
CMAP
Ken Cox and John DeHart

WUCS-94-21

Version 3.0 (ARL-94-08)

Previous Versions (WUCS-92-01, ARL-89-06) authored by:

John DeHart

Mike Gaddis

Rick Bubenik

July, 1994

Department of Computer Science

Washington Univeristy

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

Hypertext Linkage

Author: Ken Cox and John DeHart
Organization: Applied Research Laboratory
Project: Zeus Project
File: /project/gbn_sw/switch/documentation/CM/CMAP/CMAP_hdr.frm
Created: February 26, 1992
Modified: July 8, 1994 4:41 pm by kcc

Master Index

Document Index

ContentsTitle Figures

BodyTables Index

Quit

Previous Link

Connection Management Access Protocol (CMAP) Specification

Ken Cox and John DeHart

Version 3.0
November 16, 1994

 Applied Research Laboratory Working Note —ARL-94-08
Department of Computer Science Technical Report —WUCS-94-21

Applied Research Laboratory
Department of Computer Science

Washington University
Campus Box 1045

One Brookings Drive
 St. Louis, Missouri 63130-4899

Telephone: 314-935-6160
FAX: 314-935-7302

Email: {jdd, kcc}@arl.wustl.edu

Abstract

This document specifies a Connection Management Access Protocol (CMAP) for call manage-
ment in high-speed packet switched networks. We target CMAP to networks employing the Asyn-
chronous Transfer Mode (ATM) communication standard. CMAP specifies the access procedures
exercised by network clients to manipulate multipoint calls; it is thus a User-Network Interface
(UNI) signalling protocol. We define a multipoint call as a group of multipoint connections. A mul-
tipoint connection is a communication channel between two or more clients or endpoints of the net-
work, where all data sent by one client is received by all other clients who have elected to receive.
A point-to-point connection is a special case of a multipoint connection involving only two clients.
CMAP provides facilities to create, modify, and delete calls, connections, and endpoints. Once a
connection is established, clients exchange data using ATM data-transfer protocols that are specified
separately from CMAP.

Connection Management Access Protocol (CMAP) Specification Page ii

Applied Research Laboratory Zeus Project

Version Information

Version 1.0: Initial document containing CMAP message formats and little else.

Version 2.0: Added introductory sections on ATM networks, the call model and the protocol stack (these sec-
tions were derived mostly from papers published by the authors). Changed many of the CMAP
message formats and added some new messages. Added detailed explanations where deemed nec-
essary to highlight obscure CMAP features. Added implementation and future direction sections
(incomplete).

Version 2.1: Major editing rewrite of Sections 1 through 8.5 from version 2.0 (now organized as Sections 1
through 6). More editing to come.

Version 2.1.1: Minor editing changes from version 2.1. More editing to come (temporarily on hold).

Version 3.0: Major editing involving restructuring of document, removal of redundacies, and general modifica-
tions/clarifications preparatory to implementation. More editing expected as implementation pro-
ceeds. Summary of major changes:

• Restructuring of document as a FrameMaker “book” with table of contents, lists of figures and
tables, and index.

• Collection of several sections from earlier versions into a single chapter describing the environ-
ment in which CMAP operates.

• Expansion and clarification of the call model, including: separation of ownership and root func-
tions; owner now need not be a participant in call; more complete listing of call, connection, etc.
parameters; clarification of the distinction between clients and endpoints and between connec-
tions and UNI parameters, and more consistent use of the terms throughout document; modifi-
cation of the system for connection and endpoint mappings.

• Collection of information about messages into a single chapter, including: explanation of use of
messages; definitions of ACKs, NACKs, etc.; redefinition of message objects to support multi-
drop/surrogate signalling and other changes to model; complete definitions of all message fields.

• Addition of commands to support client/network interfacing (e.g., status, alert).

• Renaming of many commands to better reflect their use (e.g., all notifications now begin with
announce_).

• Rewriting of command explanations, including: explanation of message traffic produced by
command; parameter negotiation in command; state machines modified to reflect separation of
call ownership from participation in call and other changes to model.

• Expansion of examples, and linkage to actual applications.

• Wrote a preliminary version of the “Future Directions” section.

• Modification of appendices to reflect changes elsewhere in document.

• Unification of the state machines for the various operation types.

Connection Management Access Protocol (CMAP) Specification Page iii

Applied Research Laboratory Zeus Project

Copyright Notification

Authors (Version 3.0 1994):
Ken Cox and John DeHart

Previous Authors:
John DeHart, Mike Gaddis, and Rick Bubenik

Original Copyright 1989,
Washington University, Applied Research Laboratory

All rights reserved.

Revised Copyright 1990,
Washington University, Applied Research Laboratory

All rights reserved.

Revised Copyright 1991,
Washington University, Applied Research Laboratory

All rights reserved.

Revised Copyright 1992,
Washington University, Applied Research Laboratory

All rights reserved.

Revised Copyright 1994,
Washington University, Applied Research Laboratory

All rights reserved.

Permission is granted to copy and distribute this document as long as this
Copyright notification and the document contents remain intact, and the docu-
ment or portions of the document are not sold for profit. Modifications are pro-
hibited without the express written permission of Washington University and
the Authors.

Applied Research Laboratory Zeus Project

Connection Management Access Protocol (CMAP) Specification Page iv

ContentsTitle Figures BodyTables Index Quit

Table of Contents

Abstract ... i

Version Information .. ii

Copyright Notification ... iii

Table of Contents ... iv

List of Figures ... vii

List of Tables .. x

1. Introduction ... 1

2. Switched ATM Networks ... 2

 Network Architecture ... 2

 The ATM Standard .. 4

 Virtual Path and Virtual Channel Connections .. 4

3. CMAP Network Environment ... 7

 CMAP as a Session Management Protocol .. 7

 Network Functionality .. 8

 CTL Functionality .. 8

 Signalling Connections ... 9

 Connection Management Layer Functionality .. 10

 Minimal CMAP ... 11

4. Call Model ... 14

 Basic Concepts .. 14

 Clients .. 15

 Calls .. 16

 Connections ... 18

 Endpoints ... 20

 Summary of Identifiers .. 22

5. CMAP Messages ... 23

 Use of Messages ... 23

 Notational Conventions .. 23

 Header Object ... 25

 Trailer Object .. 27

 Call Object ... 28

 Connection Object .. 29

 Endpoint Object .. 30

 UNI Object .. 31

Connection Management Access Protocol (CMAP) Specification Page v

Applied Research Laboratory Zeus Project

 Operation Object .. 32

 CMAP Message Byte and Bit Order of Transmission .. 32

6. CMAP Operations .. 33

 Overview .. 33

 open_call Command ... 36

 mod_call Command .. 42

 close_call Command ... 44

 add_con Command ... 46

 mod_con Command .. 50

 drop_con Command ... 52

 add_ep Command ... 55

 mod_ep Command .. 59

 drop_ep Command ... 62

 trace_call Command ... 65

 trace_ep Command ... 68

 change_owner Command ... 70

 change_root Command .. 73

 invite_add_con Prompt .. 75

 invite_add_ep Prompt .. 79

 invite_mod_ep Prompt ... 84

 invite_change_owner Prompt .. 89

 verify_add_ep Query .. 92

 verify_mod_ep Query ... 95

 announce_mod_call Notification ... 98

 announce_close_call Notification .. 99

 announce_add_con Notification .. 100

 announce_mod_con Notification ... 101

 announce_drop_con Notification .. 102

 announce_add_ep Notification .. 103

 announce_mod_ep Notification ... 104

 announce_drop_ep Notification .. 105

 announce_change_owner Notification .. 106

 announce_change_root Notification .. 107

 status Maintenance Operation ... 108

 alert Maintenance Operation ... 111

 client_reset Maintenance Operation ... 112

 network_reset Maintenance Operation .. 114

 error_report Maintenance Operation ... 115

Connection Management Access Protocol (CMAP) Specification Page vi

Applied Research Laboratory Zeus Project

7. Examples .. 117

 Data Transfer .. 118

 Audio/Video Server .. 123

 Conference Call ... 127

8. Future Directions in CMAP ... 133

Appendix A: References .. 135

Appendix B: Acronym List ... 139

Appendix C: CMAP Message Field Values ... 140

Appendix D: CMAP Status Codes ... 145

Appendix E: Endpoint Mappings .. 153

Appendix F: Parameter Negotiation ... 155

Index .. 157

Applied Research Laboratory Zeus Project

Connection Management Access Protocol (CMAP) Specification Page vii

ContentsTitle Figures BodyTables Index Quit

List of Figures

Figure 1. Example ATM Network .. 2

Figure 2. Architecture of Turner’s Broadcast Packet Switch .. 2

Figure 3. Architecture of Turner’s Gigabit Recycling Switch ... 3

Figure 4. Generalized Node Architecture for Interior and Exterior Network Nodes 3

Figure 5. ATM UNI Cell Format. ... 4

Figure 6. IP Segmentation/Reassembly Scheme. ... 4

Figure 7. Three-way Cell Pipe ... 5

Figure 8. Multipoint VP Connection Using VCI for Source Discrimination 5

Figure 9. Network Configuration Used with CMAP .. 7

Figure 10. Multidrop Signalling .. 9

Figure 11. Surrogate Client Signalling at the UNI .. 10

Figure 12. Surrogate Signalling for Medical Applications ... 10

Figure 13. Example Multiple-Connection Multimedia Call ... 14

Figure 14. Sample Connection Mappings at the UNI ... 15

Figure 15. CMAP Client Address Format ... 15

Figure 16. Examples of Client Address Partitioning .. 16

Figure 17. Cell Pacing and Peak and Burst Length at the UNI ... 19

Figure 18. Common Message Format Characteristics (example open_call REQUEST) 24

Figure 19. CMAP Message Structuring Rules ... 25

Figure 20. The CMAP Header Object .. 25

Figure 21. msg_id format ... 26

Figure 22. op_status format (16 bits) .. 27

Figure 23. The CMAP Trailer Object .. 27

Figure 24. The CMAP Call Object ... 28

Figure 25. mon format (8 bits) .. 28

Figure 26. The CMAP Connection Object ... 29

Figure 27. con_type format (8 bits) ... 29

Figure 28. con_def format (8 bits) ... 30

Figure 29. bw format (12 bytes) .. 30

Figure 30. The CMAP Endpoint Object .. 30

Figure 31. The CMAP UNI Object ... 31

Figure 32. The CMAP Operation Object ... 32

Figure 33. Byte/Bit Order of Transmission ... 32

Connection Management Access Protocol (CMAP) Specification Page viii

Applied Research Laboratory Zeus Project

Figure 34. State Machine for a Command, status, or client_reset ... 34

Figure 35. State Machine for a Prompt .. 34

Figure 36. State Machine for a Query or status .. 35

Figure 37. State Machine for a Notification, alert, or network_reset ... 35

Figure 38. Message Traffic for open_call ... 36

Figure 39. Message Traffic for mod_call ... 42

Figure 40. Message Traffic for close_call ... 44

Figure 41. Message Traffic for add_con ... 46

Figure 42. Message Traffic for mod_con ... 50

Figure 43. Message Traffic for drop_con ... 52

Figure 44. Message Traffic for add_ep ... 55

Figure 45. Message Traffic for mod_ep by Owner ... 59

Figure 46. Message Traffic for mod_ep by Non-Owner ... 59

Figure 47. Message Traffic for drop_ep by Owner ... 62

Figure 48. Message Traffic for drop_ep by Non-Owner .. 62

Figure 49. Message Traffic for trace_call .. 65

Figure 50. Message Traffic for trace_ep .. 68

Figure 51. Message Traffic for change_owner .. 70

Figure 52. Message Traffic for change_root .. 73

Figure 53. Message Traffic for invite_add_con ... 75

Figure 54. Message Traffic for invite_add_ep ... 79

Figure 55. Message Traffic for invite_mod_ep .. 84

Figure 56. Message Traffic for invite_change_owner ... 89

Figure 57. Message Traffic for verify_add_ep ... 92

Figure 58. Message Traffic for verify_mod_ep ... 95

Figure 59. Message Traffic for Network-Initiated status ... 108

Figure 60. Message Traffic for Client-Initiated status .. 108

Figure 61. Network Used in Examples ... 117

Figure 62. Building a Point-to-Point Call with Two Commands ... 118

Figure 63. open_call Message for Data Transfer Example .. 119

Figure 64. add_ep Message for Data Transfer Example .. 120

Figure 65. Building a Point-to-Point Call with One Command ... 121

Figure 66. close_call Message for Data Transfer Example .. 122

Figure 67. Setup for the Audio/Video Server .. 123

Figure 68. open_call Message for Video Server Example .. 124

Figure 69. First Client Joins Video Server Call ... 125

Connection Management Access Protocol (CMAP) Specification Page ix

Applied Research Laboratory Zeus Project

Figure 70. Second Client Joins Video Server Call ... 126

Figure 71. Client Drops Out of Video Server Call .. 126

Figure 72. open_call Message for Conference Call Example ... 128

Figure 73. add_con Message for Conference Call Example ... 129

Figure 74. Example Mappings for Conference Call .. 130

Figure 75. mod_ep Message for Conference Call Example .. 131

Applied Research Laboratory Zeus Project

Connection Management Access Protocol (CMAP) Specification Page x

ContentsTitle Figures BodyTables Index Quit

List of Tables

Table 1. Document Structure ... 1

Table 2. Required and Optional Network Functionality ... 8

Table 3. Required and Optional CTL Functionality ... 9

Table 4. Required and Optional CML Functionality .. 11

Table 5. Minimal CMAP Functionality .. 12

Table 6. Call Parameters .. 16

Table 7. Connection Parameters .. 18

Table 8. Endpoint Parameters ... 20

Table 9. CMAP Call Operations .. 33

Table 10. CMAP Maintenance Operations ... 34

Table 11. The Twelve Endpoint Mappings ... 153

Table 12. Disabling Defaults and Permissions .. 153

Connection Management Access Protocol (CMAP) Specification Page 1

Applied Research Laboratory Zeus Project

ContentsTitle Figures BodyTables Index Quit

1. Introduction
This document describes a call model for multipoint connections in a switched Asynchronous Transfer Mode

(ATM) networks and specifies the Connection Management Access Protocol (CMAP) that allows network clients to
create, manipulate and delete multipoint, multiconnection communication channels, which we term calls. A multipoint
call is a call involving two or more clients; a point-to-point call is a special case of a multipoint call involving only
two clients. Data sent over a connection by one participant in a call is received by all other participants electing to
receive on this connection, although reliable delivery is not guaranteed by the network. Calls are allowed to change
dynamically during their lifetime, in terms of the number of participants, the number of connections and the reserved
bandwidth of the connections.

CMAP defines the interface between clients and the network used to create, manipulate and delete calls. As such,
CMAP is an ATM User Network Interface (UNI) signalling protocol [3, 14]. It is layered over a reliable substrate,
which we term CTL (for CMAP Transport Layer). We do not specify the CTL protocol. Rather, we list the require-
ments for CTL, which are generally met by several existing transport protocols (for example, TCP/IP over type 4
AAL). In this way, CMAP implementors can choose the most suitable CTL for their implementation environment.

Although CMAP and the associated call model provide a rich set of operations and capabilities, CMAP imple-
mentations are not required to be complete: CMAP implementations can omit certain operations and capabilities, while
still adhering to the general message layouts and request/acknowledgment handshake procedures. A certain set of core
capabilities are required, which we term minimal CMAP (Section 3.6). All other capabilities are optional.

CMAP also exhibits flexibility in the areas of addressing and data transfer. CMAP does not dictate any one ad-
dressing scheme. Rather, CMAP supports multiple addressing disciplines and multiple routing protocols. Currently-
defined addressing schemes include IP (Internet Protocol) addressing [18], public network E.164 addressing [13], and
OSI NSAP addressing [17]. An implementation of CMAP may support any or all of these schemes, as well as others.
Similarly, CMAP does not require clients to use a particular data transfer protocol (e.g., AAL-5) on the connections it
creates. Instead, CMAP supplies raw ATM connections on which clients may layer any protocol they find appropriate.

The remainder of this document is organized as shown in Table 1.

Table 1. Document Structure

Section and Title Description

Section 1: Introduction Call model and CMAP overview.

Section 2: Switched ATM Networks Introduction to switched, connection-oriented ATM networks.

Section 3: CMAP Network Environment Description of CMAP layering over ATM networks.

Section 4: Call Model Detailed description of the call model.

