sends ACK or Nack based on its
decision. If it is not the owner, the will forward the request towards the connection owner. Then it will pass the re-
sponse to the requester. It a timeout occurs when it’s waiting for the response, it will send a negative response to the
requester.

NET_COMMIT_TRANS

Synopsis:
 When a NET_COMMIT_TRANS request is received and the transaction exists at the current CM, the CM passes

the NET_COMMIT_TRANS to all the neighbor CMs that are participated in the transaction. When ACKs are received
from all of them, the CM commits the transaction and sends the ACK back to the sender of the NET_COMMIT_-
TRANS requester.

** Since a transaction can contain multiple operation requests, it is possible a transaction commit can go into a
cycle. To avoid infinite loop, commit_trans only take effect when the first time it is received **

CON_CONTEXT 1 M

CON_CAUSE 1 O OK

TxVPI 1

TxVCI 2

RxVPI 1

RxVCI 2

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

 0 1

2

3

Rcv
query_owner
Req

Snd
NACK

Snd ACK

Snd
query_owner

Time out or Rcv one NACK
Snd NACK

0 -- initial state
1 -- query_con_owner request pending
2 -- successful query_cg_owner
3 -- waiting for response

Rcv ACK
Snd ACK

Connection Management Network Protocol (CMNP) Specification - DRAFT 57 of 66

Applied Research Laboratory DRAFT Zeus Project

Message Formats:
NET_COMMIT_TRANS request:

NET_COMMIT_TRANS response:

Operation:
The operations started by receiving a net_commit_trans message are embeded in other operations. A transaction

is an object that groups multiple of other requests. When one of the operation fails, the whole transaction fails and the
CMs have to role back as if the transaction has never been started. Figure shows the transition starting from receiving
a net_commit_trans request.

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_COMMIT_TRANS M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

Send_REND 28 M

Receive_REND 28 M

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_COMMIT_TRANS M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

CG_CAUSE 1 O OK

Send_REND 28 M

Receive_REND 28 M

Connection Management Network Protocol (CMNP) Specification - DRAFT 58 of 66

Applied Research Laboratory DRAFT Zeus Project

Figure 29. net_commit_trans transition diagram

State transitions start at state 0, no net_commit_trans request has been received yet. When a net_commit_trans
request is received, the CM goes to the state 1 (a net_commit_trans request pending). If the transaction does not exist
at the current node, it sends an NACK with the cg_cause field set to TRANS_NOT_EXIST. If the current node is an
terminal of the transaction, it sends ACK or Nack based on its decision. If it is not a terminal node, it will forward the
net_commit_trans message to all the participants other than the one where the net_commit_trans message came from.
When ACKs are received from all the participants, the CM will send an ACK to the requester. If one of the participants
can not commit the transaction, the whole transaction is canceled, and the CM will role back to the state before the
transaction started. In this case, an NACK is sent to the requester.

 0 1

2

3

Rcv
commit_trans
Req

Snd
NACK

Snd ACK

Snd
comit_trans to

Time out or Rcv one NACK
Snd NACK

0 -- initial state
1 -- net_commit_trans request pending
2 -- successful net_commit_trans
3 -- waiting for response

Rcv ACKs from all participants
Snd ACK

all participants

Connection Management Network Protocol (CMNP) Specification - DRAFT 59 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.13 NET_ABORT_TRANS

Synopsis:
 When a NET_ABORT_TRANS request is received, the CM role back all the actions taken for the transaction,

and the CM passes the NET_ABORT_TRANS to all the neighbor CMs that are participated in the transaction. A NE-
T_ABORT_TRANS request does not have to be replied.

Message Formats:
NET_ABORT_TRANS request:

Operation:
A net_abort_trans request is used to abort an ongoing transaction. Figure shows the actions the CM takes when a

net_abort_trans request is received.

