
Approximation Algorithms for

Con�guring Hierarchical

Nonblocking Communication

Networks

J. Andrew Fingerhut

wucs-93-19

August 26, 1993

Department of Computer Science
Campus Box 1045
Washington University
One Brookings Drive
St. Louis, MO 63130-4899

Abstract

A framework is given for specifying nonblocking tra�c limits in a connection-
oriented communications network. In this framework, connections may be point-to-
point or multipoint, and the data rates may vary from one connection to another.
The tra�c limits may be \at", or they may also be hierarchical, representing com-
munities of interest within the network that have higher tra�c among themselves
than with the rest of the network. The communication networks are constructed
from switches (or nodes) and trunks, which connect pairs of switches. This frame-
work is intended to model Aynchronous Transfer Mode (ATM) networks and tra�c.
We present a way of computing a lower bound on the cost of any nonblocking net-
work that can satisfy the limits, and show that this lower bound is good analytically
and through experiments on randomly generated instances.

This work is supported by the National Science Foundation, Ascom Timeplex, Bell
Communications Research, Bell Northern Research, Goldstar, Italtel SIT, NEC,
NTT, and SynOptics.

1

1. Introduction

There has been much work done on algorithms for con�guring communication networks as
cheaply as possible, given that they must satisfy certain o�ered tra�c. For example, see the
surveys by Minoux [Min89] and Magnanti and Wong [MW84]. However, most of the work
in this area assumes that the network designer knows, at least approximately, how much
tra�c will appear between every pair of nodes in the network. This is reasonable for very
large networks, such as the United States telephone network, for which the aggregate tra�c
is so large that those quantities are stable, and data is available to make such estimates.

For local area networks up to campus-sized and possibly metropolitan area networks, the
tra�c quantity is smaller, and the magnitude of tra�c between node pairs is often much
less stable over short time periods, and harder to estimate or predict. In this paper we
present a way of specifying tra�c which would be easier for a network designer to estimate,
based on the total tra�c that a node may initiate or receive at one time, called the source
termination capacity and destination termination capacity. No tra�c matrix is necessary, as
the tra�c may go between any pairs of nodes so long as no node violates their termination
capacity restrictions. A tra�c matrix may be speci�ed to restrict the tra�c further (called
point-to-point restrictions here).

Given this framework, we analyze the performance of a simple network con�guration
algorithm, both experimentally and analytically. This algorithm simply �nds the cheapest
star network among the n such possible networks, where n is the number of nodes. An
e�cient algorithm for computing a lower bound on the cost of any feasible network is
developed as well. The experiments and analysis show that this simple algorithm very
often produces networks which are within a few percent of optimal.

The tra�c limits are generalized so that a network designer may model \clusters" of
nodes which have high tra�c among themselves, but smaller tra�c to the rest of the net-
work. Such tra�c patterns are common in most communication networks which are larger
than a small local area network. The simple con�guration algorithm and lower bound com-
putation algorithm are generalized for these tra�c limits as well, and experimental results
show that solutions for randomly generated instances are usually within 10% of optimum.

This work is intended for con�guring ATM networks. These are connection-oriented,
where di�erent connections may have di�erent rates, and connections may be multicast,
involving more than two nodes. We explicitly account for these properties in our work,
and the networks produced will never block a request for a new connection, so long as the
request does not violate the speci�ed tra�c limits.

In section 2 we de�ne networks and connections, nonblocking networks, and the non-
blocking network con�guration problem. In section 3 we de�ne at (as opposed to hierar-
chical) tra�c limits, give an e�cient algorithm for computing a lower bound on the cost
of any nonblocking network, develop an algorithm for link dimensioning in a tree network,
present experimental results of randomly generated instances with at tra�c limits, and
prove two theorems which were motivated by the experiments. In section 4 we generalize
the at tra�c limits to hierarchical, modify the algorithms for computing the lower bound
and link dimensions, and present further experimental results. In section 5 we generalize

2

the link dimensioning algorithm for networks with arbitrary topologies, and verify that
all of the previous link dimensioning algorithms are correct when multipoint tra�c is also
allowed.

2. De�nitions

2.1. Networks, connection requests, and connections

A network N is a directed graph with node set N , link set L, and a function cap : L! IN,
where cap (l) is the bandwidth, or capacity, of link l. IN denotes the set of natural numbers.

A connection request (or call) is a triple q = (src ; dest ; rate), where the nodes src (q) �
N are the sources of information ow, nodes dest (q) � N are the destinations of ow, and
rate (q) 2 IN is the desired rate of the connection. Either or both of the sets src (q); dest (q)
must contain exactly one node. If both do, then the request is called point-to-point. If
jdest (q)j > 1, then the request is called a one to many multipoint request. If jsrc (q)j > 1,
then the request is called a many to one multipoint request.

A connection (or route) is a pair r = (links ; rate). Links (r) is a set of links in L which
forms a tree. That is, if all of the edges links (r) are considered as undirected edges, then the
edges in links (r) with their incident nodes form a connected, acyclic graph. A point-to-point

connection is a directed path from a source node to a destination node. A one to many

multipoint connection is a tree with the source node as a root, destination nodes as either
leaves or internal nodes of the tree, and all edges directed away from the source. A many

to one multipoint connection is a tree with the destination node as a root, source nodes as
either leaves or internal nodes of the tree, and all edges directed towards the destination.
rate (r) is the bandwidth which is used on each link of the connection.

A connection r realizes a request q under one of several conditions. If q is point-to-point,
then r realizes q if links (r) is a directed path from src (q) to dest (q). If q is a one to many
multipoint request, then r realizes q if links (r) is a directed tree with root src (q), all links
are directed away from the root, all dest (q) are in the tree, and all leaves are contained in
dest (q). If q is a many to one multipoint request, then r realizes q if links (r) is a directed
tree with root dest (q), all links are directed toward the root, all src (q) are in the tree, and
all leaves are contained in src (q). In all cases, rate (r) = rate (q) should also hold.

A state S of the network is a (multi)set of connections. Given a networkN = (N;L; cap)
and a state S, we de�ne the usage and available capacity of a link l in state S to be

usage (l;S) =
X

r2S; r uses link l

rate (r)

avail (l;S) = cap (l)� usage (l;S)

A state S is legal for network N if

(8l 2 L) (usage (l;S)� cap (l))

3

Figure 1: An example state

In other words, every link is used in connections that have a total rate which is at most the
link's capacity.

For example, the point-to-point request (e; c; 1) is realized by the connection
(f(e; b); (b; c)g; 1), which is the dash-dotted path superimposed on the network in Figure 1.
Similarly, the one to many multipoint request (b; fa; dg; 3) is realized by the connection
(f(b; a); (b; c); (c; d)g; 3), which is the dashed tree in Figure 1. The links are labeled with
two numbers, �rst capacity and then usage.

2.2. Fixed path routing and nonblocking networks

A routing algorithm is a method for taking a connection request and the current state of
the network and determining a connection which satis�es the request. The new connection
should not exceed any of the link capacities when it is added to the current state.

In this paper, we consider one simple routing algorithm, called �xed path routing. All
of the de�nitions in this section have been simpli�ed with this routing algorithm in mind.
See Fingerhut [Fin91, Fin92] for de�nitions of other routing algorithms, and a more general
de�nition of a nonblocking network.

When �xed path (FP) routing is used, there is a table path. For each ordered pair of
endpoints u; v, path(u; v) is a directed path from u to v. Whenever a point-to-point con-
nection request q = (u; v; rate) is given, routing algorithm FP returns the path path(u; v).
Note that this path may not have enough bandwidth available to handle the new connec-
tion, and this will cause the request to block, even though other paths from u to v may have
enough available capacity. The name of this routing algorithm comes from its behavior: the
path to be used from u to v is �xed for the lifetime of the network (or at least for a long
time). It ignores the current state of the network.

We will de�ne what it means for a set of connection requests R to be compatible with
tra�c limits T in sections 3.1 and 4.1. Intuitively, the tra�c limits restrict the number and
bandwidth of connection requests which can be in a compatible set R.

Consider a networkN = (N;L; cap), and a sequence of add and drop requests q1; : : : ; qk.
Each qi is either a request to add a new connection, or to remove a previously added

4

connection which has not yet been removed. De�ne Ri to be the subset of fq1; : : : ; qig
from which all drop requests and their corresponding add requests have been removed. Ri

is the set of active connection requests after request qi has been completed. De�ne the
sequence q1; : : : ; qk to be compatible with tra�c limits T if for all i, 1 � i � k, the set Ri

is compatible with T .

The network N is blocking for tra�c T if there exists a sequence of requests q1; : : : ; qk
compatible with T such that qk = (u; v; r) is an add request, and there is less than r units
of bandwidth available on the path path(u; v). We say that the request qk is blocked. N is
nonblocking if there is no such request sequence.

Note that this de�nition of �xed path routing only allows point-to-point requests and
connections. In section 5.2 we explain how to extend this routing algorithm to handle
multipoint requests as well.

2.3. The Network Con�guration Problem

We now describe a computational problem which models the following scenario. A network
manager has several switches in given locations, and knows how much it costs to install links
of various capacities between these switches. The manager also knows the tra�c limits, and
wants to know how much bandwidth to install between each pair of switches so that the
resulting network is nonblocking with respect to this tra�c.

Nonblocking network con�guration

INSTANCE: A set of nodes N . For each node pair u; v, a nondecreasing function
costu;v : IN! IN, where costu;v(x) is the cost of installing a link of capacity x from
u to v. Tra�c limits T are given by (�; !; �).

SOLUTION: A capacity cap (u; v) 2 IN for each node pair u; v, and some routing
algorithm. This assignment of capacity should make the network nonblocking for
tra�c T when the routing algorithm is used.

SOLUTION COST: The cost of the network is the sum of the costs of each link:X
u;v2N

costu;v(cap (u; v))

OBJECT: Find a solution with minimum cost.

3. Flat tra�c limits

What are called at tra�c limits in this paper have been examined before by Finger-
hut [Fin92]. They are de�ned again here in this section. Section 4.1 de�nes a more general
type of tra�c called hierarchical tra�c limits.

5

3.1. De�nition

Intuitively, a nonblocking network is one which, given any legal state which realizes a com-
patible set of requests, and an additional connection request compatible with the existing
ones, we can �nd a connection which realizes the request such that the resulting state is
legal. It should be clear that unless there is some way to restrict the new requests that
come in, any network with �nite link capacities will eventually be unable to satisfy the new
requests. We will restrict new requests by introducing the concept of termination capacity.

Every node v has a source termination capacity �(v) 2 IN and a destination termination

capacity !(v) 2 IN. �(v) (!(v)) is a number which represents the maximum total rate of
all connections in which v may be a source (destination). For example, if �(v) = 5, then v
may simultaneously be a source in connections with rates 1, 2, and 2, but then it could not
be a source in any more connections until an existing connection is removed.

The source termination capacity �(u) may be interpreted as the bandwidth of the in-
terface to the switch u from the collection of terminals connected to u (similarly for !(u),
but in the opposite direction). This interface has a �nite bandwidth, and if it is ever all
used, then it is impossible for any more connections to be made which have one of those
terminals as a source. Note that additional connections may pass through the node, but
they cannot start there. Also note that when we say a network is nonblocking, we mean
that if a new request does not exceed any of the termination capacities, then there will be
enough capacity on the links of the network to satisfy the request. From the point of view of
a user operating a terminal, a request may block because other users connected to the local
node through the same interface may be using all of the termination capacity. A network
designer using the algorithms developed here may wish to vary the values of termination
capacity to see how it a�ects the cost of the network. They may also wish to engineer the
network to be nonblocking for values of � and ! which are lower than the bandwidths of
the interfaces actually present in the network. This could lower the cost of the network, but
then the nonblocking guarantee only applies when the network operates within the designed
values. Users could try to exceed those termination capacity values, and then blocking may
occur. It is possible that some requests like this could succeed, and then other users oper-
ating within their termination capacities may block because someone else is \breaking the
rules". This idea of a termination capacity was inspired by the \maximum port weight" �
used by Melen and Turner [MT89, MT90].

