
TABLE OF CONTENTS

1 INTRODUCTION 1

2 DEFINITIONS 8

Networks, connection requests, and connections : : : : : : : : : : : : : : : : : 8

Fixed path routing and nonblocking networks : : : : : : : : : : : : : : : : : : 9

The Network Con�guration, Link Dimensioning, and Network Analysis Problems 11

Tree and star networks : 14

3 SIMPLE FLAT TRAFFIC 16

De�nition : 16

Link dimensioning in tree networks : 17

Computational complexity : 20

A lower bound : 25

Experimental results : 29

Star networks require least total capacity among all trees : : : : : : : : : : : 32

Star networks are almost cheapest among tree networks : : : : : : : : : : : : 34

A probabilistic result : 42

ii

4 GENERAL FLAT TRAFFIC 52

De�nition : 52

Lower bound : 55

Link dimensioning : 56

Experimental results : 59

5 HIERARCHICAL TRAFFIC 62

De�nition : 62

Lower bound : 67

Link dimensioning, and hierarchical star networks : : : : : : : : : : : : : : : 71

Experimental results : 73

6 MULTIPOINT CONNECTIONS 77

De�nition : 77

Point-to-point tra�c is the worst : 79

Dynamic multipoint connections : 81

7 EXTENSIONS 84

Blocking due to link fragmentation : 84

Handling physical constraints on network installation : : : : : : : : : : : : : : 89

Physical constraint graphs : 90

Equipment descriptions : 92

Embeddings : 93

iii

Physical constraints that can be accounted for with our results : : : : : 93

Network con�guration in which additional switches are allowed : : : : : : : : 94

Discrete choices for location of additional switches : : : : : : : : : : : : 94

No restriction on location of additional switches in the Euclidean plane 96

Expanding an already installed network : 97

Improving the lower bound for more general link cost functions : : : : : : : : 98

8 OTHER ROUTING ALGORITHMS 101

Alternate path routing : 101

De�nition : 101

Link dimensioning with at tra�c limits : : : : : : : : : : : : : : : : : : 101

Shortest available path routing : 112

9 CONCLUSIONS 120

10 ACKNOWLEDGMENTS 123

A BIBLIOGRAPHY 125

B VITA 133

iv

LIST OF FIGURES

1.1 A network : 3

2.1 Directed graph representing the network of Figure 1.1 : : : : : : : : : : 8

2.2 A tree network : 14

3.1 Lower bound graph for instance in Tables 3.1 and 3.2 . : : : : : : : : : : 28

3.2 Experimental results for at tra�c : 30

3.3 Tree structure in proof of Lemma 3.7 : : : : : : : : : : : : : : : : : : : 36

3.4 The 5-track 6-sector partitioning of the unit disk, R5;3 : : : : : : : : : : 44

4.1 Experimental results for at general tra�c : : : : : : : : : : : : : : : : : 59

5.1 An example hierarchical problem instance : : : : : : : : : : : : : : : : : 62

5.2 The hierarchy tree H for the instance in Figure 5.1 : : : : : : : : : : : 64

5.3 Lower bound graph for example hierarchical tra�c limits : : : : : : : : 68

5.4 A nonblocking network for the example hierarchical instance : : : : : : 72

5.5 Experimental results for hierarchical tra�c : : : : : : : : : : : : : : : : 74

6.1 Simple network to demonstrate dynamic multipoint connections : : : : : 82

7.1 Repeat of nonblocking network of Figure 2.1 : : : : : : : : : : : : : : : 85

7.2 Physical switches and links that implement network in Figure 7.1 : : : 86

v

7.3 Network that is nonblocking even with link fragmentation : : : : : : : : 88

7.4 Network with unnecessary switch A removed : : : : : : : : : : : : : : : 88

7.5 An example physical constraint graph : : : : : : : : : : : : : : : : : : : 91

7.6 An example embedding : 93

8.1 A simple instance with AP routing : 103

8.2 Ll graphs for the simple AP routing instance : : : : : : : : : : : : : : : 104

8.3 Maximum link usages and total network cost as a function of x(A;D) =

cap(B;D) : 106

8.4 Alternate path network instance and its dependency graph : : : : : : : 108

8.5 Network to demonstrate SAP routing algorithm : : : : : : : : : : : : : : 113

8.6 An example of the transformation from 3-PARTITION to BLOCKING

NETWORK : 116

vi

LIST OF TABLES

3.1 Simple tra�c limits : 17

3.2 Link cost coe�cients (u; v) : 20

4.1 An example of at tra�c limits : 53

5.1 Tra�c limits for \root" cluster : 63

5.2 Tra�c limits for cluster 2 : 65

5.3 Tra�c limits for cluster 3 : 66

5.4 Link costs (u; v) for hierarchical example : : : : : : : : : : : : : : : : : 66

7.1 Repeat of �; !-bounded tra�c limits in Table 3.1 : : : : : : : : : : : : 85

8.1 Possible requests and connections in a BLOCKING NETWORK instance 117

vii

1

APPROXIMATION ALGORITHMS

FOR CONFIGURING NONBLOCKING

COMMUNICATION NETWORKS

1. INTRODUCTION

For any communications technology, those who wish to build, operate, and use (or sell

the use of) networks based on this technology confront a network design problem. In

its most basic form, the problem is to �nd a way to construct a network that meets the

desires of network users, and does so as cheaply as possible.

For many years, researchers have studied telephone networks to �nd ways of in-

stalling and upgrading them less expensively, while still providing point-to-point voice

connections with a low probability of blocking [6, 14, 48, 52, 61]. Much of this work

models call arrivals as a Poisson process, and either �nds exact or approximate blocking

probabilities.

In the late 1960's and early 1970's, researchers began studying the problem of ef-

�ciently constructing packet switched data networks, particularly the ARPANET [13,

22, 23, 24, 33, 54]. Here there are no circuits, so blocking of connection attempts is not

a consideration. The main source of user dissatisfaction is packet delay, which is higher,

on average, when communication links are heavily loaded.

Much work has taken a more deterministic view of the node to node tra�c [34, 44,

45, 50, 53, 55]. Here the only requirement on the network is that it is possible to �t

2

the tra�c onto the links of the network. With any of these algorithms, one can set a

maximum utilization for all links. For example, one could specify that no link should

be utilized over 75%. This can be used as a heuristic to keep the delay or blocking

probability low.

In all of the previously cited work, the \desires of the network users" are represented

as magnitudes of tra�c from particular network nodes to other nodes. These can be

written in a table, where each row corresponds to tra�c originating at a particular

node, and each column corresponds to tra�c received at a particular node. We call this

a tra�c matrix.

Another common kind of network that has been studied is sometimes called a \lo-

cal access network." In data processing networks, this is the network that connects

terminals to a central processing site [7, 29, 30, 31, 32]. In telephone networks, it is

the collection of cables called the \outside plant" that connect telephone subscribers

to their local telephone switch, called the central o�ce [11, 46]. In such a problem,

the tra�c is speci�ed as a tra�c magnitude for each terminal. The network must be

capable of carrying tra�c from all terminals to the central site simultaneously.

About 15 years ago, the idea of making a network that was capable of supporting

many kinds of services was introduced, and has since gained support. ATM is an

emerging set of network standards that can support many kinds of services [18].

It is su�cient for our purposes to describe ATM networks as connection-oriented

networks in which connections may have di�erent rates from one another, and they may

be point-to-point or multipoint. A multipoint connection involves more than two nodes.

It would be desirable to construct and operate ATM networks with low probability

of blocking connection requests. However, before we can even begin to estimate such a

blocking probability, we must have a probability model for incoming connection requests.

3

Figure 1.1: A network

For ATM networks, this is signi�cantly more complex than for telephone networks,

because requests may have multiple rates, and may be multipoint. Even if such a

mathematical model were proposed, there would be serious questions about whether

the model was accurate, because few ATM networks have been deployed, and very

little is known about the way they will be used. Even if the model were accurate for

one network, it might be inaccurate for another, because its users may use di�erent

applications.

For these reasons, we consider models of tra�c that are worst case. We desire to

construct networks that never block a connection request, subject to certain limits on

the requests.

For example, Figure 1.1 shows an ATM network. The boxes labeled A, B, C, and

D are 8 port nonblocking ATM switches, where each port runs at 150 Mb/s. By non-

blocking we mean that if the links have enough bandwidth to support a new connection,

then the switch is able to set up that connection. The lines drawn between the switches

4

are either �ber optic or twisted pair copper links. Each link is unidirectional, only used

for carrying data in the direction of the arrow. Switches A, C, and D are attached to

workstations, and D is also attached to a �le and video server.

During the operation of the network, the following sequence of events is possible.

First, a user at a workstation attached to switch C, call it C1, requests a connection

from his/her workstation to workstation D1 (attached to switch D) with a rate of

35 Mb/s. This request can be satis�ed by setting up a connection along the path

C1CBDD1, reserving 35 Mb/s out of 150 Mb/s on each link in the path. We denote

the request with the tuple (C;D; 35), and the connection with the tuple (CBD; 35). It is

convenient to ignore the particular terminals involved in each request and connection,

as we are concerned with preventing requests from blocking due to insu�cient link

capacity between switches, not between the terminals and their local switch.

After the initial request and connection setup, we could have the request (A;D; 90),

satis�ed by (ABD; 90), followed by the pair of requests (C;A; 100) and (C;A; 125),

satis�ed by (CBA; 100) and (CBA; 125). At this time, the link from B to D has

35 + 90 = 125 Mb/s of its 150 Mb/s capacity used, and 25 Mb/s available.

If the next request made is (C;D; 40), then the network cannot satisfy the request.

We say that the request blocks. Our goal in this research is to con�gure networks so

that they never block a \compatible" connection request.

What do we mean by a compatible request? In the network shown, a network

manager may realize that while it is possible that all of the workstations attached to

switches A and C could simultaneously make requests for large rate connections to

workstations attached to D, it is very unlikely. The manager may make this knowledge

concrete by saying, \I want the network to be nonblocking, but only as long as the total

5

rate of requests that have their destination attached to D, and their source attached to

some other switch, is at most 150 Mb/s. If it goes over that, I don't care if it blocks."

We denote this limit by !(D) = 150Mb=s, and call it a destination termination

limit, or simply a destination limit. In our example sequence of requests, the last one,

(C;D; 40), violates this limit. Similar limits can be speci�ed for the other switches in

the network. In addition, we can specify a source termination limit, or source limit,

�(D) = 450 for switch D, which restricts the total rate of all requests that can begin

at D and end at some other switch. In this example, �(D) is larger than !(D) because

of the server attached to D.

This method of specifying the tra�c is similar to the way it is done for the local

access network design problems mentioned earlier. However, here there is no a priori

assumption that all of the tra�c will go between the various switches and some central

site. We show that a similar network structure, a star network, is often very close to

optimal.

There are two important objections to star networks. One is that the switch in the

center becomes overloaded, and thus it requires several physical switching systems (e.g.,

routers), highly interconnected in a mesh topology, to implement the center switch.

In ATM switching systems, the largest component of the cost is currently located

in the ports of the switch. Furthermore, there exist parallel switch architectures whose

port interconnection hardware costs grow at a rate of n logn, where n is the number of

ports [65]. Thus the total cost of even quite large switches can be made roughly linear

with the number of ports.

Another objection is reliability. If a link or switch fails in a tree network, it becomes

disconnected. Several researchers have explicitly accounted for such failures in their

network design algorithms (see Chapter 9 for references), although all of them either

6

ignore the capacity required on links, requiring only a two-connected network, or they

require a tra�c matrix to specify the network tra�c. This area is a topic of future

research.

As mentioned before, most previous work speci�es limits with a tra�c matrix. For

each ordered pair of distinct switches u; v, a limit �(u; v) is speci�ed by the network

manager, where �(u; v) is the maximum total rate of requests from switch u to switch

v that must be accepted without blocking.

Specifying point-to-point limits is reasonable when the o�ered tra�c has been ob-

served to have stable and predictable tra�c between each pair of switches, and mea-

surements have been collected so that these tra�c levels are known. However, there is

very little experience in characterizing the o�ered tra�c in ATM networks. We would

expect the tra�c in most local area networks to be highly variable, not just in its rates,

but in which pairs of switches are communicating (or subsets, for multicast tra�c).

In Chapter 2, we de�ne the mathematical model we use to describe networks and

connection requests. Chapter 3 presents \simple" tra�c limits, which are similar to

the way tra�c is speci�ed in local access networks, and several results that give strong

evidence that a star network is either optimal or nearly so. Chapter 4 generalizes these

tra�c limits. It shows how one may further restrict the o�ered tra�c by specifying a

tra�c matrix. Experiments show that unless the tra�c matrix restrictions are signi�-

cantly smaller than the termination limits, the cost of the network cannot be reduced

signi�cantly below a star network. Chapter 5 generalizes the tra�c limits further, by

allowing one to specify \clusters" of switches, each with high tra�c among the switches

within the clusters, but with lower tra�c between switches in di�erent clusters. This

grouping of switches into clusters is useful for specifying tra�c in a network larger

than a small LAN. Chapter 6 shows that all of the previously obtained results hold

7

for multipoint tra�c as well as point-to-point. Chapter 7 presents some extensions to

the network con�guration problem that can be handled with our solution methods. In

most of this dissertation, we consider a simple method of routing connections called

�xed path routing, where there is only one choice for routing connections. Chapter 8

examines two other routing algorithms that allow choices in how connections are routed,

shows that they are more di�cult to analyze, and gives evidence that �xed path routing

is just as good at producing low cost networks. Chapter 9 concludes this dissertation.

8

2. DEFINITIONS

2.1. Networks, connection requests, and connections

A network N is a directed graph with switch set N , link set L, and a function cap

on the links, where cap(l) is the bandwidth, or capacity, of link l. For example, the

network in Figure 1.1 is represented by the directed graph in Figure 2.1. Each link is

labeled with its capacity in Mb/s.

For simplicity of exposition, we con�ne our attention to point-to-point connections

for most of this dissertation. However, all of the link dimensioning algorithms also work

when we allow the following kinds of multipoint connections: one source and many

destinations, many sources and one destination, or many sources to the same set of

destinations. See Chapter 6 for more details.

A connection request is represented by a triple r = (u; v; �), where switch u is the

source of information ow, switch v is the destination of ow, and � is the desired rate of

Figure 2.1: Directed graph representing the network of Figure 1.1

9

the connection. A connection is a pair c = (�; �), where � � L is a path. A connection

c = (�; �) realizes a request r = (u; v; �) if � is a path from u to v, and �(c) = �(r).

A state S of the network is a collection (formally, a multiset) of connections. Given a

network N and a state S, we de�ne the usage of a link l in state S to be

�(l;S) =
X

c2S; c uses link l

�(c)

A state S is legal for network N if (8l 2 L) (�(l;S) � cap(l)). In other words, every

link is used in connections with a total rate that is at most the link's capacity.

For example, recall the request set f(C;D; 35); (A;D; 90); (C;A; 100); (C;A; 125)g.

This set is realized by the state f(CBD; 35); (ABD; 90); (CBA; 100); (CBA; 125)g,

which is legal for the network of Figure 2.1. To realize the additional request (C;D; 40)

would require us to add the connection (CBD; 40) to the state, but the resulting state

S is not legal because �((B;D);S) = 35 + 90 + 40 = 165 > cap(B;D).

2.2. Fixed path routing and nonblocking networks

A routing algorithm is a method for taking a connection request and the current state of

the network and determining a connection that satis�es the request. The new connection

should not exceed any of the link capacities when it is added to the current state.

For most of this dissertation, we consider one simple routing algorithm, called �xed

path routing. All of the de�nitions in this section have been simpli�ed with this routing

algorithm in mind. See Chapter 8 for de�nitions of other routing algorithms.

When �xed path (FP) routing is used, there is a table �. For each ordered pair of

switches u; v, �(u; v) is a directed path from u to v. Whenever a connection request

r = (u; v; �) is given, FP returns the path �(u; v). Note that this path may not have

enough available capacity to handle the new connection, and thus will cause the request

10

to block, even though other paths from u to v may have enough available capacity. The

name of this routing algorithm comes from its behavior: the path to be used from u

to v is �xed for the lifetime of the network (or at least for a long time). It ignores

the current state of the network. Surprising as it may seem, this inexibility is not a

hindrance, at least for the kinds of worst-case tra�c models studied here. The cheapest

network con�gurations we have found all use �xed path routing.

We de�ne what it means for a set of connection requests R to be compatible with

tra�c limits T in Sections 3.1, 4.1, and 5.1. The tra�c limits restrict the number and

rate of connection requests that can be in a compatible set R.

Consider a network N = (N;L; cap), and a sequence of add and drop requests

r1; : : : ; rk. Each ri is either a request to add a new connection, or to remove a pre-

viously added connection that has not yet been removed. De�ne Ri to be the subset

of fr1; : : : ; rig from which all drop requests and their corresponding add requests have

been removed. Ri is the set of active connection requests after request ri has been

completed. De�ne the sequence r1; : : : ; rk to be compatible with tra�c limits T if for

all i, 1 � i � k, the set Ri is compatible with T .

The networkN is blocking for tra�c T if there exists a sequence of requests r1; : : : ; rk

compatible with T such that rk = (u; v; �) is an add request, and there are less than

� units of bandwidth available on the path �(u; v). We say that the request rk blocks .

The network N is nonblocking for tra�c T if there is no such request sequence.

Note that for most of this dissertation, we are not concerned with the sequence of

add and drop requests r1; : : : ; rk, but with a set of active requests R, for which no

order is implied among the requests. The symbol R denotes a set of active requests at

some unspeci�ed time. If a sequence of add and drop requests is important, it will be

explicitly stated.

11

2.3. The Network Con�guration, Link Dimensioning, and Network Anal-

ysis Problems

We now describe a computational problem that models the following scenario. A net-

work manager has several switches in given locations, and knows how much it costs to

install links of various capacities between these switches.

These costs are represented by link cost functions . For example, one link cost

function is \Between switches A and B, the cost of the link is the capacity in Mb/s

times $100." Such a function is called a linear link cost function, since the cost is

linear with the link capacity. The value $100 is called the link cost coe�cient from A

to B, denoted (A;B). It is estimated by the network manager and speci�ed as part of

problem instance.

The coe�cients (u; v) of these linear link cost functions satisfy the triangle inequal-

ity:

(8u; v; w 2 N) (u; v)� (u; w)+ (w; v) (2.1)

That is, it is never more expensive to build a link directly between a pair of switches

than it is to build links on an indirect path between the switches. If it is impossible

to install a link in a \straight line" between the switches, one may always install it on

an indirect path, possibly through places where other switches are located. Such a link

need not be attached to the switches in question; it may simply occupy a small amount

of space in those locations. As long as a shortest indirect path is chosen, the coe�cients

(u; v) satisfy the triangle inequality.

Another kind of link cost function is a step or staircase cost function. These are

of the form bdcap=ae, where cap is the desired capacity of the link. This is a realistic

model, since links are often o�ered in discrete chunks of a given capacity a (e.g., T3 �

45 Mb/s, OC-3 � 155 Mb/s), where each chunk costs b dollars.

12

We will focus on linear link cost functions for most of this dissertation. However,

several of the results, particularly the lower bounds, apply to step cost functions (see

Section 3.4). Also, linear link cost functions are a close approximation to step cost

functions when the tra�c magnitudes are at least a few multiples of the chunk size b.

The network manager also knows the tra�c limits, and wants to know how much

capacity to install between each pair of switches so that the resulting network is non-

blocking with respect to this tra�c. We call this the network con�guration problem.

The network con�guration problem described below is actually a whole class of

problems, one for each kind of routing algorithm. For example, there is the network

con�guration problew with �xed path routing, studied in Chapters 3, 4, and 5. The

complexity of the problem might vary signi�cantly with the routing algorithm chosen.

It would be ideal if an e�cient network con�guration algorithm could determine the

best routing algorithm to use, but this appears unrealistic.

Nonblocking network con�guration with routing algorithm A

INSTANCE: A set of switches N . For each ordered pair of distinct switches

u; v, a cost coe�cient (u; v). These coe�cients should satisfy the triangle

inequality (2.1). Tra�c limits T .

SOLUTION: A capacity cap(u; v) for each switch pair u; v. This assignment

of capacity should make the network nonblocking for tra�c T when routing

algorithm A is used.

SOLUTION COST: The cost of the network is the sum of the costs of each link:

X
u;v2N

(u; v)cap(u; v)

OBJECT: Find a solution with minimum cost.

13

When working towards a solution to the network con�guration problem, it is often

useful to consider the following more restricted link dimensioning problem. The main

di�erence is that now we are given more restrictions on the routing algorithm as part

of the instance. For example, in a link dimensioning problem with �xed path routing,

the problem instance could also specify a particular table � of paths. The solution cost

and the objective are the same as before.

Nonblocking network link dimensioning with routing algorithm A

INSTANCE: A set of switches N . For each ordered pair of distinct switches

u; v, a cost coe�cient (u; v). These coe�cients should satisfy the triangle

inequality (2.1). Tra�c limits T . Additional parameters constraining routing

algorithm A.

SOLUTION: A capacity cap(u; v) for each switch pair u; v. This assignment of

capacity should make the network nonblocking for tra�c T when the routing

algorithm A, constrained as speci�ed, is used.

SOLUTION COST: X
u;v2N

(u; v)cap(u; v)

OBJECT: Find a solution with minimum cost.

Finally, a still more restricted problem is the network analysis problem. In this

problem we are given the network completely, with link capacities, as well as the tra�c

limits and routing algorithm. It is a decision problem, in which the object is to determine

whether the network can ever block. Some routing algorithms are more di�cult to

analyze than �xed path routing, and it is useful to study this problem in such cases.

See Chapter 8.

14

Figure 2.2: A tree network

Nonblocking network analysis with routing algorithm A

INSTANCE: A network N = (N;L; cap). Tra�c limits T . Additional parame-

ters constraining routing algorithm A.

QUESTION: Is there a sequence of requests compatible with T such that at

least one of the requests blocks?

2.4. Tree and star networks

A tree network is a directed graph obtained by starting with a tree (i.e., a connected,

acyclic, undirected graph) and replacing each undirected edge with two oppositely di-

rected edges between the same pair of vertices. For example, the network of Figure 2.1

is a tree network, and so is any network with the links shown in Figure 2.2.

For any link l in a tree network N , let Xl be the set of switches on its \source

side." That is, if l = (u; v), then Xl is the set of switches in the connected component

of N � f(u; v); (v; u)g that contains switch u. All other switches, those in N � Xl,

are on the \destination side" of l. For example, the link (B;E) in the network of

Figure 2.2 has the switches X(B;E) = fA;B;C;Dg on its source side and fE; F;G;Hg

on its destination side.

15

A star network is a special case of a tree network, one in which there is a \center"

switch, and all other switches are directly attached to the center by two oppositely

directed links. The network of Figure 2.1 is a star network with center B, but the one

in Figure 2.2 is not a star.

The underlying undirected graph of a network is the undirected graph obtained by

replacing each pair of directed edges (u; v); (v; u) with the undirected edge fu; vg.