Figure 30. net_abort_trans transition diagram

State transitions start at state 0, no net_abort_trans request has been received yet. When a net_abort_trans request
is received, the CM checks the existence of the transaction. If the transaction does exist, the CM will role back to the
state just before the transaction started. If the current node is not a terminal node of the transaction, it will forward the
net_abort_trans message to all the participants other than the one where the net_abort_trans message came from.

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_COMMIT_TRANS M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

SM_Requester 28 M

Send_REND 28 M

Receive_REND 28 M

 0 1 3

Rcv
abort_trans
Req Snd

abort_trans to

0 -- initial state
1 -- net_abort_trans received
2 -- net_abort_trans_sent

all participants

Connection Management Network Protocol (CMNP) Specification - DRAFT 60 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.14 NET_RESET

Synopsis:
 When a node reboots, all the connections are lost. It sends NET_RESET messages to all its neighbors to inform

this situation. When a NET_RESET is received, the node destroys all the CGs routed through the reset node. The load
of the link between the current node and the node where the NET_RESET is received is set to zero.

Message Formats:
NET_RESET request:

Operation:

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_RESET M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

Send_REND 28 M

Receive_REND 28 M

Connection Management Network Protocol (CMNP) Specification - DRAFT 61 of 66

Applied Research Laboratory DRAFT Zeus Project

6.3.15 NET_PING

Synopsis:
 A node can send NET_PING message to its neighbor to check the existence of the neighbor. When a NET_PING

message is received, the node has to ACK the message. The action taken when the timer expires before the NET_PING
response is received is the issue of implementation.

Message Formats:
NET_PING request:

NET_PING response:

Operation:

7. Future Directions

7.1 Routing

7.2 Quality of Service

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_PING M

MULTIPHASE 1 REQUEST M

MSG_ID 2 M

TRANS_ID 28 M

Send_REND 28 M

Receive_REND 28 M

IE Type
Data
Size

(bytes)
Data

Mandatory or
Optional

Default Value

OP_TYPE 1 NET_PING M

MULTIPHASE 1 RESPONSE M

MSG_ID 2 M

TRANS_ID 28 M

Send_REND 28 M

Receive_REND 28 M

Connection Management Network Protocol (CMNP) Specification - DRAFT 62 of 66

Applied Research Laboratory DRAFT Zeus Project

Appendix A: References
The reference list contains items that pertain to the area of fast packet switching and broadband networks, possibly of
interest to the CMAP user or implementor. Many of the references apply directly to the issue of call management and
are cited in this document. Other references are for general background purposes only.

[1] H. Ahmadi, W.E. Denzel, C.A. Murphy, and E. Port. “A High-Performance Switch Fabric for Integrated Circuit
and Packet Switching.” In IEEE Infocom ‘88: Proceedings of the Seventh Annual Joint Conference of the IEEE
Computer and Communications Societies, pages 9-18, March 1988.

[2] H. Ahmadi and W. E. Denzel. “A Survey of Modern High-Performance Switching Techniques.” In IEEE Journal
on Selected Areas in Communications, 7(7):1091-1103, September 1989.

[3] ANSI T1S1 Technical Sub-Committee. Broadband Aspects of ISDN Baseline Document. T1S1.5/90-001, June
1990.

[4] R. Ballart and Y.C. Ching. “SONET: Now Its the Standard Optical Network.” In IEEE Communications Mag-
azine, 27(3):8-15, March 1989.

[5] Bell Communications Research. Generic System Requirements in Support of Switched Multi-Megabit Data Ser-
vice. Technical Advisory TA-TSY-000772, Issue 3, October 1989.

[6] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems. Ad-
dison-Wesley, 1987.

[7] R.G. Bubenik and J.S. Turner. “Performance of a Broadcast Packet Switch.” In IEEE Transactions on Commu-
nications, 37(1):60-69, January 1989.

[8] R. G. Bubenik, J. D. DeHart and M. E. Gaddis. “Multipoint Connection Management in High Speed Networks.”
In IEEE Infocom ‘91: Proceedings of the Tenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, pages 59-68, April 1991.