Section 5: CMAP Messages General information on message use, formats and transmission.

Section 6: CMAP Operations Detailed description of all CMAP operations.

Section 7: Examples Examples of CMAP operations, including several types of call setup.

Section 8: Future Directions in CMAP List of CMAP enhancements being considered.

Appendix A: References List of related references.

Appendix B: Acronym List List of acronyms used in document.

Appendix C: CMAP Message Field Values Numerical values for CMAP message parameters.

Appendix D: CMAP Status Codes Numerical values and actions for CMAP error codes.

Appendix E: Endpoint Mappings Tabular list of all possible endpoint receive/transmit mappings.

Appendix F: Parameter Negotiation Summary of parameter negotiation.

Connection Management Access Protocol (CMAP) Specification Page 2

Applied Research Laboratory Zeus Project

2. Switched ATM Networks
This section presents an overview of the switched ATM network architectures, the ATM standard, ATM network

connections, and the two types of ATM connections (Virtual Path and Virtual Channel).

2.1 Network Architecture
An example ATM network is shown in Figure 1. The network consists of clients, exterior nodes (nodes that in-

terface to clients), and interior nodes (nodes that interface to other nodes only), all interconnected by fiber optic links.
Clients signal the network to set up connections to other clients by signalling exterior nodes using a User Network In-
terface (UNI) signalling protocol [3, 14]. The exterior nodes perform the requested operation, communicating if nec-
essary with other nodes (both interior and exterior) using a Network Node Interface (NNI) signalling protocol.

 Clients may send ATM cells (packets) to the network and receive cells from the network along their fiber links.
Each node in the network contains one or more ATM switches [29, 33, 34, 36, 37, 59, 62]. The switches route each
ATM cell to the desired destination link(s) based upon header fields in the cell (Section 2.3). In order to keep up with
line speeds, the switches perform all routing in hardware. Since the time interval within which each cell must be routed
is very small, tables in the switches are preconfigured with routing information. This makes ATM networks more suit-
able for connection-oriented traffic, where the switch tables can be configured during connection setup. Connection-
less traffic can be accommodated via overlay networks utilizing special-purpose routers or datagram processors [5, 9].

Figure 2 shows the architecture of one ATM switch, Turner’s Broadcast Packet Switch [59, 62]. This switch con-
tains a Copy Network (CN) concatenated to a Routing Network (RN). ATM cells (packets) enter the switch on the left.
Multicast cells, destined for several locations, are replicated by the CN, then routed to the appropriate destination by
the RN. Point-to-point cells follow an arbitrary path through the CN (following the path of “least resistance”), then are
routed by the RN. Cells leave the switch on the right, where they traverse fiber optic links to other switches or clients.

N1

N2
N4

N5

N9

N8

A

B

C

D

F

G

N3 E

N6

N7

Figure 1. Example ATM Network

Clients

Exterior
Nodes

Interior
Nodes

ATM Network

Copy Network Routing Network

Control

SMI

Processor

Figure 2. Architecture of Turner’s Broadcast Packet Switch

Connection Management Access Protocol (CMAP) Specification Page 3

Applied Research Laboratory Zeus Project

The broadcast packet switch is controlled by the Control Processor (CP) connected to the switch via an Ethernet-based
Switch Module Interface (SMI). The CP configures the switch hardware to route incoming cells to the appropriate out-
going links by modifying tables within the switch, thus establishing connections.

Figure 3 shows the architecture of another ATM switch, Turner’s Gigabit Recycling Switch [59, 62]. The internal
structure of this switch differs considerably from that of the Broadcast Packet Switch—on each pass through the net-
work at most two copies of a cell are produced, with larger numbers of copies obtained by recycling cells through the
network—but the external behavior is the same. ATM cells enter the switch on the left, are replicated and routed as
specified by internal tables, and leave the switch on the right. The recycling switch is also controlled by a CP, but in-
stead of using an SMI the CP sends control information over the fiber links in the form of special control cells.

Figure 4 illustrates our concept of a node, where more than one ATM switch is under the control of a single CP.
The CP manages routing for all the switches in the node, sending commands to update the tables in each switch. We
assume that the CP is directly connected to (at least) one main switch. Its connections to the other, satellite switches
may be indirect, for example, it may have to send commands in the form of ATM cells over the fiber links connecting
the switches within the node. Note that, from the “outside”, a node can be viewed as a single large switch through
which connections may be routed, with the routing inside the node hidden.

Control
Processor

Figure 3. Architecture of Turner’s Gigabit Recycling Switch

Recycling Network

Response cells
from switch

Control cells
to switch

16

16

16

N1

N2
N4

N5

N9

N8

A

B

C

D

F

G

N3 E

N6

N7

N3

64
64

128

N7

64

N1

N2B
Exterior Node

Figure 4. Generalized Node Architecture for Interior and Exterior Network Nodes

Interior Node

main switch

control processor
satellite switch

Connection Management Access Protocol (CMAP) Specification Page 4

Applied Research Laboratory Zeus Project

2.2 The ATM Standard
The emerging ATM standard [3, 14] specifies link-level cell formats for two interfaces: 1) the User Network In-

terface (UNI), for communication between the client and the network, and 2) the Network Node Interface (NNI), for
communication between network nodes. The ATM UNI cell format is shown in Figure 5. It consists of a 48-byte pay-
load (data) field and a five-byte header. The header has six fields: a Global Flow Control (GFC, 4 bits), a Virtual Path
Identifier (VPI, 8 bits), a Virtual Channel Identifier (VCI, 16 bits), a Payload Type (PT, 3 bits), a Cell Loss Priority
(CLP, 1 bit) and a Header Error Check (HEC, 8 bits).

Use of the GFC has not yet been standardized, although the intent is to use this field for arbitration on shared me-
dia access links (such as DQDB). The VPI and VCI fields are used to route cells, as described in the next section. The
CLP bit is used to mark low priority cells, where CLP=1 indicates low priority. This bit may be set either by clients or
the network. The last header field, the HEC, is a cyclic redundancy check (CRC) on the header.

The three-bit PT field is used to distinguish data cells from other cells. There are four types of client data cells,
all with the most-significant PT bit set to 0. The other two bits are the network congestion bit (the middle bit) and the
tagged data bits (the least-significant bit). The network congestion bit is used by the network to inform clients receiving
a cell that congestion was encountered somewhere in the network. The tagged data PT marking can be used by the
client to differentiate cells. This marking is preserved by the network. One potential use is in delineating segmented
frames, where the cell containing the last fragment of the frame is tagged and all other frames are untagged [9, 42]. An
example of this is shown in Figure 6 for IP datagram frames. The remaining four PT values (those with the most-sig-
nificant bit equal to 1) are reserved for network control and resource management functions.

2.3 Virtual Path and Virtual Channel Connections
The VPI and VCI header fields are used to route cells. The ATM standard provides for two types of routing: Vir-

tual Path (VP) and Virtual Channel (VC). Both types of routing are based on an abstraction of ATM networks which
we call cell pipes or connections. Clients of ATM networks communicate over cell pipes by sending and receiving

Figure 5. ATM UNI Cell Format.

ATM Cell Format

Header

Payload (data)

5 Bytes

48 Bytes

VPI

VPI VCI

VCI

VCI PT

HEC

(4) (4)

(4) (3) (1)

(4)

(8)

(8)

CLP

ATM-UNI Header

GFC
(4)

Figure 6. IP Segmentation/Reassembly Scheme.

IP Datagram

- - e . . .

IP header IP Data

ATM cell #1 ATM cell #2 ATM cell #N
(start cell, PT = 000) (middle cell, PT = 000) (end cell, PT = 001)

ATM
header

ATM
payload

C
R

C

pa
d

Connection Management Access Protocol (CMAP) Specification Page 5

Applied Research Laboratory Zeus Project

ATM cells. In the general case a cell pipe may be n-way (any number of clients), bidirectional (a client may both send
and receive data on the same pipe), and multipoint-to-multipoint (all clients may send data, and all clients connected
to the cell pipe will receive the data). Figure 7 shows the conceptual view of a three-endpoint cell pipe between clients
A, B and C. All data sent by one client is received by all other clients who have elected to receive on this cell pipe.

Clients access cell pipes using the VPI and VCI fields of the header. To be more precise, clients place particular
values in the VPI and VCI fields of each ATM cell that they send. The network uses these values to route the cells to
the other clients that are using the same cell pipe. The routing tables in the network switches are configured with map-
ping information which, for each incoming VPI/VCI combination, indicates to which switch output line(s) the cell
should be sent and what VPI/VCI pairs should be written into the headers of the output cells. The routing process thus
could remap the VPI/VCI pair at each switch in the network.

In a virtual path connection, the network uses the VPI for routing, possibly remapping this field at every switch
within the network. The VCI field is transmitted end-to-end unchanged by the network and is available for use by cli-
ents. Thus, in VP connections clients route the cell using the VPI field and may place any value in the VCI field. One
anticipated use of the VCI can be used for source discrimination in multipoint connections, where each transmiting
client places a unique VCI in all of its outgoing cells.

In a virtual channel connection, the network uses both the VPI and VCI for routing, possibly remapping both
fields at every switch within the network. Clients route the cell using both the VPI and VCI fields; neither field is avail-
able for other purposes such as multiplexing. VC connections are desirable for connections that do not need source
discrimination, and for connections that want to take advantage of rapid setup (where the network is able to reduce
connection setup overhead by using preconfigured trunks).

Figure 8 shows an expanded view of the cell pipe from Figure 7. This cell pipe has been set up as a VP connection.
Client A accesses the cell using VPI 9, client B uses VPI 3, and client C uses VPI 7. Any cell transmitted by one of
these clients on the cell pipe is delivered to the other two with its VCI field unchanged. When a client is receiving from
two or more transmitters, the cells from the two sources may be interleaved in an arbitrary fashion. However, the ATM
standard guarantees that cells from each transmitter will be received in the order that they were sent.

Figure 7. Three-way Cell Pipe

ATM
cell pipe

B

A
C

network

network

B

vci 3

vci 2
vci 1

vpi 7

vpi 9
ATM

cell pipe

vpi 3

A

C

vci 3
vci 2
vci 1

vci 3

vci 2

vci 1

B1
B2

B3

B1
B2

B3

A2
A1

C4
C3

C2
C1

C2
C3

C4

C1

A2
A1

C2C1 C4C3

B2B3 B1

A1A2

Figure 8. Multipoint VP Connection Using VCI for Source Discrimination

Connection Management Access Protocol (CMAP) Specification Page 6

Applied Research Laboratory Zeus Project

In this example, the clients are using the VCIs for source discrimination. Client A is setting the VCI of cells it
transmits to 1, client B to 2, and client C to 3. The receivers can thus distinguish the source of each cell received, even
though cells from two or more different transmitters may be interleaved on receipt. This technique would not be pos-
sible in a VC connection; therefore, if a VC connection is used for multipoint communication, higher-level protocol
information must be embedded in the ATM cell payload for source discrimination.

ATM cell pipes in a network are set up, modified, and torn down under the control of software which arranges
that appropriate values be stored in the routing tables of each switch involved in the connection. CMAP forms one
component of this software. The next chapter examines CMAP’s role in network routing in greater detail.

Connection Management Access Protocol (CMAP) Specification Page 7

Applied Research Laboratory Zeus Project

3. CMAP Network Environment
This section discusses how CMAP is used in a networking environment. Section 3.1 discusses the role of CMAP

in network operations. The next three sections (3.2 through 3.5) describe the support provided by the network and by
other software components. Finally, Section 3.6 defines complete and minimal CMAP implementations and indicates
what facilities are necessary for a minimal implementation.

3.1 CMAP as a Session Management Protocol
Figure 9 shows the network process and protocol architecture used with CMAP. We believe that this abstract view

of the network encompasses most actual and proposed network management implementations and is thus not unduely
restrictive.

Management of ATM connections is encapsulated in a Connection Management Layer (CML), which provides
facilities for building and destroying ATM connections. Clients have no knowledge of or direct access to the CML.
Instead, clients interact with the Session Management Layer (SML), which provides a “higher-level” interface to the
network resources. The Session Managers (processes of the SML) use the facilities provided by the CML to perform
the network operations requested by clients. A network may support several different types of Session Manager, each
providing a distinct client interface to the network. Contention for network resources by the Session Managers is re-
solved at the CML.

CMAP is a client interface protocol based on the creation, manipulation, and deletion of calls (Section 4). CMAP
clients use a reliable ATM transport protocol (generically called CTL, or CMAP Transport Layer) to send messages
or signals to the CMAP Session Managers, which then perform the requested network operations. CMAP is designed
to support call management in a network supporting dynamic n-way multipoint-to-multipoint bidirectional connec-
tion-oriented ATM communications. CMAP clients are allowed to select connection types (virtual channel or virtual
path), connection bandwidth, and the VPI/VCI pairs that they will use to transmit and receive. A complete CMAP im-
plementation requires that all these facilities be available either from the network or from the other software compo-
nents. The next three sections describe the support required from each component.

Switch Control

Physical Network

Figure 9. Network Configuration Used with CMAP

Connection Management Layer

CMAP
Client

CMAP
Session Manager

Q.93b
Session Manager

Q.93b
Client

CMAP Client/Manager
ATM Link using CTL

CML Protocol

}Session Management Layer

Other Protocols

Other Protocol Layers
(Node Management, Switch Management)

Connection Management Access Protocol (CMAP) Specification Page 8

Applied Research Laboratory Zeus Project

3.2 Network Functionality
Despite its central role, the physical network actually has to supply very little direct support for CMAP. This is

primarily due to the fact that CMAP is situated at a high level on the protocol stack and is thoroughly insulated from
the network by the other software components. The network facilities are primarily those needed to support the types
of calls and connections that CMAP allows. In addition, many of the network requirements (e.g., sequenced delivery
of cells with no cell duplication or extraneous cells) are already required by the ATM standard and so need not be re-
peated here.

The network requirements are summarized in Table 2. The third column indicates whether the facility is required
for a minimal CMAP implementation or optional. Most of the entries are self-explanatory, with the possible exception
of the last four. By a static connection we mean one that is configured exactly once, when it is created, and cannot be
changed thereafter. A dynamic connection can be changed while it is in use, for example to add or remove clients or
to change bandwidth. An endpoint mapping (Section 4.5.3) determines whether a client receives and/or transmits data
on a connection. A static mapping is one that is configured exactly once and not changed thereafter, while a dynamic
mapping may change. As the table indicates, we require that the network allow clients to modify their mappings—for
example, a client may indicate that it does not wish to receive data from a connection, and the network must stop de-
livering data to that client.

3.3 CTL Functionality
Table 3 lists the functions required of the CMAP Transport Layer (CTL), which is the protocol used to transmit

CMAP signals over the ATM links between the CMAP clients and Session Managers. We do not specify a particular
protocol but allow any ATM-compatible reliable transport protocol to be used. The table lists both required and op-
tional CTL functions. The required functions are needed for correct message transmission and CMAP operation. The
optional functions can be used to augment client interfaces and applications. We do not describe these augmentations
in this document.

The first five functions deal with the mechanism whereby signals are broken down into ATM cells, transmitted,
and reassembled into CMAP signals. As the table indicates, we require that this process guarantee that messages (CTL
frames) be delivered to the remote peer without error. The remaining, optional functions may require further explana-
tion. Flow control indicates that the CTL protocol will voluntarily refrain from sending messages when the network
or host is congested, thus allowing time for the congestion to clear. Internal ping provides a mechanism to determine
whether the remote peer is still alive. This would allow clients and CMAP Session Managers to periodically check the
status of their peer and (if appropriate) attempt to restart the peer when it dies. Auto synchronization performs the in-
ternal ping automatically within the CTL layer, with notifications to the higher layers when synchronization is lost—
again, the higher layer (CMAP client or Session Manager) might attempt a restart of its peer under these conditions.