An additional idea which may be useful in lowering the cost of network con�gurations
is point-to-point restrictions. They are speci�ed by giving a value �(u; v) 2 IN for each
u; v 2 N . The value �(u; v) is the maximum total rate of all connections that may exist
from u to v simultaneously.

An example of at tra�c limits is given in Figure 2.

Given a network N = (N;L; cap) and a (multi)set of connection requests R, de�ne the
source usage, destination usage, and point-to-point usage under requests R as

src-usage (u;R) =
X

q2R; u2src (q)

rate (q)

6

u �(u) !(u)

a 4 4
b 6 1
c 2 8

v

a b c

a 1 4
u b 4 6

c 2 1

�(u; v)

Figure 2: An example of at tra�c limits

dest-usage (u;R) =
X

q2R; u2dest(q)

rate (q)

pp-usage (u; v;R) =
X

q2R; u2src (q); v2dest (q)

rate (q)

Let at tra�c limits T = (�; !; �) be given, where � : N ! IN, ! : N ! IN, and
� : N �N ! IN. We say that the set of requests R is compatible with tra�c limits T if

(8u 2 N) (src-usage (u;R)� �(u))^
(8u 2 N) (dest-usage (u;R) � !(u))^

(8u; v 2 N) (pp-usage (u; v;R)� �(u; v))
(1)

That is, no node is involved in more requests than its termination capacity will allow, and
no pair of nodes is involved in more requests than their point-to-point restriction will allow.

There are two restrictions on the values of �, !, and � which are sometimes useful. The
�rst is the condition

(8u; v 2 N)(�(u; v)� minf�(u); !(v)g) (2)

It can be proven that when this condition holds, the �rst two lines of condition (1) imply the
third line. Therefore the compatible sets of requests depend only upon the values of � and
!. When condition (2) holds, we will call the tra�c limits termination capacity bounded, or
�; !-bounded. The limits of Figure 2 are �; !-bounded because �(u; v) = minf�(u); !(v)g
for all u; v 2 N .

The second restriction is

(8u 2 N) (�(u) �
X
v2N

�(u; v))^

(8u 2 N) (!(u) �
X
v2N

�(v; u)) (3)

When this condition holds, the third line of condition (1) implies the �rst and second
lines. Therefore the compatible sets of requests depend only upon the values of �. When
condition (3) holds, we will call the tra�c limits point-to-point bounded, or �-bounded.

It is possible for tra�c to be neither �; !-bounded nor �-bounded. This will be called
the general case of nonblocking tra�c limits.

7

3.2. A lower bound

In this section we present an algorithm for computing a lower bound on the cost of any
nonblocking network, using any routing algorithm, given only the tra�c limits and the link
cost functions. It works when all link cost functions are linear, i.e., cost(u;v)(x) = (u; v) � x
for all pairs u; v. In addition, the coe�cients of these linear functions (u; v) must satisfy
the triangle inequality:

(8u; v; w 2 N) (u; v)� (u; w)+ (w; v)

That is, it is never more expensive to build a link directly between a pair of nodes than it
is to build links on an indirect path between the nodes.

Since we will compute a lower bound, the method to be described can also be used
when each link cost function is at least some linear function. For example, some \staircase"
functions, like 40dx=20e, are useful as cost functions because they can model the cost of
transmission systems where capacity can only be installed in groups of a units (a = 20 in
this case), and each group costs b units (b = 40). This function satis�es 40dx=20e � 2x.
Therefore a lower bound can be computed by the methods in the next sections by assuming
that the link cost function is 2x for the given link.

A lower bound is useful when we have an instance I of a network design problem and
a network design of cost C which is nonblocking, but we do not know how close its cost is
to the minimum cost possible. Suppose we have computed a lower bound L(I) on the cost
of any nonblocking network for I . In particular, L(I) is a lower bound on the cost of the
cheapest solution, OPT (I). Therefore

C

OPT (I)
�

C

L(I)

For example, if C = 125 and L(I) = 100, then we know that our solution costs at most 25%
more than the minimum cost solution, and it may be closer.

Let the at tra�c limits be given by T = (�; !; �). Consider a single point-to-point
connection request from u to v with rate r that is compatible with T . In any network that
is nonblocking for T , there must be a path from u to v such that all links in the path have at
least r units of bandwidth. Given that the link cost functions are linear and the coe�cients
 satisfy the triangle inequality, the cheapest network that can be built, to handle this
request only, is the one containing the single link (u; v) with capacity r. The cost of this
network is r �(u; v), which is a lower bound on the cost of any network that is nonblocking
for T , regardless of the routing algorithm used.

Similarly, for any compatible set of point-to-point connection requests R. The cheapest
network that can handle R is the one which contains links directly between the node pairs
involved in requests. The cost of this network is

L(I;R) =
X
q2R

rate (q) � (src (q); dest (q))

and this quantity is a lower bound on the cost of any network that is nonblocking for T .

8

Figure 3: Lower bound network for tra�c limits of Figure 2

To �nd the largest lower bound of this form possible, we wish to compute the value

L(I) = max
R2ALLREQT

L(I;R)

where ALLREQT contains all sets of point-to-point connection requests compatible with
T .

Computing L(I) by enumerating all elements of the set ALLREQT would be computa-
tionally prohibitive. We can compute it much more e�ciently by exploiting a relationship
between all request sets and all ows in a structure called the lower bound network.

The lower bound network L = (V;E; cap) is a directed graph with capacities on the
edges, cap : E ! IN. It is de�ned below in terms of the network nodes N and the tra�c
limits T = (�; !; �). The edges are given in the form (u; v; c), where the edge is from vertex
u to vertex v and has capacity c.

V = fs; tg [fus; ud : u 2 Ng

E = f(s; us; �(u)); (ud; t; !(u)) : u 2 Ng [

f(us; vd; �(u; v)) : u; v 2 N; u 6= vg

The subscript s is short for \source", and the subscript d is short for \destination".

The lower bound network for the at tra�c limits given in Figure 2 is shown in Figure 3.
The �rst number that labels each edge is the capacity. The second number will be explained
in the example below.

An important property of this network is that for any compatible set of point-to-point
requests R, there is a unique corresponding integer-valued network ow fR : E ! IN (see
any of [FF64, Hu69, Tar83] for de�nition of a ow) that does not exceed any of the edge
capacities. This ow can be constructed by starting with the 0 ow, and then for each
request (u; v; rate) 2 R, add ow rate along the path s� us � vd � t. For example, the set
of compatible requests R = f(a; c; 4); (b; c; 1); (c; a; 2)g has the unique corresponding ow
fR which is given by the second numbers labeling the edges in Figure 3.

Note that the ow on edges of the form (s; us) is exactly src-usage (u;R), ow on edges
(ud; t) is exactly dest-usage (u;R), and ow on edges (us; vd) is exactly pp-usage (u; v;R).
Given this correspondence, it is easily seen that the conditions \R is compatible" (given

9

by (1)) and \fR does not exceed any edge capacities in L" are equivalent. Also note that
the value of the ow, v(fR) =

P
u2N fR(s; us), is equal to the total rate of all requests in

R.

Conversely, for any integer ow f that does not exceed the edge capacities, there is
at least one corresponding compatible point-to-point request set Rf . Such a set can be
constructed by �nding any path p = s � us � vd � t in L with positive ow, picking any
integer quantity � > 0 that is no larger than the ow on any edge of p, reducing the ow
on p by �, and adding a connection request (u; v; �) to Rf . Repeat this process until the
ow f is 0. It is easy to see that any such Rf must be compatible. For example, the ow
of Figure 3 has several corresponding compatible request sets. In addition to the one given
above, there is also f(a; c; 3); (a; c; 1); (b; c; 1); (c; a; 1); (c; a; 1)g.

Because of the above properties, we say that there is a many to one correspondence
from compatible sets of point-to-point request sets to integer ows.

The value of the maximum ow in the lower bound network is just the maximum possible
total rate of connections that can exist simultaneously. Instead of the maximum total rate,
a simple sum of connection rates, we want the maximum value of L(I;R), which can be
thought of as a weighted sum of connection rates, weighted by the (�) coe�cients.

This problem can be modeled as a maximum cost ow problem [Tar83, Section 8.4]. An
instance of this problem is a directed graph with edge costs as well as edge capacities. The
cost of an edge represents the cost per unit of ow on that edge. The cost of a ow is the
sum over all edges of the ow on the edge multiplied by the edge cost. For the lower bound
network, de�ne the costs of edges (s; us) and (vd; t) to be 0, and for each pair u; v, de�ne
the cost of edge (us; vd) to be (u; v).

Now, given any compatible set of point-to-point requestsR, the cost of its corresponding
integer ow f will be exactly L(I;R). The problem of determining the most costly set of
requests to satisfy has become a maximum cost ow problem in the lower bound network.

In the literature, this problem is often called the minimum cost ow problem or the
minimum cost circulation problem. Simply negate the edge costs given above to convert it
to a minimum cost ow problem. The most e�cient algorithms for this problem known to
the author are cited by Goldberg and Tarjan [GT90].

We close this section with an example that shows why we restrict the cost coe�cients
(�) to those that satisfy the triangle inequality. The example does not satisfy the triangle
inequality, and the lower bound computed by the method above is larger than the cost of a
nonblocking network, and hence it is not truly a lower bound at all.

The example instance has three nodes a, b, and c. All �, !, and � values equal 1, and
the cost coe�cients are (a; b) = (b; a) = 1, (b; c) = (c; b) = 2, and (a; c) = (c; a) = 4.
These costs violate the triangle inequality because (a; c) > (a; b) + (b; c). The lower
bound has value 8, as shown by the most costly request set f(a; c; 1); (c; a; 1)g. A network
that is nonblocking for these tra�c limits contains the links (a; b), (b; a), (b; c), and (c; b),
all with capacity 1. The network has cost 6.

This occurs because the lower bound is made high by using the large cost (a; c) = 4
directly between a and c, but the nonblocking network can get between a and c more

10

cheaply by going through b. This cannot happen when the (�) coe�cients satisfy the
triangle inequality.

3.3. Link dimensioning

In this section we describe an algorithm for computing the minimum necessary link ca-
pacities of a nonblocking network, given the tra�c limits and the �xed path table to be
used. An important property of �xed path routing is that this computation can be done
independently for each link. We specify the problem as one of minimizing the cost of a
nonblocking network.

Nonblocking network con�guration with �xed paths given

INSTANCE: A set of nodes N . For each node pair u; v, a nondecreasing function
costu;v : IN! IN, where costu;v(x) is the cost of installing a link of capacity x from
u to v. Tra�c limits T are given by (�; !; �). For each u; v 2 N , a directed path
path(u; v) from u to v.

SOLUTION: A capacity cap (u; v) 2 IN for each node pair u; v. This assignment
of capacity should make the network nonblocking for tra�c T and the �xed path
routing algorithm with �xed paths path, where connection requests may be multirate
and multipoint.