[9] R. G. Bubenik, M. E. Gaddis and J. D. DeHart. “A Strategy for Layering IP over ATM”. Washington University
Applied Research Laboratory, Working Note 91-01, Version 1.1, April 1991.

[10] R.G. Bubenik, M.E. Gaddis, and J.D. DeHart. “Virtual Paths and Virtual Channels.” To appear in IEEE Infocom
‘92: Proceedings of the Eleventh Annual Joint Conference of the IEEE Computer and Communications Societies,
May 1992.

[11] R. G. Bubenik. “BPN Reliable Datagram Protocol”. Washington University Applied Research Laboratory Work-
ing Note 91-11, in progress, June 1991.

[12] J. Burgin and D. Dorman. “Broadband ISDN Resource Management: The Role of Virtual Paths.” In IEEE Com-
munications Magazine, 29(9):44-48, September 1991.

[13] CCITT. Blue Book, volume II, fascicle II.2, “Telephone network and ISDN—Operation, numbering, routing, and
mobile service,” Recommendations E.100--E.300, Geneva, Switzerland, 1989.

[14] CCITT. Recommendations Drafted by Working Party XVIII/8 (General B-ISDN Aspects) to be Approved in
1992, Study Group XVIII—Report R 34, December 1991.

[15] CCITT Recommendation Q.931 (I.451), ISDN User-Network Interface Layer 3 Specification, Geneva, 1985.

[16] D.R. Cheriton and W. Zwaenepoel. “Distributed Process Groups in the V Kernel.” In Transactions on Computer
Systems, 3(2):77-107, May 1985.

[17] R. Colella, E. Gardner and R. Callon. “Guidelines for OSI NSAP Allocation in the Internet.” INTERNET
DRAFT, Networking Group, March 1, 1991.

[18] D. Comer. Internetworking With TCP/IP Principles, Protocols, and Architecture. Prentice Hall, 1988.

[19] J.P. Coudreuse and M Servel. “PRELUDE: An Asynchronous Time-Division Switched Network.” In ICC ‘87:
Proceedings of the IEEE International Conference on Communications, pages 69-773, June 1987.

[20] Jr. R. Cox. “Overview of the Washington University Fast Packet Project”. Washington University, Applied Re-
search Laboratory Working Note 89-02, September 1989.

Connection Management Network Protocol (CMNP) Specification - DRAFT 63 of 66

Applied Research Laboratory DRAFT Zeus Project

[21] J. R. Cox and J. S. Turner. “Project Zeus Design and Application of Fast Packet Campus Networks”. Washington
University, Department of Computer Science Technical Report 91-45, July 1991.

[22] G.E. Daddis, Jr. and H.C. Torng. “A Taxonomy of Broadband Integrated Switching Architectures.” In IEEE
Communications Magazine, 27(5):32-42, May 1989.

[23] S.E. Deering. “Multicast Routing in Internetworks and Extended LANs.” In Proceedings of the SIGCOMM ‘88
Symposium: Communications Architectures & Protocols, pages 55-64, August 1988.

[24] K.Y. Eng, M.G. Hluchyj, and Y.S. Yeh. “Multicast and Broadcast Services in a Knockout Packet Switch.” In
IEEE Infocom ‘88: Proceedings of the Seventh Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, pages 29-34, March 1988.

[25] H.C. Folts. “Procedures for Circuit-Switched Service in Synchronous Public Data Networks.” In IEEE Transac-
tions on Communications, 28(4):489-496, April 1980.

[26] M. E. Gaddis. “ATM-TAP: Patent Disclosure Statement”. Washington University, Applied Research Laboratory
Working Note 90-12, Version 1.2, May 1990.

[27] M. E. Gaddis, R.G. Bubenik, and J.D. DeHart. “Connection Management for a Prototype Fast Packet ATM B-
ISDN Network.” In Proceedings of the National Communications Forum, vol. 44, pp. 601-608, October 8-10,
1990.