16

3. SIMPLE FLAT TRAFFIC

3.1. De�nition

Every switch u has a source termination limit �(u) and a destination termination limit

!(u). The termination limit �(u) is a number that represents the maximum total rate

of all connections in which u may be a source, and !(u) is the maximum total rate of

all connections in which u may be a destination. For example, if �(u) = 50 Mb/s, then

u may simultaneously be a source in connections with rates 5, 10, and 35 Mb/s, but

then it could not be a source in any more connections until an existing connection is

removed.

Given a set of switches N and a collection of connection requests R, de�ne the

source usage and destination usage of a switch u under requests R as

�-usage (u;R) =
X

(u;v;�)2R

� (3.1)

!-usage (u;R) =
X

(v;u;�)2R

� (3.2)

Let at tra�c limits T = (�; !) be given. The set of requests R is compatible with

tra�c limits T if

(8u 2 N)
�
�-usage (u;R) � �(u) ^
!-usage (u;R) � !(u)

� (3.3)

That is, no switch is involved in more requests than its termination limits allow.

Recall from the example in Chapter 1 that if the network in Figure 2.1 is presented

with the set of requestsR1 = f(C;D; 35); (A;D; 90); (C;A; 100); (C;A; 125); (C;D; 40)g,

17

Table 3.1: Simple tra�c limits

u �(u) !(u)

A 450 450

B 0 0

C 300 300

D 450 150

the last request blocks. We also saw there that if !(D) = 150, then the last re-

quest would not be allowed. Now we can see that !-usage (D;R1) = 35 + 90 + 40 =

165 > !(D). Hence R1 is not compatible with the tra�c limits. The request set

R2 = f(C;D; 35); (A;D; 90); (C;A; 100); (C;A; 125)g is compatible, however, and any

network that is nonblocking for these example tra�c limits should be able to satisfy

all connections in R2 simultaneously. The �; ! values for all switches are given in Ta-

ble 3.1. Note that �(B) = !(B) = 0. This is because B has no terminals attached

to it, and therefore cannot be a source or destination of connections. It may only be

an intermediate switch in a connection. In telephony, such switches are called tandem

switches.

3.2. Link dimensioning in tree networks

Given a particular tree network and tra�c limits �; !, we can independently compute

the minimum necessary capacity for each link so that the network is nonblocking. The

minimum necessary capacity also happens to be the maximum possible usage of the

link. De�ne �(X) =
P

u2X �(u) for any set of switches X , and similarly for !(X), and

let ��(l) denote the maximum usage of link l in any state of the network.

Lemma 3.1 Let l be a link in tree network N with source side Xl, destination side

N�Xl, and tra�c limits �; !. Then ��(l) = minf�(Xl); !(N�Xl)g.

18

Proof: First we show that the usage of link l can never be more than

minf�(Xl); !(N�Xl)g, and then show that it can be that large.

Consider any compatible set of requests R. In a tree network, there is exactly one

state S that realizes this set of requests, because there is exactly one path between any

pair of switches. Let S0 � S be the connections that use link l. The requests that

caused these connections to appear are exactly those with some switch in Xl as their

source and some switch in N�Xl as their destination. Denote this set of requests by R0.

Now we can see that

�(l;S) =
X

c2S; c uses link l

�(c) fdefn. of �g

=
X
c2S0

�(c) fdefn. of S0g

=
X

(u;v;�)2R0

� fdefn. of R0g

=
X
u2Xl

X
(u;v;�)2R0

� frearranging sumsg

=
X
u2Xl

�-usage (u;R0) fdefn. of �-usage g

�
X
u2Xl

�(u) fR0 � R is compatible, and defn. (3.3)g

= �(Xl)

We can give an analogous derivation using !-usage and !. The result is �(l;S) �

!(N�Xl). Therefore �(l;S)� minf�(Xl); !(N�Xl)g.

To construct a state in which �(l;S) = minf�(Xl); !(N�Xl)g, simply make requests

with source in Xl and destination in N�Xl until it is no longer possible.

If we set the capacity of any link l to be less than its maximum possible usage ��(l),

then the network can block. Simply make a set of requests that gives the maximum usage

on l, and one or more of the last requests made block because of insu�cient capacity on

link l. If we set the capacities of all links in a tree network to their maximum possible

19

usage, then obtain a nonblocking network. It is impossible to overow a link because of

the tra�c limits. Thus the following link dimensioning algorithm works when the link

costs are any nondecreasing functions of capacity, not just linear functions.

For all links l in the tree, let cap(l) = ��(l)

The most obvious way of implementing this algorithm requires �(n) time per link, for

a total of �(n2) time. The following algorithm is faster.

Compute �(N) =
P

u2N �(u) and !(N) =
P

u2N !(u)

While there are at least 2 nodes left in the tree network N do

Pick any leaf switch u and let its only neighbor be v

cap(u; v) := minf�(u); !(N)� !(u)g

cap(v; u) := minf�(N)� �(u); !(u)g

�(v) := �(v) + �(u)

!(v) := !(v) + !(u)

Remove u, (u; v), and (v; u) from N

End while

This algorithm can be implemented to run in �(n) time.

The result above solves the link dimensioning problem for a given tree network,

but does not determine which tree network is cheapest. One heuristic we analyze later

is to compute the cost of each star network, and choose the cheapest one. There are

only n = jN j such networks and we can compute the cost of each one in �(n) time by

using the link dimensioning algorithm above, giving a �(n2) time algorithm to �nd the

cheapest star network.

For the example instance with at tra�c limits in Table 3.1, link costs are given

in Table 3.2. The costs are the Euclidean distance between the switches, where the

20

Table 3.2: Link cost coe�cients (u; v)

A B C D Position

A 0 250 472 500 (100,500)

B 0 255 336 (250,300)

C 0 472 (500,250)

D 0 (100,0)

positions are given in the table. When we compute network costs, we consider these

numbers to be the cost in dollars per 150 Mb/s link. The cheapest star network is the

one with center switch B. It has link capacities as shown in the example network of

Figure 2.1, and cost 579600=150 = $3864.

Why is a heuristic that only �nds the cheapest star network worth considering? We

show later that if the cheapest star network is not the cheapest among all nonblocking

networks, then at least it is very close.

3.3. Computational complexity

In this section we prove that the following network con�guration problem is max snp-

hard [57]. By the results of Arora et al. [5], this implies that if p 6= np, then there is no

polynomial time approximation scheme (PTAS) for this problem. A PTAS is a family

of algorithms parameterized by � > 0. Each member of the family runs in polynomial

time, and is guaranteed to produce a solution that costs at most 1+ � times more than

an optimal solution.

Thus, there exists some � > 0 for which no polynomial time algorithm is guaranteed

to �nd a solution with cost at most 1 + � over optimal, unless p = np. Note that a

max snp-hard problem is also np-hard.

21

Nonblocking network con�guration with simple at tra�c limits

INSTANCE: A set of switches N . For each ordered pair of distinct switches u; v,

a cost coe�cient (u; v). These coe�cients satisfy the triangle inequality (2.1).

Tra�c limits T = (�; !).

SOLUTION: A capacity cap(u; v) and a path �(u; v) for each switch pair u; v.

This assignment of capacity should make the network nonblocking for tra�c

T = (�; !) when the �xed path routing algorithm with paths � is used.

SOLUTION COST: The cost of the network is the sum of the costs of each link:

X
u;v2N

(u; v)cap(u; v)

OBJECT: Find a solution with minimum cost.

We refer to this problem as network configuration. We prove that it ismax snp-

hard by giving a special kind of transformation, called an L-reduction, from the following

problem to the network configuration problem.

Steiner(1,2)

INSTANCE: An undirected complete graph G = (V;E). Every edge e has a

weight w(e) 2 f1; 2g. A set of terminal vertices S � V .

SOLUTION: A connected subgraph G0 = (V 0; E0) of G that contains all vertices

in S.

SOLUTION COST: The cost of the subgraph is the sum of the edge weights:

X
e2E0

w(e)

OBJECT: Find a solution with minimum cost.

Steiner(1,2) was proved to be max snp-hard by Bern and Plassman [10]. The fol-

lowing de�nition of an L-reduction is due to Papadimitriou and Yannakakis [57].

22

De�nition 3.2 (Papadimitriou, Yannakakis) Let � and �0 be two optimization (max-

imization or minimization) problems. We say that � L-reduces to �0 if there are two

polynomial time algorithms f , g, and constants a; b > 0 such that for each instance I

of �:

(a) Algorithm f produces an instance I 0 = f(I) of �0, such that the optima of I and

I 0, OPT (I) and OPT (I 0), respectively, satisfy OPT (I 0) � a �OPT (I).

(b) Given any solution of I 0 with cost c0, algorithm g produces a solution of I with

cost c such that jc�OPT (I)j � b jc0 � OPT (I 0)j.

The basic idea of this de�nition is that if problem � L-reduces to problem �0, and

if there is an approximation algorithm for problem �0 that is guaranteed to produce

a solution with cost at most 1 + � times more than optimal, then we can construct a

polynomial time approximation algorithm for problem � that is guaranteed to produce

a solution with cost at most 1 + ab� times more than optimal.

Theorem 3.3 The problem network configuration is max snp-hard.

Proof: The algorithm f of our L-reduction from Steiner(1,2) to network configu-

ration is as follows. Let N = V and let (u; v) = w(e) for all u; v 2 N , where e is the

edge between vertices u and v. Note that these values satisfy the triangle inequality,

because G is a complete graph and all edge weights are either 1 or 2. Pick an arbitrary

\root" vertex r 2 S, and let �(r) = 1 and !(r) = 0. For all u 2 S�frg, let �(u) = 0

and !(u) = 1. For all u 2 N � S, let �(u) = !(u) = 0.

We show that this algorithm f and an algorithm g described below satisfy the

de�nition of an L-reduction, where a = b = 1. Thus this reduction can be used to turn

any approximation algorithm for network configuration into an approximation

23

algorithm for Steiner(1,2) with the same performance guarantee. In order to show this,

we consider the set of all feasible solutions of the problem instances.

For any instance I of Steiner(1,2), the set of all feasible solutions FEAS(I) is the

set of connected graphs containing all vertices in S. The good solutions GOOD(I) of

instance I are de�ned to be the set of all tree solutions such that every leaf vertex of the

tree is in S. Note that the set of optimal solutions BEST (I) is a subset of GOOD(I).

For any transformed instance I 0 = f(I) of network configuration, the set of all

feasible solutions FEAS(I 0) can be described by the link capacities cap(u; v) for every

u; v 2 N , and the collection of directed paths � from the root vertex r to every other

vertex in S. The other paths will never be used, due to the tra�c limits T = (�; !).

Every link in some path �(r; u), where u 2 S�frg, must have capacity at least 1 in a

feasible solution, because otherwise the network could block when a rate 1 connection

request is made from r to u.

The good solutions GOOD(I 0) for I 0 are restricted in two ways. First, the link

capacities are restricted. Any link not in the set �(r; S�frg) = S
u2S�frg �(r; u) is never

used, and should have a capacity of 0. Any link in the set �(r; S�frg) must have a

capacity at least 1 in any feasible solution, but it need not have a capacity any larger

than 1. This is because 1 is the maximum total rate of all connections that may exist

simultaneously, since r is the only vertex with � larger than 0.

The second restriction is that there may be at most one path from r to any other

vertex in the set of edges �(r; S�frg). Equivalently, the in-degree of any vertex is at

most 1; also, the set of edges forms a directed tree with root r and all paths directed

away from r.

Note that any feasible but non-good solution may be converted to a good solution

with less cost in polynomial time. The capacities may be reduced easily, if necessary,

24

and if �(r; S�frg) contains more than one path from r to some other vertex u, then all

but one of those paths (chosen arbitrarily) can be removed, and the paths �(r; v) that

used links in those paths can be rerouted along the remaining path to u. Note that the

set of optimal solutions for I 0, BEST (I 0), is a subset of GOOD(I 0).

For every solution to a Steiner(1,2) instance I that is in GOOD(I), there is a

corresponding solution to instance I 0 = f(I) of network configuration that is in

GOOD(I 0), and it has the same cost. Simply take the tree solution to I with cost c,

and let �(r; u) be the directed path from r to u in the tree. When we assign a capacity

of 1 to all links in �(r; S�frg) and capacity 0 to other links, the cost is exactly c.

Similarly, for every solution to an instance I 0 = f(I) of network configuration

that is in GOOD(I 0), there is a corresponding solution to instance I of Steiner(1,2) that

is in GOOD(I), and it has the same cost. Simply take the set of edges �(r; S�frg)

and make them all undirected.

Therefore, OPT (I 0) = OPT (I) for all instances I of Steiner(1,2). This satis�es part

(a) of De�nition 3.2, where a = 1.

Algorithm g of the L-reduction starts with an arbitrary feasible solution to the

network configuration instance I 0 = f(I) with cost c0. If it is not a good solution,

then g converts it to a good solution with cost c2 < c0, otherwise it keeps the good

solution. Finally, it converts the good solution of I 0 to a good solution of I with cost

c � c0. Since OPT (I 0) = OPT (I), we conclude that c � OPT (I) � c0 � OPT (I 0), and

part (b) of De�nition 3.2 is satis�ed with b = 1.

Even though the general problem network configuration is max snp-hard, we

conjecture that it is solvable in polynomial time when �(N) = !(N). For further

evidence supporting this conjecture, see Section 3.7.

25

3.4. A lower bound

In this section we present an algorithm for computing a lower bound on the cost of any

nonblocking network, using any routing algorithm, given only the tra�c limits and the

link cost coe�cients . It works when all link cost functions are linear, and the link

cost coe�cients satisfy the triangle inequality (2.1).

Since we compute a lower bound, the method to be described can also be used when

each link cost function is at least some linear function. For example, the step cost

function bdcap=ae described in Section 2.3 is at least (b=a)cap. Therefore a lower bound

can be computed using the method below by assuming that the link cost function is

(b=a)cap for the given link. However, the quality of the lower bound may not be as

good in such instances.

A lower bound is useful when we have an instance I of a network con�guration

problem and a nonblocking networkN with cost cost(N), but we do not know how close

its cost is to the minimum possible. Suppose we have computed a lower bound LB(I)

on the cost of any nonblocking network for I . In particular, LB(I) is a lower bound

on the cost OPT (I) of the cheapest solution. Therefore LB(I) � OPT (I) � cost(N),

which implies cost(N)
OPT (I) � cost(N)

LB(I) . For example, if cost(N) = 125 and LB(I) = 100,

then we are guaranteed that our solution costs at most 25% more than the minimum

cost solution, and it may be closer.

We obtain an equivalent way of specifying compatible request sets by introducing

a set of variables fxu;v : u; v 2 N; u 6= vg, where xu;v represents the total rate of all

requests from u to v, xu;v =
P

(u;v;�)2R �. Therefore, the equations for �-usage (3.1)

and !-usage (3.2) may be written

�-usage (u;R) =
X

v2N�fug

xu;v (3.4)

26

!-usage (v;R) =
X

u2N�fvg

xu;v (3.5)

Hence we may rewrite the condition \R is compatible with T = (�; !)" (3.3) as

X
v2N�fug

xu;v � �(u) 8u 2 N

X
u2N�fvg

xu;v � !(v) 8v 2 N

xu;v � 0 8u; v 2 N; u 6= v

(3.6)

It should be clear that for every compatible request set R, there is a unique x that

satis�es system (3.6), and for every x 6= 0 satisfying system (3.6), there are many

corresponding compatible request sets R.

Suppose x, satisfying (3.6), is non-zero in only one variable xu;v = �. This represents

any set of compatible requests from u to v with total rate �. In any network that is

nonblocking for T , there must be a path from u to v such that all links in the path

have at least � units of bandwidth. Given that the coe�cients satisfy the triangle

inequality, the cheapest network that can be built, to handle these requests only, is

the one containing the single link (u; v) with capacity �. The cost of this network is

(u; v) ��, which is a lower bound on the cost of any network that is nonblocking for T .

Similarly, for any x satisfying (3.6), the cheapest network that can handle a cor-

responding request set is the one that contains links directly between the switch pairs

involved in requests. The cost of this network is

LB(I; x) =
X

u;v2N;u6=v

(u; v)xu;v (3.7)

The largest lower bound of this form can be obtained by maximizing LB(I; x) subject

to the inequalities (3.6).

This problem can be solved using a general linear programming algorithm. Two

examples are Dantzig's simplex method [16], and Karmarkar's algorithm [4], which has

27

worst-case polynomial running time. It can also be solved by noting that this class of

linear programs is equivalent to a restricted class of maximum cost ow problems [60,

Section 8.4]. An instance of this problem consists of a directed graph G = (V;E),

where there is a distinguished source vertex s 2 V , a sink vertex t 2 V , and each edge

e 2 E has a capacity cap(e) and a cost per unit ow cost(e). A feasible solution to this

problem is a ow f on each edge satisfying the following constraints:

X
(v;u)2E

f(v; u) =
X

(u;v)2E

f(u; v) 8u 2 V � fs; tg

f(u; v) � cap(u; v) 8(u; v) 2 E

(3.8)

The �rst constraint restricts the ow into a vertex to be equal to the ow out of the

vertex, for all vertices other than s and t. The second constraint restricts the ow on

each edge to be no larger than the capacity of the edge. The object is to �nd a feasible

ow f with maximum cost
P

(u;v)2E cost(u; v)f(u; v).

The lower bound graph L = (V;E; cap; cost) is a maximum cost ow instance with

source s and sink t. It is de�ned below in terms of the network switches N , the tra�c

limits T = (�; !), and the link cost coe�cients . The edges are given in the form

(u; v; cap; c), where the edge is from vertex u to vertex v and has capacity cap and cost

c.

V = fs; tg [fus; ud : u 2 Ng
E = f(s; us; �(u); 0); (ud; t; !(u); 0) : u 2 Ng[

f(us; vd;1; (u; v)) : u; v 2 N; u 6= vg
(3.9)

The subscript s is short for \source", and the subscript d is short for \destination".

The lower bound graph for the tra�c limits of Table 3.1 and the values of Table 3.2

is shown in Figure 3.1. In the literature, this problem is often called the minimum cost

ow problem or the minimum cost circulation problem. The most e�cient algorithms

for this problem known to the author are cited by Goldberg and Tarjan [38].

28

Figure 3.1: Lower bound graph for instance in Tables 3.1 and 3.2. Edges are labeled
with their capacity and cost, in that order. An in�nite capacity is shown as a dash
(|). The dotted edges either have capacity 0, or they have ow 0 in every feasible ow.
Their labels are not shown to avoid cluttering the �gure.

To see why the linear program is equivalent to the maximum cost ow problem, let

xu;v = f(us; vd) for all u; v 2 N; u 6= v. By the ow conservation constraints of (3.8), we

must have f(s; us) =
P

v2N�fug xu;v. The system of linear inequalities (3.6) restricts this

value to be at most �(u), which is exactly the capacity of edge (s; us) in L. Similarly,

edges of the form (vd; t) have ow
P

u2N�fvg xu;v , and the edge capacities limit this quan-

tity to be at most !(v). Finally, the cost of the ow is
P

u;v2N;u6=v cost(us; vd)f(us; vd),

which is exactly the objective of the linear program, Equation (3.7).

A maximum cost ow for the lower bound graph in Figure 3.1 is the ow with

f(As; Cd) = 300, f(As; Dd) = 150, and f(Ds; Ad) = 450, with a cost of 441600=150 =

$2944. Thus the star network with center B and cost $3864 is at most 31.2% more

expensive than optimal.

We close this section with an example that shows that the algorithm for computing

a lower bound does not always work when the cost coe�cients do not satisfy the

triangle inequality, i.e., the value computed by the lower bound algorithm is larger than

the cost of a nonblocking network. In practice, all network con�guration instances will

satisfy the triangle inequality, because if it is more expensive to install a link on a direct

29

path between two switches, we may simply install it on a cheapest indirect path, and

use that cost in the problem instance. Such costs satisfy the triangle inequality.

The example instance has three switches A, B, and C. All � and ! values equal

1, and the cost coe�cients are (A;B) = (B;A) = 1, (B;C) = (C;B) = 2, and

(A;C) = (C;A) = 4. These costs violate the triangle inequality because (A;C) >

(A;B) + (B;C). The lower bound has value 8, as demonstrated by the most costly

request set f(A;C; 1); (C;A; 1)g. A network that is nonblocking for these tra�c limits

contains the links (A;B), (B;A), (B;C), and (C;B), all with capacity 1. The network

has cost 6.

This occurs because the lower bound is made high by using the large cost (A;C) = 4

directly between A and C, but the nonblocking network can get between A and C more

cheaply by going through B. This cannot happen when the values satisfy the triangle

inequality.

3.5. Experimental results

In this section, we compare the value of the lower bound to the cost of the cheapest

star network. This is done for randomly generated problem instances.

In the following, whenever we say that a value is generated randomly in some inter-

val, we mean that it is generated from a uniform distribution on the interval. Similarly,

when we place a point randomly in some rectangle, we mean that its location is gener-

ated randomly with a uniform distribution on the area.

A single experiment consists of choosing a number of switches n, and a range of

termination limit values [�lo; �hi]. Generate a random instance as follows. All switches

are placed randomly in a unit square. Link cost coe�cients (u; v) are set equal to

30

0 20 40 60 80 100
n = number of nodes

1.00

1.10

1.20

1.30

so
lu

tio
n

co
st

 /
lo

w
er

 b
ou

nd
MAXIMUM

AVERAGE

Figure 3.2: Experimental results for at tra�c

the Euclidean distance between u and v. For each switch u, choose the integer �(u)

randomly in the interval [�lo; �hi], and set !(u) = �(u).

After the instance has been generated, the cheapest star network is computed as

described in Section 3.2, and a maximum cost ow in the lower bound graph is found.

The performance ratio, which is a real value no less than 1, is equal to the cost of the

star network divided by the lower bound.

In Figure 3.2, each data point on the lower curve is the average of the performance

ratios of 50 randomly generated instances, all generated with the same values of n,

�lo = 10, �hi = 20. Experiments were done for values of n ranging over the set

f3; 4; 5; 6; : : : ; 14; 15; 20; 25; 30; 40; 50; 60; 70; 80; 90; 100g. The same experiments were

performed with � randomly drawn from the interval [1; 30], and with all � values equal

to 10. The resulting plots are not signi�cantly di�erent than those in Figure 3.2, so

they have not been shown.

31

Note that even at the worst (highest) part of the curve for small n, the average

performance ratio is no more than about 1.08. This shows that the cheapest stars are

within 8% of optimal on average for small n, and even closer for large n. The maximum

(not the average) of all 50 of the individual performance ratios for n = 3 is 1.317. For

n � 7, we have exhaustively enumerated all nn�2 tree networks of the switches, not

just star networks, to �nd the one that gives the cheapest nonblocking network. This

enumeration was done using an algorithm due to Gabow and Myers [27]. In every case,

a star network was among the cheapest solutions. This led to the conjecture that the

minimum cost star network is the cheapest among all tree networks. We have proved

this conjecture for �(N) = !(N), and the proof is given in Section 3.7.

When the performance ratio is large, it means that either the lower bound is far

below the optimal cost, the cheapest star network is far above the optimal cost, or both.

We conjecture that the lower bound is far below the optimal cost for small n, and the

minimum cost star network is optimal. More precisely, we conjecture that when �(N) =

!(N), link cost functions are linear with capacity, and link cost coe�cients satisfy the

triangle inequality, the cheapest star network is the minimum cost nonblocking network

among all nonblocking networks. The proof mentioned above proves that the minimum

cost star is cheapest among all tree networks, but not necessarily among all solutions.