SOLUTION COST: The cost of the network is the sum of the costs of each link:X
u;v2N

costu;v(cap (u; v))

OBJECT: Find a solution with minimum cost.

In Section 3.3.1, we present some properties of the �xed path routing algorithm which
hold for any table path, and any tra�c limits, including the hierarchical tra�c limits studied
later. Section 3.3.2 shows how to solve the problem above for tree-shaped networks and when
requests and connections must be point-to-point. Later we will extend this to include non-
tree networks, and show that all link-dimensioning algorithms also work when multipoint
connections are allowed.

3.3.1. Properties of �xed path routing. The �rst fact to note about �xed path
routing is: no matter what sequence of requests to add and drop connections came before,
the state of the network is a function of the current set of requests.

Assume for the moment that all links which are used in some �xed path have a very large
capacity which could not be exceeded even if every connection used it, e.g., minf�(N); !(N)g.
Let h be the function that maps request sets to states (this function depends only upon the
table of �xed paths path). Given any set of point-to-point requests R, we can determine the
state of the network h(R), and therefore the usage of each link l, usage (l; h(R)). The set of
all point-to-point request sets ALLREQT which are compatible with the given tra�c limits

11

T , ALLREQT = fR : R is point-to-point and compatible with T g, is �nite. Therefore we
can determine the maximum possible usage of any given link l:

maxusage(l) = max
R2ALLREQT

usage (l; h(R))

Note that this value is independent of any other link capacity. It depends only upon path,
T , and l.

If we assign any link capacities cap that satisfy cap (l) � maxusage(l) for all links l,
then the network will be nonblocking. If any link l has capacity less than maxusage(l), we
can cause the network to block by making the requests in a set R� in any order, where
usage (l; h(R�)) = maxusage(l). Therefore, when the link cost functions costu;v are any

nondecreasing functions of capacity, the link capacities cap (l) = maxusage(l), for all l =
(u; v), u; v 2 N , will be the cheapest solution to the computational problem above. This is
true for any tra�c limits and �xed paths. Therefore the computational problem above has
been reduced to computing the function maxusage.

Let l 2 L be any link of the network. Computing maxusage(l) by generating every
compatible request set in ALLREQT would be computationally prohibitive. It may be
computed more e�ciently by exploiting the properties of the lower bound network de�ned
in section 3.2, and some modi�cations of it.

We begin transforming the expression for maxusage by noting that usage (l; h(R)) is
equal to the total rate of those requests in R whose routes must use link l. De�ne Rl to be
this set, for any R and l. That is, Rl = fq 2 R : u 2 src (q); v 2 dest (q); l 2 path(u; v)g.
Then we may write usage (l; h(R)) =

P
q2Rl

rate (q), and therefore

maxusage(l) = max
R2ALLREQT

0
@X
q2Rl

rate (q)

1
A (4)

3.3.2. Link dimensioning in tree-shaped networks. In this section we restrict
the union of the path links in the table path to be a tree-shaped network. A tree-shaped
network is a directed graph obtained by starting with a tree (i.e., a connected, acyclic,
undirected graph) and replacing each undirected edge with two oppositely directed edges
between the same pair of vertices. For example, the graph of Figure 4 is a tree-shaped
network.

For any link l in a tree-shaped network N , let Xl be the set of nodes on its \source
side". That is, if l = (u; v), then Xl is the set of nodes in the connected component of
N � f(u; v); (v; u)g which contains node u. All other nodes, those in N � Xl, are on the
\destination side" of l. For example, the link (b; c) in the network of Figure 4 has the nodes
Xfb;cg = fa; b; d; eg on its source side and fc; f; g; hg on its destination side.

In a tree-shaped network, all node pairs which use any given link l are of the form u; v,
where u 2 Xl and v 2 N �Xl.

Consider the lower bound network L. Since nodes in Xl will never receive connections
which use link l, we may model this by reducing their ! values to 0. That is, reduce the

12

Figure 4: A tree-shaped network

capacities of edges of the form (ud; t), where u 2 Xl, to 0 (or, equivalently, remove them).
Similarly, nodes in N �Xl will never initiate connections which use link l, so reduce their
� values to 0 by reducing the capacities of the edges (s; vs), where v 2 N � Xl, to 0. Call
this modi�ed lower bound network Ll.

Just as there is a many to one correspondence from compatible sets of point-to-point
requests R to integer ows in L, there is a many to one correspondence from sets Rl to
integer ows in Ll, where R is a compatible set of point-to-point requests. The value of such
a ow f , v(f), is equal to the total rate of requests in any corresponding set Rl. Therefore
we see that

maxusage(l) = max
R2ALLREQT

0
@X
q2Rl

rate (q)

1
A

= max
f2ALLFLOWSLl

v(f) (5)

where ALLFLOWSLl
is the set of all integer ows in the network Ll. The �rst line is just

Equation (4), and (5) follows from the many to one correspondence from request sets R to
ows f .

Determining the ow with maximum value is simply a maximum ow problem, for
which many e�cient algorithms have been designed. King, Rao, and Tarjan [KRT92] have
designed an algorithm with a worst-case running time of O(mn+n2+�) for any � > 0, where
m is the number of edges in the network, and n is the number of vertices. This algorithm has
the best asymptotic e�ciency known to the author. Goldberg and Tarjan [GT88, Section
4] describe an algorithm which is quite easy to implement with a worst-case running time
of O(n3).

In the special case when the tra�c is �; !-bounded, it is easy to see that the minimum
cut in Ll is either (fsg; V �fsg), with value �(Xl), or (V �ftg; ftg), with value !(N�Xl).
By the max-ow, min-cut theorem [FF64], the value of the maximum ow is then equal to
minf�(Xl); !(N�Xl)g. This special case will be used often later.

13

3.4. Experimental results

In this section, we compare the value of the lower bound to the costs of easily computable
nonblocking networks. This is done for randomly generated problem instances.

The easily computable nonblocking networks are star networks, in which there is a
\center" node c, and all other nodes are directly attached to c by two oppositely directed
links. There are only n = jN j such networks, and we can compute the cost of each one
quickly by using the link dimensioning algorithm of the previous section.

A simple implementation of this method would require computing 2(n � 1) maximum
ows (one for each link) for each of the n possible centers. We can improve on this by
computing only 2n maximum ows total. For any node u, we can compute the capacities
of the links in and out of u, provided that u is not the center node. These capacities are
the same no matter which node is the center, and so may be computed once.

The restricted form of each maximum ow instance allows them to be computed in O(n)
time each. After computing all of these capacities, the cost of each possible star network
can also be computed in O(n) time each, giving a total running time of O(n2) to �nd the
cheapest star network.

In the following, whenever we say that a value is generated randomly in some interval,
we mean that it is generated from a uniform distribution on the interval. Similarly, when we
place a point randomly in some rectangle, we mean that its location is generated randomly
with a uniform distribution on the area.

A single experiment consists of choosing a number of nodes n, a range of termination
capacity values [�lo; �hi], and a range of real numbers [�lo; �hi], which is a sub-interval of
[0; 1]. Generate a random at instance as follows. All nodes are placed randomly in a unit
square. Link cost coe�cients (u; v) are set equal to the Euclidean distance between u
and v. For each node u, choose the integer �(u) randomly in the interval [�lo; �hi], and
set !(u) = �(u). For each node pair u; v, choose a real value x randomly in the interval
[�lo; �hi] and set �(u; v) = x �minf�(u); !(v)g. Note that if �lo = �hi = 1, then the tra�c
limits �, !, � will always be �; !-bounded.

After the instance has been generated, the cost of the cheapest star network was com-
puted as described above, and the lower bound is computed by the algorithm in Section 3.2.
The performance ratio, which is a real value no less than 1, is equal to the cost of the star
network divided by the lower bound.

In Figure 5, each data point is the average of the performance ratios of 50 randomly gen-
erated instances, all generated with the same values of n, �lo = 10, �hi = 20, and �lo = �hi =
1. Experiments were done for values of n ranging over the set f3; 4; 5; 6; : : : ; 14; 15; 20; 25; 30;
40; 50; 60; 70; 80; 90; 100g. The same experiments were performed with � randomly drawn
from the interval [1; 30], and with all � values equal to 10. The resulting plots are not
signi�cantly di�erent than those in Figure 5, so they have not been shown.

Note that even at the worst (highest) part of the curve for small n, the average perfor-
mance ratio is no more than about 1.08. This shows that the star network solutions are
within 8% of optimal on average for small n, and even closer for large n. The maximum

14

0 20 40 60 80 100
n = number of nodes

1.00

1.10

1.20

1.30

so
lu

tio
n

co
st

 /
lo

w
er

 b
ou

nd
MAXIMUM

AVERAGE

Figure 5: Experimental results for at �; !-bounded tra�c

(not the average) of all 50 of the individual performance ratios for n = 3 is 1.317. For n � 7,
we have exhaustively enumerated all nn�2 tree-shaped networks of the nodes, not just star
networks, to �nd the one that gives the cheapest nonblocking network. In every case, a star
network was among the cheapest solutions. This prompted the search for a proof that the
minimum cost star network is the cheapest among all tree-shaped networks. The proof was
found and is presented in Section 3.5.

When the performance ratio is large, it means that either the lower bound is far below the
optimal cost, the cheapest star network is far above the optimal cost, or both. We conjecture
that the lower bound is far below the optimal cost for small n, and the minimum cost star
network is exactly optimal. More precisely, we conjecture that for �; !-bounded tra�c with
�(u) = !(u) for all u, link cost functions which are linear, and link cost coe�cients satisfying
the triangle inequality, the cheapest star network is the minimum cost nonblocking network
among all nonblocking networks, with any routing algorithm. The proof mentioned above
proves that the minimum cost star is cheapest among all tree networks, but not necessarily
among all solutions.

When n gets large, we see that the performance ratio gets closer to 1. This means
that both the lower bound and the minimum cost star network are getting closer to the
optimal value. This prompted the search for a proof that the curve does approach 1 as n
gets large. In Section 3.6, we show that the probability the performance ratio is at most
1 + � goes to 1 as n gets large, for any � > 0. This result holds for random instances with
uniformly distributed nodes, and �; !-bounded tra�c limits in which each � and ! value
can be generated with any distribution desired, even with di�erent distributions for di�erent
nodes, as long as the averages of all distributions are the same, and it is impossible for any
distribution to generate a value outside of the interval [�lo; �hi]. This proof should not be
too di�cult to extend to more general kinds of tra�c limits.

15

0 20 40 60 80 100
n = number of nodes

1.0

1.2

1.4

1.6

1.8

2.0

so
lu

tio
n

co
st

 /
lo

w
er

 b
ou

nd
0.1 maximum

0.1 avg

0.2 avg
0.5 avg

1.0 avg

Figure 6: Experimental results for at general tra�c

Figure 6 shows several curves. All instances generated used the parameters �lo = 10,
�hi = 20 as before, but now we set �lo = 0 and each curve represents a di�erent value of
�hi, as labeled. These are general tra�c limits, i.e., neither �; !-bounded nor �-bounded,
although they may happen to be �-bounded for small n and small values of �hi. 50 random
instances were generated for each data point, and the same set of values of n was used as
before.

The performance ratios are much worse on averge now. For smaller values of �hi, the
performance ratios stay high for a longer time. This can be explained by examining the
kinds of maximum cost ows which we get in the lower bound network, and the capacities
of star network links.