Table 2. Required and Optional Network Functionality

Network Functionality Description
Required/
Optional

VP Virtual Path connections Optional

VC Virtual Channel connections Required

Point-to-point Connections between exactly two clients Required

Point-to-multipoint Connections between two or more clients, only one transmitter Optional

Multipoint-to-multipoint Connections between two or more clients, any number of transmitters Optional

Unidirectional One-way data flow in connections Required

Bidirectional Two- or more-way data flow in connections Optional

Static connections Connection paths may not be reconfigured once set up Required

Dynamic connections Connection paths may be reconfigured once set up Optional

Static mappings Endpoint mappings may not be reconfigured once set up Required

Dynamic mappings Endpoint mappings may be reconfigured once set up Optional

Connection Management Access Protocol (CMAP) Specification Page 9

Applied Research Laboratory Zeus Project

Multiple connections on a single access link allow for multiple signalling connections to a single client and for multiple
clients on an access link. The use of such connections is described in greater detail below (Section 3.4). Query allows
for client agents and Session Managers to learn the capabilities of the network and adapt to them. For example, an
application could query to learn whether the network supports multipoint connections and, if not, it could emulate mul-
tipoint connectivity using several point-to-point connections, transparently to the user.

3.4 Signalling Connections
At the lowest level, the ATM cells comprising CMAP messages are sent over a bidirectional signalling connection

between the CMAP Client and the CMAP Session Manager (Figure 9), using the CTL protocol described above. The
setup of these ATM signalling connections from clients to Session Managers, and the setup of any required ATM sig-
nalling paths between CMAP Session Managers, falls into the area of network management. We require that facilities
for setting up such one connection between each client and its Session Manager be available. The exact mechanisms
and protocols used to establish these connections are outside the scope of this document.

Clients may request the creation of additional signalling connections, but are not required to do so (in this way
our signalling connection functions as an ATM standard meta-signalling connection). As Table 3 indicates, we do not
require that the network or CTL support such additional signalling connections; a CMAP implementation must be able
to function with a single signalling connection between each client and the network.

3.4.1 Multidrop Signalling

Our model allows for multiple clients on the same access link, as shown in Figure 10. This is one case where ad-
ditional signalling connections may be desirable, so as to differentiate the multiple clients on the access link. To allow
for the case where additional signalling connections cannot be allocated, CMAP messages contain the address of the
client to which they are directed. This allows several clients to share a single signalling link, provided the CTL delivers
a copy of the data to each of the clients. As noted above, we do not require support for either additional signalling
connections nor multiple connections on a single link.

Table 3. Required and Optional CTL Functionality

CTL Functionality Description
Required/
Optional

SAR Segmentation and Reassembly of CMAP frames to/from ATM cells Required

Sequenced Sequenced delivery of frames Required

Lossless No lost frames Required

Duplicate suppression No duplicate frames Required

Error-free Frames are delivered to higher level without bit errors Required

Flow control Throttling mechanism to handle network or host congestion Optional

Internal ping Internal CTL mechanism for learning if remote peer is still alive Optional

Auto synchronization CTL maintains synchronization and can report loss to CMAP layer Optional

Multiple connections Support for multiple CTL connections on a single access link Optional

Query Single ATM cell query to report SAR, transport protocol, etc. Optional

Figure 10. Multidrop Signalling

signalling

•••
Clients

A B C

Distinct Addresses

Connection Management Access Protocol (CMAP) Specification Page 10

Applied Research Laboratory Zeus Project

3.4.2 Surrogate Signalling

Another signalling capability that we allow for is surrogate signalling, where one client (called the surrogate cli-
ent) is designated as the signalling entity for another client (called the mute client), as shown in Figure 11. The surro-
gate client originates all signalling messages for the mute client and receives all signalling messages from the network
that would otherwise be sent to the mute client. To handle this, CMAP messages contain the address of the client at
which the signal is directed. The surrogate client can be anywhere in the network and does not have to be local to the
mute client’s node. The configuration of mute and surrogate clients falls into the area of network management, but we
do not require the network to provide these facilities.

An example of where surrogate signalling could be used is shown in Figure 12, where an array of high-resolution
displays (used for digitized X-rays or other medical diagnostic displays) are controlled from a nearby workstation. The
physician uses the workstation to select which images should be shown on each display and all of the signalling is
performed by the workstation, even though each of the displays is a separate CMAP client.

3.5 Connection Management Layer Functionality
The Connection Management Layer provides the facilities whereby the CMAP Session Managers build, maintain,

and destroy ATM connections, and its requirements thus lie in the area of providing the types of connections that the
CMAP model supports. These requirements are summarized in Table 4. Some of these facilities (indicated by “Net-
work” in the third column of the table) overlap with, and depend upon, the facilities made available by the physical
network—obviously the CML cannot provide VP connections if the network does not.

The CML also includes a number of resource management facilities which may need explanation. Prioritization
refers to the ability to assign calls and connections different levels of priority, with mechanisms whereby high-priority
calls can take resources from lower-priority calls. Quality of service refers to the ability to support different levels of
quality—high-quality connections might be able to guarantee no loss of ATM cells, minimal delivery times, and so
forth. Peak bandwidth reservation refers to the bandwidth management mechanism whereby a client reserves the max-
imum connection bandwidth that it will ever require. Bandwidth management refers to more general schemes, for ex-
ample involving statistical multiplexing based on average bandwidth and traffic burstiness. Best-effort connections are
ones without reserved bandwidth. Cells on such connections will be discarded if any of the links are saturated. Con-
nection holding refers to the ability to reserve connection resources (bandwidth, VPI/VCI pairs, etc.) without actually
using the connection. One case where this might arise is when a client wishes to turn off cell reception for a period but

Figure 11. Surrogate Client Signalling at the UNI

signalling

E
F

X
for F
for E

Surrogate Client

Mute Client

Figure 12. Surrogate Signalling for Medical Applications

32

Surrogate Client

Mute
Clients

(control station)

Connection Management Access Protocol (CMAP) Specification Page 11

Applied Research Laboratory Zeus Project

still have the connection available; the client would then direct that the connection be held to turn off the cell flow, and
when the client later directed that the cell flow be resumed the connection could be rapidly reestablished. Finally, VPI/
VCI pair allocation refers to the ability of clients to choose which VPI/VCI pairs they will use for receiving and trans-
mitting data. This might be particularly important where specialized hardware is used in data sources or sinks; the hard-
ware might be able to use only a single VPI/VCI pair in the cells it sends or receives.

The Connection Management Network Protocol (CMNP) is one possible connection management layer. CMNP
provides a uniform, connection-oriented view of the ATM network and provides all the facitilities listed in Table 4
(subject, of course, to the network’s capabilities). CMNP is described in a separate technical report [REFERENCE].

3.6 Minimal CMAP
An implementation of CMAP is distinguished from the general CMAP specification. The design of CMAP (de-

scribed in Sections 4 through 6) is based on a general model of the ATM protocol and fast packet switching networks
and of the supporting software such as the Connection Management Layer. A particular network environment may not
be able to support all of the CMAP capabilities described. For this reason we allow an implementation of CMAP to
vary from the generalized model. The network is still considered a CMAP network as long as it conforms to at least
the minimum specification described here. By making CMAP as general as possible but allowing it to have implemen-
tation subsets, we provide a single call management protocol that can be layered over a diverse set of networks.

If all CMAP options are implemented and all abstractions of the call model are supported in a CMAP implemen-
tation, then we refer to this as complete CMAP. We also defined a minimal CMAP that specifies the minimum capa-
bilities that the network must support in order to be considered a CMAP network. The preceding sections (particularly
Tables 2, 3, and 4) describe the required support for a minimal CMAP. Table 5 summarizes these sections and de-
scribes minimal and complete CMAP. The first column lists each of the functions. The next column indicates whether
the function is required or optional in CMAP. Required functions must be provided in both minimal and complete
CMAP. Optional functions need not be provided in a minimal CMAP implementation but are provided by complete
CMAP. The remaining two columns contrast the minimal and complete CMAP implementations—of course, for re-
quired functions the two implementations are identical. In some cases (e.g., bidirectional connections) the function
may not be required by the supporting layers but is still required in CMAP. In these cases CMAP is required to emulate
the function, possibly using the method suggested in the table.

Table 4. Required and Optional CML Functionality

CML Functionality Description
Required/
Optional

VP and VC Virtual Path and Virtual Channel connections Network

Connection types Point-to-point, point-to-multipoint, and multipoint-to-multipoint Network

Directionality Unidirectional and bidirectional Network

Connection configuration Static and dynamic Network

Endpoint configuration Static and dynamic Network

Prioritization Ability to select among levels of priority Optional

Quality of service Ability to select among levels of quality Optional

Peak bandwidth reservation Reservation and allocation by peak bandwidth Required

Bandwidth management Other types of bandwidth reservation and allocation Required

Best-effort connections Connections without reserved bandwidth Required

Connection holding Ability to reserve connections without actually using them Optional

VPI/VCI allocation Ability to direct use of particular VPI/VCI pairs Optional

Connection Management Access Protocol (CMAP) Specification Page 12

Applied Research Laboratory Zeus Project

Table 5. Minimal CMAP Functionality

Function
Required/
Optional

Effect on Minimal CMAP Effect on Complete CMAP

VP connections Optional Clients requesting a VP con-
nection are told the connection
could not be created

All VP’s supported by the net-
work are available to clients

VC connections Required All VC’s supported by the network are available to clients

Point-to-point Required Two-client point-to-point calls must be fully supported

Point-to-multipoint Optional Clients requesting point-to-
multipoint are told the connec-
tion could not be created

Fully supported

Multipoint-to-multipoint Optional Clients requesting multipoint-
to-multipoint are told the con-
nection could not be created1

Fully supported

Unidirectional Required Fully supported

Bidirectional Required If the network does not support bidirectional connections, we
require that CMAP emulate the connections by establishing
two (or more) unidirectional connections

Static connections Required Fully supported

Dynamic connections Optional Clients attempting to modify a
connection are informed that
the operation could not be per-
formed

Fully supported

Static mappings Required Fully supported

Dynamic mappings Required If dynamic mappings are not supported by the network, the
CMAP clients and session managers must set up all connec-
tions as receive/transmit. Requests to change mappings affect
software data but not hardware. Cells received on a connection
that is not set to receive should be silently discarded.

Error-free CTL Required Used for message transmission as described in Section 3.3

Flow control Optional Not used Used, but invisible to client

Internal ping Optional Not used May be used to restart clients
and/or session managers

Auto synchronization Optional Not used May be used to restart clients
and/or session managers

Multiple connections Optional Not used May be used to support multi-
drop and surrogate signalling

Query Optional Not used May be used to determine net-
work capabilities and assist
with emulation activities

Single signalling channel Required Configured by network management

Additional signalling channels Optional No facility for allocating addi-
tional channels provided to
clients

Clients may request any num-
ber of additional private sig-
nalling channels

Connection Management Access Protocol (CMAP) Specification Page 13

Applied Research Laboratory Zeus Project

1 If the network supports point-to-multipoint but not multipoint-to-multipoint , we strongly encourage the emula-
tion of multipoint-to-multipoint by the use of multiple point-to-multipoint connections, one for each transmitter.

Multidrop signalling Optional Multidrop configurations may
not be used

Where clients share a single
link, must ensure each gets a
copy of all signals sent

Surrogate signalling Optional Surrogate signalling may not
be used

Fully supported

Prioritization Required CMAP Session Managers keep track of call priorities and abort
lower-level calls when their resources are needed by a higher-
level call.

Quality of Service Optional All CMAP QOS levels map to
the same network QOS

Each CMAP QOS level maps
to a different network QOS

Peak bandwidth reservation Required Fully supported; sum of peak bandwidths on any link does not
exceed the link’s capacity

Bandwidth management Optional Session managers do not mon-
itor traffic or attempt to do sta-
tistical multiplexing

Session managers may moni-
tor traffic to collect statistics,
set up hardware to enforce the
connection BW behavior, and
perform statistical multiplex-
ing

Best-effort connections Required No bandwidth reserved for best-effort connections; cells trans-
mitted on connections have CLP = 1, thus indicating that they
should be discarded when congestion is encountered

Connection holding Required Connection holding may be emulated by keeping the connec-
tion open and discarding cells (see dynamic mappings above)

VPI/VCI allocation Optional Clients attempting to allocate
a specific pair are informed
that the pair is unavailable

Fully supported

Table 5. Minimal CMAP Functionality

Function
Required/
Optional

Effect on Minimal CMAP Effect on Complete CMAP

Connection Management Access Protocol (CMAP) Specification Page 14

Applied Research Laboratory Zeus Project

4. Call Model
CMAP is a protocol whereby network clients request the creation, modification, and deletion of calls, which are

distributed entities containing connections and endpoints. This section defines the attributes of CMAP clients, calls,
connections, and endpoints. The attributes of CMAP entities and the operations that may be performed on them (de-
scribed in Section 6) together define the CMAP call model. Section 4.1 first describes the basic concepts of CMAP.
Sections 4.2 through 4.5 then describe the attributes of the various entities. Finally, Section 4.6 summarizes the iden-
tifiers that serve to uniquely identify each entity in the CMAP context.

4.1 Basic Concepts
A CMAP client is a user of the network, in the most general sense. Our model views all clients as equal. We draw

no distinction, for example, between network gateways, multimedia workstations, or video phones. All clients are con-
strained to signal the network through our CMAP protocol and communicate through ATM cell pipes. We believe that
our call model provides the necessary core functionality so that other services can be layered over CMAP, perhaps
presenting a more sophisticated network model to users. Additionally, we feel that CMAP’s interconnection services
are suitable for both local and wide area networks.

Network clients signal other clients by issuing CMAP requests that create and manipulate calls. A call is a dis-
tributed object maintained by the network that describes the communication paths that interconnect clients. Two of the
call’s parameters are its owner and root. The owner is a CMAP client which is responsible for managing the call. It
need not be a participant in the call (for example, it might be managing a mute video server). The root is another CMAP
client which is participating in the call. The root provides a known point in the network toward which routing can be
directed. In most cases, the root and the owner will be the same client.

A call has one or more communication channels, which we term connections. A connection is simply an ATM
end-to-end cell pipe (Section 2.3). Participants in a call can add connections to the call, subject to approval by the own-
er. Multiple connections within a call are useful for applications such as video conferences, where one connection car-
ries video and another audio. Figure 13 shows an example of such a multimedia call at a client, with separate
connections within the call carrying video, voice, and data. The protocols used by clients to send data over connections
are outside the scope of CMAP.

A call also has one or more endpoints, which are the interfaces between clients and calls. A client may join in a
call several times, resulting in several distinct endpoints associated with that client. When a call is first created, an end-
point for the root and optionally one additional endpoint (for either the root or for another client) are added to the call.
Additional endpoints may be added by: 1) invitation from the owner, where the invited party has the option of refusing
the invitation, 2) request from a client not currently in the call to be added, where the owner has the option of denying
the request, or 3) request from a third party, not necessarily in the call, to add a client, where both the owner and the
client being added have the option to refuse.

Each endpoint has separate parameters for each connection in the call. We use the term UNI (user network inter-
face) to refer to these per-connection endpoint properties. One of the most important of the UNI properties is the end-
point mapping, which indicates whether the endpoint receives, transmits, and/or echoes data on the connection.
Figure 14 shows six common ways (of the twelve possible) that an endpoint may map a connection to itself at its access
point (refer to Table 12 on page 153 for a complete list of possible mappings). During the lifetime of the call, the client

Figure 13. Example Multiple-Connection Multimedia Call

Client A

host>
video (in)

data

video (out)

Connections

voice Call

ne
tw

or
k

Connection Management Access Protocol (CMAP) Specification Page 15

Applied Research Laboratory Zeus Project

may dynamically change its mappings for each connection in the call. Such a feature might, for example, be useful in
a video teleconferencing system in which only one person can transmit at a time; clients would normally be mapped
to the video connection as receivers, but would change to transmit with echo when the client is the speaker.

4.2 Clients
A CMAP client is any user of the network. Clients have only one parameter, an address, which serves to uniquely

identify the client for the entire network.

4.2.1 Client Address

Each client of the network is identified by a unique address. These addresses are used in CMAP operations to
indicate the client to be added, modified or dropped from a call or connection, and to indicate the client performing
the operation. Internally, the network may use the addresses for signal routing and connection setup.

The CMAP protocol does not specify a particular addressing scheme. Rather, CMAP implementations can choose
to support one or more addressing schemes (for example, an implementation might support several well-known ad-
dressing schemes, such as IP or NSAP, and one or two experimental addressing schemes). The format of a CMAP
client address is shown in Figure 15. The address size is a constant 24 bytes, regardless of the addressing scheme used.
The first four bytes comprise a type field that tells how the remainder of the address should be interpreted. The remain-
der is partitioned into three additional fields whose sizes vary depending on the type of addressing used: a network
address field, local address field and an unused field. The network address field contains the only portion of the ad-
dress that the network uses in client identification and routing. The local address field is passed end-to-end in CMAP
operations for use by the clients and is not interpreted by the network. The remainder of the address is unused.