When n gets large, we see that the performance ratio gets closer to 1. This means

that both the lower bound and the minimum cost star network are getting closer to the

optimal value. This prompted the search for a proof that the curve does approach 1 as

n gets large. In Section 3.8, we show that the probability the performance ratio is at

most 1 + � goes to 1 as n gets large, for any � > 0. This result holds for other methods

of randomly generating instances than that used in this section.

32

3.6. Star networks require least total capacity among all trees

Before proving the result in the next section, we �rst examine the special case when

all values are the same. This case has practical signi�cance for network con�guration

instances in which the cost of cable termination is the majority of the cost of installing

links.

In this special case, the cheapest tree network is the star network with center C,

where C is any switch with the largest value of �(C) + !(C) among all switches. Such

a center C may be found in O(n) time, and nonblocking link capacities may also be

found in O(n) time by the algorithm in Section 3.2.

Further, we conjecture that for an instance of this restricted type, the star network

with center C is cheapest among all nonblocking networks, not just among tree networks.

Theorem 3.4 When all values are equal and tra�c limits are given by T = (�; !),

every tree network costs at least as much as the star network with center switch C,

where C is any switch with the maximum value of �(C) + !(C) among all switches.

Proof: Let h(u) = �(u)+!(u) for all u 2 N , and let h(X) =
P

u2X h(u) for any set of

switches X � N . Let C be a switch with maximum value of h(C) among all switches.

In a star network with center C, the total capacity of the links (u; C) and (C; u) is

cap(u; C) + cap(C; u)

= minf�(u); !(N�fug)g + minf�(N�fug); !(u)g fLemma 3.1g
= minf�(u); !(N)�!(u)g + minf�(N)��(u); !(u)g
= minf�(u)+!(u); �(N)+!(N)�(�(u)+!(u)); �(N); !(N)g

fproperties of ming
= minfh(u); h(N)�h(u); �(N); !(N)g fdefn. of hg
= minfh(u); �(N); !(N)g fsee belowg

(3.10)

33

The last step is justi�ed by the observation

h(u) � h(C) f by choice of C g
�

X
v2N�fug

h(v) fC 2 N�fugg

= h(N)�h(u)

Now consider any tree network N for the switches N . Pick the same switch C

used before and consider N as a rooted tree with C as the root and all other switches

descendants of C. Let SC(u) be the set of descendants of u in this rooted tree (including

u), for any u 2 N . The total capacity necessary on the links (u; p(u)) and (p(u); u)

between a switch u 6= C and its parent switch p(u) is

cap(u; p(u)) + cap(p(u); u)

= minf�(SC(u)); !(N�SC(u))g + minf�(N�SC(u)); !(SC(u))g
fLemma 3.1g

= minf�(SC(u)); !(N)�!(SC(u))g + minf�(N)��(SC(u)); !(SC(u))g
= minfh(SC(u)); h(N)�h(SC(u)); �(N); !(N)g

fproperties of min, defn. of hg
(3.11)

Now if we can show that (3.11) is always at least as large as (3.10) then the total

capacity of the tree N ,
P

u2N�fCg(cap(u; p(u))+cap(p(u); u)), is at least as large as the

total capacity of the star network with center C,
P

u2N�fCg(cap(u; C)+cap(C; u)).

h(SC(u)) � h(u) follows immediately from u 2 SC(u). Also

h(N)�h(SC(u)) = h(N�SC(u))
� h(C) fC 2 N � SC(u)g
� h(u) fchoice of Cg

Therefore minfh(SC(u)); h(N)�h(SC(u))g � h(u). Now x � y implies that minfx; zg �

minfy; zg. With x = minfh(SC(u)); h(N)�h(SC(u))g, y = h(u), and z = minf�(N); !(N)g,

we see that (3.11)� (3.10) for all u 2 N�fCg, and we have proved that all tree networks

have at least as much total capacity as the star network with center switch C.

34

3.7. Star networks are almost cheapest among tree networks

Theorem 3.5 Let tra�c limits �; ! be given for a set of switches N , and let all link

cost functions be linear with coe�cients (u; v) satisfying the triangle inequality. If

1+ � = max
n
�(N)
!(N) ;

!(N)
�(N)

o
, and 1+ � = maxu;v2N

n
(u;v)
(v;u)

o
, then a cheapest star network

costs at most 1 + (1 + �)�=2 times more than the cheapest tree network.

Note that for practical instances of the problem, the link costs are symmetric, so

� = 0. For such instances, the upper bound is 1 + �=2.

We prove this theorem by showing that for any tree network, there is always a

\centroid" switch c with the following property. The cost of the star network with

center c is at most 1+ (1+ �)�=2 times the cost of the original tree. Note that this does

not say that the star with center c is the cheapest star network. However, if we �nd the

cheapest star, then it must cost no more than 1 + (1 + �)�=2 times the cheapest tree.

An interesting corollary of Theorem 3.5 results when we restrict �(N) = !(N).

Corollary 3.6 Let tra�c limits �; ! be given for a set of switches N , where �(N) =

!(N), and let all link cost functions be linear with coe�cients (u; v) satisfying the

triangle inequality. Then a star network is cheapest among all tree networks.

Proof: Follows immediately from Theorem 3.5 since �(N) = !(N) implies � = 0.

Let T = (V;E) be an undirected tree where each vertex v has a real weight h(v) � 0.

De�ne h(X) to be the sum of the weights of vertices in X , where X is either a subset

of V or a subgraph of T . For any two distinct vertices u; v in T , let f(u; v) be the �rst

edge on the unique path from u to v in T , and de�ne the subtree of v with respect to u,

Su(v), to be the connected component of T � f(v; u) that contains v. A vertex c 2 V

is called a centroid if h(Sc(v)) � w(T)=2 for all vertices v adjacent to c.

35

Harary's de�nition of centroids [42] is equivalent to ours, except that his de�nition

only includes trees in which all vertex weights are 1. Various versions of the following

lemma have been proved as far back as 1869 [49]. This proof is original to the author,

and is included here for completeness. See Bodlaender et al. [12] and Gabow [25] for

other uses of centroids and some generalizations.

Lemma 3.7 Let T = (V;E) be an undirected tree, where each vertex v 2 V has a

nonnegative weight h(v). Then there exists a centroid c 2 V .

Proof: For any edge e 2 E, de�ne the imbalance of e, I(e), to be jh(Su(v))�h(Sv(u))j,

where e = fu; vg.

Let e� = fu�; v�g be an edge with minimum imbalance. Note that

(8u; v) fu; vg 2 E) h(Su(v)) + h(Sv(u)) = h(T) (3.12)

If I(e�) = 0, then h(Su�(v
�)) = h(Sv�(u

�)) = h(T)=2, and both u� and v� are centroids.

If I(e�) > 0, then suppose without loss of generality that h(Sv�(u
�)) < h(Su�(v

�)),

and so

I(e�) = h(Su�(v
�))� h(Sv�(u

�)) (3.13)

From Equation (3.12) it also follows that h(Sv�(u�)) < h(T)=2 < h(Su�(v�)).

If u� is the only vertex adjacent to v�, then v� is the only centroid of T . Call this

Case 1.

Otherwise, let v1; : : : ; vk be the neighbors of v
� other than u�, and let ei = fv�; vig

for all i, 1 � i � k. See Figure 3.3 for a diagram of the tree structure. Then we have

the following for all i:

I(ei) = jh(Svi(v�))� h(Sv�(vi))j fDefn. of I g
= jh(T)� 2h(Sv�(vi))j fEquation (3.12) g

36

Figure 3.3: Tree structure in proof of Lemma 3.7

By the choice of e�, we know that (8i)I(ei) � I(e�). jxj � y if and only if (x �

y or � x � y). Therefore (8i)I(ei) � I(e�) is true if and only if

(8i) (h(T)� 2h(Sv�(vi)) � I(e�)) or (2h(Sv�(vi))� h(T) � I(e�))

Using Equations (3.12) and (3.13) we derive the equivalent condition

(8i) h(Sv�(vi)) � h(Sv�(u
�)) or h(Sv�(vi)) � h(Su�(v

�))

There are now two cases two consider. Case 2a is when (8i)h(Sv�(vi)) � h(Sv�(u
�)).

Recall that h(Sv�(u
�)) < h(T)=2. Therefore vertex v� is a centroid.

Case 2b is when there exists a vertex vi such that h(Sv�(vi)) � h(Su�(v
�)). Since

Sv�(vi) is a subgraph of Su�(v
�) and all vertex weights are nonnegative, we must have

h(Sv�(vi)) = h(Su�(v
�)). This implies that h(z) = 0 for all vertices z in Su�(v

�)�Sv�(vi).

Now edge fv�; vig is also an edge of minimum imbalance, and we can \repeat the proof"

on this edge. Since the graph is �nite, this repetition eventually halts with either Case

1 or Case 2a.

37

Now we proceed with the proof of Theorem 3.5.

Proof: Suppose we are given a tree network N with underlying undirected tree T . Let

N have the minimum necessary link capacities cap in order to be nonblocking. Let c

be a centroid for T using the weights h(u) = �(u) + !(u). For all u 2 N � fcg, de�ne

p(u) to be the �rst switch on the path from u to c in N (possibly c itself). The cost of

N is

cost(N) =
X

x2N�fcg

[cap(x; p(x))(x; p(x))+ cap(p(x); x)(p(x); x)] (3.14)

Let N �
c be the star network with switches N , center c, and minimum necessary link

capacities cap�. We write the cost of N �
c in a form similar to (3.14) to compare the two

costs more easily. The cost of N �
c is

cost(N �
c)

=
X

u2N�fcg

[cap�(u; c)(u; c)+ cap�(c; u)(c; u)]

�
X

u2N�fcg

2
4cap�(u; c) X

(x;y)2�(u;c)

(x; y)+ cap�(c; u)
X

(x;y)2�(c;u)

(x; y)

3
5 (3.15)

Recall that �(u; v) is the path in N from u to v. The inequality holds because satis�es

the triangle inequality, Condition (2.1), and hence (u; v) is at most the sum of values

on any path from u to v, for any u; v 2 N . Consider the sum of the �rst term of (3.15):

X
u2N�fcg

2
4cap�(u; c) X

(x;y)2�(u;c)

(x; y)

3
5 (3.16)

Let x be any vertex in N � fcg. In this sum, we are adding the quantity

cap�(u; c)(x; p(x)) once for each switch u in Sc(x). Let Ux be the set of switches

in Sc(x), Cx the set of switches in Sx(c), and Bx = N � Ux � Cx. Note that these sets

are a partition of N . Thus (3.16) can be rewritten

X
x2N�fcg

2
4
0
@X
u2Ux

cap�(u; c)

1
A(x; p(x))

3
5

38

Similarly for the second term of (3.15). Thus the entire expression can be rewritten as

X
x2N�fcg

2
4
0
@X
u2Ux

cap�(u; c)

1
A(x; p(x))+

0
@X
u2Ux

cap�(c; u)

1
A(p(x); x)

3
5

=
X

x2N�fcg

�
cap0(x; p(x))(x; p(x))+ cap0(p(x); x)(p(x); x)

�
(3.17)

where cap0(x; p(x)) =
P

u2Ux
cap�(u; c) and cap0(p(x); x) =

P
u2Ux

cap�(c; u).

We now have the two costs in a similar form. The only di�erence is that in the

expression for cost(N), (3.14), the capacities cap are those that make the network N

nonblocking, but in the upper bound for cost(N �
c), (3.17), the capacities are given by

cap0. Next we show the values of cap and cap0 are close by using c's properties as a

centroid, and the condition 1 + � = max
n
�(N)
!(N) ;

!(N)
�(N)

o
.

Suppose, without loss of generality, that �(N) � !(N) (the proof is very similar for

the case �(N) � !(N)). Then

!(N) � �(N) = (1 + �)!(N) (3.18)

Since c is a centroid for the tree with weights h, we know for all switches b adjacent to

c that h(Sc(b)) � h(N)=2. If x is any switch in the tree, and b is the last switch on the

path from x to c (possibly x itself), then

h(Sc(b)) = h(Ux [Bx) fdefn. of Sc(b), Ux, Bxg
= �(Ux [Bx) + !(Ux [Bx) fdefn. of h = �+ !g
� h(N)=2 fc is a centroidg
= (�(N) + !(N))=2 fdefn. of hg

From the second and fourth lines of the above derivation, we may conclude that

�(Ux [Bx) � (�(N) + !(N))=2� !(Ux [Bx) fderivation aboveg
= ((1 + �)!(N) + !(N))=2� !(Ux [Bx) fEquation (3.18)g
= !(N)� !(Ux [Bx) + (�=2)!(N)

= !(Cx) + (�=2)!(N) fN = Ux [Bx [Cxg
(3.19)

39

Similarly

!(Ux [Bx) � (�(N) + !(N))=2� �(Ux [Bx) fderivation aboveg
� �(N)� �(Ux [Bx) fInequality (3.18)g
= �(Cx) fN = Ux [Bx [Cxg (3.20)

Now we are ready to compare cap and cap0 values. Let x be chosen arbitrarily in

N � fcg. For the links directed away from c:

cap0(p(x); x) =
X
u2Ux

cap�(c; u) fdefn. of cap0g

=
X
u2Ux

minf�(N � fug); !(u)g fLemma 3.1g

=
X
u2Ux

!(u) fInequality (3.20), u 2 Uxg

= !(Ux)

= minf�(Bx [Cx); !(Ux)g fInequality (3.20)g
= cap(p(x); x) fLemma 3.1g (3.21)

That is, all links directed away from c have unchanged capacities cap0. For the links

directed towards c:

cap0(x; p(x)) =
X
u2Ux

cap�(u; c) fdefn. of cap0g

=
X
u2Ux

minf�(u); !(N � fug)g fLemma 3.1g

�
X
u2Ux

�(u)

= �(Ux)

= minf�(Ux); !(Bx [Cx)g
+ [�(Ux)�minf�(Ux); !(Bx [Cx)g]

= cap(x; p(x)) + maxf0; �(Ux)� !(Bx [Cx)g
fLem. 3.1, �minfx; yg = maxf�x;�yg g

(3.22)

That is, some links directed toward c can have larger capacities cap0. De�ne N 0 = fx :

x 2 N � fcg; �(Ux) > !(Bx [Cx)g. Only the links (x; p(x)) such that x 2 N 0 can have

40

cap0(x; p(x)) > cap(x; p(x)). Now we �nd a bound on how much larger such a link's

capacity can be. The following lower bound on cost(N) is useful in the last part of the

analysis.

cost(N) �
X
x2N 0

[cap(x; p(x))(x; p(x))+ cap(p(x); x)(p(x); x)]

fEqn. (3.14), N 0 � N � fcgg
�

X
x2N 0

�
cap(x; p(x))(x; p(x))+ cap(p(x); x)

�
1

1 + �

�
(x; p(x))

�

fdefn. of �g
� 1

1 + �

X
x2N 0

[(cap(x; p(x)) + cap(p(x); x))(x; p(x))]

f� � 0, algebrag
� 1

1 + �

X
x2N 0

[(minf�(Ux); !(Bx [Cx)g+ !(Ux))(x; p(x))]

f Lem. 3.1, derivation of Eqn. (3.21) g
� 1

1 + �

X
x2N 0

[!(N)(x; p(x))]

fdefn. of N 0, N = Ux [Bx [Cxg

(3.23)

We can now use the equations and inequalities above to prove the theorem.

cost(N �
c)

cost(N)
= 1 +

cost(N �
c)� cost(N)

cost(N)

� 1 +

P
x2N�fcg [(cap

0(x; p(x))� cap(x; p(x)))(x; p(x))]

cost(N)

fcost(N �
c) �(3.17), Eqns. (3.14), (3.21)g

� 1 +

P
x2N�fcg [maxf0; �(Ux)� !(Bx [Cx)g(x; p(x))]

cost(N)
fIneq. (3.22)g

= 1 +

P
x2N 0 [(�(Ux)� !(Bx [Cx))(x; p(x))]

cost(N)
fdefn. of N 0g

� 1 +

P
x2N 0

�
(�2!(N))(x; p(x))

�
1

1+�

P
x2N 0 [!(N)(x; p(x))]

fIneqs. (3.19), (3.23)g

� 1 + (1 + �)
�

2

41

Now we show that Theorem 3.5 is almost as good as possible, because there is a

class of instances for which the cheapest star network approaches 1+ �=2 times the cost

of a tree network that is not a star. Thus the theorem is tight for instances with � = 0,

but it may be possible to improve either the theorem or the class of instances when

� 6= 0. If � = 0, then the link costs are symmetric, and this is the case for most

realistic instances of the network con�guration problem.

Let �; � � 0 be any real numbers. We wish to �nd an instance I = (N;�; !;)

satisfying the conditions of Theorem 3.5 such that the cheapest star costs as much

more than a non-star N as possible.

Let � � 0 be chosen later, and let � = (1 + �)�=2. The switches in the following

instance are given as triples (u; �(u); !(u)).

N = U [V
U = f(ui; (1 + �)=nu;�=nu) : 1 � i � nug
V = f(vi; (�+�)=nv; 1=nv) : 1 � i � nvg
nu � 1 + �

nv � 1 + �=�

(x; y) =

8>>>><
>>>>:

1 + � if x 2 U; y 2 V

1 if x 2 V; y 2 U

0 otherwise

(3.24)

It is tedious, but not di�cult, to check that this instance satis�es the conditions of

the theorem. The cost of any star network with center u 2 U is cost(N �
u) = (1+�+�+

�), and the cost of any star network with center v 2 V is cost(N �
v) = (1+�)(1+�)+�.

Cheaper than any of these star networks is the tree network with links (u; v); (v; u) for

some u 2 U; v 2 V , and all other switches x 2 U are attached to u, and all other y 2 V

42

are attached to v. This tree has cost cost(N) = (1 + �+ �). Thus

cost(N �
u)

cost(N)
= 1+�+�+�

1+�+�

= 1 + (1+�)�=2
1+�+� fdefn. of �g

= 1 + 1
1+(�

1+�
)
�
2

(3.25)

This quantity is in the interval [1; 1+ �=2) for all � � 0, but it approaches 1+ �=2 as �

goes to in�nity.

For the other star networks, we have

cost(N �
v)

cost(N)
=

(1+�)(1+�)+�
1+�+�

= 1 + 1+�
1+(�

1+�
)
�
2 fdefn. of �, algebrag

(3.26)

This quantity is in the interval [1 + �=2; 1+ (1 + �)�=2] for all � � 0, and it approaches

1+(1+�)�=2 as � goes to in�nity. Thus these star networks cost more than the others.

It is also worthwhile to note that any of the switches v 2 V are centroids for the non-star

network N . Thus, if the theorem can be improved, it must be done by explicitly taking

into account that a switch that is not a centroid might be a cheaper center for a star

network than any centroid.

3.8. A probabilistic result

Suppose that instances I with at tra�c limits are randomly generated by the method

given in Section 3.5, except that now the locations are randomly chosen in the interior

of a unit circle on the plane, i.e., a unit disk. Also, �(u) and !(u) values may be chosen

randomly with any distribution desired, even with di�erent distributions for di�erent

switches, with the restriction that the expected values of all such distributions equal �,

and it is impossible to generate values outside of the interval [�lo; �hi].

Let A(I) be the cost of the cheapest star network for instance I , and LB(I) be the

value of the lower bound for instance I .

43

Theorem 3.8 Let � > 0 be given. When instances of the nonblocking network design

problem are generated as described above, then

lim
n!1

Pr

�
A(I)

LB(I)
� 1 + �

�
= 1

This theorem can also be proven when switch locations are uniformly distributed in

the unit square, or many shapes that have their areas symmetrically arranged around

their center points. Using the unit disk just makes some mathematical expressions in

the proof simpler.

The proof is done in two parts. Lemma 3.11 states that a randomly generated in-

stance I is \balanced" with probability approaching 1 as n goes to in�nity. Lemma 3.14

then shows that A(I)=LB(I) is close to 1 for all balanced instances I .

For the �rst lemma, we use a theorem of Hoe�ding [43] and another due to Angluin

and Valiant [3, 41].

Theorem 3.9 (Hoe�ding) Let Xi, 1 � i � n, be independent random variables, each

having mean � and Prfa � Xi � bg = 1. Then for any real t, 0 < t < b� �, we have

Pr

(
nX
i=1

Xi � n� + nt

)
� e�2nt

2=(b�a)2

Pr

(
nX
i=1

Xi � n� � nt

)
� e�2nt

2=(b�a)2

Theorem 3.10 (Angluin,Valiant) Let Xi, 1 � i � n, be independent random variables,

each of which has probability p of being 1 and probability 1� p of being 0. Then for any

t, 0 � t � 1

Pr

(
nX
i=1

Xi � (1 + t)np

)
� e�t

2np=3

Pr

(
nX
i=1

Xi � (1� t)np

)
� e�t

2np=2

44

Figure 3.4: The 5-track 6-sector partitioning of the unit disk, R5;3

In the proofs below, it is useful to subdivide the unit disk into smaller regions, and

then reason about how many switches will be placed into each of the regions. The track

and sector subdivision of the unit disk is as follows. Let T; S be positive integers. A

T -track 2S-sector division of the unit radius disk is obtained by drawing T concentric

circles, where circle i, 1 � i � T , has radius i=T , and then drawing S straight lines

through the center of these circles, where each successive line makes an angle of �=S

radians with the previous line. Figure 3.4 shows a 5-track 6-sector division of the unit

disk. Track i, 0 � i � T �1, is the region between the circle of radius i=T and the circle

of radius (i+ 1)=T .

Let RT;S be the set of regions created by the T -track 2S-sector partitioning of the

unit disk. De�ne jrj to be the area of the region r, and let jRj be the total area of all

regions (� for the unit disk). For an instance I , let Nr be the set of all switches that

are located in region r.

For any region r, the probability that any one of the n switches is placed in the

region is jrj
jRj , because the switches are placed with a uniform distribution on the unit

45

disk. The expected number of switches in r is n jrj
jRj , and the expected total values of

�(Nr) and !(Nr) are both n jrj
jRj�.

We de�ne an instance I to be �; d-balanced, with respect to a set of regions R, if

(8r 2 R) [(1� �)E(�(Nr)) � �(Nr) � (1 + �)E(�(Nr))] ^
(8r 2 R) [(1� �)E(!(Nr)) � !(Nr) � (1 + �)E(!(Nr))] ^

(9v 2 V)
h
dist(v; C)� n�d

i (3.27)

where C is the center of the unit disk, and dist(v; C) denotes the Euclidean distance

between the switch v and the center.

Lemma 3.11 For instances I generated as described earlier, and all 0 < � < 1, 0 <

d < 1=2, T; S � 1

lim
n!1

PrfI is not �; d-balanced w.r.t. RT;S g = 0

Proof:

PrfI is not �; d-balanced w.r.t. RT;Sg

= Pr
n
(9r 2 RT;S) [�(Nr) < (1� �)E(�(Nr)) _ �(Nr) > (1 + �)E(�(Nr))] _

(9r 2 RT;S) [!(Nr) < (1� �)E(!(Nr)) _ !(Nr) > (1 + �)E(!(Nr))] _

(8v 2 V)
h
dist(v; C) > n�d

io

�
X

r2RT;S

�
Pr

�
�(Nr) < (1� �)n

jrj
jRj�

�
+ Pr

�
�(Nr) > (1 + �)n

jrj
jRj�

�

+Pr

�
!(Nr) < (1� �)n

jrj
jRj�

�
+ Pr

�
!(Nr) > (1 + �)n

jrj
jRj�

��

+

"
1� �n�2d

�

#n
(3.28)

The equality holds by the de�nition of �; d-balanced. The inequality holds because

PrfA _Bg � PrfAg+ PrfBg, even if A and B are dependent events, as some pairs of

events above happen to be.