Suppose that �(u; v) is equal to its maximum possible value, U = minf�(u); !(v)g.
Then up to U units of ow are free to go from us to vd in the lower bound network. If all
�(u; v) values are at their maximum value, then ow is free to travel between pairs of nodes
which are furthest apart, making the lower bound value large. When �hi = 0:1, however,
then the expected value of �(u; v) is 0:1=2 = 1=20 of U , and now ow from u must be split
among 20 other nodes, on average. When there are few nodes, not many of them will be far
away, and so ow must be sent to close nodes, yielding a smaller lower bound. As n grows,
it is more likely that there will be 20 nodes which are far away, increasing the lower bound.

A similar examination of the capacities required on the star network links show that
one would not expect them to be much smaller than when � values are as large as possible.
Therefore, the minimum star network costs do not decrease as much as the lower bound
does, and the performance ratio increases.

However, all curves eventually start to approach 1. This gives empirical evidence that
we should be able to extend the probabilistic result of Section 3.6 to more general kinds of

16

at tra�c limits.

When � values are small, the tra�c limits are more likely to be \close" to being �-
bounded. The closer the tra�c is to satisfying this condition, then the more likely it is
that a complete network, with direct links between every node pair, is cheaper than any
tree solution. When the tra�c limits are �-bounded, the complete network is the optimal
solution [Fin92].

All of the curves except the top one are average performance ratios, averaged over 50
instances. The top curve is the maximum performance ratio among all 50 instances. Similar
curves for the other values of �hi would only clutter the plot. They are typically about twice
as high above 1 as the corresponding average curve. The worst performance ratio over all
was 2.051 for a four node instance with �hi = 0:2.

3.5. A star network is always cheapest among all trees

De�ne �(X) =
P

u2X �(u) for any set X , X � N . De�ne !(X) similarly.

Theorem 3.1. Let at �; !-bounded tra�c limits �; ! be given for a set of nodes N , where
�(N) = !(N), and let all link cost functions be linear with coe�cients (u; v) satisfying
the triangle inequality. Then a star network is cheapest among all nonblocking tree-shaped
networks.

We prove this theorem by showing that for any tree-shaped network, there is always
a \center" node c with the following property. If any node of the tree is not adjacent to
c, then we may cut it from its current place in the tree, make it adjacent to c, and the
resulting tree-shaped network has nonblocking link capacities which are no more expensive
than the original. By repeating this process at most n � 2 times, the result is eventually
a star network with center node c which is no more expensive than the original network.
Hence, for every tree-shaped network which is not a star, there exists a star which is no
more expensive.

Note that this does not say that the star with center c will always have minimum cost
among all stars. However, the theorem shows us that we may �nd the minimum cost tree
network by trying all n stars exhaustively.

Let T = (V;E) be an undirected tree where each vertex v has a real weight w(v) � 0.
De�ne w(X) to be the sum of the weights of vertices in X , where X is either a subset of
V or a subgraph of T . For any two distinct nodes u; v in T , let f(u; v) be the �rst edge on
the unique path from u to v in T , and de�ne the subtree of v with respect to u, Su(v), to
be the connected component of T � f(v; u) which contains v. A vertex c 2 V is called a
weighted tree center if w(Sc(v)) � w(T)=2 for all vertices v adjacent to c.

Lemma 3.1. Let T = (V;E) be an undirected tree, where each node v 2 V has a nonnega-
tive weight w(v). Then there exists a weighted tree center c 2 V .

17

Figure 7: Tree structure in proof of Lemma 3.1

Proof: For any edge e 2 E, de�ne the imbalance of e, I(e), to be jw(Su(v)) � w(Sv(u))j,
where e = fu; vg.

Let e� = fu�; v�g be an edge with minimum imbalance. Note that

(8u; v) fu; vg 2 E) w(Su(v)) + w(Sv(u)) = w(T) (6)

If I(e�) = 0, then w(Su�(v�)) = w(Sv�(u�)) = w(T)=2, and both u� and v� are weighted
tree centers.

If I(e�) > 0, then suppose without loss of generality that w(Sv�(u
�)) < w(Su�(v

�)), and
so

I(e�) = w(Su�(v
�))� w(Sv�(u

�)) (7)

From Equation (6) it also follows that w(Sv�(u
�)) < w(T)=2 < w(Su�(v

�)).

If u� is the only vertex adjacent to v�, then v� is the only weighted tree center of T .
Call this Case 1.

Otherwise, let v1; : : : ; vk be the neighbors of v� other than u�, and let ei = fv�; vig for all
i, 1 � i � k. See Figure 7 for a diagram of the tree structure. Then we have the following
for all i:

I(ei) = jw(Svi(v
�))� w(Sv�(vi))j f Defn. of I g

= jw(T)� 2w(Sv�(vi))j f Equation (6) g

By the choice of e�, we know that (8i)I(ei) � I(e�). jxj � y if and only if (x � y or �x � y).
Therefore (8i)I(ei) � I(e�) is true if and only if

(8i) (w(T)� 2w(Sv�(vi)) � I(e�)) or (2w(Sv�(vi))� w(T) � I(e�))

Using Equations (6) and (7) we may derive the equivalent condition

(8i) w(Sv�(vi)) � w(Sv�(u
�)) or w(Sv�(vi)) � w(Su�(v

�))

18

There are now two cases two consider. Case 2a is when (8i)w(Sv�(vi)) � w(Sv�(u�)).
Recall that w(Sv�(u

�)) < w(T)=2. Therefore vertex v� is a weighted tree center.

Case 2b is when there exists a vertex vi such that w(Sv�(vi)) � w(Su�(v
�)). Since Sv�(vi)

is a subgraph of Su�(v
�) and all node weights are nonnegative, we must have w(Sv�(vi)) =

w(Su�(v
�)). This implies that w(z) = 0 for all vertices z in Su�(v

�) � Sv�(vi). Now edge
fv�; vig is also an edge of minimum imbalance, and we can \repeat the proof" on this edge.
Since the graph is �nite, this repetition will eventually halt with either Case 1 or Case 2a.

For any undirected tree T = (V;E), de�ne N (T) to be the tree-shaped nonblocking
network which is obtained from T by replacing each undirected edge fu; vg with the directed
links (u; v) and (v; u). The capacities of links in N (T) are the minimum necessary to
make the network nonblocking. Recall from section 3.3.2 that for �; !-bounded tra�c, the
minimum necessary capacity of a tree link with nodes X on its source side and N �X on
its destination side is minf�(X); !(N �X)g.

Lemma 3.2. Let at �; !-bounded tra�c limits �; ! be given for a set of nodes V , where
�(V) = !(V), and let all link cost functions be linear with coe�cients (u; v) which satisfy
the triangle inequality. Let T = (V;E) be an undirected tree, and let c be a weighted
tree center for T where w(v) = �(v) + !(v) for all v 2 V . For any v 6= c, the network
N (T � f(v; c) + fv; cg) costs no more than N (T).

Proof: If v is adjacent to c, then T � f(v; c) + fv; cg= T , so the network does not change.

If v is not adjacent to c, then let the unique path from c to v in T be p = u0u1 : : : uk,
where k � 2, c = u0, and v = uk. De�ne

Ti =

8><
>:

Su1(c) if i = 0
Sc(ui)� Sc(ui+1) if 1 � i � k � 1
Sc(uk) if i = k

See Figure 8 for an annotated picture of N (T) and its parts.

The networkN (T�f(v; c)+fv; cg) is depicted in Figure 9. Note that for any link which
is not on the path from v to c, its minimum necessary capacity is the same in N (T) and
N (T � f(v; c)+ fv; cg) (this is true even for hierarchical tra�c limits). The only di�erence
between the networks is that the capacities of links on the path p may change, and the links
(c; v) and (v; c) are added.

The minimum necessary capacity of the new link (c; v) is minf�(T�Tk); !(Tk)g. Deriva-
tions below will show that !(Tk) is at most �(T�Tk). Similarly, the capacity of (v; c) is
�(Tk). This adds !(Tk)(c; v)+ �(Tk)(v; c) to the cost of the network. Suppose we could
show that the capacity of every link (ui; ui+1) is reduced by !(Tk) in the new tree, and the
capacity of every link (ui+1; ui) is reduced by �(Tk) in the new tree. Then the cost of the
new tree minus the cost of the old tree is

!(Tk)

0
@(c; v)� k�1X

j=0

(uj; uj+1)

1
A + �(Tk)

0
@(v; c)� k�1X

j=0

(uj+1; uj)

1
A

19

Figure 8: Structure of N (T) in Lemma 3.2

Figure 9: Structure of N (T � f(v; c) + fv; cg) in Lemma 3.2

Because the coe�cients satisfy the triangle inequality, each of the parenthesized subex-
pressions above is at most 0. Therefore the cost of the new tree is at most the cost of the
old tree.

The rest of the proof shows that the capacities of links on the path p do decrease by
the amounts given above. We will use cap to denote the minimum necessary capacities of
links in N (T), the \before" network, and cap 0 to denote the minimum necessary capacities
of links in N (T � f(v; c) + fv; cg), the \after" network.

20

First we compute the capacities of links in N (T). For all i, 0 � i � k � 1, the capacity
of (ui; ui+1) must be at least

cap (ui; ui+1) = min

8<
:

iX
j=0

�(Tj);
kX

j=i+1

!(Tj)

9=
; (8)

This expression may be simpli�ed by using additional properties of T . Since c is a weighted
tree center and u1 is adjacent to c, we know that w(Sc(u1)) � w(V)=2. Using the de�nition
of w and the restriction �(V) = !(V) we may conclude

kX
j=1

(�(Tj) + !(Tj)) � (�(V) + !(V))=2

= �(V) = !(V)

and by subtracting either
Pk

j=1 �(Tj) or
Pk

j=1 !(Tj) from each side of the inequality above
we get

kX
j=1

!(Tj) � �(V)�
kX

j=1

�(Tj) = �(T0) (9)

kX
j=1

�(Tj) � !(V)�
kX

j=1

!(Tj) = !(T0) (10)

Now, for all 0 � i � k � 1 we may concludePk
j=i+1 !(Tj) �

Pk
j=1 !(Tj) f

Pi
j=1 !(Tj) � 0g

� �(T0) f Inequality (9) g
�

Pi
j=0 �(Tj) f

Pi
j=1 �(Tj) � 0g

That is, the second term of the minimization in Equation (8) is always no larger than the
�rst term, and so the equation may always be written as

cap (ui; ui+1) =
kX

j=i+1

!(Tj) (11)

By interchanging �'s and !'s in the derivation above, we may also conclude that the
minimum necessary capacity of link (ui+1; ui) is

cap (ui+1; ui) =
kX

j=i+1

�(Tj) (12)

Now we compute the capacities of links in N (T�f(v; c)+fv; cg). For all i, 0 � i � k�1,
the capacity of (ui; ui+1) must be at least

cap 0(ui; ui+1) = min

8<
:

iX
j=0

�(Tj) + �(Tk);
k�1X

j=i+1

!(Tj)

9=
; (13)

21

Comparing this to Equation (8), we see that the �rst term in the minimization of (13) is no
smaller than the �rst term of (8), and the second term of (13) is no larger than the second
term of (8). Therefore, for the same reason Equation (8) may be written as (11), (13) may
be written

cap 0(ui; ui+1) =
k�1X
j=i+1

!(Tj) (14)

Again, by interchanging �'s and !'s, we may determine that the minimum necessary
capacity of link (ui+1; ui) is

cap 0(ui+1; ui) =
k�1X
j=i+1

�(Tj) (15)

It is now easy to see that

cap (ui; ui+1)� cap 0(ui; ui+1) =
kX

j=i+1

!(Tj)�
k�1X
j=i+1

!(Tj)

= !(Tk)

and similarly cap (ui+1; ui)� cap 0(ui+1; ui) = �(Tk), as claimed.