Figure 16 shows several example partitioning schemes. The upper portion of the figure shows the partitioning
used for IP addresses [18]. The network address field is 4 bytes and holds the IP address. The local address field is 2
bytes and contains the higher level port number (for example, the TCP or UDP port). The remaining 14 bytes of the
address field are unused. The middle portion of the figure shows the partitioning for the CCITT E.164 addresses [13]
used in the public telecommunications networks. The network address field is 8 bytes and encodes the 15 decimal digit
E.164 address. The local address field is 4 bytes and holds the E.164 subaddress field. The remaining 8 bytes are un-
used. The bottom portion of the figure shows the partitioning for OSI NSAP (Network Service Access Point) addresses

Figure 14. Sample Connection Mappings at the UNI

cell pipe

A

R/T

R/T w echo

T

T w echo
R

NULL

Figure 15. CMAP Client Address Format

type local address fieldnetwork address field unused

4 bytes

24 bytes total

4–20 bytes 0–16 bytes 0–16 bytes

Connection Management Access Protocol (CMAP) Specification Page 16

Applied Research Laboratory Zeus Project

[17]. The network address field is 19 bytes and contains all fields of the NSAP address except for the SEL (selector)
field, which is contained in the 1-byte local address field. Since NSAP addresses are 20 bytes in total length, there is
no unused portion.

4.3 Calls
The call is the primary object manipulated by clients. When a client creates a call it becomes the owner of the call.

When a client is added to a call it becomes an endpoint in the call and gains access to all the connections of the call.
Calls have a number of parameters that describe the call and indicate how clients may access and modify the call. These
parameters are described in the following subsections and summarized in Table 6.

Table 6. Call Parameters

Parameter Description

Owner The client that manages this call

Root The client toward which routing is done

Local Identifier Root-wide unique identifier for this call

Type Multipoint or point-to-point

Accessibility Ability of clients to join the call

Modifiability Whether a nonowner client may add connections

Traceability Whether a nonowner client may obtain parameters

Monitoring Level of notification of client joins and drops

Priority Call level priorities, for call preemption

User Type User description of call

Connection List Current connections in call

Endpoint List Current endpoints in call

Figure 16. Examples of Client Address Partitioning

unused

2 sub-Intl | Area | Exchange | Local address

unused (8 bytes)

E.164 bcd

type
(4 bytes)

network address
field (8 bytes) field (4 bytes)

local address

unused

1

unused (14 bytes)

IP

type
(4 bytes)

IP address

network
address

field
(4 bytes)

local
address

field
(2 bytes)

port

unused

3NSAP

type
(4 bytes)

network address
field (19 bytes)

local
address

field
(1 byte)

AFI IDI DFI AA Rsvd RD Area ID Sel

Connection Management Access Protocol (CMAP) Specification Page 17

Applied Research Laboratory Zeus Project

4.3.1 Call Owner

The owner is the address of the client which manages the call. Management operations include activities such as
modifying call, connection, or endpoint parameters, closing the call, and approving the addition of endpoints. The
owner is initially the client who creates the call.

4.3.2 Call Root

The root is the address of a client which is participating in the call. The root may be used by the network routing
algorithms when adding new endpoints to the call. The root is initially chosen by the creator of the call.

4.3.3 Call Local Identifier

The local identifier is a small integer which is unique for all calls having the same root. Together, the root address
and the local call identifier form the call identifier, a network-wide unique identifier for the call. The local identifier
is initially chosen by the creator of the call (with the approval of the network, which ensures that it is not already in
use) and subsequently changes only if the root of the call changes.

4.3.4 Call Type

The type designates whether the call is multipoint or restricted to point-to-point:

Type ∈ { MULTIPOINT, POINT-TO-POINT }

We use MULTIPOINT to refer to both point-to-multipoint and multipoint-to-multipoint calls. While the call model
supports multicast calls as the general object, some calls are intrinsically point-to-point and, if designated as such, can
be serviced more efficiently by the network (for example, by routing the call over internal trunks).

4.3.5 Call Accessibility

The accessibility parameter is a 2-tuple that controls whether clients are allowed to add endpoints:

Accessibility ∈ { OPEN, VERIFY, CLOSED }

If the call is OPEN, any client in the network may join the call without the owner’s permission. A CLOSED call re-
stricts the call such that only the owner may add clients. If the call has the VERIFY accessibility, then any client may
attempt to join the call, but he operation will be verified with the owner before it is allowed to complete.

4.3.6 Call Modifiability

The modifiability parameter controls whether non-owners have the permission to add connections to the call

Modifiability ∈ { ON, OFF }

If this parameter is ON, any participant in the call may add connections. If it is OFF, only the owner may add connec-
tions. Non-participants are never allowed to add connections. One example of where this option is useful is in multi-
party conference calls, where each endpoint adds a one-to-all connection for his feed when joining the call.

4.3.7 Call Traceability

The traceability parameter is a 2-tuple that controls whether clients have the permission to obtain information
about the call):

Traceability ∈ { OPEN, MEMBERS, CLOSED }

A value of OPEN indicates any client may perform traces. A value of MEMBERS indicates that only clients who are
participating in the call may perform traces. CLOSED indicates only the owner may perform a trace. The owner of
the call is always allowed to perform traces.

4.3.8 Call Monitoring

The monitoring parameter is a 3-tuple designating whether endpoints of the call are notified when endpoints join
or drop out of the call or modify their parameters:

Monitor = < owner ∈ { ON, OFF },
transmitters ∈ { ON, OFF },
all ∈ { ON, OFF } >

Connection Management Access Protocol (CMAP) Specification Page 18

Applied Research Laboratory Zeus Project

If the owner field is set to ON, all endpoint joins and drops are reported to the owner. Likewise, if the transmitters
field is set to ON, all transmitters are notified when these changes occur, and if the all field is set to ON, all participants
in the call are notified. When used with an accessibility of OPEN, an owner modifiability setting of ON allows the
owner to keep track of endpoint joins and drops without being burdened with explicitly verifying every such change.

4.3.9 Call Priority

The priority parameter is a 1-tuple that allows some calls to take precedence over others:

Priority ∈ { NORMAL, PREEMPT, OVERRIDE }

NORMAL is the lowest priority, followed by PREEMPT, followed by OVERRIDE. If the network does not have
the resources to support a call and the required resources are currently allocated to lower-priority calls, those resources
are reclaimed (aborting the lower priority calls) so that the higher priority call can be supported. The priority affects
how the CMAP Session Managers process the call and whether the call should be blocked if resources are unavailable.
ATM cell-level priorities are implemented separately as parameters of connections (Sections 4.4.2 and 4.4.3).

4.3.10 Call User Type

The user type is a value chosen by the call creator. This parameter is not manipulated by the network but is simply
passed end-to-end so that clients may examine it.

4.3.11 Call’s Connection List

The connection list describes the connections of the call. The parameters of connections are described below. The
list is dynamic since connections can be added to, modified, or removed from the call at any time.

4.3.12 Call’s Endpoint List

The endpoint list describes the endpoints participating in the call. The parameters of endpoints are described be-
low. The list is dynamic since endpoints can be added to, modified, or removed from the call at any time.

4.4 Connections
The connection is the primary information-carrying component of a call. The parameters associated with connec-

tions are described in the following subsections and summarized in Table 7.

4.4.1 Connection Identifier

The identifier is a small integer which uniquely identifies the connection within the call. This value may be de-
termined by the client which adds the connection to the call, with the network ensuring that it is unique, or the client
may leave the field blank and permit the network to select a unique identifier.

4.4.2 Connection Type

The type is a 3-tuple:

Type = < channel_type ∈ { VP, VC },
BW_type ∈ { STATIC, DYNAMIC },
QOS ∈ { HIGH, MEDIUM, LOW } >

Table 7. Connection Parameters

Parameter Description

Identifier Call-wide unique identifier for this connection

Type Three tuple of VP/VC, dynamic/static bandwidth and QOS

Bandwidth Reserved bandwidth for the connection

Defaults Defaults to be offered to endpoints joining the connection

Permissions Permissions to be offered to endpoints joining the connection

User Type User description of connection

Connection Management Access Protocol (CMAP) Specification Page 19

Applied Research Laboratory Zeus Project

The first component specifies the type of channel that the connection requires and must be one of two values: virtual
path (VP) or virtual channel (VC) (Section 2.3). The second component specifies whether the connection is DYNAM-
IC or STATIC. If a connection is static then the bandwidth is fixed throughout the life of the call, which makes the
connection more predictable and allows for more efficient use of network resources (such as routing over internal
trunks). Dynamic connections can have their bandwidth modified during the life of the call. The last component spec-
ifies the desired quality-of-service (QOS) and may have the values of HIGH, MEDIUM or LOW. QOS relates to
options for cell loss behavior that may vary from network to network. QOS, therefore, is left intentionally vague. If
the network can implement different cell loss behavior strategies then the network control software will group these
into the categories of HIGH, MEDIUM and LOW.

4.4.3 Connection Bandwidth

We support two types of bandwidth specification for connections: 1) reserved, where the network guarantees and
enforces the requested bandwidth, and 2) best-effort, where the network neither guarantees nor enforces. Reserved
bandwidth connections are treated preferentially by the network, whereas best-effort connections compete with one
another for the remaining bandwidth not currently used by reserved connections.

The connection’s bandwidth is specified as a 3-tuple:

Type = < peak, average, peak_burst_length >

The peak and average parameters are expressed in cells per second. The peak burst length is measured in cells and
indicates the maximum number of cells that the endpoint can send during a burst at peak rate. Best-effort connections
are indicated by all zeros in the bandwidth specification.

For reserved bandwidth connections, the figures given are for aggregate bandwidth, as seen at any receiver in the
connection (this takes into account the increased loading that results when the transmissions from multiple transmitters
combine and flow over links traversed by the connection). Figure 17 illustrates how we use the bandwidth specifica-
tion to characterize the endpoint’s transmit behavior on a connection at the UNI. The peak value tells us a percentage
of the bandwidth used by the endpoint when transmitting a burst of data. The user may not arbitrarily send cells back-
to-back for the duration of the peak burst length, but must pace them according to the peak value as shown. The peak
burst length tells the network how long the connection will remain transmitting at peak rates. The example in the figure
shows a peak value of 87,000 cells per second (in this case, roughly 25% of a 155Mbps link) and a peak burst length
of 1000 cells. The average value is used over a longer period of time (for example, several seconds) to enforce the long
term average utilization of the connection.

For best-effort connections, the endpoint is not restricted in any way. Instead, all cells are forcibly marked at the
UNI by setting the header’s CLP bit. Inside the network, as buffers fill, the network discards marked cells if there is
no room in the buffers for unmarked (reserved) cells.

We chose to provide both reserved and best-effort bandwidth connections for several reasons. Some applications
clearly need bandwidth guarantees, such as live video, where cell loss can result in incomprehensible transmissions.
However, many other applications do not need these guarantees. For example, data transfer applications can usually
tolerate lossy networks and network congestion using schemes such as retransmission and backoff, as in TCP/IP [18].
Additionally, many applications cannot easily predict their bandwidth requirements, and if forced to do so would pro-
duce specifications that are too low or too high, each with negative consequences. Finally, when all applications are
forced to use reserved, guaranteed connections, network utilization is sometimes low (depending on the connection
mix) since the level of allowed multiplexing must be limited to provide the guarantees. By introducing the best-effort
bandwidth class, we accommodate those connections that do not need the guarantees and cannot easily estimate re-
quirements, and we provide a means whereby the excess capacity of the network can be utilized.

Figure 17. Cell Pacing and Peak and Burst Length at the UNI

...
peak = 87,500 (25% of 155Mbps)

burst length = 1000 cells
times
4 cell

Connection Management Access Protocol (CMAP) Specification Page 20

Applied Research Laboratory Zeus Project

4.4.4 Connection Defaults

The defaults is the value of the endpoint defaults field (and also of the initial endpoint mapping) offered to end-
points joining the call. The defaults may be overridden by the call owner so that individual endpoints can be assigned
different defaults. The defaults is a 3-tuple:

Defaults = < receive ∈ { ON, HOLD, OFF },
transmit ∈ { ON, HOLD, OFF },
echo ∈ { ON, OFF } >

Description of these fields is deferred until the discussion of the endpoint mapping (Section 4.5.3).

4.4.5 Connection Permissions

The permissions is the permissions given to endpoints joining the call. The permission may be overridden by the
call owner so that individual endpoints can be assigned different permissions. The permissions is a 3-tuple:

Permissions = < receive ∈ { ON, VERIFY, OFF },
transmit ∈ { ON, VERIFY, OFF },
echo ∈ { ON, OFF } >

Description of these fields is deferred until the discussion of the endpoint permissions (Section 4.5.3).

4.4.6 Connection User Type

The user type is a value chosen by the connection creator. This parameter is not manipulated by the network but
is simply passed end-to-end so that clients may examine it.

4.5 Endpoints
The endpoint is the interface of a client with a call. The parameters associated with endpoints are described in the

following subsections and summarized in Table 8. Except for the endpoint’s address and local identifier, all of these
parameters are UNI parameters assigned on a per-connection basis — that is, the endpoint has a separate mapping for
each connection, a separate defaults, and so forth.

4.5.1 Endpoint Address

The address is the address of the client with which the endpoint is associated.

4.5.2 Endpoint Local Identifier

The local identifier is a small integer which is unique for the endpoint with respect to the client. Together, the
endpoint address and local identifier form the endpoint identifier which uniquely identifies the endpoint within the cli-
ent. The local identifier may be determined by the client which adds the endpoint to the call, with the network ensuring
that it is unique, or the client may leave the field blank and permit the network to select a unique identifier.

Table 8. Endpoint Parameters

Parameter Description

Address Client with which this endpoint is associated

Local Identifier Client-wide unique identifier for this endpoint

Mapping Current access of endpoint to connection

Defaults Default value of the mapping

Permissions Whether the endpoint may modify its mapping

Transmit Pair VPI/VCI pair for ATM transmit

Receive Pair VPI/VCI pair for ATM receive

Connection Management Access Protocol (CMAP) Specification Page 21

Applied Research Laboratory Zeus Project

4.5.3 Endpoint Mapping

Endpoints have separate receive, transmit, and echo mappings for each connection in the call. The mapping is a
dynamic field which may be changed by the call owner or by the endpoint itself. Initially the mapping is set to the
endpoint defaults. For each connection in a call, the associated endpoint mapping is a 3-tuple:

Mapping = < receive ∈ { ON, HOLD, OFF },
transmit ∈ { ON, HOLD, OFF },
echo ∈ { ON, OFF } >

For the receive mapping, a value of ON indicates that the endpoint is receiving on the connection, a value of OFF
indicates that the endpoint is not receiving on the connection, and a value of HOLD indicates that the endpoint is not
currently receiving but that bandwidth should be reserved within the network up to the endpoint’s access node (for use
when the endpoint’s receive permission is changed to ON at some later time). The transmit mapping is defined anal-
ogously to the receive mapping.

The echo mapping is used in conjunction with transmit to allow endpoints to view their own transmissions. When
set to ON, the endpoint’s transmissions will be echoed, and when set to OFF they will not be echoed.

4.5.4 Endpoint Defaults

The defaults indicates the default value of the endpoint’s mapping, as distinct from the endpoint mapping itself
which is the current value of the mapping. The defaults is a 3-tuple whose components and values are the same as those
listed above for the mapping. Again, the endpoint has a separate default for each connection in the call. When an end-
point is added its defaults are taken from the connection defaults (Section 4.4.4), or the call owner may override the
connection defaults and assign any desired endpoint defaults.

4.5.5 Endpoint Permissions

The permissions indicates the manner in which individual endpoints may change their mappings. Endpoints have
separate permissions for each connection in the call and, as with mappings, the permissions for each connection may
be completely unrelated to those of the other connections. For each connection in a call, the associated endpoint per-
mission is a 3-tuple:

Permissions = < receive ∈ { ON, VERIFY, OFF },
transmit ∈ { ON, VERIFY, OFF },
echo ∈ { ON, OFF } >

Each field affects the corresponding field of the mapping. If the permission field is OFF, the endpoint is not permitted
to change its endpoint mapping and it must equal the endpoint’s default mapping for the connection (with one excep-
tion: if the default field is ON the endpoint may also use a mapping of HOLD). If the permission field is ON, the end-
point may choose any mapping. In this case, the default mapping is not enforced and is merely viewed as a suggestion
to the endpoint. If the permission is VERIFY, the endpoint can alter his mapping, but the owner will first be queried
to see if the new mapping is acceptable (with one exception, related to the previous: if the default field is ON the end-
point may change its mapping from ON to HOLD or vice-versa without verification). When an endpoint is added its
permissions are taken from the connection permissions (Section 4.4.5), or the call owner may override the connection
permissions and assign any desired endpoint permissions.