46

Now we �nd an upper bound for expressions of the form Pr fAg, where A is either

�(Nr) � (1 � �)np� or �(Nr) � (1 + �)np�. We temporarily substitute p for jrj
jRj

for

readability.

Pr fAg =
nX

k=0

Pr fjNrj = k ^Ag (3.29)

�
b(1� �

2
)npcX

k=0

Pr fjNrj = kg+
nX

k=d(1+ �
2
)npe

Pr fjNrj = kg

+

d(1+ �
2
)npe�1X

k=b(1� �
2
)npc+1

Pr fjNrj = k ^Ag (3.30)

� Pr

�
jNrj � (1� �

2
)np

�
+ Pr

�
jNrj � (1 +

�

2
)np

�

+ �npmax
k

Pr fjNrj = k ^Ag (3.31)

where the maximization in the last line is over the range
�
(1� �

2)np
�
+ 1 � k �

�
(1 + �

2)np
� � 1. Step (3.29) holds because we are simply partitioning the event A

into n + 1 separate events. The inequality in step (3.30) holds because PrfjNrj =

k ^ Ag � PrfjNrj = kg. The �rst line of (3.31) is just a rewritten form of the �rst

line of (3.30), and the inequality follows from the maximization in the second line. The

factor of �np is an upper bound on the number of terms in the summation on the second

line of (3.30).

By applying Theorem 3.10 with t = �=2, we see that the �rst line of (3.31) is at

most

exp(��2np=8) + exp(��2np=12)

� 2 exp(��2np=12) (3.32)

where the inequality follows simply because the second term is the larger of the two.

47

Nowwe �nd an upper bound for the maximization term of (3.31), whereA is �(Nr) �

(1� �)np�. If jNrj = k, then let Nr = fv1; : : :vkg

Pr fjNrj = k ^ �(Nr) � (1� �)np�g

= Pr

(
kX
i=1

�(vi) � k�� k�

�
1� (1� �)

np

k

�)
(3.33)

� exp

�2k

�
1� (1� �)

np

k

�2
�2=(�hi � �lo)

2

!
(3.34)

� exp

�2(1� �=2)np

�
1� 1� �

1� �=2

�2
�2=(�hi � �lo)

2

!
(3.35)

= exp

�np

�2

2� �

!
�2=(�hi � �lo)

2

!
(3.36)

= exp (�npf(�)) (3.37)

Step (3.33) follows from rewriting and algebra. In step (3.34), we make use of Theo-

rem 3.9 with t = �(1 � (1 � �)np=k), which is larger than 0 because k � (1� �=2)np.

Step (3.35) follows using the same lower bound on k, and step (3.36) follows from alge-

bra. Step (3.37) is just a shorter form, where the function f has the obvious de�nition.

Using a similar derivation we may conclude

Pr fjNrj = k ^ �(Nr) � (1 + �)np�g

� exp

�np�

2(2� �)

(2 + �)2
�2=(�hi � �lo)

2

!

= exp (�npg(�)) (3.38)

We must use the upper bound on k, k � (1 + �=2)np, for this derivation. Again,

step (3.38) is for easier reading, and g is de�ned in the obvious way.

Now we may derive an upper bound on (3.28) by using (3.31), (3.32), (3.37), and

(3.38).

X
r2RT;S

�
8 exp

�
��2n jrj

12jRj
�
+ 2�n

jrj
jRj

�
exp

�
�nf(�) jrjjRj

�
+ exp

�
�ng(�) jrjjRj

���

48

+
h
1� n�2d

in
� 2ST

�
8 exp

�
��2n=24ST 2

�

+2�n
2T � 1

2ST 2

�
exp

�
�nf(�)=2ST 2

�
+ exp

�
�ng(�)=2ST 2

���

+ exp
�
�n1�2d

�
(3.39)

= c1 exp(�c2n) + c3n exp(�c4n) + c3n exp(�c5n) + exp
�
�n1�2d

�
(3.40)

Step (3.39) follows because 1
2ST 2 � jrj

jRj � 2T�1
2ST 2 , which is true by the de�nition of the

track and sector partition of the unit disk. The change in the last term is justi�ed by

the inequality 1 + x � ex for all real x. Step (3.40) is just a rewritten form of (3.39),

where all ci are positive real constants for any permissible values of �, S, T , and any

� > 0.

Since 0 < d < 1=2, we can now easily see that this function's limit is 0 as n goes to

in�nity.

Lemma 3.12 Let I be an instance that is �; d-balanced with respect to the partition

RT;S. Then the lower bound LB(I) for this instance satis�es

LB(I) � 2(1� �)n� cos

�
�

2S

�
2(T + 1=4)(T � 1)

3T 2
(3.41)

Proof: The lower bound is equal to the cost of a maximum cost ow in the lower

bound graph. We prove the lemma by constructing a ow, not necessarily of maximum

cost, that costs at least as much as the right hand side of Inequality (3.41). From this

it follows that LB(I) also satis�es the inequality.

In the track and sector partitioning RT;S, let r and r
0 be two regions that are in the

same track i, but in \opposite" sectors (i.e., going around track i from r to r0 in either

direction, we encounter S � 1 other sectors before reaching r0).

49

In the lower bound graph L for this instance, there are vertices us for each u 2 Nr

and vertices u0d for each u0 2 Nr0 . Because the tra�c is �; !-bounded, we can send

minf�(Nr); !(Nr0)g ow from all of the source vertices to all of the destination vertices.

Since I is �; d-balanced, this quantity is at least

(1� �)E(�(Nr)) = (1� �)n
jrj
jRj� (3.42)

= (1� �)n
2i+ 1

2ST 2
� (3.43)

Each of the arcs in the lower bound graph has a cost equal to the distance between

the switches. The distance between any switch in r and any switch in r0 is at least

(2i=T) cos(�=2S). See Figure 3.4 for a visual example of why the distance can be

smaller than 2i=T .

Therefore, we can make a ow from the vertices us to the vertices u0d that costs at

least �
(1� �)n

2i+ 1

2ST 2
�

��
2i

T
cos

�
�

2S

��
(3.44)

A similar ow can be set up between switches in all pairs of opposite sectors. The

total cost of such a ow is obtained by summing Equation (3.44) over all sectors.

T�1X
i=0

2S(1� �)n
2i+ 1

2ST 2
�
2i

T
cos

�
�

2S

�

= 2(1� �)n� cos

�
�

2S

�
1

T 3

T�1X
i=0

i(2i+ 1)

= 2(1� �)n� cos

�
�

2S

�
2(T + 1=4)(T � 1)

3T 2

where the equalities follow from algebraic manipulation and the identities
Pn

i=0 i =

n(n� 1)=2 and
Pn

i=0 i
2 = n(n� 1=2)(n� 1)=3.

50

Lemma 3.13 Let I be an instance that is �; d-balanced with respect to the partition

RT;S. Then the cost A(I) of the minimum cost star network satis�es

A(I) � 2(1 + �)n�

�
2(T � 1=4)(T + 1)

3T 2
+ n�d

�
(3.45)

Proof: The proof is done by constructing a star network, not necessarily of minimum

cost, that costs no more than the expression on the right hand side of Inequality (3.45).

From this it follows that A(I) satis�es the inequality.

Since I is �; d-balanced, there is a switch C that is no further than n�d from the

center of the disk.

Consider a sector r in track i of RT;S. For each switch u 2 Nr, we can build a link

(u; C) with capacity �(u) and a link (C; u) with capacity !(u), and the resulting tree

network is nonblocking. The distance from C to u is at most (i+1)=T+n�d. Therefore

the contribution to the total network cost from switches in r is at most

(�(Nr) + !(Nr))

�
i+ 1

T
+ n�d

�

� 2(1 + �)E(�(Nr))

�
i+ 1

T
+ n�d

�

= 2(1 + �)n
2i+ 1

2ST 2
�

�
i+ 1

T
+ n�d

�
(3.46)

because I is �; d-balanced. Summing Equation (3.46) over all sectors we get

T�1X
i=0

2S � 2(1 + �)n
2i+ 1

2ST 2
�

�
i+ 1

T
+ n�d

�

= 2(1 + �)n�
1

T 3

T�1X
i=0

(2i+ 1)(i+ 1 + Tn�d)

= 2(1 + �)n�

�
2(T � 1=4)(T + 1)

3T 2
+ n�d

�

where the equalities follow from algebraic manipulation and the same identities as used

in the proof of Lemma 3.12.

51

Lemma 3.14 Let I be an instance that is �; d-balanced with respect to the partition

RT;S. Then for any � > 0,

A(I)

LB(I)
� 1 + � (3.47)

if � � x�1
x+1 , S � �

2 cos�1(1=x), T � maxf2; 3(x+3)4(x�1) +
x�1
2 g, and n �

h
6

x�1

i1=d
, where

x = (1 + �)1=3.

Proof: Since I is �; d-balanced, then by Lemmas 3.12 and 3.13 and algebra we have

A(I)

LB(I)
�

�
1 + �

1� �

�
1

cos(�=2S)

"
(T � 1=4)(T + 1)

(T + 1=4)(T � 1)
+

3T 2

2(T + 1=4)(T � 1)
n�d

#
(3.48)

It is easy to verify that � � x�1
x+1 implies 1+�

1�� � x. Similarly, S � �
2cos�1(1=x) implies

1
cos(�=2S) � x.

T � 3(x+3)
4(x�1) +

x�1
2 implies (T�1=4)(T+1)

(T+1=4)(T�1) � (x + 1)=2, and T � 2 and n �
h

6
x�1

i1=d
imply 3T 2

2(T+1=4)(T�1)n
�d � (x� 1)=2.

All together, these conditions imply that the right hand side of Equation (3.48) is

at most

x � x � [(x+ 1)=2 + (x� 1)=2] = x3

= 1 + �

52

4. GENERAL FLAT TRAFFIC

4.1. De�nition

An additional way to restrict the o�ered tra�c is point-to-point limits. They are speci-

�ed by giving a value �(u; v) for each switch pair u; v 2 N; u 6= v. The value �(u; v) is

the maximum total rate of all connections that may exist from u to v simultaneously.

Given a set of switches N and a collection of connection requests R, de�ne the

point-to-point usage from switch u to switch v under requests R as

�-usage (u; v;R) =
X

(u;v;�)2R

� (4.1)

Let at tra�c limits T = (�; !; �) be given. We say that the set of requests R is

compatible with tra�c limits T if

(8u 2 N)
�
�-usage (u;R) � �(u) ^
!-usage (u;R) � !(u)

�
^

(8u; v 2 N) (�-usage (u; v;R)� �(u; v))

(4.2)

This is similar to condition (3.3), but now we also require that no pair of switches is

involved in more requests than their point-to-point limit allows.

An example of at tra�c limits is given in Table 4.1. The �; ! values are repeated

from the previous chapter.

In the previous chapter, the set of requests R = f(C;D; 35); (A;D; 90); (C;A; 100);

(C;A; 125)g was compatible with the tra�c limits T = (�; !). However, it is not com-

patible with the tra�c limits T = (�; !; �) in Table 4.1, because �-usage (C;A;R) =

53

Table 4.1: An example of at tra�c limits

v

�(u; v) A B C D �(u)

A { 0 1 1 450

u B 0 { 0 0 0

C 200 0 { 1 300

D 300 0 250 { 450

!(v) 450 0 300 150

225 > �(C;A). The set of requests R = f(C;D; 35); (A;D; 90); (C;A; 100)g is compati-

ble with T , however.

Note that �-usage (u; v;R) is simply the value xu;v de�ned in the previous section.

Thus the de�nition of a compatible request set (4.2) can be written by adding constraints

to the system (3.6), giving the modi�ed system:

X
v2N�fug

xu;v � �(u) 8u 2 N

X
u2N�fvg

xu;v � !(v) 8v 2 N

xu;v � �(u; v) 8u; v 2 N; u 6= v

xu;v � 0 8u; v 2 N; u 6= v

(4.3)

There are two restrictions on the values of �, !, and � that are sometimes useful.

The �rst is the condition

(8u; v 2 N) (�(u; v) � minf�(u); !(v)g) (4.4)

It can be proved that when this condition holds, the �rst two lines of condition (4.2)

imply the third line. Therefore the compatible sets of requests depend only upon the

values of � and !. When condition (4.4) holds, we call the tra�c limits termination

limit bounded, or �; !-bounded. Chapter 3 dealt solely with �; !-bounded tra�c limits.

54

The second restriction is

(8u 2 N)

 X
v2N

�(u; v) � �(u) ^
X
v2N

�(v; u) � !(u)

!
(4.5)

When this condition holds, the third line of condition (4.2) implies the �rst and second

lines. Therefore the compatible sets of requests depend only upon the values of �. When

condition (4.5) holds, we call the tra�c limits point-to-point bounded, or �-bounded.

Note that when the tra�c limits are �-bounded, there is one solution x� to the

system (4.3), x�u;v = �(u; v) for all u; v 2 N , that is the \largest". That is, all other

solutions x0 satisfy x0u;v � x�u;v for all u; v 2 N . When tra�c limits are not �-bounded,

there is no single solution x� with this property.

Con�guring a nonblocking network with �-bounded tra�c limits is very similar

to other work done on designing networks that can handle tra�c speci�ed by a tra�c

matrix [34, 44, 45, 50, 53, 55]. In fact, the optimal solution to our network con�guration

problem with arbitrary values (not necessarily satisfying the triangle inequality) is a

network in which the �xed path used from u to v is the shortest path from u to v in

the complete directed graph with edge lengths given by [44, p. 198]. When values

satisfy the triangle inequality, the direct link is always a shortest path, so the optimal

solution is a complete network.

If the solution is so simple, why is there so much other research on the problem?

The other work either allows additional nodes to be added, leading to a problem similar

to the Steiner tree problem [34], restricts solutions to tree networks [45], or considers

more complex link cost functions, ones that are not linear with the capacity of the

links [50, 53, 55].

When the tra�c is neither �; !-bounded nor �-bounded, we call it the general case

of nonblocking tra�c limits. The tra�c limits in Table 4.1 are neither �; !-bounded

nor �-bounded.

55

4.2. Lower bound

We may �nd a lower bound on the cost of any nonblocking network in nearly the same

way as in Section 3.4. We still want to maximize the objective function (3.7), but now

we want the solutions constrained by the new system of inequalities (4.3).

Again, this may be done by using general algorithms to solve linear programs, and

again this class of linear programs is equivalent to a restricted class of maximum cost

ow problems.

The new lower bound graph L = (V;E; cap; cost) is nearly the same as before. The

only di�erence from (3.9) is that now the edges of the form (us; vd) have capacities given

by the � values.

V = fs; tg [fus; ud : u 2 Ng
E = f(s; us; �(u); 0); (ud; t; !(u); 0) : u 2 Ng[

f(us; vd; �(u; v); (u; v)) : u; v 2 N; u 6= vg
(4.6)

The edge costs are the same as in Section 3.4.

The maximum cost ow in the lower bound graph for the general tra�c limits of

Table 4.1 and the values of Table 3.2 given previously, has a lower cost than the

lower bound graph for the �; !-bounded tra�c limits in Chapter 3. This is because the

point-to-point limits do not allow a tra�c pattern that is as expensive. A maximum

cost ow is the ow with f(As; Cd) = 300, f(As; Dd) = 150, f(cs; Ad) = 150, and

f(Ds; Ad) = 300, with a cost of 437400=150 = $2916, compared to $2944 without the

point-to-point limits. Thus the star network with center B with cost $3864 is at most

32.5% more than optimal.

56

4.3. Link dimensioning

Fixed path routing has a property that makes it much easier to analyze than most other

routing algorithms. No matter what sequence of requests to add and drop connections

came before, the state of the network is a function of the current active set of requests.

Assume for the moment that all links that are used in some �xed path have a

very large capacity that could not be exceeded even if every connection used it, e.g.,

minf�(N); !(N)g. Let h� be the function that maps request sets to states (this func-

tion depends only upon the table of �xed paths �). Given any set of requests R, we

can determine the state of the network h�(R), and therefore the usage of each link

l, �(l; h�(R)). Let ALLRT = fR : R is compatible with T g. We can determine the

maximum possible usage of any given link l:

��(l) = max
R2ALLRT

�(l; h�(R)) (4.7)

Note that this value is independent of any other link capacity. It depends only upon �,

T , and l.

If we dimension the network links with capacities cap that satisfy cap(l) � ��(l)

for all links l, then the network is nonblocking. If any link l has capacity less than

��(l), the network blocks when the requests in a set R� are made in any order, where

�(l; h�(R�)) = ��(l). Therefore, when the link cost functions are any nondecreasing

functions of capacity, the capacities cap(l) = ��(l), for all l = (u; v), u; v 2 N , produce

the cheapest solution to the link dimensioning problem. This is true for any �xed

paths and tra�c limits, even tra�c limits speci�ed by an arbitrary system of linear

inequalities. Therefore the link dimensioning problem has been reduced to computing

the function ��.

57

Let Pl be the set of ordered switch pairs that must use link l to communicate, i.e.,

Pl = f(u; v) : l 2 �(u; v)g. Let R be any compatible request set, and let x be the

corresponding feasible solution to the system (4.3). Then �(l; h�(R)) is just the sum of

rates of those connections that use link l,

X
(u;v)2Pl

xu;v (4.8)

Therefore, we can �nd ��(l) by maximizing (4.8) subject to the system of con-

straints (4.3). This class of linear programs is equivalent to a restricted class of maxi-

mum ow problems.

An instance of the maximum ow problem is similar to an instance of the maximum

cost ow problem, except that there are no edge costs, only capacities. The objective

is to �nd a ow with maximum value, where the value of a ow is the sum of ows on

edges out of the source vertex s.

The linear program for the set of switch pairs Pl is equivalent to the maximum ow

problem on the directed graph Ll = (V;E; cap) that is the same as L, except there are

no edge costs, and all edges of the form (us; vd) such that (u; v) 62 Pl have capacity 0.

Alternately, such edges may be removed from Ll.

Many e�cient algorithms have been designed for the maximum ow problem. King,

Rao, and Tarjan [51] have designed an algorithm with a worst-case running time of

O(mn+ n2+�) for any � > 0, where m is the number of edges in the network, and n is

the number of vertices. This algorithm has the best asymptotic e�ciency known to the

author. Goldberg and Tarjan [37, Section 4] describe an algorithm, which is quite easy

to implement, with a worst-case running time of O(n3).

In a star network with center switch C, we may �nd the maximum usage of links

(u; C); (C; u) by �nding a maximum ow in an appropriate graph Ll. Note that for

58

link (u; C), we have Pl = f(u; v) : v 2 N � fugg. These are the only edges of the form

(us; vd) in Ll that might have non-zero capacity. The only edges that can have non-zero

ow in any feasible ow are (s; u), and all edges of the form (us; vd) and (vd; t), where

v 2 N � fug. In this kind of maximum ow instance, a maximum ow can be found

in O(n) time, and many maximum ow algorithms for general instances �nish in O(n)

time when given such a restricted instance. Similarly, the maximum usage of link (C; u)

may be found in O(n) time.

Note that the maximum usage of links (u; C); (C;u) is the same no matter which

switch C 6= u is the center. Therefore, to �nd the cheapest star network, we compute the

capacities for links (u; C); (C;u) once at the beginning, and then �nd the cost of each

star network in O(n) time per network. Here is an algorithm that �nds the cheapest

star network:

For each u 2 N do

Compute out(u) := capacity of link (u; C) in any star with center C 6= u

Compute in(u) := capacity of link (C; u) in any star

End for

For each C 2 N do

Comment: Compute the cost of the star network with center switch C

cost(C) :=
P

u2N�fCg(out(u)(u; C)+ in(u)(C; u))

End for

Find the minimum cost(C)

Each loop takes O(n) time per iteration, so the total running time of this algorithm is

O(n2).

The cheapest star network for the tra�c limits of Table 4.1 and the link costs of

Table 3.2 is still the one with center switch B, and all of the link capacities are the same

59

0 20 40 60 80 100
n = number of nodes

1.0

1.2

1.4

1.6

1.8

2.0

so
lu

tio
n

co
st

 /
lo

w
er

 b
ou

nd

0.1 maximum

0.1 avg

0.2 avg
0.5 avg

1.0 avg

Figure 4.1: Experimental results for at general tra�c

as before. The � values must be quite small relative to �; ! before they can reduce the

link capacities of a star network.

4.4. Experimental results

A random instance is generated in much the same way as in Section 3.5. However,

now we also specify a range of real numbers [�lo; �hi], which is a sub-interval of [0; 1].

Place the switches randomly and generate �; ! values as before. Then for each switch

pair u; v, choose a real value x randomly in the interval [�lo; �hi] and set �(u; v) =

x �minf�(u); !(v)g. Note that if �lo = �hi = 1, then the tra�c limits T = (�; !; �) are

�; !-bounded.

Figure 4.1 shows several curves. All instances generated used the parameters �lo =

10, �hi = 20 as before, but now we set �lo = 0 and each curve represents a di�erent

value of �hi, as labeled. These are general tra�c limits, i.e., neither �; !-bounded nor

�-bounded, although they may happen to be �-bounded for small n and small values

60

of �hi. Fifty random instances were generated for each data point, and the same set of

values of n was used as before.

The performance ratios are noticeably higher on average now. For smaller values

of �hi, the performance ratios stay high for a longer time. This can be explained by

examining the kinds of maximum cost ows that we get in the lower bound graph, and

the capacities of star network links.

Suppose that �(u; v) is so large that it does not restrict the tra�c, i.e., �(u; v) �

minf�(u); !(v)g = U . Then up to U units of ow are free to go from us to vd in the

lower bound graph. If tra�c is �; !-bounded, then �(u; v) � minf�(u); !(v)g for all

u; v 2 N , and ow is free to travel between pairs of switches that are furthest apart,

making the lower bound value large. When �hi = 0:1, however, then the expected value

of �(u; v) is U(�lo+ �hi)=2 = U=20, and now ow from u must be split among 20 other

switches, on average. When there are few switches, not many of them will be far away,

and so ow must be sent to close switches, yielding a smaller lower bound. As n grows,

it is more likely that there will be 20 switches that are far away, increasing the lower

bound to a value close to that for unrestrictive � values.

A similar examination of the capacities required on the star network links show

that one would not expect them to be much smaller than when tra�c is �; !-bounded.

Therefore, the minimum star network costs do not decrease as much as the lower bound

does, and the performance ratio increases.

However, all curves eventually start to approach 1. This gives empirical evidence

that we should be able to extend the probabilistic result of Section 3.8 to more general

kinds of at tra�c limits.