Theorem 3.1 does not always hold for instances in which �(V) 6= !(V). For example,
consider the class of instances which have n nodes placed at distinct points on a straight
line, where each consecutive pair of nodes is 1 unit apart. Let the link cost coe�cients
(u; v) equal the distance between the nodes. Number the nodes in the order they appear
on the line from 1 to n. Let �(u) = 1 and !(u) = n� 1 for all u 2 V .

A cheap solution is the tree, but not star, which has links between consecutive pairs of
nodes. To make this network nonblocking, the capacity of link (i; i+ 1) must be i, and the
capacity of link (i+ 1; i) must be n� i. The total cost of this network is n(n� 1).

Any star network for this instance will have nonblocking link capacities such that links
directed into the center have capacity 1 and links directed away from the center have
capacity n � 1. We can easily show that the cost of the star with center node i is

n

2
(i(i� 1) + (n� i)(n� i+ 1))

which has its minimum value of n(n� 1)(n+ 1)=4 when i = (n+ 1)=2. This is larger than
n(n� 1) for all n � 4.

Therefore it is not possible to generalize the theorem to arbitrary values of �(V) and
!(V). This example has !(V) = (n � 1)�(V), so it may be possible to generalize the
theorem to cases when �(V) and !(V) are \close enough", but not equal.

22

3.6. A probabilistic result

Suppose that at �; !-bounded instances I are randomly generated by the method given in
Section 3.4, except that now the locations are randomly chosen in the interior of a unit circle
on the plane, i.e., a unit disk. Also, �(u) and !(u) values may be chosen randomly with any
distribution desired, with the restrictions that the expected values of all such distributions
equal �, and it is impossible to generate values outside of the interval [�lo; �hi].

Let A(I) be the cost of the cheapest star network for instance I , and L(I) be the value
of the lower bound for instance I .

Theorem 3.2. Let � > 0 be given. When instances of the nonblocking network design
problem are generated as described above, then

lim
n!1

Pr

�
A(I)

L(I)
� 1 + �

�
= 1

This theorem can also be proven when node locations are uniformly distributed in the
unit square, or many shapes which have their areas symmetrically arranged around their
center points. Using the unit disk just makes some mathematical expressions in the proof
simpler.

The proof is done in two parts. Lemma 3.3 states that a randomly generated instance I
is \balanced" with probability approaching 1 as n goes to in�nity. Lemma 3.6 then shows
that A(I)=L(I) is close to 1 for all balanced instances I .

For the �rst lemma, we will need a theorem of Hoe�ding [Hoe63] and another due to
Angluin and Valiant [AV79, HR90].

Theorem 3.3. (Hoe�ding) Let Xi, 1 � i � n, be independent random variables, each
having mean � and Prfa � Xi � bg = 1. Then for any real t, 0 < t < b� �, we have

Pr

(
nX
i=1

Xi � n� + nt

)
� e�2nt

2=(b�a)2

Pr

(
nX
i=1

Xi � n� � nt

)
� e�2nt

2=(b�a)2

Theorem 3.4. (Angluin,Valiant) Let Xi, 1 � i � n, be independent random variables,
each of which has probability p of being 1 and probability 1� p of being 0. Then for any t,
0 � t � 1

Pr

(
nX
i=1

Xi � (1 + t)np

)
� e�t

2np=3

Pr

(
nX
i=1

Xi � (1� t)np

)
� e�t

2np=2

23

Figure 10: The 5-track 6-sector partitioning of the unit disk, R5;3

In the proofs below, it is useful to subdivide the unit disk into smaller regions, and then
reason about how many nodes will be placed into each of the regions. The track and sector
subdivision of the unit disk is as follows. Let T; S be positive integers. A T -track 2S-sector
division of the unit radius disk is obtained by drawing T concentric circles, where circle i,
1 � i � T , has radius i=T , and then drawing S straight lines through the center of these
circles, where each successive line makes an angle of �=S radians with the previous line.
Figure 10 shows a 5-track 6-sector division of the unit disk. Track i, 0 � i � T � 1, is the
region between the circle of radius i=T and the circle of radius (i+ 1)=T .

Let RT;S be the set of regions created by the T -track 2S-sector partitioning of the unit
disk. De�ne jrj to be the area of the region r, and let jRj be the total area of all regions
(� for the unit disk). For an instance I , let Nr be the set of all nodes which are located in
region r.

For any region r, the probability that any one of the n nodes will be placed in the region
is jrj

jRj , because the nodes are placed with a uniform distribution on the unit disk. The

expected number of nodes in r is n jrj
jRj , and the expected total values of �(Nr) and !(Nr)

are both n jrj
jRj�.

We de�ne an instance I to be �; d-balanced, with respect to a set of regions R, if

(8r 2 R) [(1� �)E(�(Nr)) � �(Nr) � (1 + �)E(�(Nr))] ^
(8r 2 R) [(1� �)E(!(Nr)) � !(Nr) � (1 + �)E(!(Nr))] ^

(9v 2 V)
h
dist(v; C)� n�d

i (16)

where C is the center of the unit disk, and dist(v; C) denotes the Euclidean distance between
the node v and the center.

Lemma 3.3. For instances I generated as described earlier, and all 0 < � < 1, 0 < d < 1=2,
T; S � 1

lim
n!1

PrfI is not �; d-balanced w.r.t. RT;S g = 0

24

Proof:

PrfI is not �; d-balanced w.r.t. RT;Sg

= Pr
n
(9r 2 RT;S) [�(Nr) < (1� �)E(�(Nr)) _ �(Nr) > (1 + �)E(�(Nr))] _

(9r 2 RT;S) [!(Nr) < (1� �)E(!(Nr)) _ !(Nr) > (1 + �)E(!(Nr))] _

(8v 2 V)
h
dist(v; C) > n�d

io
�

X
r2RT;S

�
Pr

�
�(Nr) < (1� �)n

jrj

jRj
�

�
+ Pr

�
�(Nr) > (1 + �)n

jrj

jRj
�

�

+Pr

�
!(Nr) < (1� �)n

jrj

jRj
�

�
+ Pr

�
!(Nr) > (1 + �)n

jrj

jRj
�

��

+

"
1�

�n�2d

�

#n
(17)

The equality holds by the de�nition of �; d-balanced. The inequality holds because
PrfA _ Bg � PrfAg + PrfBg, even if A and B are dependent events, as some pairs of
events above happen to be.

Now we will �nd an upper bound for expressions of the form Pr fAg, where A is either

�(Nr) � (1 � �)np� or �(Nr) � (1 + �)np�. We will temporarily substitute p for jrj
jRj for

readability.

Pr fAg =
nX

k=0

Pr fjNrj = k ^Ag (18)

�

b(1� �
2
)npcX

k=0

Pr fjNrj = kg+
nX

k=d(1+ �
2
)npe

Pr fjNrj = kg

+

d(1+ �
2
)npe�1X

k=b(1� �
2
)npc+1

Pr fjNrj = k ^Ag (19)

� Pr

�
jNrj � (1�

�

2
)np

�
+ Pr

�
jNrj � (1 +

�

2
)np

�
+ �npmax

k
Pr fjNrj = k ^Ag (20)

where the maximization in the last line is over the range
�
(1� �

2)np
�
+1 � k �

�
(1 + �

2)np
�
�

1. Step (18) holds because we are simply partitioning the event A into n+1 separate events.
The inequality in step (19) holds because PrfjNrj = k ^Ag � PrfjNrj = kg. The �rst line
of (20) is just a rewritten form of the �rst line of (19), and the inequality follows from the
maximization in the second line. The factor of �np is an upper bound on the number of
terms in the summation on the second line of (19).

25

By applying Theorem 3.4 with t = �=2, we see that the �rst line of (20) is at most

exp(��2np=8) + exp(��2np=12)

� 2 exp(��2np=12) (21)

where the inequality follows simply because the second term is the larger of the two.

Now we will �nd an upper bound for the maximization term of (20), where A is �(Nr) �
(1� �)np�. If jNrj = k, then let Nr = fv1; : : :vkg

Pr fjNrj = k ^ �(Nr) � (1� �)np�g

= Pr

(
kX

i=1

�(vi) � k�� k�

�
1� (1� �)

np

k

�)
(22)

� exp

�2k

�
1� (1� �)

np

k

�2
�2=(�hi � �lo)

2

!
(23)

� exp

�2(1� �=2)np

�
1�

1� �

1� �=2

�2

�2=(�hi � �lo)
2

!
(24)

= exp

�np

�2

2� �

!
�2=(�hi � �lo)

2

!
(25)

= exp (�npf(�)) (26)

Step (22) follows from rewriting and algebra. In step (23), we make use of Theorem 3.3
with t = �(1 � (1 � �)np=k), which is larger than 0 because k � (1 � �=2)np. Step (24)
follows using the same lower bound on k, and step (25) follows from algebra. Step (26) is
just a shorter form, where the function f has the obvious de�nition.

Using a similar derivation we may conclude

Pr fjNrj = k ^ �(Nr) � (1 + �)np�g

� exp

�np

�2(2� �)

(2 + �)2
�2=(�hi � �lo)

2

!

= exp (�npg(�)) (27)

We must use the upper bound on k, k � (1 + �=2)np, for this derivation. Again, step (27)
is for easier reading, and g is de�ned in the obvious way.

Now we may derive an upper bound on (17) by using (20), (21), (26), and (27).

X
r2RT;S

�
8 exp

�
��2n

jrj

12jRj

�
+ 2�n

jrj

jRj

�
exp

�
�nf(�)

jrj

jRj

�
+ exp

�
�ng(�)

jrj

jRj

���

+
h
1� n�2d

in
� 2ST

�
8 exp

�
��2n=24ST 2

�
+ 2�n

2T � 1

2ST 2

�
exp

�
�nf(�)=2ST 2

�
+ exp

�
�ng(�)=2ST 2

���

+ exp
�
�n1�2d

�
(28)

= c1 exp(�c2n) + c3n exp(�c4n) + c3n exp(�c5n) + exp
�
�n1�2d

�
(29)

26

Step (28) follows because 1
2ST 2 �

jrj
jRj �

2T�1
2ST 2 , which is true by the de�nition of the track and

sector partition of the unit disk. The change in the last term is justi�ed by the inequality
1 + x � ex for all real x. Step (29) is just a rewritten form of (28), where all ci are positive
real constants for any permissible values of �, S, T , and any � > 0.

Since 0 < d < 1=2, we can now easily see that this function's limit is 0 as n goes to
in�nity.

Lemma 3.4. Let I be an instance which is �; d-balanced with respect to the partition RT;S.
Then the lower bound L(I) for this instance satis�es

L(I) � 2(1� �)n� cos

�
�

2S

�
2(T + 1=4)(T � 1)

3T 2
(30)

Proof: The lower bound is equal to the cost of a maximum cost ow in the lower bound
network. This proof will be done by constructing a ow, not necessarily of maximum cost,
which costs at least as much as the right hand side of Inequality (30). From this it follows
that L(I) also satis�es the inequality.

In the track and sector partitioning RT;S, let r and r0 be two regions which are in the
same track i, but in \opposite" sectors (i.e., going around track i from r to r0 in either
direction, we encounter S � 1 other sectors before reaching r0).