4.5.6 Endpoint Transmit Pair

The transmit pair is the ATM VPI/VCI pair which the endpoint uses to transmit data. When the endpoint is added,
it may suggest a pair which (if it is available) will be used by the network. The pair may also be left blank, in which
case the network will choose an available pair.

4.5.7 Endpoint Receive Pair

The receive pair is the ATM VPI/VCI pair which the endpoint uses to receive data. When the endpoint is added,
it may suggest a pair which (if it is available) will be used by the network. The pair may also be left blank, in which
case the network will choose an available pair.

Connection Management Access Protocol (CMAP) Specification Page 22

Applied Research Laboratory Zeus Project

4.6 Summary of Identifiers
Clients, calls, connections and the endpoints participating in calls all require some form of identification at the

CMAP level so that these entities can be referenced by clients.

Client addresses are unique labels assigned to clients so that clients can identify one another. Client addresses are
also used by the network to locate clients and route messages internally.

Call identifiers are unique labels assigned to calls so that each call can be referenced by clients (for example, for
joining and modifying calls). They are a combination of the call’s root address and a local identifier (a small integer).
Clients can assign well-known call identifiers to calls that are to be globally known, for example, for broadcast video
distributions.

Connection identifiers are unique labels for the connections within a call so that clients can individually reference
the connections (for example, for changing ones receive/transmit mapping on a given connection). They are small in-
tegers. Clients can assign well-known connection identifiers to connections within a call, allowing the clients to easily
distinguish among them.

Endpoint identifiers are labels assigned to each interface between a client and a call. They are a combination of
the client’s address and a local identifier (a small integer). A client is allowed to join a call more than once and the
local endpoint identifier is used to distinguish the separate instances of client participation.

Connection Management Access Protocol (CMAP) Specification Page 23

Applied Research Laboratory Zeus Project

5. CMAP Messages
This section describes the use, format and transmission of CMAP messages. Section 5.1 describes the way in

which CMAP messages implement CMAP operations. (Section 5.2) outlines the notation conventions used to diagram
CMAP operations. Sections 5.3 through 5.9 describe the parameters passed in CMAP operations and the grouping of
these parameters into CMAP message objects. Finally, Section 5.10 describes CMAP message transmission.

5.1 Use of Messages
A CMAP client and the network (or, more technically, a CMAP Session Manager operating on the network) com-

municate by exchanging messages which describe the operations that are to be performed. A CMAP operation involves
up to three separate messages or phases. The phase of a message is identified by a field in the message header as de-
scribed below (Section 5.3). The first CMAP phase is the REQUEST message, which asks that the operation be per-
formed. This REQUEST may be transmitted from the client to the network or from the network to the client. The
second phase is a RESPONSE message transmitted by the entity which received the REQUEST. The third phase is
a CONFIRMATION message transmitted by the entity which received the RESPONSE. Depending on the operation
type and the contents of the message, a CMAP operation may involve one, two, or all three phases. REQUEST, RE-
SPONSE, and CONFIRMATION are sometimes abbreviated to REQ, RES, and CONF.

Messages have a status field which is used to indicate the success or failure of an operation. We use the terms
ACK (acknowledgement), NACK (negative acknowledgement), and NEG (negotiation) to characterize RESPONSE
messages based on the message status field. An ACK is a positive response. A NACK is a negative response. A NEG
or negotiation response requests further interaction, i.e., the sending of a CONFIRMATION message. Similarly, the
terms COM (commit) and ABORT (abort) are used to characterize CONFIRMATION messages, with COM being
a positive CONFIRMATION and ABORT being a negative CONFIRMATION. These terms are discussed in great-
er detail in Section 5.3.8.

The messages for each phase of a particular operation share a single message identifier. This allows any number
of operations to be performed in parallel, with the clients and network using the message identifiers to correctly match
the messages involved. Each currently-active operation has a message identifier which is unique to the entity (network
or specific client) which initiated the operation. Clients and the network are free to reuse message identifiers once an
operation is complete.

5.2 Notational Conventions
Figure 18 shows a diagram of the open_call REQUEST. The example demonstrates how CMAP messages are

presented in this document and the notational conventions used. CMAP message diagrams are laid out in eight-byte
wide columns. Each field is represented by a space proportional to the size of the field. The name of the field appears
in the space and the size of the field in bytes is in parentheses next to the name.

Related parameters within CMAP requests are grouped into message objects. The open_call REQUEST shown
in Figure 18 contains six of the different types of message objects (some of which appear multiple times). The six ob-
jects are: 1) the Header Object, 2) the Call Object, 3) the Connection Object, 4) the Endpoint Object, 5) the UNI Object,
and 6) the Trailer Object. The seventh type of message object, not used in the open_call, is the Operation Object. These
objects and their fields are described in detail in Sections 5.3 through 5.9.

The ordering of both message objects and values not contained in message objects is determined by the message’s
operation type and phase (the first two components of the Header Object). For this reason, in all diagrams showing
message formats these two fields (op_type and phase) are filled in with the actual binary bit pattern appropriate to the
message, as in this example where op_type = 00000001 (open_call) and phase = 00000000 (REQUEST).

The structure of the message may further vary due to the presence of repeated objects. These are sections of the
message consisting of one or more occurrences of a particular type of message object. The number of occurrences is
determined by a parameter found elsewhere in the message. In Figure 18 and throughout this document such repeated
groups are delineated by a thin black line and terminated by a three-dot separator, with the number of repetitions
written in the separator. In the open_call example, the Connection Object is repeated num_cons times, the UNI Object
is repeated num_cons times, and the group consisting of the Endpoint Object and the repeated UNI Objects is itself
repeated num_ep + 1 times.

Connection Management Access Protocol (CMAP) Specification Page 24

Applied Research Laboratory Zeus Project

Some fields are specified as unused during one or more phases of a CMAP operation. This means that the field
has no context to the phase but may have context to a different phase of that operation or to a different operation that
utilizes the information in the field. For example, the Connection Object has a connection status (con_status) field that
the network uses to inform a client about the status of the connection. The con_status field is used, therefore, in a
CMAP command response phase but is unused in the command’s request phase. An unused field should not be con-
fused with a reserved field. Fields marked reserved have no current definition or use, whereas an unused field has a
definition but is not used in the operation or phase under discussion.

The following additional rules are used in structuring a CMAP message:

• The Header Object is always the first object, and the Trailer Object is always the last object. The op_type field
of the Header Object is thus the first field in every CMAP message.

• Every CMAP field is either 1 byte in length or an even number of bytes.

Figure 18. Common Message Format Characteristics (example open_call REQUEST)

reserved (1)

•••
(num_ep)

•••
(num_cons)

call_type (1) acc (1) mod (1) trace (1)

user_call_type (4)unused (2) reserved (2)

•••
(num_cons)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

unused (2)ep_con_id (2) reserved (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

options_size (4) options (options_size)
Trailer
Object

UNI
Object

Connection
Object

Call
Object

Header
Object

Connection
object is
repeated
num_cons
times

Endpoint
and UNI

8 bytes

1st byte byte order: most significant to least significant →highest
order
byte

lowest
order
byte

user_con_type (4)unused (2)

bw (12)

ep_con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

num_cons (2)

reserved (2)

num_eps (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

objects are
repeated
num_ep+1
times

Endpoint
Object

mon (1) priority (1)

00000001 00000000

Connection Management Access Protocol (CMAP) Specification Page 25

Applied Research Laboratory Zeus Project

• A 1-byte field may start on any byte boundary (byte boundaries are numbered from the beginning of the mes-
sage, with the byte boundary before the op_type field of the Header Object being numbered 0).

• A 2-byte field must start on a 2-byte byte boundary (one whose number is a multiple of two).

• A field of more than 2 bytes must start on a 4-byte boundary (one whose number is a multiple of four).

• Multiple-byte fields are ordered in the CMAP message from the highest-order byte to the lowest-order byte.

Figure 19 illustrates some of these structuring rules.

5.3 Header Object
The CMAP Header Object (Figure 20) is present in all messages and is always the first object in the message. The

fields of the Header Object include parameters which are used by all (or nearly all) CMAP operations. The Header
Object is distinguished in CMAP messages by a heavy line with a pen pattern.

5.3.1 op_type

The op_type field contains a symbolic constant indicating the operation type, i.e., what CMAP operation is asso-
ciated with the message. See Appendix C for definitions of the values that may appear in this field. In all message tem-
plates, this field is filled in with the bit-pattern appropriate to the operation type.

Figure 19. CMAP Message Structuring Rules

legal, 4-byte boundary

8 bytes
0 1 2 3 4 5 6 7

field_name (4)

illegal, uses 2-byte, not 4-byte boundary

0 1 2 3 4 5 6 7

field_name (4)

legal, even boundary

field_name (2)field_name(1)

may start on any boundary

highest
order
byte

lowest
order
byte

field_name (2) field_name (5)

illegal, not length 1 or evenillegal, uses odd boundary

num_cons (2)

reserved (2)

num_eps (2)

Figure 20. The CMAP Header Object

op_status (2)

phase (1)op_type (1) msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

Connection Management Access Protocol (CMAP) Specification Page 26

Applied Research Laboratory Zeus Project

5.3.2 phase

The phase field contains a symbolic constant indicating the operation phase. See Appendix C for definitions of
the values that may appear in this field. In all message templates, this field is filled in with the bit-pattern appropriate
to the operation type. Together, the op_type and phase determine which template is used to interpret the message.

5.3.3 msg_id

The msg_id serves to associate different phases of the same operation. The msg_id is generated by the entity that
initiates an operation and must be unique to that entity at the time of creation. It serves to associate the messages cor-
responding to the different phases of the operation., thereby allowing parallel CMAP operations to be sent to the net-
work (rather that having to serialize the requests). A msg_id generated by a client must have the highest order bit set
to 0. A msg_id generated by the network must have the highest order bit set to 1 (Figure 21).

5.3.4 num_cons

The num_cons field is a two-byte unsigned integer which indicates the number of Connection Objects and/or the
number of UNI Objects in the message. Recall from Section 4.5 that, except for the identifier, all information associ-
ated with an endpoint is on a per-connection basis. Data about endpoints is thus conveyed by giving an Endpoint Ob-
ject followed by num_cons UNI Objects, one for each connection that is affected by the operation.

5.3.5 num_eps

The num_eps field is a two-byte unsigned integer which indicates the number of Endpoint Objects in the message.

5.3.6 call_id (r_addr)

The call_id (r_addr) is the twenty-four-byte address of the call root (Section 4.3.2). Together, the r_addr and lcid
uniquely identify the call on which the operation is to be performed. Most operations manipulate a specific call instan-
tiation, although the field is unused in some operations.

5.3.7 call_id (lcid)

The call_id (lcid) is the two-byte local call identifier portion of the call identifier (Section 4.3.3). The lcid may be
generated by the client creating the call, with the network verifying that it is unique to the root address. Alternatively,
the client creating the call may leave the lcid field blank and the network will generate a unique identifier and return
it in the open_call RESPONSE. The value 0xFFFF (hexadecimal 0xFFFF, or all 1 bits) is blank.

5.3.8 op_status

The op_status field is used by the network in RESPONSEs to indicate whether the operation was successful and,
if not, to indicate what error occurred. The field is divided into five subfields (Figure 22). The high-order four bits are
used to indicate whether there were errors in the call, connection, endpoint, or UNI specifications. If any of these bits
are set, the client should check the corresponding message objects to determine the specific error that occurred. The
low order twelve bits (status subfield) are used to indicate specific errors in the execution of the command as a whole.
The values that may appear in the status subfield are listed and explained in Appendix D.

An ACK (acknowledgement) is a positive RESPONSE, indicated by an op_status field in which the four high-
order bits (call, connection, endpoint address, and endpoint error bits) are all 0 and the remaining 12 low-order bits
(the status subfield) are equal to the predefined value OK. A NACK (negative acknowledgement) is a negative RE-

msg_id for message from a client to the network

msg_id for message from the network to a client

* = {0,1}

Figure 21. msg_id format

1 * * * * * * * * * * * * * * *

0 * * * * * * * * * * * * * * *

Connection Management Access Protocol (CMAP) Specification Page 27

Applied Research Laboratory Zeus Project

SPONSE, one with at least one of the four high-order error bits of op_status set or with a status field not equal to OK
or NEGOTIATING. A NEG (negotiation) is a RESPONSE in which the four high-order bits of the op_status field
are equal to 0 and the remaining 12 low-order bits are equal to the predefined value NEGOTIATING. A COM (com-
mit) is a positive CONFIRMATION, indicated by an op_status field in which the four high-order bits (call, connec-
tion, endpoint address, and endpoint error bits) are all 0 and the remaining 12 low-order bits (the status subfield) are
equal to the predefined value OK. An ABORT (negative confirmation) is a negative CONFIRMATION, one with at
least one of the four high-order error bits of op_status set or with a status field not equal to OK.

5.3.9 m_addr

In messages from clients to the network, m_addr is the twenty-four-byte address of the client that produced the
CMAP message. In messages from the network to clients, m_addr is the twenty-four-byte address of the client that
should receive the CMAP message. This field supports multidrop signalling arrangements where several clients must
use the same VPI/VCI pair for network signalling operations.

5.3.10 s_addr

In messages from clients to the network, s_addr is the twenty-four-byte address of the client that produced the
CMAP signal. In messages from the network to clients, s_addr is the twenty-four-byte address of the client that should
receive the CMAP signal. This field supports surrogate signalling operations, where the client that produces (or re-
ceives) a message is not necessarily the one that should be considered to be signalling (or being signalled by) the net-
work.

5.4 Trailer Object
The CMAP Trailer Object (Figure 23) is present in all CMAP messages and is the last object in the message. The

Trailer Object is provided to allow implementors to establish extensions to CMAP that may be put into a standard
CMAP message. The Trailer Object is distinguished in CMAP messages by a heavy line with a pen pattern.

5.4.1 options_size

The options_size field is a four-byte unsigned integer indicating the length of the options field in the trailer object.
If options_size is 0, there is no options field and the least significant byte of the options_size field is the least significant
byte of the whole CMAP message.

5.4.2 options

The options field is a sequence of options_size bytes, with the most significant byte being the first and the least
significant being the last (and also the last byte of the CMAP message, if the field is present).

Figure 22. op_status format (16 bits)

status (12 bits)

call_status_bit (1 bit)
connection_status_bit (1 bit)

endpoint_status_bit (1 bit)

uni_status_bit (1 bit)

Figure 23. The CMAP Trailer Object

options_size (4) options (options_size)

Connection Management Access Protocol (CMAP) Specification Page 28

Applied Research Laboratory Zeus Project

5.5 Call Object
The CMAP Call Object (Figure 24) groups most of the parameters of a call (Section 4.3) into one object. (The

owner, root, and identifier parameters are omitted because they either appear in the Header Object or are not applicable
to all commands.) The Call Object is distinguished in CMAP messages by a heavy line with a pen pattern.

5.5.1 call_status

The call_status field contains a symbolic value indicating whether any errors occurred in the specification of the
call. See Appendix D for an explanation of the values that can appear in this field.

5.5.2 user_call_type

The user_call_type field is a four-byte unsigned integer representing the call’s user type (Section 4.3.10). It is not
examined by the network but is delivered end-to-end without modification. It may be used to communicate to potential
endpoints some additional, application-level information about the type of the call. For instance, the owner of a data
call might want to indicate the intent of the data transfer (e.g., FILE_TRANSFER, ELECTRONIC_MAIL, or
IP_DATAGRAM).

5.5.3 call_type

The call_type field contains a symbolic constant representing the call’s type (Section 4.3.4). See Appendix C for
definitions of the values that may appear in this field.

5.5.4 acc

The acc field contains a symbolic constant representing the call’s accessibility (Section 4.3.5). See Appendix C
for definitions of the values that may appear in this field.

5.5.5 mod

The mod field contains a symbolic constant representing the call’s modifiability (Section 4.3.6). See Appendix C
for definitions of the values that may appear in this field.