When � values are small, the tra�c limits are more likely to be \close" to being

�-bounded. The closer the tra�c is to satisfying this condition, then the more likely

61

it is that a complete network, with direct links between every switch pair, is cheaper

than any tree solution. When the tra�c limits are �-bounded and values satisfy the

triangle inequality, the complete network is the optimal solution [44, p. 198].

All of the curves except the top one are average performance ratios, averaged over

50 instances. The top curve is the maximum performance ratio among all 50 instances

for �hi = 0:1. Curves showing the maximum performance ratio for the other values of

�hi would only clutter the plot. They are typically about twice as high above 1 as the

corresponding average curve. The worst performance ratio over all was 2.051 for a four

switch instance with �hi = 0:2.

62

5. HIERARCHICAL TRAFFIC

5.1. De�nition

The tra�c limits de�ned in Chapters 3 and 4 give a good way of specifying the tra�c

for a \at" network, with no additional structure. This method can be extended to

specify tra�c in a hierarchical way, where there are \clusters" of switches that may

have high tra�c among themselves, but less tra�c between switches in the cluster and

switches outside of the cluster. These clusters may come about because the network

owners charge the users more to establish connections outside of their cluster, because

there are groups of users who communicate more frequently among themselves than

with others on the network, or some combination of these causes.

As an example, Figure 5.1 shows the hierarchical structure of an instance with 11

switches, A through K, which are organized into 3 clusters, 1, 2, and 3. We denote the

set of clusters by C.

Figure 5.1: An example hierarchical problem instance

63

Table 5.1: Tra�c limits for \root" cluster

v

�(u; v) 1 2 3 �(u)

1 { 1 1 600

u 2 1 { 1 450

3 1 1 { 300

!(v) 450 450 300

If the tra�c were at, then there could simultaneously exist connections with total

rate up to �(fA;B;C;Dg) = 450 + 0 + 300 + 450 = 1200 Mb/s that have their source

as one of A;B;C;D and their destination as one of E : : :K. However, suppose we know

that there will never be such connections with total rate more than 600 Mb/s at any

given moment. This can be speci�ed by saying that the source termination limit of

cluster 1, �(1), is 600 Mb/s. Similarly, let the maximum total rate of connections with

source outside of 1 and destination in 1 be 450 Mb/s, and call this the destination

termination limit of cluster 1, !(1). Similar values for clusters 2 and 3 are given in

Table 5.1.

The example given is a two-level hierarchy. One can think of at tra�c as a one-level

hierarchy, where there is only one cluster containing all of the switches. This method of

specifying tra�c can be used for more general hierarchical structures. For example, we

could have a three level hierarchy in which clusters of switches were further grouped into

\super clusters". In general, each cluster or \super cluster" has its own � and ! values,

and arbitrary pairs of switches or clusters can have point-to-point limits between them.

We denote hierarchical tra�c limits T by the tuple (H; �; !; �), where H represents the

hierarchical structuring of the switches and clusters.

H may be represented as a rooted tree in which the switches in N are leaves, the

clusters in C are internal vertices, and there is a root vertex R, which is just a place

64

Figure 5.2: The hierarchy tree H for the instance in Figure 5.1

holder. Figure 5.2 shows the hierarchical structureH of the instance shown in Figure 5.1.

We say that a switch/cluster u is in the cluster c if u is a descendant of c in the hierarchy

tree H.

Let a set of switches N with a hierarchical structureH and a collection of connection

requests R be given. We can extend the de�nitions of the source usage, destination

usage, and point-to-point usage given in Sections 3.1 and 4.1, to include clusters as well

as switches. In the following de�nitions, let s(c) be the set of all switches in N that are

contained in the cluster c, or s(c) = fcg if c 2 N .

�-usage (c;R) =
X

(u;v;�)2R;

u2s(c); v 62s(c)

� (5.1)

!-usage (c;R) =
X

(u;v;�)2R;

u62s(c); v2s(c)

� (5.2)

�-usage (c1; c2;R) =
X

(u;v;�)2R;

u2s(c1); v2s(c2)

� (5.3)

We say that the set of requests R is compatible with the hierarchical tra�c limits

T = (H; �; !; �) if

(8u 2 N [C) (�-usage (u;R) � �(u) ^ !-usage (u;R) � !(u))^
(8u; v 2 N [C) (�-usage (u; v;R)� �(u; v))

(5.4)

65

Table 5.2: Tra�c limits for cluster 2

v

�(u; v) E F G �(u)

E { 1 1 450

u F 1 { 1 300

G 1 1 { 600

!(v) 450 300 600

That is, no switch or cluster is involved in more requests than its termination limits

allow, and no pair of switches/clusters is involved in more requests than their point-to-

point limit allows.

As before, it is useful to write these conditions as linear inequalities on the x vari-

ables. The system of inequalities is:

X
u2s(c);v 62s(c)

xu;v � �(c) 8c 2 N [C
X

u62s(c);v2s(c)

xu;v � !(c) 8c 2 N [C
X

u2s(c1);v2s(c2)

xu;v � �(c1; c2) 8c1; c2 2 N [C

xu;v � 0 8u; v 2 N; u 6= v

(5.5)

Tables 5.2 and 5.3 give tra�c limits for the switches in clusters 2 and 3. All

tra�c limits for cluster 1, switches A through D, are the same as in Table 4.1 of the

previous chapter. Point-to-point limits are only given between switches or clusters that

are siblings in the hierarchy tree H. See Section 5.2 for an explanation. The link cost

coe�cients are given by the entries of Table 5.4. The entries are symmetrical, and

equal to the Euclidean distance between the switches (rounded up), where the position

of each switch is given in the table.

66

Table 5.3: Tra�c limits for cluster 3

v

�(u; v) H I J K �(u)

H { 1 1 1 450

u I 1 { 1 1 300

J 1 1 { 1 300

K 1 1 1 { 0

!(v) 450 300 300 0

Table 5.4: Link costs (u; v) for hierarchical example

A B C D E F G H I J K Position

A 0 250 472 500 400 292 500 510 722 949 825 (100,500)

B 0 255 336 619 450 619 461 750 902 764 (250,300)

C 0 472 764 560 658 365 681 744 603 (500,250)

D 0 900 765 949 782 1082 1205 1064 (100,0)

E 0 213 300 584 600 906 825 (100,900)

F 0 213 381 475 752 652 (250,750)

G 0 361 300 609 539 (400,900)

H 0 317 448 317 (600,600)

I 0 317 283 (700,900)

J 0 142 (1000,800)

K 0 (900,600)

67

5.2. Lower bound

Once again, a lower bound can be found by maximizing the objective function (3.7)

subject to our set of constraints (5.5). Unlike before, however, we know of no equivalent

maximum cost ow problems for hierarchies with at least two levels, and believe that

none exist for \most" such instances. However, we have found a class of maximum

cost ow instances that have optimum solution values that are no larger than those of

the linear programs. Unless improved algorithms are devised for solving general linear

programs, or at least our restricted class of linear programs, solving a maximum cost

ow problem will remain a faster way to compute a lower bound, although of lower

quality.

Now we generalize the de�nition of the lower bound graph L = (V;E; cap; cost)

for hierarchical tra�c limits. This generalization works when point-to-point limits are

speci�ed only between pairs of switches or clusters that are both immediately contained

within the same larger cluster, i.e., they are siblings in the hierarchy tree H.

V = fs; tg [fus1; ud1 : u 2 Ng [fus1; us2; ud1; ud2 : u 2 Cg

E = f(s; us1; �(u); 0); (ud1; t; !(u); 0) : u 2 Ng [

f(us2; us1; �(u); 0); (ud1; ud2; !(u); 0) : u 2 Cg [

f(us1; vs2;1; 0); (vd2; ud1;1; 0) : u a child of v in H; v 6= Rg [

f(us1; vd1; �(u; v); cost(u; v)) : u; v are siblings in Hg

The costs cost(u; v) are de�ned below.

The lower bound graph for the hierarchical tra�c limits of Tables 4.1, 5.1, 5.2, and

5.3, and link cost coe�cients of Table 5.4, is shown in Figure 5.3.

How should edge costs in L be assigned? Consider the example lower bound graph.

It should be clear from our previous experience that we should de�ne the costs of all

68

Figure 5.3: Lower bound graph for example hierarchical tra�c limits. Edges are labeled
with their capacity, an example ow, and cost, in that order. Edges with no cost label
have 0 cost, and edges with no capacity label, or a dash (|), have in�nite capacity. The
dotted edges either have capacity 0, or they have ow 0 in every feasible ow. Their
labels are not shown to avoid cluttering the �gure.

edges of the form (s; us1) and (vd1; t) to be 0, and the costs of all edges of the form

(us1; vd1) to be (u; v), where u; v are both switches in N (e.g., edges (As1; Bd1) and

(Fs1; Ed1), but not (1s1; 2d1)). However, how should we de�ne the other edge costs?

One property that should hold for our assignment of edge costs is: for any switch

pair u; v, the total cost of all edges on any path from us1 to vd1 should be at most

(u; v). We call this the valid cost property, and any path violating it is called invalid.

If the valid cost property is violated, we are not guaranteed that the cost of a ow is a

69

lower bound for the cost of any nonblocking network. Any ow on an invalid path may

cost more than is required to build the necessary links.

Given the restriction of keeping the costs valid, we want to de�ne the edge costs so

that the maximum cost ow costs as much as possible. It appears that computing these

optimum edge costs exactly would require solving a nonlinear optimization problem.

Even if this task could be done e�ciently, we believe there are instances of hierarchical

network design problems for which the costs between switches in di�erent clusters cannot

be accurately modeled in the lower bound graph. However, there is a simple way to

de�ne edge costs that usually seems to do fairly well, according to the experimental

results in Section 5.4, and these costs can be determined very easily.

The basic idea is to examine some of the edges of the lower bound graph in a given

order. On each step, increase the cost of the current edge as much as possible while

still maintaining the validity of the edge costs. The approach used in obtaining the

experimental results is to consider the edges (us1; vd1), where u; v range over all sibling

pairs of switches in the hierarchy tree. If only these edges are considered, then the order

of their consideration does not matter. The resulting edge costs are the same in any

case.

Valid edge costs are given by the third number labeling each edge in Figure 5.3. If

there is no edge label, or only two numbers labeling the edge, then the cost is 0. One

can see that the cost of edge (1s1; 2d1) is 292, which is the smallest cost from any switch

in cluster 1 to any switch in cluster 2, cost(A; F). This is the largest valid cost that edge

(1s1; 2d1) may have. Therefore tra�c between some pairs of switches in those clusters

is not \charged" as much as possible. The linear program to compute the lower bound

does not have this problem.

70

Once a maximum cost ow f� in L has been computed, the cost of f� is a lower

bound on the cost of any nonblocking network. In Figure 5.3, a maximum cost ow is

given by the second number labeling each edge. Its cost is 1257300=150 = $8382.

Even better, we may �nd any solution x that corresponds to f�, and a lower bound

is LB(I; x) (3.7). This value is at least as large as the cost of f�, because the edge costs

must be valid. In most cases it is larger than the cost of f�, and this method was used

to compute the lower bounds for the experimental results in Section 5.4. For example,

one solution x that corresponds to the maximum cost ow of Figure 5.3 is xA;C =

300; xA;D = 150; xC;F = 150; xC;A = 150; xD;H = 150; xD;A = 300; xE;G = 450; xF;I =

150; xG;E = 450; xH;I = 150; xH;J = 300; xI;F = 150; xI;G = 150; xJ;H = 300. The cost

implied by this set of requests is 1412550=150 = $9417, which is about 12.3% higher

than the cost of the ow itself. This extra quality in the lower bound can be obtained

in O(n) time after the maximum cost ow has been found, much less time than it takes

to �nd the ow itself.

An optimal solution to the linear program is xA;C=250; xA;J=50; xC;A=200; xC;E=

100; xD;G = 350; xD;I = 100; xE;C = 50; xE;G = 250; xE;H = 150; xF;E = 150; xG;D =

100; xG;E = 200; xG;F = 300; xH;I = 200; xH;J = 250; xI;D = 50; xI;H = 250; xJ;A =

250; xJ;H = 50, giving a lower bound of 1796550=150 = $11; 977. This is 27.2% higher

than the lower bound $9417 found using the maximum cost ow method. For the ran-

domly generated instances of Section 5.4, the average di�erence between these two lower

bounds is often much less than this.

71

5.3. Link dimensioning, and hierarchical star networks

Link dimensioning in a tree network can be done using the same method as in section 4.3,

based on solving the linear program of maximizing (4.8), but now subject to our new

system of constraints (5.5).

Unlike before, we know of no maximum ow problems that are equivalent, at least for

arbitrary sets of switch pairs Pl. However, when Pl is of the form f(u; v) : u 2 X; v 2 Y g

for some sets of switches X; Y � N , the linear program is equivalent to a maximum

ow problem on a graph Ll = (V;E; cap) that is the same as L of the previous section,

except that we reduce the capacities of all edges in the sets f(s; us1) : u 62 Xg and

f(vd1; t) : v 62 Y g to 0. This special case is useful, because Pl is of the proper form when

solving the link dimensioning problem in a tree network.

For hierarchical tra�c, we generalize the notion of a star network to a hierarchical

star network. We go through the hierarchy tree of the instance in a bottom-up fashion,

computing the cheapest star subnetwork for each of the lowest level clusters. Then,

treating each of the lowest level clusters as a single switch located at the center of the

chosen star subnetwork, �nd the cheapest star subnetwork for the next to lowest level

clusters.

As before, we may precompute the minimum necessary link capacities in and out

of each switch, instead of performing a redundant calculation for each star subnetwork

tried. We may also precompute the minimum necessary link capacities in and out of

each cluster, super-cluster, etc., when �nding the cheapest star networks connecting

lower level clusters.

For example, consider again the instance with hierarchical tra�c limits given by

Tables 4.1, 5.1, 5.2, and 5.3, and link cost coe�cients given in Table 5.4. For cluster 1,

72

Figure 5.4: A nonblocking network for the example hierarchical instance

the cheapest star subnetwork is the one with center switch B, exactly as we found at

the end of Section 4.3. For cluster 2, the cheapest choice of center is G, and for cluster

3, the cheapest center is H . Now we �nd the cheapest star network connecting the

subnetworks, where we treat all switches in 1 as if they are located at B, all switches

in 2 at G, and all switches in 3 at H . This network is the one with center H , so we

add links f(B;H); (H;B); (G;H); (H;G)g to the star subnetworks already found. This

network is shown in Figure 5.4. The cost of this network is 2245350=150 = $14969,

which is 25.0% over the linear programming lower bound of $11977, and 59.0% over the

maximum cost ow lower bound of $9417. Therefore this network costs at most 25%

over optimal.

This procedure can be implemented to run using 2(jN j+ jCj) maximum ow compu-

tations, each requiring only O(n) time due to their special structure. The best centers

for each cluster can be determined in time
P

c2C[fRg jcj2, where jcj is the number of

switches and sub-clusters that are children of c in H.

73

5.4. Experimental results

In this section we present experimental results comparing the cost of inexpensive hier-

archical star networks, computed as described in Section 5.3, to the lower bounds. Here

the lower bounds are computed in two ways. First there is the faster but less accurate

method of using the lower bound graph with valid edge costs, described in Section 5.2,

and then the slower but more accurate method of solving the linear program LP, de-

scribed later in the same section.

All instances generated are two-level hierarchies, although the methods for instance

generation and all algorithms work for arbitrary hierarchical structures.

To generate random two-level hierarchies, we are given a number of clusters c and

a number of switches m to place within each cluster, giving a total of n = cm switches.

In addition to the the parameters given for at instances in Section 4.4, we are given a

range of real numbers [�clo; �
c
hi], which is a sub-interval of [0; 1].

When placing switches, we assume that not only do clusters have higher tra�c

among the switches within, but the switches are also geographically clustered together.

For each cluster, we generate a random width w in the interval [:1; :25] and a height h

in the same interval. A bounding rectangle for the cluster with these dimensions is then

randomly placed in the unit square, and all m switches within the cluster are randomly

placed within this bounding rectangle. Bounding rectangles for di�erent clusters are

allowed to overlap. Link cost coe�cients (u; v) are set equal to the Euclidean distance

between u and v. The � values for switches (but not clusters) are generated as before.

For each cluster U containing switches u1; : : :um, generate a random real value x in the

interval [�clo; �
c
hi] and set �(U) = !(U) = x �Pm

i=1 �(ui). If this interval is [1; 1] then the

clusters do not constrain source and termination capacity any more than that of the

constituent switches (although � values for the clusters may constrain the tra�c more

74

0 20 40 60 80 100
n = total number of nodes

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

so
lu

tio
n

co
st

 /
lo

w
er

 b
ou

nd

 2 clusters
 3 clusters
 4 clusters
 5 clusters

Figure 5.5: Experimental results for hierarchical tra�c

than if there were no clusters). All experiments reported here use the interval [:1; :3], so

that 10% to 30% of a cluster's tra�c may be between switches within it and switches

in other clusters.

The top four curves of Figure 5.5 show the average ratio of the hierarchical star

network cost over the lower bound obtained by �nding a maximum cost ow in the

lower bound graph, and then �nding the cost of a solution x corresponding to this ow.

Each curve represents a di�erent value of c, the number of clusters, as shown. The

number of switches per cluster m ranges over the same values as n did in the previous

section, as long as n = cm � 100. Each data point is the average performance ratio of

80 randomly generated instances. Experiments were also run for up to c = 10 clusters,

75

but the curves for more than 5 clusters do not di�er signi�cantly from those with 3 to

5 clusters, so they are not shown.

It seems that there may be a trend towards 1, but if so, then it occurs much more

slowly than before. The performance ratios are signi�cantly better when there are two

clusters, as opposed to three or more. If we had at instances with two switches, the

lower bound and the minimum cost solution have exactly the same value. It is only

for three or more switches that they can di�er. Similarly, when we have two level

hierarchical instances with two clusters, the portion of the lower bound caused by the

inter-cluster tra�c is close to the cost of the links between the clusters. When there

are three or more clusters, these values can di�er signi�cantly. We expect that curves

for large numbers of clusters (e.g. 50) would be closer to the c = 2 curves than to the

curves for 3,4, or 5 clusters.

The lower four curves of Figure 5.5 show the average ratio of the hierarchical star

network cost over the lower bound computed by the linear program. Each data point

is the average ratio of 30 randomly generated instances, which are identical to 30 of

the instances used in generating the upper four curves. The linear programming lower

bound was not computed for the larger instances, because of the time and memory

required to compute them. The largest instances for which the linear programwas solved

required up to 3 hours of CPU time on a Sun 4/110 workstation, and approximately

15 megabytes of virtual memory. They were solved using an unsophisticated (but free)

implementation of the simplex method, and both the time and memory required could

probably be reduced by a factor of 5 to 10 by using more careful implementations that

take advantage of the sparsity of non-zero coe�cients. Again, experiments were run for

up to 10 clusters, but the curves for more than 5 clusters are very similar to those for

3 to 5 clusters.

76

The range of values is notably lower now, from about 1.03 up to 1.10. There seems

to be more of a tendency to approach 1 as n increases. Thus we should also be able to

extend the probabilistic result of Section 3.8 to some kinds of hierarchical tra�c limits

as well.

77

6. MULTIPOINT CONNECTIONS

Thus far we have only explicitly considered point-to-point requests and connections.

In this chapter we show how the �xed path routing algorithm can be extended in a

straightforward way to handle multipoint connections, and we prove that if a network

is nonblocking for point-to-point requests when using �xed path routing, then it is also

nonblocking for multipoint requests.

6.1. De�nition

A multipoint connection request is a triple r = (src ; dest ; �). Instead of having only

a single source and a single destination, there may be multiple sources and multiple

destinations. Switches src (r) � N are the sources of information ow, and switches

dest (r) � N are the destinations of ow. The desired rate of the connection is �(r), as

before.

We have studied three kinds of multipoint requests. The �rst is a one to many

request in which jsrc (r)j = 1 and jdest (r)j > 1. Such a request can be realized by a

connection c = (�; �) where �(c) is a directed rooted tree in which the single switch

src (r) is the root, all links are directed away from the root, and all switches in dest (r)

are either leaves or internal switches of the tree. It is wasteful of link bandwidth to

allow leaves in the connection tree that are not switches in dest (r). Every switch

that is an internal switch of the connection receives data at rate �(c) = �(r) from its

upstream neighbor (i.e., its parent in the tree), and sends copies of the data to all of

its downstream neighbors (its children in the tree). If the switch is in dest (r), then a

78

copy of the data is also sent to the directly attached terminals that wish to receive it.

We assume that the switches operate in a nonblocking fashion with respect to new one

to many connection requests.

The second kind of request is a many to one request in which jsrc (r)j > 1 and

jdest (r)j = 1. Such a request can be realized by a connection c = (�; �) where �(c) is a

directed rooted tree in which the single switch dest (r) is the root, all links are directed

towards the root, and all switches in src (r) are either leaves or internal switches of the

tree. Every switch that is an internal switch of the connection receives data with a rate

at most �(c) = �(r) from each of its upstream neighbors (its children in the tree), and

multiplexes and sends it to its downstream neighbor (its parent). If the switch is in

src (r), then at least one of the sources being multiplexed is a directly attached terminal.

Note that since multiplexing of sources is being performed, we really can't expect to

use all of the �(c) bandwidth that we have reserved on each link in �(c) for sustained

periods of time. If all senders want to send at full rate constantly, then one should set

up multiple point-to-point connections, not a many to one connection. However, we

assume that bandwidth �(c) is reserved for connection c on all links in the connection,

and may not be used by other connections.

The third kind of request is a many to many request in which src (r) = dest (r), the

sources and destinations are the same. A many to many request can be realized by a set

of links �(c) that forms a tree network containing switches src (r), and possibly others.

Every switch u receives data with a rate at most �(c) = �(r) from each of its neighbors

in the connection. Its neighbors in the connection include the adjacent switches in the

connection tree �(c), and, if u is in src (r), some attached terminals. Data received

from a particular neighbor is copied and sent to all other neighbors except the source

of the data.

79

For the last time, here are the extended de�nitions of �-usage , !-usage , and

�-usage . These de�nitions include all of the previous ones as special cases. Let a

set of switches N and hierarchical tra�c limits T = (H; �; !; �) be given. Let s(c) be

the set of all switches in N that are contained in the cluster c 2 C, or just fcg if c 2 N

is a switch.

�-usage (c;R) =
X
r2R;

src (r)\s(c)6=;

dest (r)\s(c)6=;

�(r) (6.1)

!-usage (c;R) =
X
r2R;

src (r)\s(c)6=;

dest (r)\s(c)6=;

�(r) (6.2)

�-usage (c1; c2;R) =
X
r2R;

src (r)\s(c1)6=;;

dest (r)\s(c2)6=;

�(r) (6.3)

The de�nition of a compatible request set does not change.

6.2. Point-to-point tra�c is the worst

In every previous section on link dimensioning, we have only explicitly considered point-

to-point requests and connections. If allowing multipoint connections could increase the

maximum usage of link l, ��(l), then we would want to �nd a way to compute these

larger values. In this section, we show that ��(l) remains the same when multipoint

connections are allowed. This means that the worst-case tra�c for any link can be

achieved by point-to-point connections only.