In the lower bound network L for this instance, there are vertices us for each u 2
Nr and vertices u0d for each u0 2 Nr0. Because the tra�c is �; !-bounded, we can send
minf�(Nr); !(Nr0)g ow from all of the source vertices to all of the destination vertices.
Since I is �; d-balanced, this quantity is at least

(1� �)E(�(Nr)) = (1� �)n
jrj

jRj
� (31)

= (1� �)n
2i+ 1

2ST 2
� (32)

Each of the arcs in the lower bound network has a cost equal to the distance between the
nodes. The distance between any node in r and any node in r0 is at least (2i=T) cos(�=2S).
See Figure 10 for a visual example of why the distance can be smaller than 2i=T .

Therefore, we can make a ow from the vertices us to the vertices u0d which costs at
least �

(1� �)n
2i+ 1

2ST 2
�

��
2i

T
cos

�
�

2S

��
(33)

A similar ow can be set up between nodes in all pairs of opposite sectors. The total
cost of such a ow is obtained by summing Equation (33) over all sectors.

T�1X
i=0

2S(1� �)n
2i+ 1

2ST 2
�
2i

T
cos

�
�

2S

�

= 2(1� �)n� cos

�
�

2S

�
1

T 3

T�1X
i=0

i(2i+ 1)

= 2(1� �)n� cos

�
�

2S

�
2(T + 1=4)(T � 1)

3T 2

27

where the equalities follow from algebraic manipulation and the identities
Pn

i=0 i = n(n �
1)=2 and

Pn
i=0 i

2 = n(n� 1=2)(n� 1)=3.

Lemma 3.5. Let I be an instance which is �; d-balanced with respect to the partition RT;S.
Then the cost A(I) of the minimum cost star network satis�es

A(I) � 2(1 + �)n�

�
2(T � 1=4)(T + 1)

3T 2
+ n�d

�
(34)

Proof: The proof will be done by constructing a star network, not necessarily of minimum
cost, that costs no more than the expression on the right hand side of Inequality (34). From
this it follows that A(I) satis�es the inequality.

Since I is �; d-balanced, there is a node C which is no further than n�d from the center
of the disk.

Consider a sector r in track i of RT;S. For each node u 2 Nr, we can build a link
(u; C) with capacity �(u) and a link (C; u) with capacity !(u), and the tree network will
be nonblocking. The distance from C to u is at most (i + 1)=T + n�d. Therefore the
contribution to the total network cost from nodes in r is at most

(�(Nr) + !(Nr))

�
i+ 1

T
+ n�d

�

� 2(1 + �)E(�(Nr))

�
i+ 1

T
+ n�d

�

= 2(1 + �)n
2i+ 1

2ST 2
�

�
i+ 1

T
+ n�d

�
(35)

because I is �; d-balanced. Summing Equation (35) over all sectors we get

T�1X
i=0

2S � 2(1 + �)n
2i+ 1

2ST 2
�

�
i+ 1

T
+ n�d

�

= 2(1 + �)n�
1

T 3

T�1X
i=0

(2i+ 1)(i+ 1 + Tn�d)

= 2(1 + �)n�

�
2(T � 1=4)(T + 1)

3T 2
+ n�d

�

where the equalities follow from algebraic manipulation and the same identities as used in
the proof of Lemma 3.4.

Lemma 3.6. Let I be an instance which is �; d-balanced with respect to the partition RT;S.
Then for any � > 0,

A(I)

L(I)
� 1 + � (36)

if � � x�1
x+1 , S � �

2cos�1(1=x) , T � maxf2; 3(x+3)4(x�1) +
x�1
2 g, and n �

h
6

x�1

i1=d
, where x =

(1 + �)1=3.

28

Figure 11: An example hierarchy tree

Proof: Since I is �; d-balanced, then by Lemmas 3.4 and 3.5 and algebra we have

A(I)

L(I)
�

�
1 + �

1� �

�
1

cos(�=2S)

"
(T � 1=4)(T + 1)

(T + 1=4)(T � 1)
+

3T 2

2(T + 1=4)(T � 1)
n�d

#
(37)

It is easy to verify that � � x�1
x+1 implies 1+�

1�� � x. Similarly, S � �
2 cos�1(1=x)

implies
1

cos(�=2S) � x.

T � 3(x+3)
4(x�1) +

x�1
2 implies (T�1=4)(T+1)

(T+1=4)(T�1) � (x+ 1)=2, and T � 2 and n �
h

6
x�1

i1=d
imply

3T 2

2(T+1=4)(T�1)n
�d � (x� 1)=2.

All together, these conditions imply that the right hand side of Equation (37) is at most

x � x � [(x+ 1)=2 + (x� 1)=2] = x3

= 1 + �

4. Hierarchical tra�c limits

4.1. De�nition

The nonblocking tra�c limits de�ned in section 3 give a good way of specifying the tra�c
for a \at" network, with no additional structure. This method can be easily extended to
specify tra�c in a hierarchical way, where there are \clusters" of nodes which may have high
tra�c among themselves, but less tra�c between nodes in the cluster and nodes outside of
the cluster. These clusters may come about because the network owners charge the users
more to establish connections outside of their cluster, because there are groups of users who
communicate more frequently among themselves than with others on the network, or some
combination of these causes.

As an example, Figure 11 shows the hierarchical structureH of an instance with 7 nodes,
d through j, which are organized into 3 clusters, A, B, and C. R is the \root" cluster, which

29

u �(u) !(u)

d 5 5
e 6 6

f 3 9
g 4 4
h 7 7

i 8 8
j 5 2

A 6 6
B 7 8
C 7 5

v
A B C

A 3 5
u B 3 5

C 4 4

(R) �(u; v)

v
d e

u d 5
e 5

(A) �(u; v)

v
f g h

f 3 3
u g 4 4

h 7 4

(B) �(u; v)

v
i j

u i 2
j 5

(C) �(u; v)

Figure 12: Example hierarchical tra�c limits

is only used as a place holder so that the hierarchical structure may be drawn as a rooted
tree. We say that a node u is in the cluster v if u is a descendant of v in the hierarchy tree
H. We will denote the set of clusters by C (C does not contain the root cluster R, however).

For the moment, ignore point-to-point restrictions on the tra�c, and let us only consider
termination capacities. Figure 12 gives � and ! values for all of the terminal nodes d through
j. If the tra�c were at, then there could simultaneously exist connections with total rate
up to �(f) + �(g) + �(h) = 3 + 4 + 7 = 14 which have their source as one of f; g; h and
their destination as one of d; e; i; j. However, suppose we know that there will never be
such connections with total rate more than 7 at any given moment. This can be speci�ed
by saying that the source termination capacity of the cluster B, �(B), is 7. Similarly, let
the maximum total rate of connections with source outside of B and destination in B be
8, and call this the destination termination capacity of cluster B, !(B). Similar values for
clusters A and C are given in Figure 12.

Given this form of aggregating nodes into clusters, it now makes less sense to attempt
specifying a point-to-point restriction for every pair of terminal nodes. Furthermore, the
lower bound network which we will de�ne shortly cannot specify such detailed restrictions.

It does make sense to specify point-to-point restrictions between nodes in the same
cluster, and also between clusters. The lower bound network can easily handle these re-
strictions. For example, since �(B) = 7 and !(A) = 6, we know that the total rate of
connections with source in B and destination in A can never be more than minf7; 6g = 6.
If we also knew that nodes in clusters B and A communicate very infrequently, we could
specify a point-to-point restriction from cluster B to A, denoted �(B;A), of less than 6, say
�(B;A) = 3. Also specify �(A;B) = 3. Figure 12(A) speci�es � values for all pairs of nodes
which are both children of A in the hierarchy tree (Figure 11). Similarly, Figures 12(B),
(C), and (R) do the same for all pairs of children of vertices B, C, and R.

The example constructed in this section is a two-level hierarchy. One can think of at
tra�c as a one-level hierarchy, where the hierarchy tree contains a vertex for each network
node, plus the root R, and all nodes are children of R.

This method of specifying tra�c can be used for any hierarchical structure which can

30

be given by a hierarchy tree like the one in Figure 11. In general, all leaves of the tree
are terminal nodes with � and ! values, all other tree vertices except R are clusters with
their own � and ! values, and � values may be speci�ed between every pair of tree vertices
which have a common parent vertex. We will denote hierarchical tra�c limits T by the
tuple (H; �; !; �), where the functions �, !, and � have the appropriate domains.

Given a network N = (N;L; cap) and a (multi)set of connection requests R, we can
extend the de�nitions of the point-to-point usage, source usage, and destination usage,
given in section 3.1, to include clusters u; v 2 C as well as terminal nodes. In the following
de�nitions, we consider a cluster u 2 C to be the set of all nodes in N which are contained
in the cluster u.

src-usage (u;R) =
X

q2R; u\src (q)6=;

rate (q)

dest-usage (u;R) =
X

q2R; u\dest(q)6=;

rate (q)

pp-usage (u; v;R) =
X

q2R; u\src (q)6=;; v\dest (q)6=;

rate (q)

Let hierarchical tra�c limits T = (H; �; !; �) be given. We say that the set of requests R
is compatible with tra�c limits T if the following condition holds.

(8u 2 N [C) (src-usage (u;R)� �(u))^
(8u 2 N [C) (dest-usage (u;R) � !(u))^

(8u; v which are siblings in H) (pp-usage (u; v;R)� �(u; v))
(38)

That is, no node or cluster is involved in more requests than its termination capacity will
allow, and no pair of nodes/clusters is involved in more requests than their point-to-point
restriction will allow.

4.2. Extending the lower bound

Now we will generalize the de�nition of the lower bound network L = (V;E; cap) for
hierarchical tra�c limits. The edges are given in the form (u; v; c) where the edge is from
vertex u to v and has capacity c.

V = fs; tg [fus1; ud1 : u 2 Ng [fus1; us2; ud1; ud2 : u 2 Cg

E = f(s; us1; �(u)); (ud1; t; !(u)) : u 2 Ng [

f(us2; us1; �(u)); (ud1; ud2; !(u)) : u 2 Cg [

f(us1; vs2;1); (vd2; ud1;1) : u a child of v; v 6= Rg [

f(us1; vd1; �(u; v)) : u; v are siblings in Hg

The lower bound network for the hierarchical tra�c limits of Figure 12 is shown in Figure 13.
The �rst number labeling each edge is the edge's capacity. The unlabeled edges have in�nite
capacity. The other numbers will be explained later. All edges are directed from left to
right.

31

Figure 13: Lower bound network for tra�c limits of Figure 12

Just as for at tra�c limits, there is a many to one correspondence from compatible
sets of point-to-point connection requests to integer ows f in L which do not exceed any
edge capacities.

The method of section 3.2 can be extended to �nd lower bounds on the costs of non-
blocking networks with hierarchical tra�c limits. It can be done by �nding a maximum
cost ow in the lower bound network as before, but because of restrictions on the costs that
we may assign to edges, the lower bounds are not as high as possible; there are portions of
the lower bound cost that cannot be counted using maximum cost ows on the lower bound
network. This di�culty can be avoided by using a linear programming formulation, giving
better lower bounds at the cost of more computation time.

First we extend the maximum cost ow method. Consider the example hierarchical
lower bound network of Figure 13. It should be clear from the previous section that we
should de�ne the costs of all edges of the form (s; us1) and (vd1; t) to be 0, and the costs
of all edges of the form (us1; vd1) to be (u; v), where u; v are both nodes in N (e.g., edges
(ds1; ed1) and (js1; id1), but not (As1; Bd1)). However, how should we de�ne the other edge
costs?