5.5.6 trace

The trace field contains a symbolic constant representing the call’s traceability (Section 4.3.7). See Appendix C
for definitions of the values that may appear in the sub-fields.

5.5.7 mon

The mon field represents the call’s monitoring parameter (Section 4.3.8). The low-order three bits of this field
indicate whether the owner, transmitters, or all endpoints receive notification of endpoint changes (Figure 25). See
Appendix C for definitions of the values that may appear in the sub-fields.

5.5.8 priority

The priority field contains a symbolic constant representing the call’s priority (Section 4.3.9). See Appendix C
for definitions of the values that may appear in this field.

Figure 24. The CMAP Call Object

call_type (1) acc (1) mon (1) priority (1)mod (1) trace (1)

user_call_type (4)call_status (2) reserved (2)

reserved (2)

Figure 25. mon format (8 bits)

* * * * * O T A
O = owner
T = transmitter * = unused (0)
A = all

Connection Management Access Protocol (CMAP) Specification Page 29

Applied Research Laboratory Zeus Project

5.6 Connection Object
The Connection Object (Figure 26) groups the parameters of a single connection. The Connection Object is dis-

tinguished in CMAP messages by a heavy line with a pen pattern.

5.6.1 con_id

 The con_id field is an unsigned two-byte integer containing the connection identifier (Section 4.4.1). The iden-
tifier may be generated by the client creating the connection, in which case the network will verify that the con_id is
unique for the call. Alternatively, the client can have the network generate the identifier by leaving the con_id field
blank (value 0xFFFF), and the value will be returned in the network RESPONSE.

5.6.2 con_status

The con_status field contains a symbolic value indicating whether any errors occurred in the specification of the
connection. It is used only in RESPONSEs from the network. See Appendix D for an explanation of the values that
can appear in this field.

5.6.3 user_con_type

The user_con_type field is a four-byte unsigned integer containing the connection’s user type (Section 4.4.6). It
is not examined by the network but is delivered end-to-end without modification. It may be used to communicate to
potential endpoints some additional, application-level information about the type of the connection. For instance, the
creator of a video connection might want to indicate the type of video format (e.g., NTSC, HDTV, MPEG) that is
being used.

5.6.4 con_type

The con_type field is a one-byte field containing the connection type (Section 4.4.2).The subfields of the connec-
tion type 3-tuple are packed into one byte as shown here (Figure 27). The possible values for each subfield are given
in Appendix C.

5.6.5 con_def

The con_def field is a one-byte field containing the connection defaults (Section 4.4.4). The subfields of the map-
ping are packed as shown here (Figure 28). The possible values for each subfield are given in Appendix C. The value
0xFF is blank.

user_con_type (4)

Figure 26. The CMAP Connection Object

con_status (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

Figure 27. con_type format (8 bits)

channel_type (2 bits)

bw_type (2 bits)
qos (2 bits)

Connection Management Access Protocol (CMAP) Specification Page 30

Applied Research Laboratory Zeus Project

5.6.6 con_perm

The con_perm field is a one-byte field containing the connection permissions (Section 4.4.5). The subfields of
the permissions are packed in the same manner as the con_def field (Figure 28). The possible values for each subfield
are given in Appendix C. The value 0xFF is blank.

5.6.7 bw

The bw field is a twelve-byte field containing the connection bandwidth (Section 4.4.3). Each of the three com-
ponents of the bandwith (peak rate in cells/second, average rate in cells/second, and peak burst length in cells) is rep-
resented by a four-byte unsigned integer. These integers are arranged in the bw field as shown here (Figure 29). A best-
effort connection is indicated by all three of these values being 0.

5.7 Endpoint Object
The Endpoint Object (Figure 30) identifies a particular endpoint (call/client interface). The Endpoint Object is

distinguished in CMAP messages by a heavy line with a pen pattern.

5.7.1 ep_addr

The ep_addr field is the twenty-four-byte endpoint address, that is, the address of the client at which the endpoint
is located (Section 4.5.1).

5.7.2 ep_id

The ep_id field is the endpoint’s local identifier (Section 4.5.2). This field is an unsigned two-byte integer. It may
be generated by the client, in which case it is checked by the network to ensure that it is unique for the client. Alterna-

Figure 28. con_def format (8 bits)

receive (2 bits)

transmit (2 bits)

echo (2 bits)

Figure 29. bw format (12 bytes)

peak (4 bytes)

average (4 bytes)
peak_burst_length (4 bytes)

Figure 30. The CMAP Endpoint Object

ep_addr (24)

ep_id (2) ep_status (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 31

Applied Research Laboratory Zeus Project

tively, the client may leave the identifier field blank (value 0xFFFF) and the network will generate and return a unique
value.

5.7.3 ep_status

The ep_status field contains a symbolic value indicating whether any errors occurred in the specification of the
endpoint address. It is used only in RESPONSEs from the network. See Appendix D for an explanation of the values
that can appear in this field.

5.8 UNI Object
The UNI Object (Figure 31) groups the per-connection UNI parameters of an endpoint for a single connection.

The UNI Object is distinguished in CMAP messages by a heavy line with a pen pattern.

5.8.1 ep_con_id

 The ep_con_id field is an unsigned two-byte integer containing the connection identifier (Section 4.4.1). Recall
from Section 4.5 that, except for the endpoint identifier, all endpoint properties are on a per-connection basis. This
field indicates with which connection the remaining object fields are associated. The value 0xFFFF is blank.

5.8.2 uni_status

The uni_status field contains a symbolic value indicating whether any errors occurred in the specification of the
endpoint. See Appendix D for an explanation of the values that can appear in this field.

5.8.3 ep_map

The ep_map field is a one-byte field containing the current endpoint mapping (Section 4.5.3). The subfields of
the mapping are packed in the same manner as the con_def field (Figure 28). The possible values for each subfield are
given in Appendix C. The value 0xFF is blank.

5.8.4 ep_def

The ep_def field is a one-byte field containing the endpoint defaults (Section 4.5.4). The subfields of the mapping
are packed in the same manner as the con_def field (Figure 28). The possible values for each subfield are given in
Appendix C. The value 0xFF is blank.

5.8.5 ep_perm

The ep_perm field is a one-byte field containing the endpoint permissions (Section 4.5.5). The subfields of the
mapping are packed in the same manner as the con_def field (Figure 28). The possible values for each subfield are
given in Appendix C. The value 0xFF is blank.

5.8.6 trans_vpi, trans_vci, rcv_vpi, rcv_vci

These four fields are all unsigned integers of the indicated sizes. trans_vpi and trans_vci contain the endpoint
transmit pair (Section 4.5.6), and rcv_vpi and rcv_vci contain the endpoint receive pair (Section 4.5.7). A client add-
ing an endpoint may propose values for these pairs, and the network will check that they are available. Alternatively,
the client may leave a pair blank (both fields contain the value 0) and the network will allocate and return pairs.

Figure 31. The CMAP UNI Object

uni_status (2)ep_con_id (2) reserved (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

Connection Management Access Protocol (CMAP) Specification Page 32

Applied Research Laboratory Zeus Project

5.9 Operation Object
The Operation Object (Figure 32) is used to request or signal the status of CMAP operations. The Operation Ob-

ject is distinguished in CMAP messages by a heavy line with a pen pattern.

5.9.1 op_msg_id

The op_msg_id field is the two-byte message identifier (Section 5.3.3) for the operation to which this object re-
fers.

5.9.2 op_msg_status

The op_msg_status field contains a symbolic value giving the status of the operation. See Appendix D for an ex-
planation of the values that can appear in this field.

5.10 CMAP Message Byte and Bit Order of Transmission
Figure 33 describes the CMAP message byte order of transmission. The CMAP message is always transmitted

from the highest ordered byte (which is always the op_type field of the CMAP message header object) to the lowest
ordered byte (which is always the final byte of the trailer object). Multiple-byte fields are stored and transmitted in
order from highest-order byte to lowest-order byte. All CMAP bytes are bit ordered from the highest ordered bit to the
lowest and the bits are transmitted in this order. When transmitting a CMAP message any unused or reserved fields
should contain all 0 bits.

Figure 32. The CMAP Operation Object

op_msg_id (2) op_msg_status (2) reserved (4)

00000001 00000000 01011100 10001110 00000000 00000110 00000000 000000001...

op_type
(open_call)

phase
(REQUEST)

msg_id
(0x5C8E)

Figure 33. Byte/Bit Order of Transmission

0101110000000001 00000000 00000000 00000110 00000000 0000000110001110

00101101 00111011 11001010 11111101 10000000 00000011 11010110 01111101

10101001 00110001 10001110 01111101 11110111 00010011 00101110 01010100

10010001 00100011 11111111 00000000 10010111 00110011

00000001

lowest

bit
order

highest

bit
order

op_status
(0x0006)

num_cons
(0x0001)

10010111 00110011

Connection Management Access Protocol (CMAP) Specification Page 33

Applied Research Laboratory Zeus Project

6. CMAP Operations

6.1 Overview
CMAP operations may be divided into two broad classes: call operations and maintenance operations. Call oper-

ations implement the CMAP call model, while maintenance operations support the session manager/client interface.
All operations may involve multiple phases and various types of responses and confirmations; see Sections 5.3.2 and
5.3.8 for explanations of phases, responses, and confirmations.

Call operations are divided into four classes: commands, prompts, queries, and notifications. Commands are two-
phase operations that a client uses to request a service from the network. The client issues a REQUEST to the network,
which replies with an ACK or a NACK. As part of the execution of a command, the network may send prompts, que-
ries and notifications to other clients; these types of operations do not arise in any other way. A prompt is a two- or
three-phase operation that the network uses to request an action by a client. The network issues a REQUEST to the
client, which responds with an ACK, NACK, or NEG. The network may then respond with a COM or an ABORT.
A query is a two-phase operation that the network uses to request verification from the owner on whether to proceed
with an operation. The network issues a REQUEST to the owner, which responds with an ACK or NACK. A notifi-
cation is a one-phase operation that the network uses to inform a client of a change in state. The network sends a RE-
QUEST; the client does not send any response.

Table 9 lists the CMAP commands together with the prompts, queries, and notifications that may arise during ex-
ecution of the command (N/A indicates no such operation will arise). Note that the names of all prompts begin with
invite, the names of all queries with verify, and the names of all notifications with announce.

As a simple example of the relationship between commands, prompts, queries, and notifications, consider the case
where a client A wishes to add endpoint B to a call managed by client C with an accessibility of VERIFY. Client A
sends an add_ep REQUEST to ask that client B be added to the call. The network sends a verify_add_ep REQUEST
query to C to determine if B may be added. Assuming that C approves of the addition, it will send a verify_add_ep
ACK back to the network. The network then prompts B with an invite_add_ep REQUEST to see if B wants to be

Table 9. CMAP Call Operations

Command Prompts Queries Notifications Description

open_call invite_add_ep verify_mod_ep announce_add_ep create a call.

mod_call N/A N/A announce_mod_call change call attributes.

close_call N/A N/A announce_close_call terminate a call.

add_con invite_add_con verify_mod_ep announce_add_con add a connection to a call.

mod_con N/A N/A announce_mod_con
change connection at-
tributes.

drop_con N/A N/A
announce_drop_con,
announce_close_call

drop a connection.

add_ep invite_add_ep
verify_add_ep,
verify_mod_ep

announce_add_ep add an endpoint to a call.

mod_ep invite_mod_ep verify_mod_ep announce_mod_ep change endpoint attributes.

drop_ep N/A N/A announce_drop_ep drop an endpoint.

trace_call N/A N/A N/A
report call and connection
attributes, and the endpoints
participating in the call.

trace_ep N/A N/A N/A report endpoint’s attributes.

change_owner invite_change_owner N/A announce_change_owner
pass ownership responsibili-
ty to another client.

change_root N/A N/A announce_change_root change root client of the call.

Connection Management Access Protocol (CMAP) Specification Page 34

Applied Research Laboratory Zeus Project

added. B may agree to be added by responding with an invite_add_ep ACK. The network then adds B, sending an
add_ep ACK to A and possibly an announce_add_ep REQUEST notification to other participants in the call, de-
pending on the call’s monitoring parameter (Section 4.3.8). The original add_ep command thus led to a series of
CMAP operations.

Table 10 lists the CMAP maintenance operations. In this table, the “Number of Phases” column refers to the RE-
QUEST, RESPONSE, and CONFIRMATION messages exchanged in the operation (Section 5.1). For example, the
status operation has two phases, in which a client (or the network) first sends a REQUEST to obtain information about
an operation, and the network (or a client) then sends a RESPONSE containing the requested information.

6.1.1 Client State Machines

The call and maintenance operations are processed by the client according to the state machines shown in the fig-
ures below. These state machines are not intended to completely capture the state of the client, but only to indicate its
state with respect to the operation that is being performed. The client must store additional call-model state information
for each call, connection, and endpoint to describe the parameters of these entities.

Figure 34 shows the state machine for commands and the status and client_reset maintenance operations. These
two-phase operations are initiated by the client, which sends a REQUEST message to the network. At some later time
the network returns a RESPONSE to the client, which completes the operation. The client uses the contents of the
RESPONSE message to update its call-model information.

Figure 35 shows the state machine for prompts. These two-phase operations are initiated by the network, which
sends a REQUEST message to the client. The client must return a RESPONSE, which may be an ACK, NACK, or
NEG. If the response is a NACK the operation is complete. If it is an ACK or NEG, the network will return a CON-
FIRMATION to complete the operation. The client uses the contents of the CONFIRMATION message to update
its call-model information.

Table 10. CMAP Maintenance Operations

Operation
Number of

Phases
Description

status 2 request information about status of an operation.

alert 1 inform client or network about status of an operation.

client_reset 2 inform network that a client has been reset.

network_reset 1 inform clients that the network has reset.

error_report 1 inform client or network of serious message errors.

Figure 34. State Machine for a Command, status, or client_reset

31 2
send REQ recv RESP

1: initial state

2: waiting for response

3: operation complete

Figure 35. State Machine for a Prompt

41 2
recv REQ send NACK

1: initial state

2: processing request

3: waiting for confirmation

4: operation complete

3 recv CONFsend ACK/NEG

Connection Management Access Protocol (CMAP) Specification Page 35

Applied Research Laboratory Zeus Project

Figure 36 shows the state machine for queries and status operations. These two-phase operations are initiated by
the network, which sends a REQUEST message to the client. The client must return a RESPONSE, which may be an
ACK or NACK, to complete the operation. The client will not normally update its call-model information from a que-
ry, since the contents of the message represents tentative information that may not become true (e.g., in a
verify_add_ep the endpoint which is being added may eventually NACK the operation).

Figure 37 shows the state machine for notifications and the alert and network_reset maintenance operations.
These one-phase operations are initiated by the network, which sends a REQUEST message to the client. The client
does not need to send a response. The client will update its call-model information from the REQUEST message.

Two maintenance operations are not covered by the above state machines. An alert initiated by the client is a one-
phase operation in which the client sends a REQUEST; the network makes no response. Its state machine is thus sim-
ilar to that of Figure 37, except that the transition would be made on sending the REQUEST. The error_report is
handled similarly to an alert, except that it also has an effect on the state machine for some other operation. This is
further explained in the description of the error_report operation (Section 6.35).

Because CMAP permits operations to be performed concurrently, the client must maintain a separate state ma-
chine for each currently-active operation. This is the case even if the client does not ever perform two commands con-
currently, since commands may cause other operations (prompts, queries, and notifications). For example, if a client
starts an open_call operation, it may have to participate in invite_add_ep, verify_mod_ep, and announce_add_ep
operations (all produced by the open_call) before the open_call is completed. In addition, of course, other clients may
make requests which cause prompts, queries, or notifications to be sent to the client.

6.1.2 Operation Descriptions

The remainder of this section defines the individual CMAP operations. The commands are described first, fol-
lowed by the prompts, queries, notifications, and finally the maintenance operations. Each operation definition con-
tains five parts: Synopsis, Message Traffic, Message Format, Parameter Negotiation, and Client Operation.

The Synopsis section gives a brief description of the operation.

The Message Traffic section describes the messages that may be sent as a result of the operation. This includes
not only the RESPONSE and CONFIRMATION phases for the original REQUEST, but also operations that are
caused by the original operation.

The Message Format section provides the template message formats for each operation phase and a brief descrip-
tion of the use of the individual fields of the message. If the use of a field does not substantially differ from that de-
scribed in Sections 5.3 through 5.9, it is omitted.