For now, we assume that the �xed path routing algorithm routes a one to many

request (u; V; �) by using all of the links �(u; V) =
S
v2V �(u; v). In a real network, the

connection would form a rooted tree whose links are a subset of �(u; V), but our result

holds even when all of these links are used. We assume that a many to one request uses

80

all links in �(U; v) =
S
u2U �(u; v). We examine many to many requests in the context

of a tree network, where we know that the nodes and links in the connection must also

form a tree network.

Here is how we show that ��(l) does not increase when multipoint connections are

allowed. Let l be a link with an arbitrary set of switch pairs Pl that must use l to

communicate, Pl = f(u; v) : l 2 �(u; v)g. Given any compatible set of requests R

containing multipoint requests, we show how to replace any multipoint request r with

a point-to-point request r0 that induces the same tra�c on l, but adds no more than

r does to �-usage , !-usage , and �-usage . Thus the set R0 resulting from replacing

all multipoint requests with point-to-point requests must also be compatible. We have

already considered all compatible point-to-point request sets when �nding the maximum

usage of l.

The replacement is quite simple. If r = (u; V; �) is a one to many multipoint request,

and there is some v 2 V for which (u; v) 2 Pl, then the connection will use link l. If we

replace r with r0 = (u; v; �), then the connection for r0 will use the same capacity � on

link l that r did, but r adds � to !-usage (x) and to �-usage (u; x) for all x 2 V � fvg,

while r0 does not. If r = (u; V; �), and there is no v 2 V for which (u; v) 2 Pl, then the

connection satisfying r does not use link l, and so may be removed from the request set.

A many to one multipoint request r = (U; v; �) can be handled similarly. If there is

a switch u 2 U such that (u; v) 2 Pl, replace r with r0 = (u; v; �), otherwise remove r

from R.

For a many to many multipoint request r = (U; U; �) in a tree network, link l is

used in the connection if and only if there is some u1 2 U \Xl, where Xl is the set of

switches on the source side of l, and some u2 2 U \ (N � Xl). If this holds, replace r

with r0 = (u1; u2; �), otherwise remove r from R.

81

Thus, the maximum usage of any link can be achieved by point-to-point requests

only, and hence any network that is nonblocking for point-to-point requests is nonblock-

ing for multipoint requests as well. This result holds when �xed path routing is used,

and multipoint requests are realized by connections that perform the copying as late as

possible.

The intuitive idea for why this works is that the termination limits of the switches

are \used up" more quickly for multipoint requests than for point-to-point requests.

Link capacities, however, are \used up" at the same rate, or less.

6.3. Dynamic multipoint connections

The results of the previous section also imply that we may dynamically add switches to

and remove switches from multipoint connections, without removing the entire connec-

tion and replacing it with a new one. This requires that the switches are also capable of

doing so. This is a useful property for a network to satisfy, since network users would

desire such an ability for multipoint applications like teleconferencing. However, some

rearrangement of the connection may be necessary when removing a switch, depending

on the structure of the �xed paths.

In this section, the discussion focuses on one to many multipoint connections, but

it applies just as well to many to one connections. Most if it does not apply to many

to many connections, because we have only proved that they are nonblocking when the

connection is always a tree.

As an example of the rearrangement required, consider the network of Figure 6.1,

where �(A;D) = ACD and �(A;E) = ABCE. Suppose there is �rst a connection

request (A;D; 1), which can be satis�ed by the path ACD. Now suppose that we wish

to add the destination E to this connection. One way would be to remove the existing

82

Figure 6.1: Simple network to demonstrate dynamic multipoint connections

connection and then build a connection for the request (A; fD;Eg; 1). Another would

be to add links to the existing connection so that the result is a tree that satis�es the

connection request (A; fD;Eg; 1).

The following way makes as small a change as possible to the existing connection.

Step backwards along the path �(A;E) until a switch is reached that is already in the

connection. In this example, add the link (C;E) and then stop, because C is in the

connection. This method works in general for adding any destination to an existing

one-to-many connection, because the result is always a tree, and a subset of the links

�(u; V).

However, suppose that we now wish to remove D as a destination from this existing

connection. In the general case, we could try to update the connection in an analogous

way to adding a destination. That is, work backwards from the destination to be

removed until a switch is reached that must remain in the connection (because of other

remaining destinations). If we tried that in the example, we would remove the link

(C;D) from the tree, ending up with the path ACE 6= ABCE = �(A;E).

As far as the existing connection requests are concerned, there is only (A;E; 1).

However, the link (A;C) is used in the current state, and so future (A;D) connection

requests may block. Therefore, the minimal modi�cation to the connection, described

in the previous paragraph, does not guarantee nonblocking behavior. It is necessary to

make certain that the links in the connection are a subset of �(u; V) at all times. This

may require removing links from and adding links to the existing connection when a

83

destination is removed. In our example, we must remove links (A;C); (C;E) and add

links (A;B); (B;C).

Note that this problem does not occur in a tree network, and removing destinations

can always be done by removing links but not adding any.

84

7. EXTENSIONS

7.1. Blocking due to link fragmentation

A requirement in the ATM standard is that all cells in a virtual circuit must be delivered

in the same order they are sent. While all ATM switch architectures known to the author

maintain cell order for virtual circuit cell streams arriving on a single input port and

leaving on a single output port, few architectures are designed to maintain cell order

for cell streams arriving on multiple input ports and leaving on multiple output ports.

Maintaining cell order on multiple parallel high speed links is also a challenging task.

The Aurora test bed network was designed to do this [17]. See Saidi et al. [58, 59] for

one example of a switch architecture designed to do this, and citations to several others.

For the rest of this section, we assume that the switches used are incapable of

maintaining cell order for streams on multiple ports. This means that if there are

multiple physical links between a pair of switches, all cells within a virtual circuit must

go on the same physical link.

In all of the previous chapters except the introduction, we have represented a group

of physical links between a pair of switches as a single directed edge that has a capacity

equal to the total of all of the physical links. This made it easier to think about the

problem, but such a model does not accurately represent a real ATM network. A

network for which we have dimensioned the links to be nonblocking will block when

the aggregate capacity links are implemented with multiple physical links with smaller

capacity.

85

Figure 7.1: Repeat of nonblocking network of Figure 2.1

Table 7.1: Repeat of �; !-bounded tra�c limits in Table 3.1

u �(u) !(u)

A 450 450

B 0 0

C 300 300

D 450 150

For example, recall the �rst example network given in Chapter 2, shown here again

as Figure 7.1. We saw in Section 3.2 that this network was nonblocking for the at

�; !-bounded tra�c limits given there, shown again in Table 7.1. However, when the

network is implemented with 150 Mb/s physical links, as shown in Figure 7.2, we see

that the following compatible sequence of requests blocks. The request (C;A; 100) can

be satis�ed by using either of the physical links from C to B, but the next request

(C;A; 125) can only be satis�ed by using the other one. It is now compatible with the

tra�c limits to make the request (C;A; 75). We see that there is a total of 75 Mb/s

available on the two links from C to B, but it is not all available on a single link.

Therefore the request blocks.

The main cause of this problem is allowing requests with rates that are close to

the rates of the physical links. In these cases, it is possible to enter states where each

86

Figure 7.2: Physical switches and links that implement network in Figure 7.1

one of a group of physical links can be used a little bit, and then a single large rate

request is made that cannot �t on any of them. If we restrict the maximum connection

rate allowed to be a fraction of the physical link rate, this problem can be solved by

installing physical links with a total rate larger than the aggregate rate needed for a

nonblocking network.

Suppose that all physical links installed between a particular switch pair u; v have

the same capacity R. Let �� be the maximum connection rate allowed. Let x = ��(u; v)

be the maximum tra�c from u to v. If we wish to add a new connection with rate �

that uses a link in the group from u to v, then this request will block if and only if the

utilization of all links is at least R� �+ �, for any � > 0. A new request with rate � is

compatible with the tra�c limits only if the current total usage is at most x� �. With

this tra�c, the number of links that can be utilized at least R� �+ � is
j

x��
R��+�

k
. The

maximum of this expression over all � > 0 is y =
l
x��
R��

m
� 1. This is the maximum

number of links that are too full to handle the new connection. Thus if we have at least

y + 1 =
l
x��
R��

m
links from u to v, no request with rate � will ever block.

87

We desire that no compatible request blocks, so we should maximize
l
x��
R��

m
over all

values of �, 0 < � � minf��; xg. This maximum is

max
0<��minf��;xg

�
x� �

R� �

�
=

8>>>><
>>>>:

0 if x = 0

1 if 0 < x � Rl
x���

R���

m
otherwise

(7.1)

which is achieved (for x > R) when � = ��. If we let �0 = ��=R, then this is

n(x; �0) =

8>>>><
>>>>:

0 if x=R = 0

1 if 0 < x=R � 1l
x=R��0

1��0

m
otherwise

(7.2)

If there are at least n(x; �0) links from u to v, then no request will block because of

insu�cient capacity there.

Note that if the cells of a single connection could be split up among multiple physical

links, then only dx=Re = n(x; 0) links would be needed. n(x; �0) is roughly 1=(1 � �0)

times larger than n(x; 0). For any value of �0, the total instantaneous tra�c on all of the

links is x, so the n(x; �0) links have an average utilization that is no more than about

(1� �0).

Let us take these results and apply them to our example. Let R = 150Mb=s and

�� = 75Mb=s, giving �0 = 1=2. The maximum tra�c from A to B is 450Mb=s, so the

minimum number of links needed from A to B is
l
450=150�1=2

1�1=2

m
= 5. Similarly for the

opposite direction. Repeating this calculation for all switch pairs, we get the network

in Figure 7.3.

Note that switchA serves no useful purpose in this network that cannot be performed

by switch B just as well, because A has 5 links in each direction between its terminals

and itself, and 5 links in each direction between itself and B. Therefore, it can be

removed, and all terminals that were previously attached to A can now be attached to

B, as in Figure 7.4.

88

Figure 7.3: Network that is nonblocking even with link fragmentation

Figure 7.4: Network with unnecessary switch A removed

89

Note that this substitution of n(x; 0) physical links with n(x; �0) links increases the

cost of the network by a factor of about 1=(1 � �0). There may be a way to increase

the value of the lower bound in a similar way, by replacing the objective function (3.7)

with

LB0(I; x) =
X

u;v2N;u6=v

(u; v)n(xu;v; �
0) (7.3)

Unfortunately, this no longer leads to a linear program because of the shape of the

n(x; �0) function. We can use a linear function of x that is always no more than n(x; �0),

but the only such function is x. We would prefer something like x=(1� �0), to keep the

cost of the network and the value of the lower bound close.

7.2. Handling physical constraints on network installation

When a network managers decide to install a network, it is not automatically apparent

how to formulate their problem as a network con�guration problem de�ned in Sec-

tion 2.3. They know (or must �nd out) what the physical layout of their site is, i.e.,

where terminals are located, where switches may be placed, where cables may be in-

stalled, or have already been installed, building codes, etc. They also have a variety of

switch types they may buy with di�erent features and costs, di�erent types of cables

to choose from, and various host-network interface cards that may be installed in the

workstations.

In this section we outline some of the details that must be considered by the network

manager. A manager's dream software package would take all of these details into

account and assist the manager in installing and upgrading the network as cheaply as

possible over its lifetime. Some of these details can be taken into account by the research

that has been done.

90

Several structures arise when specifying an instance of the network con�guration

problem and when discussing solutions. A physical constraint graph describes physical

constraints for where equipment may be placed. Equipment descriptions specify the

types and properties of physical objects that may be used in constructing the network. A

physical network describes a way of connecting equipment together to form the network,

an embedding speci�es where to place equipment, and a logical network ignores the

exact equipment used in a physical network and concentrates on the properties of the

equipment related to network performance. Tra�c requirements specify how we expect

to use the network.

We have already discussed tra�c limits earlier in this dissertation. They are a way of

specifying tra�c requirements for a network. Physical networks are graphs like the ones

in Figures 7.3 and 7.4, and logical networks are simply the networks we have been using

throughout the dissertation. More detailed descriptions of physical constraint graphs,

equipment descriptions, and embeddings are contained in the following subsections. The

last subsection discusses which parts of this very general network con�guration problem

that we know how to account for using our work.

7.2.1. Physical constraint graphs

A physical constraint graph, or simply constraint graph, represents the constraints placed

on the location of equipment by the site (buildings, walls, etc.) in which the network

will be installed. It may certainly be possible to alter such restrictions (tear down

buildings, put up walls, etc.), but for our purposes, any such changes are considered

either impossible or too costly.

91

Figure 7.5: An example physical constraint graph

A constraint graph is an undirected multigraph P = (V;E). Each vertex v 2 V

represents a place where switching equipment could be installed (e.g. a communication

closet). Each place has several parameters that are important for the design problem:

� Volume available.

� Physical conditions (e.g., humidity, temperature).

� Cost of making the room suitable for switch installation.

Each edge e 2 E represents a conduit where one or more transmission cables may

be placed, e.g., a duct or chase in a building, a tunnel between buildings. Each conduit

has several parameters:

� Length

� Cross-sectional area available.

� Physical conditions (e.g., electromagnetic interference).

� Cost for laying cable on this conduit.

An example constraint graph is given in Figure 7.5. Rectangles represent places,

and \fat lines" represent conduits. These things have been drawn with di�erent sizes

to suggest their respective volumes, cross-sectional areas, and lengths.

92

7.2.2. Equipment descriptions

When installing a network, one must have in mind what sort of equipment has been or

may be bought, including its cost and performance characteristics.

There may be several types of switches available for installation. Each type is

parameterized by:

� Volume occupied.

� Number and type of links that may be connected to the switch.

� Total switching capacity, e.g., aggregate throughput of 2.4 Gb/s, or, the switch

is nonblocking for all connection assignments that do not overload the ports.

� Multicast capability.

� Cost, possibly broken down into an initial cost and a continuing maintenance

cost.

� Need for a controlled environment.

There can be several types of cables (e.g., twisted pair, coaxial, optical �ber) that

can be installed. Each type is parameterized by:

� Cross-sectional area occupied.

� Maximum length over which a signal may be e�ectively carried.

� Bandwidth measured in bits/sec.

� Cost per unit length.

� Termination cost. This is the cost of connecting a cable to a switch, and may

depend on the type of both.

� Shielding, i.e., resistance to electromagnetic interference.

93

Figure 7.6: An example embedding

7.2.3. Embeddings

An embedding is a mapping from a network N to a physical constraint graph P . It

speci�es where each switch and physical link is located. Switches in N are mapped to

vertices in P (places). Links in N are mapped to paths in P , because a cable may pass

through zero or more conduits before connecting to a switch.

An embedding is feasible if it satis�es constraints such as volume available in places,

cross-sectional area available in conduits, and environment constraints. Taken together,

a physical constraint graph, equipment descriptions, a network, and an embedding

determine the cost of the network.

An example embedding is given in Figure 7.6. It is the network of Figure 7.4

embedded into the physical constraint graph of Figure 7.5. It is drawn to suggest the

embedding used. The physical constraint graph is drawn with dashed lines.

7.2.4. Physical constraints that can be accounted for with our results

The network con�guration problem of Section 2.3 speci�es a set of switches and the

costs of installing links between them. This models an instance of the more general

94

problem in which some switches have already been installed in particular places and

connected to nearby terminals, and they may not be moved. The only choices left are

where to install links. Section 7.3 describes how we can solve an instance in which there

are switches already given, as before, but additional switches may be installed in any

place.

The linear link costs can model the cost of the cable itself, the termination costs, and,

partially, the cost of the switches. For example, if a particular type of �ber optic cable

contains 12 �bers capable of carrying 150 Mb/s each costs $1.50 per foot, transceivers

for converting electrical and optical signals cost $500 per pair, and 16-port switches cost

$25,000, then we can set the cost of installing links between a pair of switches 1000 feet

apart at 1000� (1:50=12)+ 500+ 25;000=16 = $2187:50 per 150 Mb/s link. This is not

exact, but it does give a fairly good approximation when many cables are installed and

most switch ports are used.

7.3. Network con�guration in which additional switches are allowed

In this section, we examine a network con�guration problem in which there are several

switches with given locations and tra�c limits, but additional switches other than those

given may be added to the solution.

7.3.1. Discrete choices for location of additional switches

Suppose that we are given an instance of the network con�guration problem with a

physical constraint graph as de�ned in Section 7.2.1, some switches N that are required

to be in speci�c places, at �; !-bounded tra�c limits with �(N) = !(N), and costs

of installing links between each pair of places, satisfying the triangle inequality. The

95

objective is to �nd a nonblocking network containing the given switches, and possibly

more, with minimum cost.

Augment the given set of switches N by adding nodes N 0. N 0 contains one switch

at each place in the physical constraint graph that does not already have one. Let

�(u) = !(u) = 0 for all u 2 N 0.

From Corollary 3.6, we know that the cheapest tree network for the switches N [N 0

is a star network. Assume for the moment that a star network is cheapest among all

networks. Let C be the center switch chosen for this star.

If C 2 N 0, note that all of the other switches in N 0 � fCg are attached to C by

links with capacity 0. They did not add anything to the cost of the network, and need

not actually be installed since they will never be used to carry connections. This star

network with the additional switch C as the center is no more expensive than any star

that contains only the given switches N , and may be cheaper. Hence the additional

switch may have helped reduce the cost of the network. For example, the cheapest

star for our original instance in Chapter 3 had switch B, with �(B) = !(B) = 0 as

the center. The cheapest star using only switches A, C, and D has center A and cost

583200=150 = $3888, compared to $3864 for the star with center B. This represents a

savings of only 0.62%, but it may be signi�cantly larger.

If C 2 N , then all switches in N 0 are connected to C by links with capacity 0. None

of them need to be added to the network, and furthermore, a cheaper network cannot

be built by adding them to the network in any way. For example, the cheapest star

subnetwork for cluster 3 in the hierarchical instance of Chapter 5 was H , not K.

Thus we see that when a star network is cheapest among all networks, it never helps

to add more than one additional switch to those given. In addition, if several discrete

choices for the location of an additional switch are given, we only need to evaluate each

96

one of them as a candidate for the center of the star network to determine if the location

helps reduce the network cost.

Note that when the cost of switches is more accurately modeled, the star with an

additional switch may actually cost more because it has one more switch than the

cheapest star using the given switches N only. One may simply compare the cost of

the cheapest star with the additional switch to the cost of the cheapest star without it,

and use the cheaper one.

The same technique may be used repeatedly when con�guring hierarchical star net-

works, once for each star subnetwork. All of the lower bounds described previously are

also lower bounds for these solutions.

7.3.2. No restriction on location of additional switches in the Euclidean plane

The method in the previous section works if there is a �nite set of possible locations

to place an additional switch. If we are given a set of switches in the Euclidean plane,

and additional switches may be placed anywhere, then there are an in�nite number of

choices and that method does not work. However, it is still the case that at most one

additional switch can help reduce the cost of the star network.

Let the cost of installing links be any function cost(cap) � dist that is linear with

the Euclidean distance dist between the switches. It does not matter what the shape of

the function is with respect to link capacity cap. Then the cost of a star network with

center switch C is X
u2N

(cost(�(u)) + cost(!(u))) � dist(u; C) (7.4)

because there must be a link (u; C) with capacity �(u) and a link (C; u) with capacity

!(u) between every node u 2 N and C.

97

To �nd the best location for the additional switch C, we may think of this problem

as a mechanical system in which the links between C and switches in N are springs, C

is a mass that may move about, and the switches in N are �xed anchor points for the

springs. The springs pull the mass C towards the spring's anchor point with a constant

force (cost(�(u)) + cost(!(u))), no matter how far it is stretched.

The potential energy function for this mechanical system is exactly the cost of the

network (7.4). When the potential energy function of a mechanical system is at a

local minimum, the mechanical system is in a state of stable equilibrium. Thus, we

may simulate the mechanical system, possibly with some \friction" added to damp

oscillation, and the position of C will eventually settle to a point of stable equilibrium.

If any of the cost functions cost have a discontinuous \jump" in the cost from 0 capacity

to positive capacity, then the discrete locations of all switches N should also be tried

as centers.

This interpretation of the optimization problem as a mechanical system was intro-

duced to the author through the work of Gilbert and Pollak [34, 35], who examined a

similar physical system for �nding minimum cost Steiner trees in the Euclidean plane.

We conjecture that the cost of the network with one additional switch costs at

least �=4 � 0:7854 times as much as the cheapest star when no additional switches are

allowed. This ratio is approached as n grows for instances where n switches are equally

spaced around a unit circle.

7.4. Expanding an already installed network

After a network has been installed, the tra�c o�ered to the network often changes over

relatively long periods of time (e.g., months). A network manager may react to these

changes by modifying the installed network to handle the new tra�c. The goal is then

98

not to modify the existing network to become the cheapest network for the new tra�c,

but to modify the network as cheaply as possible to become a network that can handle

the new tra�c.

Such a problem has been studied by Jack, Kai, Shulman, and Bienstock in the

context of expanding the cable plant of a local access telephone network [11, 46]. It has

been studied by Balakrishnan et al. under a more abstract setting [7]. In all of this

work, the o�ered tra�c is essentially what we would call at �; !-bounded tra�c limits.

We believe that this work can be either used directly for or adapted to the problem of

expanding a nonblocking connection-oriented network with this kind of tra�c limits.

For at �-bounded tra�c limits, Yaged [63] and Zadeh [64] have studied a problem

in which there is a sequence of tra�c forecasts for several time periods in the future,

and the objective is to �nd an installation plan that minimizes the present value of all

future installations, discounted according to some given interest rate.

7.5. Improving the lower bound for more general link cost functions

Sometimes a more realistic cost of installing links between switches u and v must take

into account a �xed cost �fu;vg. This represents a cost of installing links between u and

v, in either direction, that is independent of the number of such links to be installed.

For example, this could be the cost of digging a trench and installing an underground

conduit where none had existed before.

In this case, the cost of the network can be written

X
u;v2N

�fu;vg (cap(u; v) + cap(v; u) > 0) +
X

u;v2N

(u; v)cap(u; v) (7.5)

where the notation (cap(u; v) + cap(v; u) > 0) is a conditional expression. It is equal to

one if the condition is true, and 0 if the condition is false.

99

We have already studied how to �nd a lower bound for the second term of (7.5).

We can independently �nd a lower bound for the �rst term and add these two bounds

together to get a lower bound for the total cost. The computational problem of �nding

the largest such lower bound possible is:

Fixed charge lower bound

INSTANCE: A set of switches N . For each unordered pair of distinct switches

u; v, a �xed cost �fu;vg. Tra�c limits T .

SOLUTION: A set of undirected edges T between switches N . If the tra�c

limits T allow connections from u to v, then there must be a path from u to v

in the graph G = (N; T).

SOLUTION COST: X
fu;vg2T

�fu;vg

OBJECT: Find a solution with minimum cost.

This is a lower bound on the �xed charge portion of the cost, because any nonblock-

ing network must have a path with positive capacity links between switches that can

have connections to one another.

Note that for many problems, all pairs of switches can have connections to one

another, so the restriction on T is equivalent to \G = (N; T) is connected", and the

problem above is that of �nding a minimum spanning tree.

For instances in which not all switch pairs may have connections to one another,

de�ne an undirected graph C = (N;E) such that fu; vg 2 E if and only if either u

can connect to v, or v can connect to u. Let the sets N1; : : : ; Nk be the switches of

the connected components of C. Note that sets Ni that contain a single switch u are

100

isolated switches in C. Thus they may not connect to any other switch, and so need

not be part of any nonblocking network, i.e., they are tandem switches.