One property that should hold for our assignment of edge costs is: for any terminal node
pair u; v, the total cost of all edges on any path from us1 to vd1 should be at most (u; v).
We will call this the valid cost property, and any path which violates it is called invalid. If
the valid cost property is violated, we are not guaranteed that the cost of a ow will be a

32

u d e f g h i j Position

d 0 250 539 448 503 922 855 (100,700)
e 0 702 472 381 971 821 (250,900)
f 0 361 627 510 633 (300,200)
g 0 270 500 413 (500,500)
h 0 681 461 (600,750)
i 0 317 (800,100)
j 0 (900,400)

Figure 14: Link costs for hierarchical example

lower bound for the cost of any nonblocking network. Any ow on an invalid path may cost
more than is actually required to build the necessary links.

Given the restriction of keeping the costs valid, we want to de�ne the costs so that the
maximum cost ow will have a cost as large as possible. It appears that computing these
optimum edge costs exactly would require solving a nonlinear optimization problem. Even
if this task could be done e�ciently, there are instances of hierarchical network design prob-
lems for which the costs between nodes in di�erent clusters cannot be accurately modeled
in the lower bound network. However, there is a simple way to de�ne edge costs which
usually seems to do fairly well (from the experimental results presented later), and they can
be determined very easily.

The basic idea is to examine some of the edges of the lower bound network in a given
order. On each step, increase the cost of the current edge as much as possible while still
maintaining the validity of the edge costs. An approach used in the experimental results
is to consider the edges (us1; vd1), where u; v range over all sibling pairs of nodes in the
hierarchy tree. If only these edges are considered, then the order of their consideration does
not matter. The resulting edge costs will be the same in any case.

For the example hierarchical instance given in Figures 11 and 12, let the link cost coe�-
cients cost(�) be given by the entries of the table in Figure 14. The entries are symmetrical,
and equal to the euclidean distance between the nodes (rounded up), where the position of
each node is given in the table. Valid edge costs are given by the third number labeling each
edge in Figure 13. If there is no edge label, or only two numbers labeling the edge, then
the cost is 0. One can see that the cost of edge (As1; Bd1) is 381, which is the minimum of
the costs from any node in cluster A to any node in cluster B. This is the largest valid cost
the edge may have. Therefore tra�c between some pairs of nodes in those clusters is not
charged as much as it could be.

Once the maximum cost ow in L has been computed, the cost of this ow is a lower
bound. In Figure 13, a maximum cost ow is given by the second number labeling each
edge. Its cost is 19598, which is a lower bound on the cost of any nonblocking network.

Even better, we may �nd any set of compatible point-to-point requests R which corre-
sponds to the maximum cost ow f , and a lower bound is

P
(u;v;r)2R (u; v) �r. This value is

at least as large as the cost of f , because the edge costs must be valid. In most cases it will

33

be larger than the cost of f , and it will be used to compute the lower bounds for the experi-
mental results in section 4.5. For example, one set of requests which corresponds to the maxi-
mum cost ow of Figure 13 isR = f(d; g; 1); (d; i; 4); (e; i; 1); (e; d; 5); (f; h; 3); (g; e; 2); (g; f; 2);
(h; f; 7); (i; e; 4); (i; g; 2); (i; j; 2); (j; h; 1); (j; i; 3)g. The cost implied by this set of requests
is 21223, which is signi�cantly higher than the cost of the ow itself.

The best lower bound known to the author can be obtained by using a linear pro-
gramming formulation. A maximum ow problem can represent some problems that linear
programs can, but linear programs can represent many more problems. In this linear pro-
gram, we will use variables xu;v , where u; v 2 N; u 6= v. Variable xu;v represents the total
tra�c from u to v. A collection of linear inequalities will represent the restrictions on the
xu;v which are imposed by the tra�c limits. In this linear program, there will be a many
to one correspondence from compatible sets of point-to-point requests R to feasible integer
solutions x, similar to the correspondence for ows in L.

To ease the presentation, we will use the notation xY;Z , where Y; Z are subsets of N ,
to represent

P
u2Y;v2Z xu;v . A single node u will represent the set fug, and a cluster c will

represent the set of nodes within the cluster. The complement of a set Y , N � Y , will be
denoted by Y .

Given these de�nitions, we may de�ne the inequalities very similarly to the de�nition
of compatible request sets, condition (38). They are:

xu;u � �(u) 8u 2 N [C
xu;u � !(u) 8u 2 N [C
xu;v � �(u; v) 8u; v which are siblings in H
xu;v � 0 8u; v 2 N; u 6= v

(39)

The linear program is:

Maximize
P

u6=v (u; v) � xu;v
Subject to: Inequalities (39)

For our hierarchical example, an optimal solution to the linear program is xde = 4; xdj =
1; xed = 1; xef = 1; xei = 4; xfh = 3; xgd = 2; xgf = 1; xgh = 1; xhf = 7; xid = 2; xie =
2; xih = 3; xij = 1; xji = 4, giving a lower bound of 21902. This is 3.2% higher than the
lower bound found using the maximum cost ow method.

4.3. Link dimensioning in tree-shaped networks

Link dimensioning in a tree-shaped network can be done using the same method as in
section 3.3.2, based on �nding maximum ows in modi�ed lower bound networks.

34

4.4. Computing inexpensive hierarchical star networks

For hierarchical tra�c, we generalize the notion of a star network to a hierarchical star net-
work. We go through the hierarchy tree of the instance in a bottom-up fashion, computing
the cheapest star subnetwork for each of the lowest level clusters. Then treat each of the
lowest level clusters as a single node located at the center of the chosen star subnetwork,
�nd the cheapest star subnetwork for the next to lowest level clusters.

As before, we can precompute the minimum necessary link capacities in and out of each
node, instead of performing a redundant calculation for each star subnetwork tried.

For example, consider the hierarchical instance described in Figures 11, 12, and 14.
For clusters A and C, the cheapest star subnetwork is the one with two links, one in each
direction, between the nodes in the cluster. Arbitrarily choose node e as the center of A's
subnetwork, and i as the center of C. For cluster B, the cheapest subnetwork is obtained by
choosing g as the center. Now we �nd the cheapest star network connecting the subnetworks,
where we treat all nodes in A as if they are located at d, all nodes in B at g, and all nodes
in C at i. This network is the one with center g, so we add links f(d; g); (g; d); (i; g); (g; i)g
to the star subnetworks already found. The cost of this network is 24495, which is 11.8%
over the linear programming lower bound of 21902, and 15.4% over the maximum cost ow
lower bound of 21223. Therefore this network costs at most 11.8% over optimal.

This procedure can be implemented to run using 2(jN j+ jCj) maximum ow computa-
tions, each requiring only O(n) time due to their special structure. The best centers for
each cluster can be determined in time that is linear in the number of edges of the hierarchy
tree.

4.5. Experimental results for hierarchical tra�c

In this section we present experimental results comparing inexpensive hierarchical star net-
work costs, computed as described in section 4.4, to the lower bounds. Here the lower
bounds are computed in two ways. First there is the faster but less accurate method of
using the lower bound network with valid edge costs, described in Section 4.2, and then the
slower but more accurate method of solving a linear program, described later in the same
section.

All instances generated are two-level hierarchies, although the methods for instance
generation and all algorithms work for arbitrary hierarchical structures.

To generate random two-level hierarchies, we are given a number of clusters c and a
number of nodes m to place within each cluster, giving a total of n = cm nodes. In addition
to the the parameters given for at instances in section 3.4, we are given a range of real
numbers [�clo; �

c
hi], which is a sub-interval of [0; 1].

When placing nodes, we assume that not only do clusters have higher tra�c among the
nodes within, but the nodes are also geographically clustered together. For each cluster,
we generate a random width w in the interval [:1; :25] and a height h in the same interval.
A bounding rectangle for the cluster with these dimensions is then randomly placed in the

35

0 20 40 60 80 100
n = total number of nodes

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

so
lu

tio
n

co
st

 /
lo

w
er

 b
ou

nd

 2 clusters
 3 clusters
 4 clusters
 5 clusters

Figure 15: Experimental results for hierarchical tra�c

unit square, and all m nodes within the cluster are randomly placed within this bounding
rectangle. Bounding rectangles for di�erent clusters are allowed to overlap. Link cost
coe�cients (u; v) are set equal to the Euclidean distance between u and v. � values
for nodes (but not clusters) are generated as before. For each cluster U containing nodes
u1; : : :um, generate a random real value x in the interval [�clo; �

c
hi] and set �(U) = !(U) = x�Pm

i=1 �(ui). If this interval is [1; 1] then the clusters do not constrain source and termination
capacity any more than that of the constituent nodes (although � values for the clusters
may constrain the tra�c more than if there were no clusters). All experiments reported
here use the interval [:1; :3], so that 10% to 30% of a cluster's tra�c may be between nodes
within it and nodes in other clusters.

The top four curves of Figure 15 show the average ratio of the hierarchical star network
cost over the network lower bound. Each curve represents a di�erent value of c, the number
of clusters, as shown. The number of nodes per cluster m ranges over the same values as
n did in the previous section, as long as n = cm � 100. Each data point is the average
performance ratio of 80 randomly generated instances. Experiments were also run for up
to c = 10 clusters, but the curves for more than 5 clusters do not di�er signi�cantly from
those with 3 to 5 clusters, so they are not shown.

It seems that there may be a trend towards 1, but if so, then it occurs much more slowly
than before. The performance ratios are signi�cantly better when there are two clusters, as

36

opposed to three or more. If we had at instances with two nodes, the lower bound and the
minimum cost solution have exactly the same value. It is only for three or more nodes that
they can di�er. Similarly, when we have two level hierarchical instances with two clusters,
the portion of the lower bound caused by the inter-cluster tra�c is close to the cost of the
links between the clusters. When there are three or more clusters, these values can di�er
signi�cantly. We expect that curves for large numbers of clusters (say 50) would be closer
to the c = 2 curves than to the curves for 3,4, or 5 clusters.

The lower four curves of Figure 15 show the average ratio of the hierarchical star network
cost over the linear programming lower bound. Each data point is the average ratio of 30
randomly generated instances, which are identical to 30 of the instances used in generating
the upper four curves. The linear programming lower bound was not computed for the
larger instances, because of the time and memory required to compute them. The largest
instances for which the linear program was solved required up to 3 hours of CPU time on
a Sun 4/110 workstation, and approximately 15 megabytes of virtual memory. They were
solved using an unsophisticated (but free) implementation of the simplex method, and both
the time and memory required could probably be reduced by a factor of 5 to 10 for more
careful implementations taking advantage of the sparsity of non-zero coe�cients. Again,
experiments were run for up to 10 clusters, but the curves for more than 5 clusters are very
similar to those for 3 to 5 clusters.

The range of values is notably lower now, from about 1.03 up to 1.10. There seems to
be more of a tendency to approach 1 as n increases. Thus we should also be able to extend
the probabilistic result of Section 3.6 to some kinds of hierarchical tra�c limits as well.

5. Generalizations

5.1. Link dimensioning in general networks

When the union of the path edges in the table path is not a tree-shaped network, then a more
general method than the one in sections 3.3 and 4.3 is required to compute maxusage(l).

If it is true, as we conjecture, that tree-shaped networks are cheapest among all non-
blocking networks, then the algorithms of this section may not be bene�cial to implement
for actual use in network con�guration. However, these results will be necessary to prove
that conjecture.