The Parameter Negotiation section describes how the client and network mutually agree on any unspecified pa-
rameters of the operation. A summary of parameter negotiation appears in Appendix F.

The Operation section notes any special actions that the client that sent or received the operation’s REQUEST
should perform. This section is omitted from some descriptions.

Figure 36. State Machine for a Query or status

31 2
recv REQ send RESP

1: initial state

2: processing request

3: operation complete

Figure 37. State Machine for a Notification, alert, or network_reset

21
recv REQ

1: initial state

2: operation complete

Connection Management Access Protocol (CMAP) Specification Page 36

Applied Research Laboratory Zeus Project

6.2 open_call Command

6.2.1 Synopsis

This command requests that a new call be created. It may be performed by any CMAP client, which (if the oper-
ation is successful) becomes the owner of the new call. An initial set of connections are established, and one or two
endpoints are added to the call.

6.2.2 Message Traffic

Up to three distinct clients may be involved in an open_call operation: the client requesting the operation (hence-
forth the owner), the root client, and the optional additional client. It is possible that a single client may act in all three
roles. Figure 38 shows the traffic pattern for the operation.

Initiation. The owner initiates the operation by sending an open_call REQUEST (1). The network checks the
message for errors. If errors are found, an open_call NACK (13) is sent to the owner and the operation is complete.
If there are no errors, the operation continues with the invitation of the root and the additional endpoint (in parallel).

Invitation of root. An invite_add_ep REQUEST (2) is sent to the root, which must respond (3) with an
invite_add_ep ACK, NACK, or NEG. If the root sends an invite_add_ep NEG, verification with the owner may be
required (specifically, if the root attempts to change its mapping and the corresponding permission is set to VERIFY).
The owner is sent a verify_mod_ep REQ (4) to which it responds (5) with a verify_mod_ep ACK or NACK. If the
owner sends a verify_add_ep NACK, or if the requested changes were not acceptable, the root is sent an invite
ABORT (6), the owner is sent an open_call NACK (13), and the operation is then complete.

Invitation of additional endpoint. If the the owner did not specify an additional endpoint in the open_call RE-
QUEST (1), it is sent an open_call ACK (13) and the operation is complete. If an endpoint was specified an
invite_add_ep/verify_mod_ep sequence (7-11) similar to that of the root (2-6) is performed with the additional end-
point.

Final confirmation. If two endpoints were specified and both were successfully added, invite_add_ep CONFs
(6, 11) are sent to the endpoints and an open_call ACK (13) to the owner; if required by the call’s monitoring param-
eter, announce_add_ep REQUESTs (12) are sent to each endpoint informing it that the other has joined. If either
endpoint was not added (due to the endpoint sending a NACK (3, 8) or to the owner refusing a verification (5, 10)),
invite_add_ep ABORTs (6, 11) are sent to the endpoints and an open_call NACK (13) to the owner. If only one end-
point was specified, an invite_add_ep COM or ABORT (6) is sent to the endpoint and an open_call ACK or NACK
(13) to the owner, depending on whether the endpoint was successfully added or not.

Note: The network will skip an invite_add_ep operation (2,7) in the open_call if it is directed to the owner of the
call and all parameters of the endpoint, including VPI/VCI pairs, are specified in the open_call REQUEST and are
legal.

owner

root

1

add.

4

5

9

10

13

2

3

6

7

8

11

Message list:
1: open_call REQUEST
2: invite_add_ep REQUEST
3: invite_add_ep ACK/NACK/NEG
4: verify_mod_ep REQUEST
5: verify_mod_ep ACK/NACK
6: invite_add_ep COM/ABORT
7: invite_add_ep REQUEST
8: invite_add_ep ACK/NACK/NEG
9: verify_mod_ep REQUEST
10: verify_mod_ep ACK/NACK
11: invite_add_ep COM/ABORT
12: announce_add_ep REQUEST
13: open_call ACK/NACK

Client list:
owner: requester of open_call
root: root of call
add.: optional additional endpoint

N
et

w
or

k

Figure 38. Message Traffic for open_call

12

12

Connection Management Access Protocol (CMAP) Specification Page 37

Applied Research Laboratory Zeus Project

6.2.3 Message Formats

open_call REQUEST

Data:

• call_id - call identifier of the call to be created. The requesting client must specify the r_addr portion of this
field, which is the address of the root client; the lcid portion may be left blank.

• num_cons - the number of connections to be created in the call; equal to the number of Connection Objects and
the number of UNI Objects associated with each Endpoint Object. Must be at least 1.

••• (num_cons)

••• (num_eps)

num_cons (2)

reserved (2)

num_eps (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

call_type (1) acc (1) mon (1) priority (1)mod (1) trace (1)

user_call_type (4)unused (2) reserved (2)

user_con_type (4)unused (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

reserved (2)

00000001 00000000

Connection Management Access Protocol (CMAP) Specification Page 38

Applied Research Laboratory Zeus Project

• num_eps - the number of endpoints to be added to the call; equal to the number of repetitions of the Endpoint
Object/UNI Objects combination. Must be either 1 or 2.

• call_type, acc, mod, trace, mon - must be fully specified.

For each of the num_cons connections, the message has a Connection Object specifying the initial values of the
connection’s parameters.

• con_id - may be left blank. All non-blank con_ids must be distinct.

• con_type, con_def, con_perm, bw - must be fully specified.

For each of the num_eps endpoints, the message has an Endpoint Object and num_cons UNI Objects specifying
the endpoint and the initial values of the endpoint attributes. If num_eps is 1, the first (and only) group of Endpoint
and UNI Objects is that associated with the root. If num_eps is 2, the first group is that associated with the root, and
the second is that associated with the additional endpoint.

• ep_addr - that associated with the root must be equal to the r_addr portion of the call_id.

• ep_id - may be left blank.

• ep_con_id - each ep_con_id must be the same as the con_id in the corresponding position in the list of Connec-
tion Objects.

• ep_map, ep_def, ep_perm - may be left blank.

• trans_vpi, trans_vci, rcv_vpi, rcv_vpi - may be left blank.

Connection Management Access Protocol (CMAP) Specification Page 39

Applied Research Laboratory Zeus Project

open_call RESPONSE

Data:

• call_id - call identifier of the call that was created.

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, BAD_NUM_CONS, BAD_NUM_EPS,
BAD_CALL_ID_ADDR, DUP_CALL_ID,
VERIFY_REFUSED, EP_REFUSED, INSUFF_BW, TIMEOUT }

••• (num_cons)

••• (num_eps)

num_cons (2)

reserved (2)

num_eps (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

call_type (1) acc (1) mon (1) priority (1)mod (1) trace (1)

user_call_type (4)call_status (2) reserved (2)

user_con_type (4)con_status (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

uni_status (2)ep_con_id (2) reserved (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) ep_status (2) reserved (4)

reserved (2)

00000001 00000001

Connection Management Access Protocol (CMAP) Specification Page 40

Applied Research Laboratory Zeus Project

• call_status - this field may take on the following values:

 call_status ∈ { OK, BAD_CALL_TYPE, BAD_ACC, BAD_MOD, BAD_TRACE,
BAD_MON, BAD_PRIORITY }

• con_status - this field may take on the following values:

 con_status ∈ { OK, DUP_CON_ID, BAD_CON_TYPE, BAD_CON_DEF,
BAD_CON_PERM, BAD_BW }

• ep_status - this field may take on the following values:

 ep_status ∈ { OK, BAD_EP_ADDR, DUP_EP_ID, BAD_EP_ADDR_NOT_ROOT }

• uni_status - this field may take on the following values:

 uni_status ∈ { OK, BAD_CON_ID, DUP_CON_ID, BAD_EP_MAP, BAD_EP_DEF, BAD_EP_PERM,
NO_AVAIL_VPI, NO_AVAIL_VCI,
TRANS_VPI_IN_USE, TRANS_VPI_RESERVED, TRANS_VPI_NOT_SUPPORTED,
TRANS_VCI_IN_USE, TRANS_VCI_RESERVED, TRANS_VCI_NOT_SUPPORTED,
RCV_VPI_IN_USE, RCV_VPI_RESERVED, RCV_VPI_NOT_SUPPORTED,
RCV_VCI_IN_USE, RCV_VCI_RESERVED, RCV_VCI_NOT_SUPPORTED }

6.2.4 Parameter Negotiation

r_addr. Theroot address may differ between the REQUEST and the RESPONSE — for example, the address
supplied in the REQUEST may deliver the message to a server on a specific machine, which uses the user call type
to start a process that becomes the actual root. The address in the RESPONSE is the root address (and call identifier
address) for the call. If an additional endpoint is specified, the final root address is sent to it in the invite_add_ep
COM.

lcid. If the owner leaves this field blank, the network will select a value before performing the invitations; if the
owner provides a value, the network will check that it is not in use before performing the invitiations. During the in-
vitations the root has the option of suggesting a different value. If the owner or the root provides a value which is al-
ready in use, the network will return a NACK or ABORT (respectively) with status = DUP_CALL_ID; otherwise it
will use the owner-supplied value.

con_ids. The network will assign values to any blank con_ids. Assignment will be by consecutive integers starting
with 1 and increasing through the Connection Objects in the order given, skipping any identifiers already in use.

ep_addrs. Treated in the same way as the r_addr.

ep_ids. Treated in the same way as the lcid.

ep_con_ids. The non-blank ep_con_ids are first matched with the non-blank con_ids (the two groups must con-
tain the same identifiers). The network then assigns values to any blank ep_con_ids. Assignment will be by consecu-
tive integers starting with 1 and increasing through the Connection Objects in the order given, skipping any identifiers
already in use. This will produce the same set of identifiers as for the con_ids.

ep_map, ep_def, ep_perm. If any of these fields are left blank, the network assigns the corresponding connection
value (con_def for ep_map and ep_def, con_perm for ep_perm) to the field before offering it to the endpoints. The
endpoint may attempt to negotiate ep_map, if the permissions allow, but not ep_def or ep_perm.

trans_vpi/trans_vci, rcv_vpi/rcv_vci. If any of these pairs are blank, the network will select a value before offer-
ing it to the endpoints. The client may accept these values or propose different ones in its response. Thus, both the
owner and the endpoint client have an opportunity to specify the VPI/VCI pairs.

6.2.5 Operation

Execution of the open_call command is made somewhat more complex by the possibility that the owner will re-
ceive invite_add_ep REQUESTs or verify_mod_ep REQUESTs for this call while in the open_call_pending state.
The network issues an invite_add_ep REQUEST to each of the initial endpoints, so if the owner is an endpoint of the
call it will receive such a request. A similar case arises in surrogate signalling; if, for example, the root is a mute client
that is being managed by the owner, the owner will receive an invite_add_ep REQUEST for the root. The owner may
receive a verify_mod_ep REQUEST when a remote client is invited to join the call and proposes modifications to its

Connection Management Access Protocol (CMAP) Specification Page 41

Applied Research Laboratory Zeus Project

endpoint mapping for which the corresponding endpoint permission is set to VERIFY. The network will then check
with the owner to determine if the modification is allowed.

These messages add complexity in the following way. Normally, on receiving an invite_add_ep REQUEST a
client will examine its internal list of calls to determine if it is already participating in the call given in the message
header. If the client finds the call, it will add (or not add, as the case may be) an endpoint to the data structure associated
with that call. If the client does not find the call, it will create a new call object and add (or not add) the endpoint to
the new call. Similarly, on receiving a verify_mod_ep REQUEST a client examines its internal list of calls that it is
managing in order to find the appropriate call data structure; if it does not find the call, it signals an error. The adjust-
ment to the message-handling is thus a simple one: on receipt of an invite_add_ep or verify_mod_ep REQUEST,
instead of simply examining the lists of calls in which it is participating or managing the client should also examine
the list of calls which it is in the process of creating.

Connection Management Access Protocol (CMAP) Specification Page 42

Applied Research Laboratory Zeus Project

6.3 mod_call Command

6.3.1 Synopsis

This command requests a change in the general call parameters. It may only be requested by the owner of the call.
The call’s user type, accessibility, modifiability, traceability, owner notification, default notification and priority may
be modified by means of this command.

6.3.2 Message Traffic

Figure 39 shows the message traffic that may result from this command. The owner initiates the operation by
sending a mod_call REQUEST (1). If the network detects any errors a mod_call NACK (2) is sent to the owner and
the operation is complete. Otherwise the network sends a mod_call ACK (2) to the owner and an announce_mod_call
REQUEST (3) to each endpoint describing the modifications.

6.3.3 Message Formats

mod_call REQUEST

Data:

• call_id - call identifier of call to be modified.

• user_call_type, acc, mon, trace, mon, priority - new values to be assigned to the parameters. Must be fully
specified.

Figure 39. Message Traffic for mod_call

owner part.

N
et

w
or

k 3
1

2

part.3

...

Message list:
1: mod_call REQUEST
2: mod_call ACK/NACK
3: announce_mod_call REQUEST

Client list:
owner: call owner
part.: participant in call

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

call_type (1) acc (1) mon (1) priority (1)mod (1) trace (1)

user_call_type (4)unused (2) reserved (2)

reserved (2)

00000010 00000000

Connection Management Access Protocol (CMAP) Specification Page 43

Applied Research Laboratory Zeus Project

mod_call RESPONSE

Data:

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, UNKNOWN_CALL, NOT_OWNER, TIMEOUT }

• call_status - this field may take on the following values:

 call_status ∈ { OK, BAD_CALL_TYPE, BAD_ACC, BAD_MOD, BAD_TRACE,
BAD_MON, BAD_PRIORITY }

6.3.4 Parameter Negotiation

There is no parameter negotiation in this command.

unused (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

call_type (1) acc (1) own_not (1) def_not (1)mon (1) trace (1)

user_call_type (4)call_status (2) reserved (2)

priority (1) reserved (1)

00000010 00000001

Connection Management Access Protocol (CMAP) Specification Page 44

Applied Research Laboratory Zeus Project

6.4 close_call Command

6.4.1 Synopsis

 This command requests that an existing call be terminated and may only be requested by the owner of the call.

6.4.2 Message Traffic

Figure 40 shows the message traffic that may result. The owner initiates the operation by sending a close_call
REQUEST (1). The network checks the message for errors. If errors are found a close_call NACK (2) is sent to the
owner and the operation is complete. If no errors are found, the network sends a close_call ACK (2) to the owner and
a announce_close_call REQUEST (3) to each participant. The operation is complete for the owner upon receipt of
the close_call ACK, and for each participant upon receipt of the announce_close_call REQUEST.

6.4.3 Message Formats

close_call REQUEST

Data:

• call_id - call identifier of the call to be closed.

Figure 40. Message Traffic for close_call

owner part.

N
et

w
or

k 3
1

2
part.3

...

Message list:
1: close_call REQUEST
2: close_call ACK/NACK
3: announce_close_call REQUEST

Client list:
owner: call owner
part.: participant in call

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

00000011 00000000

Connection Management Access Protocol (CMAP) Specification Page 45

Applied Research Laboratory Zeus Project

close_call RESPONSE

Data:

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, UNKNOWN_CALL, NOT_OWNER, TIMEOUT }

6.4.4 Parameter Negotiation

There is no parameter negotiation in this command.

6.4.5 Operation

When the owner provides a valid close_call REQUEST, the call is terminated with respect to the owner. If there
is a failure in the network, or if the network has problems tearing down all the connections, the close_call will still be
acknowledged as successful (i.e., the owner will not receive an error indication). It is up to the connection management
layer to correct any such problems. The clients are not burdened by connections that remain up after the close_call
REQUEST, nor should they be billed for any resources not properly freed after the close_call.

unused (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

00000011 00000001

Connection Management Access Protocol (CMAP) Specification Page 46

Applied Research Laboratory Zeus Project

6.5 add_con Command

6.5.1 Synopsis

This operation requests that one or more new connections be opened within an existing call. This command may
be requested by any participant in the call, subject to the call’s modifiability parameter (Section 4.3.6). The requester
may specify the parameters for one endpoint (already in the call) in the add_con. If the requester is the owner, this
endpoint may belong to any client; if the requester is not the owner, the endpoint must belong to the requester. The
mappings and defaults for the endpoint may differ from those for the new connections.

6.5.2 Message Traffic

Each participant in the call receives messages as a result of a successful add_con as shown in Figure 41. Each
endpoint already in the call is forced to join the new connection, although it may do so with a NULL mapping; see
invite_add_con for more details.