If the sets N1; : : : ; Nk contain only one set, say N1, with more than one switch,

and the � values satisfy the triangle inequality, then the solution to the computational

problem is to �nd a minimum spanning tree of the switches in N1, and ignore the rest.

If the � values do not satisfy the triangle inequality, then the solution is to �nd a

minimum Steiner tree for the switches in N1.

Since �nding a minimum Steiner tree is np-hard, we may use any approximation

algorithm that always �nds a solution that costs at most R times more than optimal.

Then a lower bound for the �xed charge portion of our network con�guration problem is

the cost of the tree found divided by R. The algorithm with the lowest value of R known

to the author is due to Berman and Ramaiyer [9]. They give a family of polynomial

time approximation algorithms, where smaller values of R give larger running times.

R = 16=9 can be achieved in low degree polynomial time.

In the most general case, the sets N1; : : : ; Nk are an arbitrary partition of the

switches N . Then our lower bound problem is that of �nding a minimum generalized

Steiner tree [2, 36]. Agrawal, Klein, and Ravi found the �rst approximation algorithm

for this problem with R = 2.

For a problem in the Euclidean plane where additional switches are allowed, the

� values are proportional to the Euclidean distance between the nodes, and all of the

sets N1; : : : ; Nk except N1 are singleton sets, the lower bound is the cost of a minimum

Euclidean Steiner tree on the points N1. In this case, the minimum spanning tree

algorithm has R = 2=
p
3 [19, 20].

This method of splitting up the terms in the cost function and �nding a lower bound

for them separately is similar to a lower bound found by Gilbert [34].

101

8. OTHER ROUTING ALGORITHMS

8.1. Alternate path routing

8.1.1. De�nition

The alternate path routing algorithm AP is a straightforward generalization of �xed

path routing. For each ordered pair of switches u; v, there are two (possibly identical)

paths from u to v, a primary path �1(u; v) and a secondary path �2(u; v). When a

point-to-point request (u; v; �) is made, the path �1(u; v) is checked to see if every link

has at least � available bandwidth. If so, then that path is used to connect the switches.

If not, then the path �2(u; v) is checked. If it has enough bandwidth available, then it

is used. Otherwise, the connection request blocks.

8.1.2. Link dimensioning with at tra�c limits

In this section we show that the link dimensioning problem can be solved in exponential

time under the following conditions. Path tables �1 and �2 are given and satisfy certain

restrictions (condition (8.1) below), link costs are nondecreasing and concave functions

of capacity, tra�c limits are at, and all connection requests must be be point-to-point

with rate 1. Our results show that under these conditions, the cheapest solutions are

those for which every switch pair u; v either always uses �1(u; v) but never �2(u; v), or

vice versa. Thus an alternate path routing solution always costs at least as much as a

�xed path routing solution.

102

The restriction on the primary and secondary paths we consider is:

(8u; v 2 N) (no link in �1(u; v)� �2(u; v) is contained in any path except �1(u; v))(8.1)

A simple path is a path that visits each switch at most once. It is not a good idea for

a path to be anything other than simple, as it would only waste network resources. If

�1(u; v)� �2(u; v) or �2(u; v) � �1(u; v), then either they are the same, or at least one of

them is not a simple path. Thus, if all paths are simple, then either �1(u; v) = �2(u; v),

or both paths contain links that the other does not.

When condition (8.1) holds, it is useful to de�ne:

L0 =
[

u;v2N

(�1(u; v) [�2(u; v))

p(u; v) = �1(u; v)� �2(u; v)

s(u; v) = �2(u; v)� �1(u; v)

P =
[

u;v2N

p(u; v)

P = L0 �P

L0 is the set of all links used in some path, so any link not in L0 should have 0 capacity.

p(u; v) is the set of \primary only" links from u to v, and s(u; v) is the set of \secondary

only" links.

The algorithm found for the link dimensioning problem has been proven to work

when link costs are nondecreasing and concave functions of capacity. A function f(x) is

concave on the interval [a; b] if for all x1; x2 2 [a; b] and � 2 [0; 1], f(�x1+ (1��)x2) �

�f(x1) + (1� �)f(x2)). That is, if we draw the curve of the function f on a graph and

draw a straight line between any two points on the curve, then the straight line lies on

or below f . Let maxow(n;m) be the time required to solve a maximum ow problem

on a graph with n vertices and m edges.

103

Figure 8.1: A simple instance with AP routing

Theorem 8.1 The link dimensioning problem with restrictions described above can be

solved in O(2d �m �maxow(n; U)) time, where m =
���P���, n is the number of switches,

U is a parameter depending on the paths that is at most n2 + n, and d is a parameter

depending on the paths that is at most the number of u; v pairs such that p(u; v) 6= ;.

We conjecture that the running time can be improved toO(m�maxow(n; U)+2d�U).

The above theorem yields a polynomial time algorithm if we restrict the instances so

that d = O(logn).

First, a couple of trivial results. If we restrict �1(u; v) = �2(u; v) for all u; v 2 N ,

then the alternate path routing algorithm AP behaves exactly like �xed path routing,

and all of the results found for �xed path routing apply.

If we apply the link dimensioning algorithm in Section 4.3 with �xed paths given

by �1, then we �nd link capacities for which the network is nonblocking when we use

the alternate path routing algorithm AP . This is because when AP tests the primary

path to see if it has enough capacity available, it always will. This idea also works for

any routing algorithm like AP that �rst checks a single path to see if it has enough

capacity, and returns it if so. However, this may not be the cheapest solution to the

link dimensioning problem for such routing algorithms.

Before presenting a solution for more general instances, it is helpful to examine a

small instance to understand the issues involved. Consider the network of Figure 8.1,

where �(A) = 8, �(C) = 4, !(D) = 6, �(A;D) = 5, �(C;D) = 4, and all other �, !,

and � values are 0. In this case, only A and C can be the source of connections, and only

104

Figure 8.2: Ll graphs for the simple AP routing instance

D can be the destination of connections. Let �1(A;D) = ABD, �2(A;D) = ABCD,

and �1(C;D) = �2(C;D) = CD. The other paths do not matter because they can not

be used.

Let us generalize the de�nition of Ll, originally given in Section 4.3, for alternate

path routing. Let Ll = (V;E1 [E2 [E12; cap), where

V = fs; tg [fus; ud : u 2 Ng
E12 = f(s; us; �(u)); (ud; t; !(u)) : u 2 Ng[

f(us; vd; �(u; v)) : l 2 �1(u; v)\ �2(u; v)g
E1 = f(us; vd; xu;v) : l 2 p(u; v)g
E2 = f(us; vd; �(u; v)� xu;v) : l 2 s(u; v)g

(8.2)

The graphs L(A;B), L(B;C), L(B;D), and L(C;D) are shown in Figure 8.2. All edges

that have 0 ow in all feasible ows have been omitted. Edges in E1 are shown as

dotted lines, edges in E2 are shown as dashed lines, and edges in E12 are shown as solid

lines. The dotted edge (As; Dd) in L(B;D) signi�es that link (B;D) is in the primary

path from A to D, but not in the secondary path. The dashed edge (As; Dd) in L(B;C)
and L(C;D) signi�es that links (B;C) and (C;D) are in the secondary path from A to

D, but not in the primary path. The solid edge (As; Dd) in L(A;B) signi�es that link

(A;B) is in both the primary and secondary path from A to D. Similarly for the solid

edge (Cs; Dd) in L(C;D).

105

The edge capacities require some explaining. For solid edges (us; vd) 2 L(x;y), we

know that whatever path the routing algorithm AP �nds, that path must contain the

link (x; y). Therefore, if such a graph L(x;y) contains all solid edges, as L(A;B) does in

this example, we may �nd the maximum ow on L(x;y) to obtain the maximum usage

of link (x; y). All Ll graphs are like this when we use �xed path routing.

When a graph L(x;y) contains dotted or dashed edges, however, it introduces de-

pendencies between link capacities. In this simple instance, assign a capacity x(A;D),

0 � x(A;D) � �(A;D), to link (B;D), and then determine the minimum necessary

capacities of links (B;C) and (C;D). How can this be done?

Consider a sequence of requests to add and delete rate 1 connections from A to D.

As long as no more than x(A;D) requests are using link (B;D), the routing algorithm

AP will �nd that there is enough capacity available on the primary path ABD, and the

connections will follow that path. However, as soon as x(A;D) requests are using link

(B;D) and an additional request comes in (this can only occur if x(A;D) < �(A;D) = 5),

AP will �nd that ABD cannot be used, and so it returns the secondary path ABCD

instead. We say that the request overows onto its secondary path in such a case.

The quantity over(x(A;D)) is used to express the maximum total rate of requests

that can simultaneously overow onto the secondary path, given that the primary path

can handle a total rate x(A;D). When all requests have rate 1, it should be easy to see

that over(x(A;D)) = �(A;D)� x(A;D).

In L(B;D), we assign the edge (As; Dd) the capacity x(A;D) to denote that this is

the maximum total rate of all connections from A to D that may use link (B;D)

simultaneously. Therefore the edge capacity \means the same thing" as it did in the

�xed path case, but now x(A;D) can be any quantity at most �(A;D). Similarly, we

assign the edge (As; Dd) in L(B;C) the capacity �(A;D)� x(A;D) = 5� x(A;D) to denote

106

0 1 2 3 4 5
0

1

2

3

4

5

6

7

ca
pa

ci
ty

(C,D)

(A,B)

(B,C)

(B,D)

x (A,D)
0 1 2 3 4 5

70

75

80

85

90

95

100

co
st

x
(A,D)

Figure 8.3: Maximum link usages and total network cost as a function of x(A;D) =
cap(B;D)

that this is the maximum total rate of all connections from A to D that may use link

(B;C) simultaneously.

Given that the capacity of link (B;D) is x(A;D), where 0 � x(A;D) � �(A;D), we

can now �nd the minimum necessary capacities for links (B;C) and (C;D). Thus we

can also �nd the costs of each link, and the total cost of the network, as a function of

x(A;D).

For example, let the cost functions of each link in the example be �(u; v)+(u; v)�cap

if the capacity cap > 0, and 0 otherwise (these functions are nondecreasing and concave

when �(u; v); (u; v) � 0). Let �(A;B) = 0, (A;B) = 3, �(B;C) = 6, (B;C) = 4,

�(B;D) = 10, (B;D) = 7, �(C;D) = 1, and (C;D) = 5. Then the link capacities

are given as functions of x(A;D) in the left plot of Figure 8.3, and the total cost of the

network is given as a function of x(A;D) in the right plot of Figure 8.3.

Note that this function is minimized when x(A;D) = 0, one of the extreme values

that x(A;D) may take. The other extreme value is 5. x(A;D) may be larger than 5, but if

107

so, any capacity over 5 will never be used. We show that under the conditions given at

the beginning of this section, the minimum cost network is always found by assigning

extreme values to the links in P .

Lemma 8.2 Suppose we have primary and secondary paths that satisfy condition (8.1).

For all links l 2 P, Ll contains exactly one edge of the form (us; vd), and it is in E1

(i.e., a dotted edge in the �gures). For all other links l 2 P, Ll has E1 = ;.

Proof: Follows directly from the modi�ed de�nition of Ll (8.2) given earlier in this

section.

Note that it is possible for jp(u; v)j > 1 to hold for some u; v 2 N . If so, then it

never makes sense to assign di�erent capacities to links in p(u; v). It is always the link

in p(u; v) with the smallest capacity that determines when connections overow onto

the secondary path. Any such links with larger than minimum capacity will never have

their \excess" capacity used. When link cost functions are nondecreasing with capacity,

it is never cheaper to assign unusable capacity to links. Similarly, all links in p(u; v)

should never have a capacity larger than minf�(u; v); �(u); !(v)g.

Let D = f(u; v) : p(u; v) 6= ;g.

Lemma 8.3 For all (u; v) 2 D, let every link in p(u; v) have capacity x(u;v). Then

for every link l 2 P, ��(l) can be found in O(maxow(n; U)) time per link, where

U � n2 + n.

Proof: The key idea here is that once capacities are chosen for links in P , this is

essentially the same as the link dimensioning problem when �xed path routing is used.

The only di�erence is that some of the point-to-point limits � have been reduced for

links in P. Thus ��(l) is equal to the value of a maximum ow in Ll.

108

Figure 8.4: Alternate path network instance and its dependency graph

Lemma 8.3 tells us that ��(l) of each link l 2 P is functionally dependent on a

subset of X = fx(u;v) : (u; v) 2 Dg. For each l 2 P , denote this subset of X by Xl, and

make the dependence of ��(l) on Xl explicit by writing it ��(l; Xl).

Recall that the total cost of the network is
P

(u;v)2L cost(u;v)(cap(u; v)), which can

be expanded to X
(u;v)2D

X
l2p(u;v)

costl(x(u;v)) +
X
l2P

costl(�
�(l; Xl)) (8.3)

We want to minimize this function while allowing each x(u;v) to range from 0 to �(u; v).

It may be possible to break this sum into several parts, each independent of the

others. To determine these parts, construct a dependency graph, which represents the

functional dependencies between link capacities. The graph is bipartite, with one parti-

tion containing a vertex for each (u; v) 2 D, and the other containing a vertex for each

link l 2 P. There is an edge between two vertices (u; v) and l if ��(l; Xl) depends on

x(u;v), i.e., l 2 s(u; v).

For example, in the network of Figure 8.4, the links drawn with dashed lines are those

in the set P . Let �1(A; F) = AF , �2(A; F) = ABDF , �1(A;E) = ABE, �2(A;E) =

ABCE, �1(F;E) = FE, �2(F;E) = FDCE, �1(G;H) = GH , and �2(G;H) = GEH .

109

For the opposite directions, reverse the paths above (e.g., �1(F;A) = FA and �2(F;A) =

FDBA). For all other switch pairs u; v 2 N , �1(u; v) = �2(u; v) and all links in these

paths use only solid links. These paths satisfy condition (8.1). The dependency graph

for this instance is shown in Figure 8.4. For example, the capacities of links (E;C) and

(C;B) depend on x(E;A) because s(E;A) = f(E;C); (C;B)g.

After the dependency graph is constructed, �nd the connected components of this

graph. Each component contains a subset D0 of the vertices D and a subset P 0 of the

vertices P. The portion of the total network cost represented by a single component,

X
(u;v)2D0

X
l2p(u;v)

costl(x(u;v)) +
X
l2P

0

costl(�
�(l; Xl)) (8.4)

can be minimized by choosing values for the variables fx(u;v) : (u; v) 2 D0g completely

independently of the variables in other components of the dependency graph. This

technique does not change the worst-case running time of this algorithm, but it can

speed it up dramatically for some instances. The value of the exponent d in the running

time is equal to the size of the largest subset D0 induced by the components.

For example, in the dependency graph of Figure 8.4, we may minimize the total

cost of links (G;H), (G;E), and (E;H) independently of all other links, and this may

be done by optimizing over the single variable x(G;H). Note that the capacities of links

(C; I) and (I; C) depend on no other link capacities, and their maximum usages may

be determined exactly as in Section 4.3 because the graphs L(C;I) and L(I;C) contain

all solid edges. In this example, this technique of �nding independent subproblems

reduced the exponent d from jDj = 8 to 3, the size of the largest set D0 induced by the

components of the dependency graph.

Lemma 8.4 Let G = (V;E) be a directed graph with source s 2 V and sink t 2 V .

Let a 2 E; a 6= (s; t) be a distinguished edge with a capacity given by the variable x.

110

All other edges e 2 E have a �xed capacity cap(e). Then the value of a maximum ow

from s to t as a function of x, m(x), has slope 1 for some interval [0; c], and slope 0

afterwards. More formally, there exist constants s; c � 0 such that

m(x) =

8><
>:

s+ x if 0 � x � c

s+ c if c � x

Proof: The max-ow min-cut theorem of Ford and Fulkerson [21] states that the value

of a maximum ow in a network is equal to the capacity of a minimum s � t cut. An

s � t cut is denoted (X;X), where s 2 X and t 2 X, and is de�ned as the set of all

edges (u; v) 2 E for which u 2 X and v 2 X. The capacity of a cut is the sum of the

capacities of the edges within it. Let C be the set of all s� t cuts.

Some cuts contain the edge a. Every such cut (X;X) has a capacity of the form

sX + x. Let s0 be the minimum of all sX values.

There exist cuts that do not contain the edge a, because a 6= (s; t). Every such cut

(X;X) has a capacity cX . Let c0 be the minimum of all cX values.

Then m(x) = minfs0 + x; c0g. If we choose s = minfs0; c0g and c = maxfc0 � s0; 0g,

then this is exactly the function described in the lemma.

Note that all of the capacity functions in Figure 8.3 are of the form m(5� x).

Lemma 8.5 If the cost function cost(cap) of a link is a nondecreasing and concave

function of cap, and m(x) is a function of the form described in Lemma 8.4, then

cost(m(x)) is a nondecreasing and concave function of x.

Proof: Let m(x) have the form described in Lemma 8.4 with constants s; c � 0. Then

on the interval [0; c], m(x) is increasing with slope 1, so cost(m(x)) is nondecreasing

and concave on [0; c] because cost(cap) is nondecreasing and concave on [m(0); m(c)] =

[s; s + c]. On the interval [c;1), m(x) is constant, and so is cost(m(x)). It is easy to

111

see from this that cost(m(x)) is concave on [0;1) given that cost(cap) is nondecreasing

and concave.

Corollary 8.6 cost(m(� � x)) is a nonincreasing and concave function of x on the

interval [0; �].

Fact 8.7 If f1(x); : : : ; fk(x) are all concave functions of x, then so is
Pk

i=1 fi(x).

This can be easily proven from the de�nition of concave functions.

Fact 8.8 If f(x) is concave on the interval [a; b], then mina�x�b f(x) = minx2fa;bg f(x).

That is, the minimum function value over the interval must occur at one of the endpoints

of the interval.

This is a well-known fact about concave functions. See Bazaraa and Shetty [8, Thm.

3.4.6, p. 99], for example.

Lemma 8.9 Let D0 and P 0 be all of the vertices in one component of the dependency

graph. Then the minimum total cost for all links in P0 [S(u;v)2D0 p(u; v) can be deter-

mined in O(2jD
0j �
���P0��� �maxow(n; U)) time, where n is the number of switches in the

network and U � n2 + n.

Proof: Let l be any link in P0. For all (u; v) 2 D0, either Ll has a dashed edge (us; vd)

with capacity �(u; v) � x(u;v), or it has no edge (us; vd). Any other (us; vd) edges in

Ll must be solid (with a �xed capacity). If (u; v) 2 D0 and (us; vd) is in Ll, and if

we let x(u;v) change while leaving the other x values �xed, Corollary 8.6 tell us that

the cost of link l as a function of x(u;v) is nonincreasing and concave on [0; �(u; v)]. If

(u; v) 2 D0 and (us; vd) is not in Ll, then the maximum usage of l as a function of x(u;v)

is a constant, and so is its cost. A constant function is concave.

112

For all (u; v) 2 D0, each link in p(u; v) has a capacity x(u;v), and by the restriction

in the problem instance, each of their costs is a concave function of x(u;v).

The cost of this portion of the network is the sum of costs of each link in

S
(u;v)2D0 p(u; v) [P0. Since the cost of each individual link is a concave function

of each x(u;v) variable, Fact 8.7 tells us that the total cost of all of these links is also a

concave function of each x(u;v).

We wish to �nd values for all x(u;v); (u; v) 2 D0, such that the cost of this portion

of the network is minimized. If we �x the value of all x variables except for x(u;v), then

Fact 8.8 tells us that the minimum can be found simply by evaluating the total cost at

x(u;v) = 0 and x(u;v) = �(u; v). Therefore, the overall minimum can be found by trying

all 2jD
0j choices of assigning the x variables either 0 or their maximum value.

By Lemma 8.3, we can �nd the costs of each of these 2jD
0j possibilities in O(

���P0��� �
maxow(n; U)) time (assuming the cost functions are easy to compute).

Theorem 8.1 follows directly from Lemma 8.9 by adding the running times for each

component of the dependency graph. This theorem implies that alternate path routing

with these constraints gives no lower cost than �xed path routing.

8.2. Shortest available path routing

The �xed and alternate path routing algorithms share the following property: they

can block even when a path from the source to the destination with enough available

capacity exists. In this section we study a routing algorithm that always �nd a path if

one exists, but gives preference to those with fewer links. We call it shortest available

path routing, denoted SAP.

Given a request r = (u; v; �) and a network state S, SAP returns a path with �

available capacity that has the fewest number of links among all such paths. If there

113

Figure 8.5: Network to demonstrate SAP routing algorithm

are none, then the request blocks. To make SAP's choice of path deterministic, we

can think of it as examining all paths with the same length in some �xed order, and

returning the �rst one with enough available capacity. For example, if all switches are

given unique numbers 1 to n, and a path is represented by the sequence of switches that

it visits, then the paths may be examined in lexicographic order.

As a demonstration of the SAP routing algorithm, consider the network of Fig-

ure 8.5. All links have capacity 1, and all requests and connections in this demonstra-

tion have rate 1. Initially, there are no connections in the state of the network. The

request (A;C; 1) uses the length 1 path AC. If the same request is made again, it will

use the length 2 path ADC this time. For the request (B;E; 1), there are two shortest

paths, BAE and BDE. If we use the lexicographic ordering rule to decide between

them, SAP returns the path BAE. If the same request is made again, BDE must be

used this time. Any further request blocks, because all links are now fully used.

Now we show that the network analysis problem with at �; !-bounded tra�c limits

using SAP routing is np-hard in the strong sense [28, Section 4.2]. That is, it is np-hard

even when the magnitudes of numbers in the problem instances (i.e., the link capacities

and tra�c limits) are \small", bounded by a polynomial in the number of switches

and links. We assume that requests may only have rates that are a multiple of some

minimum rate b = 1=b0, for some positive integer b0. The de�nition of the network

114

analysis problem is given again here, stated more speci�cally than it was in Section 2.3.

For brevity, we call this problem BLOCKING NETWORK.

BLOCKING NETWORK

INSTANCE: A network N = (N;L; cap). Flat �; !-bounded tra�c limits T =

(�; !).

QUESTION: Is there a sequence of point-to-point requests compatible with T ,

each with a rate that is a multiple of b, such that at least one of the requests

blocks?

It is not clear to us whether this problem is in np, because the length of a sequence

of requests that block is not obviously bounded by a polynomial in the length of the in-

stance, even if we allow multiple consecutive requests between the same pair of switches

to be written as a single request with the same total rate.

Theorem 8.10 BLOCKING NETWORK is np-hard in the strong sense.

Proof: The proof is done by giving a pseudo-polynomial transformation from the

problem 3-PARTITION, which is np-complete in the strong sense.

3-PARTITION

INSTANCE: A collection of 3m positive integers A = fa1; : : : ; a3mg, and a

bound B, such that each integer ai satis�es B=4 < ai < B=2 and such that

P3m
i=1 ai = mB.

QUESTION: Is there a partition of the collection into disjoint sets A1; : : : ; Am

such that the total of the values in each set is exactly B? (Note that the

restrictions on the values in A imply that every Ai must contain exactly three

elements.)