In general, for any link l and table path, de�ne a set of node pairs Pl = f(u; v) : l 2
path(u; v)g. This is the set of node pairs which must use link l when they communicate.
In section 3.3.2 we saw that for tree-shaped networks the set Pl was always of the form
f(u; v) : u 2 Xl; v 2 N �Xlg. In fact, the method of that section works whenever Pl is of
the form f(u; v) : u 2 Y; v 2 Zg, where Y; Z � N are any sets of nodes. However, when Pl
does not have this special structure, those methods do not work.

First we will handle the case of at tra�c limits. Consider the lower bound network L. If
u; v are any distinct pair of switches such that (u; v) 62 Pl, then there will be no connections
from u to v which use link l. We may model this by reducing the point-to-point restriction

37

�(u; v) to 0. That is, reduce the capacity of the edge (us; vd) in L to 0. Equivalently, that
edge may be removed. Again, call this modi�ed lower bound network Ll.

Now there is a many to one correspondence from sets Rl to integer ows in Ll, where
R is a compatible set of point-to-point requests. Thus we have reduced the problem of
determining maxusage(l) to a maximum ow problem, as in section 3.3.2.

For hierarchical tra�c limits, however, there may be no way tomodify the edge capacities
in L such that this many to one correspondence holds. For example, recall the example
hierarchical tra�c limits of section 4.1 and the lower bound network of Figure 12. Suppose
that for some link l we have Pl = f(d; i); (d; j); (e; i)g. The di�culty is preventing tra�c
from going between the pair (e; j) while allowing tra�c between the pairs in Pl. Both d and
e can be a source for tra�c, and both i and j can receive it, so we cannot accurately model
this situation by reducing the � or ! of the nodes involved. Reducing any of the capacities
of edges on the path As2�As1�Cd1�Cd2 prevents the pair (e; j) from communicating, as
we desire, but it also prevents the pairs in Pl from doing so.

This di�culty can be avoided by modifying the linear programming formulation given
in section 4.2 to compute maxusage(l). For any pair (u; v) which is not in Pl, add the
restriction xu;v = 0. Equivalently, we may remove xu;v from the formulation completely,
which would make the linear program smaller and more e�cient to solve using general linear
programming algorithms. The objective function to maximize is the total tra�c, which is
the sum of all variables xu;v .

The complete linear program LPl is then

LPl : Maximize
P

u6=v xu;v
Subject to: Inequalities (39)

xu;v = 0 (u; v) 62 Pl

As for ows in section 3.3.2, there is a many to one correspondence from setsRl to integer
solutions x of LPl, where R is a compatible set of point-to-point requests. Therefore

maxusage(l) = max
R2ALLREQT

0
@X
q2Rl

rate (q)

1
A

= max
x2INTl

(
X
u6=v

xu;v) (40)

= max
x2REALl

(
X
u 6=v

xu;v)

where INT l is the set of all integer solutions to LPl, and REALl is the set of all real solutions.
The �rst line is just Equation (4), and (40) follows from the many to one correspondence
from request sets R to integer solutions x. The last line holds because all basic feasible
solutions of LPl are integral. This is because the coe�cient matrix which arises from the
inequalities is totally unimodular, and all basic feasible solutions of such a linear program
are integral when the right-hand side values (here the �; !; � values) are integral [PS82,
Section 13.2].

38

5.2. Handling multipoint tra�c

In every previous section on link dimensioning, we have only explicitly considered point-to-
point requests and connections. If allowing multipoint connections could increasemaxusage(l)
in some situations, then we would want to �nd a way to compute these larger values. In
this section, we show that maxusage(l) remains the same when multipoint connections are
allowed. This means that the worst-case tra�c pattern for any link can be achieved by
point-to-point connections only.

Fingerhut [Fin92, Section 7.1.2] proves that the link capacities cap (l) = maxusage(l),
for all l 2 L, are nonblocking when multicast connection requests (u; fv1; : : : ; vkg; r) are
satis�ed by using a route which is a subtree of

Sk
i=1 path(u; vi). This was proved for at

tra�c limits in arbitrary networks. We will restate the proof and extend it to hierarchical
tra�c as well.

There are very similar arguments for the case when we have a lower bound network
Ll, and when we must use the linear program LPl. We give the argument for Ll below,
and occasionally add parenthesized phrases, which are the minor changes necessary for the
proof to work for LPl.

The basic idea of the argument is to show that the many to one correspondence from
sets Rl, to integer ows f in Ll (integer solutions x of LPl), where R is a compatible
set of point-to-point requests, can be extended to allow multipoint requests in R as well.
This correspondence should preserve the property that

P
q2Rl

rate (q) is equal to the value
of the the ow f (the value of the objective function for x). If we can do this, then
steps (5) and (40) of the previous derivations will still hold when ALLREQT is replaced
with ALLREQ0

T = fR : R is compatible with T g. This the set of all request sets which are
compatible with the tra�c T , not just the point-to-point ones.

Let the nodes N be ordered by assigning them unique numbers from 1 to n. The
particular order chosen is unimportant; it is a way to make the correspondence many to
one as desired.

Given a compatible request set R, we must show how to construct a unique integer ow
f in Ll (solution x of LPl). Start with f = 0 (x = 0). For any requests q 2 R which are not
in Rl, the connection which realizes q will not use link l, so do nothing. For point-to-point
requests q = (u; v; r) which are in Rl, link l must be utilized, so \charge" for it by adding
ow r on the path s�us�: : :�vd�t, where the dots represent the unique path from us to vd
(add r to xus;vd). For one to many multipoint requests q = (u; fv1; : : : ; vkg; r), it is possible
that link l will be used in the connection, so add ow r on the path s�us�: : :�wd�t, where
w is the smallest numbered node in fv1; : : : ; vkg such that (u; w) 2 Pl (add r to xus;wd

).
This means we are assuming that l is being used in the connection if l is in

Sk
i=1 path(u; vi),

even though it may not be used because only a subtree of that link set is used. This does not
invalidate the proof; we are simply being pessimistic about the usage of links with multipoint
connections. Similarly, for many to one multipoint requests q = (fv1; : : : ; vkg; u; r), add ow
r on the path s� ws � : : :� ud � t, where w is the smallest numbered node in fv1; : : : ; vkg
such that (u; w) 2 Pl (add r to xws;ud).

39

Our pessimism about the usage of links under multipoint tra�c does not increase the
values of maxusage found. Whatever the value of maxusage(l) is, we can �nd a set of
point-to-point requests which cause that much usage on link l.

It is not hard to see that the above de�nes a many to one correspondence from compatible
request sets R to ows f in Ll (solutions x of LPl). Furthermore, the value of f (objective
value of x) is equal to the usage of l,

P
q2Rl

rate (q).

6. Conclusion

We have presented a new way of specifying tra�c in communication networks which we
believe is easier for a network manager to specify and predict. It is useful for specifying
tra�c in a multirate multipoint connection-oriented network such as ATM networks.

Given that we want to con�gure networks which are nonblocking with respect to these
tra�c limits, we have designed an e�cient algorithm to compute a lower bound on the
cost of any such network. Experimental results on randomly generated instances show
that hierarchical star networks are usually very close to optimal. We conjecture that they
are indeed optimal for at �; !-bounded tra�c, and have made progress in proving this
conjecture by showing that star networks are optimal among all tree-shaped networks.

Our probabilistic result lends analytical support to the observation that star networks
are likely to be as close as we want to optimal as the number of nodes grows.

Even if a network manager does not wish to build a tree-shaped network, the lower
bound is still useful in assessing the cost of any con�guration the manager does examine.
We have developed algorithms for con�guring nonblocking networks with arbitrary shape,
given that �xed path routing is used to route connections.

There are several extensions to this work that we plan to examine. One reason that
a manager would not want to install a tree-shaped network is that such a network is not
tolerant to link or node failures. We will examine network con�gurations which are tolerant
to single link or node failures, called two-connected networks. Gr�otschel et al have examined
a similar problem [GMS92].

Another extension is to allow the manager to specify the tra�c based on the locations
of users and their terminals, give possible locations where switches may be installed, and
then let the con�guration algorithm select the cheapest con�guration. The current work
assumes that the switch locations are �xed.

Finally, the tra�c limits of a network usually change over periods of time. We will
examine the case where there is already an installed network, and the manager wants to
modify the installation as cheaply as possible so as to satisfy the new tra�c. For at �; !-
bounded tra�c, this problem is very similar to that of expanding the outside plant of a
telephone central o�ce. This problem has been treated extensively by Jack, Kai, Shulman,
and others [JKS92a, JKS92b].

40

References

[AV79] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for Hamiltonian
circuits and matchings. Journal of Computer and System Sciences, 18:155{193,
1979.

[FF64] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press,
Princeton, NJ, 1964.

[Fin91] J. Andrew Fingerhut. Designing communication networks with �xed or nonblock-
ing tra�c requirements. Technical Report WUCS-91-55, Washington University,
St. Louis, Missouri, 1991.

[Fin92] J. Andrew Fingerhut. Algorithms for designing nonblocking communication net-
works with general topologies. Technical Memorandum WUCS-TM-92-05, Wash-
ington University, St. Louis, Missouri, 1992.

[GMS92] Martin Gr�otschel, Clyde L. Monma, and Mechthild Stoer. Computational results
with a cutting plane algorithm for designing communication networks with low-
connectivity constraints. Operations Research, 40(2):309{330, March{April 1992.

[GT88] Andrew V. Goldberg and Robert Endre Tarjan. A new approach to the maximum-
ow problem. Journal of the ACM, 35(4):921{940, October 1988.

[GT90] Andrew V. Goldberg and Robert Endre Tarjan. Finding minimum-cost cir-
culations by successive approximation. Mathematics of Operations Research,
15(3):430{466, August 1990.

[Hoe63] Wassily Hoe�ding. Probability inequalities for sums of bounded random variables.
American Statistical Association Journal, 58:13{30, March 1963.

[HR90] Torben Hagerup and Christine R�ub. A guided tour of Cherno� bounds. Infor-

mation Processing Letters, 33(6):305{308, 1990.

[Hu69] Te Chiang Hu. Integer Programming and Network Flows. Addison-Wesley, 1969.

[JKS92a] Carolyn Jack, Sheng-Roan Kai, and Alexander Shulman. Design and imple-
mentation of an interactive optimization system for telephone network planning.
Operations Research, 40(1):14{25, January-February 1992.

[JKS92b] Carolyn Jack, Sheng-Roan Kai, and Alexander Shulman. NETCAP - an in-
teractive optimization system for GTE telephone network planning. Interfaces,
22(1):72{89, January-February 1992.

[KRT92] V. King, S. Rao, and Robert Endre Tarjan. A faster deterministic maximum ow
algorithm. In Proc. 3rd ACM-SIAM Symp. Discrete Algorithms, pages 157{164,
January 1992.

[Min89] Michel Minoux. Network synthesis and optimum network design problems: Mod-
els, solution methods and applications. Networks, 19:313{360, 1989.

41

[MT89] Riccardo Melen and Jonathan S. Turner. Nonblocking multirate networks. SIAM
J. Comput., 18(2):301{313, April 1989.

[MT90] Riccardo Melen and Jonathan S. Turner. Nonblocking multirate distribution
networks. In Proc. INFOCOM, pages 1{8?, 1990.

[MW84] Thomas L. Magnanti and Richard T. Wong. Network design and transportation
planning: models and algorithms. Transportation Science, 18(1):1{55, February
1984.

[PS82] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:

Algorithms and Complexity. Prentice Hall, 1982.

[Tar83] Robert Endre Tarjan. Data Structures and Network Algorithms. SIAM, 1983.

42