[28] M. E. Gaddis, R.G. Bubenik, and J.D. DeHart. “A Call Model for Multipoint Communications in Switched Net-
works.” submitted for publication to ICC ‘92, Chicago, Illinois, June 1992.

[29] J.N Giacopelli, W.D. Sincoskie, and M. Littlewood. “Sunshine: A High Performance Self-Routing Broadband
Packet Switch Architecture.” In Proceedings of the International Switching Symposium, Volume 3, pages 123-
129, May 1990.

[30] W.M. Harman and C.F. Newman. “ISDN Protocols for Connection Control.” In IEEE Journal on Selected Areas
in Communications, 7(7):1034-1042, September 1989.

[31] K. Haserodt and J.S. Turner. “An Architecture for Connection Management in a Broadcast Packet Network.”
Washington University, Department of Computer Science, Technical Report-WUCS-87-03, 1987.

[32] M.G. Hluchyj and M.J. Karol. “Queueing in Space-Division Packet Switching.” In IEEE Infocom ‘88: Proceed-
ings of the Seventh Annual Joint Conference of the IEEE Computer and Communications Societies, pages 334-
343, March 1988.

[33] A. Huang and S. Knauer. “Starlite: a Wideband Digital Switch.” In Proceedings of Globecom 84, pages 121-
125, December 1984.

[34] J. Hui. “A Broadband Packet Switch for Multi-Rate Services.” In ICC ‘87: Proceedings of the IEEE International
Conference on Communications, pages 782-788, June 1987.

[35] K. Iguchi, H. Takeo, S. Amemiya, and K. Tezuka. “Subscriber Access Scheme for Broadband ISDN.” In ICC
‘90: Proceedings of the IEEE International Conference on Communications, pages 663-669, April 1990.

[36] A.R. Jacob. A Survey of Fast Packet Switches. Computer Communication Review, 20(1):54-64, January 1990.

[37] Y. Kato, T. Shimoe, K. Hajikano, and K. Murakami. “Experimental Broadband ATM Switching System.” In
Proceedings of Globecom 88, pages 1288-1292, December 1988.

[38] H.S. Kim and A. Leon-Garcia. “A Self-Routing Multistage Switching Network for Broadband ISDN.” In IEEE
Journal on Selected Areas in Communications, 8(3):459-466, April 1990.

[39] J.C. Kohli, D.S. Biring, and G.L. Raya. “Emerging Broadband Packet-Switch Technology in Integrated Informa-
tion Networks.” In IEEE Network, 2(6):37-38,47-51, November 1988.

[40] T.R. La Porta and M. Schwartz. “Architectures, Features, and Implementation of High-Speed Transport Proto-
cols.” In IEEE Network, 4(2):14-22, May 1991.

[41] T.T. Lee, R. Boorstyn, and E. Arthurs. “The Architecture of a Multicast Broadband Packet Switch.” In IEEE
Infocom ‘88: Proceedings of the Seventh Annual Joint Conference of the IEEE Computer and Communications
Societies, pages 1-8, March 1988.

Connection Management Network Protocol (CMNP) Specification - DRAFT 64 of 66

Applied Research Laboratory DRAFT Zeus Project

[42] T. Lyon. “Simple and Efficient Adaptation Layer” ANSI T1S1.5 proposal for type 5 AAL by Sun Microsystems,
Inc., August, 12-16, 1991.

[43] S.E. Minzer. “Broadband ISDN and Asynchronous Transfer Mode (ATM).” In IEEE Communications Maga-
zine, 27(9):17-24, September 1989.

[44] S.E. Minzer and D.R. Spears. “New Directions in Signaling for Broadband ISDN.” In IEEE Communications
Magazine, 27(2):6-14, February 1989.

[45] S.E. Minzer. “A Signaling Prototype for Complex Multimedia Services.” In IEEE Journal on Selected Areas in
Communications, 9(9):1383-1394, December 1991.