115

The transformed instance of the network analysis problem is a network

N = (N;L; cap) with tra�c limits T = (�; !). The set of switches and links are

given below, where a switch u with source termination limit �(u) and destination ter-

mination limit !(u) is given by the triple (u; �(u); !(u)), and a link from switch u to v

with capacity cap is given by the triple (u; v; cap).

N = f(x; b; 0); (y; 0; b)g
[f(si; B; 0) : 1 � i � mg
[f(ui;j ; 0; 0) : 0 � i � m; 1 � j � 3mg
[f(ti;j ; 0; aj) : 1 � i � m; 1 � j � 3mg

L = f(x; u0;j; 1) : 1 � j � 3mg
[f(ui�1;j ; ui;j; aj) : 1 � i � m; 1 � j � 3mg
[f(um;j ; y; 1) : 1 � j � 3mg
[f(si; ui�1;j ; aj) : 1 � i � m; 1 � j � 3mg
[f(ui;j ; ti;j ; aj) : 1 � i � m; 1 � j � 3mg
[f(si; tl;j ; aj) : 1 � i � m; 1 � j � 3m; 1 � l � m; l 6= ig
[f(si; y; 1) : 1 � i � mg
[f(x; ti;j ; 1) : 1 � i � m; 1 � j � 3mg

(8.5)

It should be clear that this transformation can be performed in polynomial time.

As an example of this transformation, consider the 3-PARTITION instance A =

f11; 11; 12; 13; 14; 19g with m = 2 and B = 40. This instance has no solution, and

neither should the transformed instance of BLOCKING NETWORK, shown in Fig-

ure 8.6. All links from the last three lines of L's de�nition have not been shown, to

avoid cluttering the �gure.

Given a solution A1; : : : ; Am to the 3-PARTITION instance, we can construct a

sequence of requests that blocks in the transformed BLOCKING NETWORK instance.

For each aj 2 Ai, make a sequence of requests from si to ti;j with total rate aj . This

completely uses the links (ui�1;j ; ui;j) for all three aj 2 Ai. The �nal request is (x; y; b).

116

Figure 8.6: An example of the transformation from 3-PARTITION to BLOCKING
NETWORK

117

Table 8.1: Possible requests and connections in a BLOCKING NETWORK instance

Request Possible connections \Important" links used

(si; tl;j; �); l 6= i sitl;j |

(si; y; �) siy |

(x; tl;j; �) xtl;j |

(si; ti;j; �) siui�1;jui;jti;j (ui�1;j ; ui;j)

(x; y; �) xu0;ju1;j : : : um;jy for some j; 1 � j � 3m all in the path

This request blocks, because all paths from x to y have at least one completely used

link. It is easy to verify that this sequence of requests is compatible with the tra�c

limits.

Given a sequence of requests r1; : : : ; rk that blocks, we must now show that there

is a solution A1; : : : ; Am to the 3-PARTITION instance. It is helpful to consider every

possible connection request and the paths that will be used to satisfy them. These are

given in Table 8.1. The �rst three lines of the table describe connection requests that

are always satis�ed by a direct link, because the link between the switches u; v has

capacity at least minf�(u); !(v)g.

The request (si; ti;j ; �) in the fourth line of the table has only one possible path

that can satisfy it. Such a request can never block, because every link on the path has

capacity at least minf�(si); !(ti;j)g = aj .

The only request that can possibly block is (x; y; �). Because �(x) = b, the minimum

rate of any request, we must have � = b. Since all request rates are multiples of b, and

1 is an integer multiple of b, the only way for a request (x; y; b) to block is for each path

from x to y to have at least one completely used link. (If a link is not completely used,

then it has at least b capacity available.)

118

The \important" links in Table 8.1 are the links on paths from x to y. Only requests

that use important links can lead to blocking.

Let r1; : : : ; rk be a sequence of requests to add and drop connections such that the

�rst request that blocks is rk. We have learned that only a request (x; y; b) can block, so

rk = (x; y; b). �(x) = !(y) = b, the minimum connection rate, so any previous request

to add a connection involving x or y must have been dropped later in the sequence. We

ignore these requests. We also ignore any requests of the form (si; tl;j ; �), where l 6= i,

because such requests do not use any important links. It is acceptable to ignore all of

these connection requests, because none of them a�ect future routing decisions.

Thus all of the requests in the sequence r1; : : :rk�1 may as well be add requests of

the form (si; ti;j ; �). Let Li = fj : �((ui�1;j; ui;j);S) = ajg, where S is the state of the

network immediately before request rk = (x; y; b) arrives. That is, Li is the set of j

values such that the links (ui�1;j; ui;j) are completely used when the request that blocks

arrives.

Because �(si) = B for all i and B=4 < aj for all j, each Li must contain at most

three elements. Since the request (x; y; b) blocks in state S, it must be that every path

from x to y has at least one completely used link. This is equivalent to saying that

the union of the sets Li contains f1; : : : ; 3mg. Since each Li contains at most three

elements, the Li must be disjoint sets that partition f1; : : : ; 3mg.

Since �(si) = B for all i, it must be that
P

j2Li
aj � B for all i. The total of all aj

values is mB, so we must have
P

j2Li
aj = B for all i.

Therefore a solution to the original instance of 3-PARTITION is Ai = faj : j 2 Lig.

This np-hardness result for the network analysis problem with SAP routing does

not necessarily imply that the link dimensioning or network con�guration problems with

119

SAP routing are np-hard. In fact, if a star network is optimum among all solutions for

at �; !-bounded tra�c limits with �(N) = !(N) and for all routing algorithms (or at

least for SAP routing), then the network con�guration problem can be solved in O(n2)

time by the algorithm at the end of Section 3.2. However, this np-hardness result does

show that there are some cases when it is di�cult to determine whether a given network

is nonblocking.

A similar result can be shown for the routing algorithm hops at most K, in which

all paths with at most K links are tried in some �xed order.

Note that network analysis in a tree network is easily solved for any routing algo-

rithm, because any routing algorithm reduces to �xed path routing in a tree.

120

9. CONCLUSIONS

In Chapter 3, we presented termination limit bounded, or �; !-bounded, tra�c limits.

We believe that these are a reasonable model of the o�ered tra�c for small local area

networks, and for larger networks in which the tra�c patterns are highly variable.

They are also easy for a network manager to understand and estimate. We showed that

the network con�guration problem with such tra�c limits is max snp-hard, leading

us to consider algorithms that �nd approximate solutions. We presented the perhaps

surprising result that a star network is very close to optimal, if not exactly optimal. This

result was veri�ed through experiments on randomly generated instances of the network

con�guration problem, and through analytical results. We proved that star networks

are cheapest among all tree networks when �(N) = !(N), and we believe that they are

cheapest among all networks in that case. If so, then the network con�guration problem

can be e�ciently and exactly solved for such instances.

We proved that star networks are never much more expensive than the cheapest tree

when �(N) is close to !(N), and gave a class of instances that demonstrate that a non-

star tree network can be slightly cheaper than any star network. We believe that many

realistic network con�guration problems would have �(N) close to !(N). A network

that could have !(N) much larger than �(N) is a video distribution network, e.g., a

cable television network with residential subscribers. It would be interesting to see if our

results can be extended to such instances. For example, the lower bound is currently

determined by �nding a set of point-to-point connection requests that are expensive

121

to satisfy. In a network with !(N) � �(N), the lower bound could be improved by

allowing multipoint connection requests in the set as well.

In Chapter 4, we further restricted the o�ered tra�c by allowing point-to-point

limits to be speci�ed. Our experimental results suggest that a star network is still close

to optimal unless the point-to-point limits are quite small relative to the termination

limits. It requires signi�cantly more data about network usage for a network manager to

specify such restrictions accurately, and it may not help reduce the cost of a nonblocking

network even then.

In Chapter 5, we extended the at tra�c limits to allow one to specify clusters of

switches that have high tra�c among themselves, but less to other parts of the network.

We believe that these are useful for many large local area networks, and possibly larger

networks as well. Like termination bounded limits, we believe that they are simple for a

network manager to understand and estimate, and for networks with many managers, it

decomposes the tra�c speci�cation in a natural way. We showed through experiments

that hierarchical star networks are often within 10% of optimal for randomly generated

instances.

In Chapter 6, we showed that if a network using �xed path routing is nonblocking

for point-to-point connections, then it is also nonblocking for multipoint connections,

given that the switches have multicasting capabilities. This result is useful not only in

this work, but in any network design research that speci�es tra�c in a way that is a

special case of our tra�c limits. This includes all of the local access network design

problems, and all of the problems that specify a worst case tra�c matrix, cited in the

introduction.

Chapter 7 presented some extensions to the previous results, including handling link

fragmentation in ATM networks, allowing additional switches other than those speci�ed

122

to be added, and improving the lower bound for more general link cost functions. The

most interesting avenue of further work here involves creating the dream software pack-

age of all network managers. Such a package has been created at GTE for the design of

local access telephone networks [47], and there are many existing packages for various

kinds of data networks [62].

In Chapter 8, we presented some results for routing algorithms other than �xed

path routing. We saw that the cheapest solution to a restricted link dimensioning

problem using alternate path routing reduces to a solution using �xed path routing.

Hence the additional exibility of alternate path routing does not help reduce the cost

of the network. We also saw that the additional exibility of shortest available path

routing greatly increases the complexity of simply determining whether a given network

is nonblocking. We believe that �xed path routing produces the cheapest network

con�gurations for a wide class of instances with the worst case model of tra�c presented

here.

One reason why a network manager would not want to install a tree network is

lack of redundancy. There has been other network design research that focuses on

making networks tolerant to link or node failures [1, 15, 26, 39, 40, 56], but all of the

work known to us either ignores the exact link capacities needed, requiring only a two-

connected network, or speci�es point-to-point tra�c with a tra�c matrix. It would be

interesting to extend such work for more general kinds of tra�c.

123

10. ACKNOWLEDGMENTS

Thanks to Chuck Cranor for collecting and updating the LaTEX thesis style �les, and

to James Sterbenz for making the little workstations used in Figure 1.1 (and many

others). Thanks to Greg Peterson and Rex Hill for many entertaining lunch discussions

on topics that had absolutely nothing whatsoever to do with school. Thanks to Ellen

Zegura and Dakang Wu for being great o�ce mates who could tolerate my particular

form of (dis)organization.

Thanks to the Computer Science o�ce sta�, particularly Jean Groethe for helping

me use the copier to make slides at the last minute on more occasions than I care to

admit, and Myrna Harbison for her sense of humor.

Thanks to my father, John Fingerhut, for buying an Apple][+ computer for the

family in Christmas of 1981. I spent many happy hours with that machine, and will

always remember it fondly.

Thanks to my mother, Shirley Fingerhut, for teaching me the rules of chess when

I was a boy, and then letting me beat her at it. Success is such a great way to build

con�dence.

Thanks to my brother Matt for saving my life once. One day he may regret that he

did not force me to agree to give him 50% of all my future earnings.

Thanks to my sister Amy for being brutally honest at all times.

Thanks to my wife Tonya for understanding that one may not see one's spouse as

often as one wishes during the last months before the dissertation is complete.

124

Thanks to George Varghese for all of our stimulating discussions, and for showing

me lots of great ideas on how to teach a course on network protocols.

But most of all, I would like to thank my advisor Jonathan Turner, to whom this

work is dedicated. You were patient with me, and helped me to start my research when

I did not know how. Research and proofs seemed like magic being performed behind

a curtain. You showed me that there was no magic, but plenty of trial, error, and

practice. While others have helped, you have been the best teacher { by example.

125

A. BIBLIOGRAPHY

[1] Yogesh K. Agarwal. An algorithm for designing survivable networks. AT&T Tech-

nical Journal, 68(3):64{76, May/June 1989.

[2] Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: An approximation

algorithm for the generalized steiner problem on networks. In Proc. 23rd ACM

Symp. Theory of Computing, pages 134{144, 1991.

[3] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for Hamiltonian

circuits and matchings. Journal of Computer and System Sciences, 18:155{193,

1979.

[4] Ami Arbel. Exploring Interior-Point Linear Programming: Algorithms and Soft-

ware. Foundations of Computing. MIT Press, November 1993.

[5] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.

Proof veri�cation and hardness of approximation problems. In Proc. 33rd and

Symp. Foundations of Comp. Sci., pages 14{23. IEEE, 1992.

[6] G. R. Ash, Richard H. Cardwell, and R. P. Murray. Design and optimization of

networks with dynamic routing. Bell System Technical Journal, 60(8):1787{1820,

October 1981.

[7] Anantaram Balakrishnan, Thomas L. Magnanti, Alexander Shulman, and

Richard T. Wong. Models for planning capacity expansion in local access telecom-

munication networks. In J. MacGregor Smith and Pawel Winter, editors, Topo-

logical Network Design (Annals of Operations Research 33), pages 239{284. J. C.

Baltzer AG, 1991.

126

[8] Mokhtar S. Bazaraa and C. M. Shetty. Nonlinear Programming. John Wiley &

Sons, 1979.

[9] Piotr Berman and Viswanathan Ramaiyer. Improved approximations for the

Steiner tree problem. In Proc. 3rd ACM-SIAM Symp. Discrete Algorithms, pages

325{334, January 1992.

[10] Marshall Bern and Paul Plassman. The Steiner problem with edge lengths 1 and

2. Information Processing Letters, 32:171{176, September 1989.

[11] Daniel Bienstock. Computational experience with an e�ective heuristic for some

capacity expansion problems in local access networks. Telecommunication Systems,

1(4):379{400, May 1993.

[12] Hans L. Bodlaender, John R. Gilbert, Hj�almt�yr Hafsteinsson, and Ton Kloks.

Approximating treewidth, pathwidth, and minimum elimination tree height. In

G. Schmidt and R. Berghammer, editors, Graph-Theoretic Concepts in Computer

Science (Lecture Notes in Computer Science 570), pages 1{12. Springer-Verlag,

1992.

[13] Robert R. Boorstyn and Howard Frank. Large-scale network topological optimiza-

tion. IEEE Transactions on Communications, COM-25(1):29{47, January 1977.

[14] E. Brockmeyer, H. L. Hastr�m, and Arne Jensen. The life and works of A. K.

Erlang, volume 6 of Acta polytechnica Scandinavica. Mathematics and Computing

Machinery Series. Danish Academy of Technical Sciences, 2nd edition, 1960.

[15] Richard H. Cardwell, Clyde L. Monma, and Tsong-Ho Wu. Computer-aided design

procedures for survivable �ber optic networks. IEEE Journal on Selected Areas in

Communications, 7(8):1188{1197, October 1989.

127

[16] Va�sek Chv�atal. Linear Programming. W. H. Freeman and Company, 1980.

[17] D. D. Clark, B. S. Davie, D. J. Farber, I. S. Gopal, B. K. Kadaba, W. D. Sincoskie,

J. M. Smith, and D. L. Tennenhouse. The AURORA gigabit testbed. Computer

Networks and ISDN Systems, 25(6), January 1993.

[18] Martin de Prycker. Asynchronous transfer mode: Solution for broadband ISDN.

Ellis Horwood, 2nd edition, 1993.

[19] D.-Z. Du and F. K. Hwang. An approach for proving lower bounds: Solution of

Gilbert-Pollak's conjecture on Steiner ratio. In Proc. 31st Symp. Foundations of

Comp. Sci., pages 76{85, October 1990.

[20] Ding-Zhu Du and Frank K. Hwang. The state of art on Steiner ratio problems.

In Ding-Zhu Du and Frank K. Hwang, editors, Computing in Euclidean Geometry,

pages 163{191. World Scienti�c, 1992.

[21] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press,

Princeton, NJ, 1964.

[22] Howard Frank and Wushow Chou. Topological optimization of computer networks.

Proceedings IEEE, 60:1385{1397, 1972.

[23] Howard Frank, Ivan T. Frisch, and Wushow Chou. Topological considerations in

the design of the ARPA computer network. In AFIPS Conference Proceedings,

pages 581{587, Montvale, NJ, May 1970. AFIPS Press.

[24] L. Fratta, Mario Gerla, and Leonard Kleinrock. The ow deviation method: an

approach to store-and-forward communication network design. Networks, 3:97{

133, 1973.

128

[25] Harold N. Gabow. A representation for crossing set families with applications to

submodular ow problems. In 4th and ACM-SIAM Symp. Discrete Algorithms,

pages 202{211, 1993.

[26] Harold N. Gabow, Michel X. Goemans, and David P. Williamson. An e�cient

approximation algorithm for the survivable network design problem. In Proc. Third

Conf. on Integer Programming and Combinatorial Optimization, 1993. Erice, Italy,

April 29 { May 1.

[27] Harold N. Gabow and Eugene W. Myers. Finding all spanning trees of directed

and undirected graphs. SIAM Journal on Computing, 7(3):280{287, August 1978.

[28] Michael R. Garey and D. S. Johnson. Computers and Intractability. A Guide to

NP-Completeness. Freeman, 1979.

[29] Bezalel Gavish. Topological design of centralized computer networks { formulations

and algorithms. Networks, 12:355{377, 1982.

[30] Bezalel Gavish. Formulations and algorithms for the capacitated minimal directed

tree problem. Journal of the ACM, 30(1):118{132, January 1983.

[31] Bezalel Gavish. Augmented Lagrangean based algorithms for centralized network

design. IEEE Transactions on Communications, COM-33(12):1247{1257, Decem-

ber 1985.

[32] Bezalel Gavish. Topological design of telecommunication networks - local access

design methods. In J. MacGregor Smith and Pawel Winter, editors, Topological

Network Design (Annals of Operations Research 33), pages 17{71. J. C. Baltzer

AG, 1991.

129

[33] Mario Gerla and Leonard Kleinrock. On the topological design of distributed

computer networks. IEEE Transactions on Communications, COM-25(1):48{60,

January 1977.

[34] E. N. Gilbert. Minimum cost communication networks. Bell System Technical

Journal, pages 2209{2227, 1967.

[35] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied

Mathematics, 16(1):1{29, 1968.

[36] Michel X. Goemans and David P. Williamson. A general approximation technique

for constrained forest problems. In Proc. 3rd ACM-SIAM Symp. Discrete Algo-

rithms, pages 307{315, 1992. also submitted to SIAM Journal on Computing.

[37] Andrew V. Goldberg and Robert Endre Tarjan. A new approach to the maximum-

ow problem. Journal of the ACM, 35(4):921{940, October 1988.

[38] Andrew V. Goldberg and Robert Endre Tarjan. Finding minimum-cost circulations

by successive approximation. Mathematics of Operations Research, 15(3):430{466,

August 1990.

[39] Martin Gr�otschel, Clyde L. Monma, and Mechthild Stoer. Computational results

with a cutting plane algorithm for designing communication networks with low-

connectivity constraints. Operations Research, 40(2):309{330, March{April 1992.

[40] Martin Gr�otschel, Clyde L. Monma, and Mechthild Stoer. Design of survivable

networks. In Handbook in Operations Research and Management Science. 1994. In

preparation.

[41] Torben Hagerup and Christine R�ub. A guided tour of Cherno� bounds. Informa-

tion Processing Letters, 33(6):305{308, 1990.

130

[42] Frank Harary. Graph Theory. Addison-Wesley Series in Mathematics. Addison-

Wesley, 1969.

[43] Wassily Hoe�ding. Probability inequalities for sums of bounded random variables.

American Statistical Association Journal, 58:13{30, March 1963.

[44] Te Chiang Hu. Integer Programming and Network Flows. Addison-Wesley, 1969.

[45] Te Chiang Hu. Optimum communication spanning trees. SIAM Journal on Com-

puting, 3(3):188{195, September 1974.

[46] Carolyn Jack, Sheng-Roan Kai, and Alexander Shulman. Design and implementa-

tion of an interactive optimization system for telephone network planning. Opera-

tions Research, 40(1):14{25, January-February 1992.

[47] Carolyn Jack, Sheng-Roan Kai, and Alexander Shulman. NETCAP - an interactive

optimization system for GTE telephone network planning. Interfaces, 22(1):72{89,

January-February 1992.

[48] Amos E. Joel, Jr. A History of Engineering and Science in the Bell System, volume

Switching Technology (1925{1975). Bell Telephone Laboratories, Inc., 1982. See

especially Chapter 5, Part III.

[49] C. Jordan. Sur les assemblages de lignes. J. Reine Angew. Math., 70:185{190,

1869.

[50] Aaron Kershenbaum, Parviz Kermani, and George A. Grover. MENTOR: An algo-

rithm for mesh network topological optimization and routing. IEEE Transactions

on Communications, 39(4):503{513, April 1991.

131

[51] V. King, S. Rao, and Robert Endre Tarjan. A faster deterministic maximum ow

algorithm. In Proc. 3rd ACM-SIAM Symp. Discrete Algorithms, pages 157{164,

January 1992.

[52] AT&T Bell Laboratories. Engineering and operations in the Bell System. The Lab-

oratories, 2nd edition, 1984. See especially Chapters 4 and 5 for network planning

and tra�c analysis.

[53] Thomas L. Magnanti and Richard T. Wong. Network design and transportation

planning: models and algorithms. Transportation Science, 18(1):1{55, February

1984.

[54] Patrick V. McGregor and Diana Shen. Network design: An algorithm for the access

facility location problem. IEEE Transactions on Communications, COM-25(1):61{

73, January 1977.

[55] Michel Minoux. Network synthesis and optimum network design problems: Models,

solution methods and applications. Networks, 19:313{360, 1989.

[56] Clyde L. Monma and David F. Shallcross. Methods for designing communica-

tion networks with certain two-connected survivability constraints. Operations

Research, 37(4):531{541, 1989.

[57] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation,

and complexity classes. Journal of Computer and System Sciences, 43:425{440,

1991.

[58] Hossein Saidi. Multi-Channel Switching in Broadband ATM Network. PhD thesis,

Dept. of Electrical Engineering, Washington University, May 1994.

132

[59] Hossein Saidi, Paul S. Min, and Manjunath V. Hegde. Guaranteed cell sequence

in nonblocking multi-channel switching. In INFOCOM. IEEE, June 1994.

[60] Robert Endre Tarjan. Data Structures and Network Algorithms. SIAM, 1983.

[61] C. J. Truitt. Tra�c engineering techniques for determining trunk requirements in

alternate routed networks. Bell System Technical Journal, 33(2):277{302, March

1954.

[62] Harrell J. Van Norman. LAN/WAN optimization techniques. Artech House, 1992.

[63] Bernard Yaged, Jr. Minimum cost routing for dynamic network models. Networks,

3:193{224, 1973.

[64] Norman Zadeh. On building minimum cost communication networks over time.

Networks, 4:19{34, 1974.

[65] Ellen Witte Zegura. Architectures for ATM switching systems. IEEE Communi-

cations Magazine, 31(2):28{37, February 1993.

133

B. VITA

Bibliographical items on the author of the dissertation, J. Andrew Fingerhut.

� Born May 11, 1969 in Belleville, Illinois.

� Attended Southern Illinois University at Edwardsville, January 1981 to June 1987.

Received the degree Bachelor of Arts with majors in Computer Science, Mathe-

matics, and Physics.

� Attended Washington University from September 1987 to present. Received the

degree Master of Science in Computer Science in May, 1990.

� Worked as a research assistant in the Computer and Communications Research

Center from January 1990 to present.

� Member of ACM, SIAM, and ORSA.

May, 1994