[46] J.E.B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. MIT Press, 1985.

[47] C.H. Papadimitriou. The Theory of Concurrency Control. Computer Science Press, 1986.

[48] G.M. Parulkar, J.S. Turner. Towards a Framework for High Speed Communication in a Heterogeneous Network-
ing Environment. In IEEE Infocom ‘89: Proceedings of the Eighth Annual Joint Conference of the IEEE Com-
puter and Communications Societies, pages 655-667, April 1989.

[49] G. M. Parulkar. “The Next Generation of Internetworking”. ACM SIGCOMM Computer Communications Re-
view. vol. 20, no. 1, New York, NY, pp. 18-43, January, 1990.

[50] F.E. Ross. “An Overview of FDDI: The Fiber Distributed Data Interface.” In IEEE Journal on Selected Areas in
Communications, 7(7):1043-1051, September 1989.

[51] A. Rybczynski. “X.25 Interface and End-to-End Virtual Circuit Service Characteristics.” In IEEE Transactions
on Communications, 28(4):500-510, April 1980.

[52] R.M. Sanders. The Xpress Transfer Protocol (XTP)—A Tutorial. Computer Networks Laboratory, Department
of Computer Science, University of Virginia, January 15, 1990.

[53] J.S. Stacey, T. Pham, and J. Chiou. “Modeling Call Control for Distributed Applications in Telephony.” In IEEE
Network, 4(6):14-22, November 1990.

[54] H. Suzuki, H. Nagano, T. Suzuki, T. Takeuchi, and S. Iwasaki. “Output-buffer Switch Architecture for Asyn-
chronous Transfer Mode.” In ICC ‘89: Proceedings of the IEEE International Conference on Communications,
pages 99-103, 1989.

[55] H. Suzuki, T. Murase, S. Sato, and T. Takeuchi. “A Burst Traffic Control Strategy for ATM Networks.” Sub-
mitted for publication (conference unknown).

[56] A.S. Tanenbaum. Computer Networks. Prentice-Hall, 1981.

[57] S.C. Tu and W.H. Leung. “Multicast Connection-Oriented Packet Switching Networks.” In Proceedings of the
International Communications Conference, volume 2, pages 495-501, April 1990.

[58] J. S. Turner, “Fast Packet Switching System”, U.S. Patent 4 494 230, January 15, 1985.

[59] J.S. Turner. “New Directions in Communications.” In IEEE Communications Magazine, 24(10):8-15, October
1986.

[60] J.S. Turner. “Design of an Integrated Services Packet Network.” In IEEE Transactions on Communications,
4(8):1373-1380, November 1986.

[61] J.S. Turner. “Design of a Broadcast Packet Switching Network.” In IEEE Transactions on Communications,
36(6):734-743, June 1988.

[62] J. S. Turner. “A Proposed Management and Congestion Control Scheme for Multicast ATM Networks.” Wash-
ington University, Computer and Communication Research Center Technical Report 91-01, May 1991.

[63] XTP® Protocol Definition, Revision 3.5. Protocol Engines Incorporated, Technical Report PEI 90-120,
September 10, 1990.

[64] Y.S. Yeh, M.G. Hluchyj, and A.S. Acampora. “The Knockout Switch: A Simple, Modular Architecture for Per-
formance Packet Switching.” In International Switching Symposium, volume 3, pages 801-808, March 1987.

Connection Management Network Protocol (CMNP) Specification - DRAFT 65 of 66

Applied Research Laboratory DRAFT Zeus Project

[65] J. DeHart, M. Gaddis, and R. Bubenik. “Connection Management Access Protocol (CMAP) Specification,”
Washington University, Department of Computer Science Technical Report WUCS-92-01, August 1992.

Connection Management Network Protocol (CMNP) Specification - DRAFT 66 of 66

Applied Research Laboratory DRAFT Zeus Project

Appendix B: CMNP Operation Field Values
to be written