Initiation. The requesting client initiates the operation by sending an add_con REQUEST (1). The network
checks the message for errors. If errors are found an add_con NACK (4) is sent to the requester and the operation is
complete. If no errors are found, the operation continues with the connection verification.

Connection verification. If the requester is the owner or if the call’s modifiability is OPEN an add_con ACK
(4) is sent to the requester and the operation continues with the invitations. If the requester is not the owner and the
call’s modifiability is CLOSED, an add_con NACK (4) is sent to the requester and the operation is complete.

Invitations. If the requester is not the owner of the call, an announce_add_con REQUEST (3) is sent to the own-
er to inform it of the new connection. An invite_add_con REQUEST (4) is sent to each endpoint in the call. These
prompts cause each of the endpoints to join the new connection. The endpoint may return an invite_add_con ACK
(5), joining the connection with the suggested parameters and completing the operation for that endpoint. It may return
an invite_add_con NACK (5); in this case the endpoint still joins the connection, but it will receive a NULL mapping
for the new connection (i.e., it can neither transmit nor receive). It may return an invite_add_con NEG (5), requesting
a modification in some of its endpoint parameters. If verification with the owner is required, the owner is sent a
verify_mod_ep REQ (6) to which it responds (7) with a verify_mod_ep ACK or NACK. If the owner sends a
verify_add_ep ACK (7), or if the requested changes were acceptable without verification, the endpoint is sent an
invite_add_ep COM (8) and the endpoint is added to the connection. If the owner sends a verify_add_ep NACK (7),
or if the requested changes were not acceptable, the endpoint is sent an invite ABORT (8) and the endpoint is added
to the connection with a NULL mapping.

Note: The network will skip the invite_add_con operation (4) for the endpoint specified in the add_con if it is
directed to the requester of the add_con and all parameters of the connection and endpoint, including connection iden-
tifier and VPI/VCI pairs, are specified in the add_con REQUEST and are legal. If any are illegal, the operation will
fail with a (2) add_con NACK; otherwise the legal values for the endpoint will be returned in the add_con ACK.

Figure 41. Message Traffic for add_con

adder
endp.

N
et

w
or

k

5

Message list:
1: add_con REQUEST
2: add_con ACK/NACK
3: announce_add_con REQUEST
4: invite_add_con REQUEST
5: invite_add_con ACK/NACK/NEG
6: verify_mod_ep REQUEST
7: verify_mod_ep ACK/NACK
8: invite_add_con COM/ABORT

Client list:
owner: owner of call
adder: client requesting add_con
endp.: endpoint in call

1

2

...

owner 6

3

7

4

8

endp.5

4

8

Connection Management Access Protocol (CMAP) Specification Page 47

Applied Research Laboratory Zeus Project

6.5.3 Message Formats

add_con REQUEST

Data:

• num_cons - the number of connections to be added to the call; equal to the number of Connection Objects and
(if present) UNI Objects. Must be at least 1.

• num_eps - the number of endpoint mappings specified; equal to the number of repetitions of the Endpoint Ob-
ject/UNI Objects combination. Must be 0 or 1.

For each of the num_cons connections, the message has a Connection Object specifying the new parameters.

• con_id - may be left blank.

num_cons (2)

reserved (2)

num_eps (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

user_con_type (4)unused (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

00000100 00000000

••• (num_cons)

••• (num_eps)

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

options_size (4) options (options_size)

Connection Management Access Protocol (CMAP) Specification Page 48

Applied Research Laboratory Zeus Project

• con_type, con_def, con_perm, bw - must be fully specified.

If num_eps = 1, the message contains an Endpoint Address Object and num_cons UNI Objects which specify the
parameters of one endpoint for the new connections. If num_eps = 0 these objects are not present.

• ep_con_id - the number of blank ep_con_ids must be the same as the number of blank con_ids; each non-blank
ep_con_id must equal some non-blank con_id and all must be distinct.

• ep_map, ep_def, ep_perm, trans_vpi, trans_vci, rcv_vpi, rcv_vci - may be blank.

add_con RESPONSE

Data:

• num_cons, num_eps - these will have the same values as in the REQUEST.

num_cons (2)

reserved (2)

num_eps (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

user_con_type (4)con_status (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

00000100 00000001

••• (num_cons)

••• (num_eps)

uni_status (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

ep_addr (24)

ep_id (2) ep_status (2) reserved (4)

options_size (4) options (options_size)

Connection Management Access Protocol (CMAP) Specification Page 49

Applied Research Laboratory Zeus Project

If num_eps = 1, the message contains an Endpoint Address Object and num_cons UNI Objects which specify the
final parameters of the endpoint for the new connections. If num_eps = 0 these objects are not present.

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, BAD_NUM_CONS, UNKNOWN_CALL, ILL_REQUEST,
INSUFF_BW, TIMEOUT }

• con_status - this field may take on the following values:

 con_status ∈ { OK, BAD_CON_ID, DUP_CON_ID, BAD_CON_TYPE, BAD_CON_DEF,
BAD_CON_PERM, BAD_BW }

• ep_status - this field may take on the following values:

 ep_status ∈ { OK, BAD_EP_ADDR }

• uni_status - this field may take on the following values:

 uni_status ∈ { OK, BAD_CON_ID, DUP_CON_ID, BAD_EP_MAP, ILL_EP_MAP,
BAD_EP_DEF, BAD_EP_PERM, NO_AVAIL_VPI, NO_AVAIL_VCI,
TRANS_VPI_IN_USE, TRANS_VPI_RESERVED, TRANS_VPI_NOT_SUPPORTED,
TRANS_VCI_IN_USE, TRANS_VCI_RESERVED, TRANS_VCI_NOT_SUPPORTED,
RCV_VPI_IN_USE, RCV_VPI_RESERVED, RCV_VPI_NOT_SUPPORTED,
RCV_VCI_IN_USE, RCV_VCI_RESERVED, RCV_VCI_NOT_SUPPORTED }

6.5.4 Parameter Negotiation

con_ids. The network will assign values to any blank con_ids. Assignment will be by consecutive integers starting
with 1 and increasing through the Connection Objects in the order given, skipping any identifiers already in use in the
call. This assignment is performed before any other operations (such as the invite_add_cons).

ep_con_ids. The non-blank ep_con_ids are first matched with the non-blank con_ids (the two groups must con-
tain the same identifiers). The network then assigns values to any blank ep_con_ids. Assignment will be by consecu-
tive integers starting with 1 and increasing through the Connection Objects in the order given, skipping any identifiers
already in use. This will produce the same set of identifiers as for the con_ids.

ep_map, ep_def, ep_perm. If any of these fields are left blank, the network assigns the corresponding connection
value (con_def for ep_map and ep_def, con_perm for ep_perm) to the field before offering it to the endpoint in the
invite_add_con. The endpoint may negotiate ep_map but not ep_def or ep_perm.

trans_vpi/trans_vci, rcv_vpi/rcv_vci. If any of these pairs are blank, the network will select a value before offer-
ing it to the endpoint in the invite_add_con. The client may accept these values or propose different ones in its re-
sponse. Thus, both the requester and the endpoint client have an opportunity to specify the VPI/VCI pairs.

Connection Management Access Protocol (CMAP) Specification Page 50

Applied Research Laboratory Zeus Project

6.6 mod_con Command

6.6.1 Synopsis

This operation requests that the parameters of one or more connections be changed. The type, defaults, permis-
sions, bandwidth, and user type may be changed. This command may only be requested by the owner. Changing the
parameters of a connection has no effect on the values of endpoint mappings, defaults, and permissions.

6.6.2 Message Traffic

Each participant in the call receives messages as a result of a successful mod_con as shown in Figure 42. The
owner initiates the operation by sending a mod_con REQUEST (1). The network checks the message for errors, and
if any are found returns a mod_con NACK (2); this completes the operation. If no errors are found, a mod_con ACK
(2) is sent to the owner and an announce_mod_con REQUEST (3) to each endpoint in the call.

6.6.3 Message Formats

mod_con REQUEST

Data:

• num_cons - the number of Connection Objects. Must be at least 1.

Figure 42. Message Traffic for mod_con

owner
endp.

N
et

w
or

k 3

Message list:
1: mod_con REQUEST
2: mod_con ACK/NACK
3: announce_mod_con REQUEST

Client list:
owner: owner of call
endp.: endpoint in call

1

2
...

endp.3

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

user_con_type (4)unused (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

options_size (4) options (options_size)

00000101 00000000

Connection Management Access Protocol (CMAP) Specification Page 51

Applied Research Laboratory Zeus Project

For each of the num_cons connections, the message has a Connection Object containing the new values of the
connection parameters.

• con_id - must be specified, and must equal the identifier of an existing connection. All con_ids must be distinct.

• con_type, con_def, con_perm, bw - must be fully specified.

mod_con RESPONSE

Data:

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, BAD_NUM_CONS, UNKNOWN_CALL, NOT_OWNER,
INSUFF_BW, TIMEOUT }

• con_status - this field may take on the following values:

 con_status ∈ { OK, BAD_CON_ID, DUP_CON_ID, BAD_CON_TYPE, BAD_CON_DEF,
BAD_CON_PERM, BAD_BW }

6.6.4 Parameter Negotiation

There is no parameter negotiation in this command.

num_cons (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

user_con_type (4)con_status (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

options_size (4) options (options_size)

00000101 00000001

Connection Management Access Protocol (CMAP) Specification Page 52

Applied Research Laboratory Zeus Project

6.7 drop_con Command

6.7.1 Synopsis

This operation requests that one or more connections be closed. It may only be performed by the call’s owner.

6.7.2 Message Traffic

Each participant in the call receives messages as a result of a successful drop_con as shown in Figure 43. The
owner initiates the operation by sending a drop_con REQUEST (1). The network checks the message for errors, and
if any are found returns a drop_con NACK (2); this completes the operation. If no errors are found, a drop_con ACK
(2) is sent to the owner. If one or more connections will remain open after the drop_con, an announce_drop_con
REQUEST (3) is sent to each endpoint. If no connections will remain open after the drop_con, the call is closed and
an announce_close_call REQUEST (4) is sent to the owner and to each endpoint.

Figure 43. Message Traffic for drop_con

owner
endp.

N
et

w
or

k

Message list:
1: drop_con REQUEST
2: drop_con ACK/NACK
3: announce_drop_con REQUEST
4: announce_close_call REQUEST

Client list:
owner: owner of call
endp.: endpoint in call

1

4
...

2

3

4

endp.
3

4

Connection Management Access Protocol (CMAP) Specification Page 53

Applied Research Laboratory Zeus Project

6.7.3 Message Formats

drop_con REQUEST

Data:

• num_cons - the number of connections to be dropped; equal to the number of con_ids. Must be at least 1.

• con_id - identifier of the connection to be dropped.

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

00000110 00000000

user_con_type (4)con_status (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

options_size (4) options (options_size)

Connection Management Access Protocol (CMAP) Specification Page 54

Applied Research Laboratory Zeus Project

drop_con RESPONSE

Data:

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, BAD_NUM_CONS, UNKNOWN_CALL, NOT_OWNER,
INSUFF_BW, TIMEOUT }

• con_status - this field may take on the following values:

con_status ∈ { OK, BAD_CON_ID }

6.7.4 Parameter Negotiation

There is no parameter negotiation in this command.

6.7.5 Operation

When a client provides a valid drop_con REQUEST, the connection is closed. If there is a failure in the network,
or if the network has problems tearing down all the connections, the drop_con will still be acknowledged as successful
(i.e., the owner will not receive an error indication). It is up to the connection management layer to correct any such
problems. The clients are not burdened by connections that remain up after the drop_con REQUEST, nor should they
be billed for any resources not properly freed after the drop_con.

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

00000110 00000001

user_con_type (4)con_status (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

options_size (4) options (options_size)

Connection Management Access Protocol (CMAP) Specification Page 55

Applied Research Laboratory Zeus Project

6.8 add_ep Command

6.8.1 Synopsis

This operation requests that a new endpoint be added to an existing call. An add_ep may be requested by the own-
er of the call, the client to be added to the call, or a third client (who may or may not be part of the call).

6.8.2 Message Traffic

Three primary clients may be involved in an add_ep operation: the owner of the call, the client requesting the
addition of an endpoint, and the client which is to be added. Of course, a single client may play two or even all three
of these roles. In addition to these clients, other participants in the call may be notified that the endpoint has been add-
ed, based on the call’s monitoring parameter (Section 4.3.8). Figure 44 shows the message traffic involved.

Initiation. The requesting client initiates the operation by sending an add_ep REQUEST (1). The network per-
forms a number of parameter checks. If errors are found an add_ep NACK (10) is sent to the requester and the oper-
ation is complete. If no errors are found the operation continues with the verification of the addition.

Verification of addition. If the requester is not the owner and the call’s accessibility (Section 4.3.5) is set to
CLOSED, an add_ep NACK (10) is sent the the requester and the operation is complete. If the requester is not the
owner and the call’s accessiblility is sent to VERIFY, a verify_add_ep REQUEST (2) is sent to the owner which
must respond (3) with a verify_add_ep ACK or NACK. If the owner responds with a verify_add_ep ACK, the op-
eration continues with the invitation of the endpoint. If the owner responds with a verify_add_ep NACK, an add_ep
NACK (10) is sent to the requester and the operation is complete.

Invitiation of endpoint. If the requester is not the client that is being added, or if the requester omitted any end-
point parameters in the REQUEST, the network sends an invite_add_ep REQUEST (4) to the client that is being
added. The client must respond (5) with an invite_add_ep ACK, NACK, or NEG. If it responds with an
invite_add_ep ACK, the operation continues with the addition of the endpoint. If it responds with an invite_add_ep
NACK, an add_ep NACK (10) is sent to the requester and the operation is complete. If the client responds with an
invite_add_ep NEG, verification by the owner may be required (if the client changed its mapping and the correspond-
ing permissions are VERIFY). In this case a verify_mod_ep REQUEST (6) is sent to the owner of the call which
responds (7) with a verify_mod_ep ACK or NACK. If the owner sends a verify_mod_ep ACK, an invite_add_ep
COM (8) is sent to the client being added and the operation continues with the addition of the endpoint. If the owner
sends a verify_mod_ep NACK, an invite_add_ep ABORT (8) is sent to the client being added, an add_ep NACK
(10) to the requester, and the operation is complete.

Addition of endpoint. When the endpoint has been successfully added, announce_add_ep REQUESTs (9) are
sent to all appropriate parties as determined by the call’s monitoring parameter. An add_ep ACK (10) is sent to the
requester and the operation is complete.

Figure 44. Message Traffic for add_ep

req. add.

N
et

w
or

k
1

10

4

5

8

3

6

7

trans.9

part.9

9

9

owner

2

9

Message list:
1: add_ep REQUEST
2: verify_add_ep REQUEST
3: verify_add_ep ACK/NACK
4: invite_add_ep REQUEST
5: invite_add_ep ACK/NACK/NEG
6: verify_mod_ep REQUEST
7: verify_mod_ep ACK/NACK
8: invite_add_ep COM/ABORT
9: announce_add_ep REQUEST
10: add_ep ACK/NACK

Client list:
req.: client requesting operation
add.: client to be added
owner: owner of call
trans.: any transmitter in call
part.: other participant in call

Connection Management Access Protocol (CMAP) Specification Page 56

Applied Research Laboratory Zeus Project

6.8.3 Message Formats

add_ep REQUEST

Data:

• num_cons - the number of Connection and UNI Objects specified in the call; must equal the number of con-
nections actually in the call.

The Call and Connection Objects describe the call to which the endpoint is to be added and must match the pa-
rameters of the call. All parameters of these objects must be specified.

• ep_addr - address of the client to be added.

• ep_id - local identifier of the endpoint; may be left blank.

••• (num_cons)

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

call_type (1) acc (1) mon (1) priority (1)mod (1) trace (1)

user_call_type (4)unused (2) reserved (2)

user_con_type (4)unused (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

reserved (2)

00000111 00000000

Connection Management Access Protocol (CMAP) Specification Page 57

Applied Research Laboratory Zeus Project

• ep_con_id - must be specified. Each ep_con_id must be the same as the con_id in the corresponding position
in the list of Connection Objects.

• ep_map, ep_def, ep_perm, trans_vpi, trans_vci, rcv_vpi, rcv_vpi - may be left blank.

add_ep RESPONSE

Data:

• num_cons - the number of connections in the call, and also the number of Connection and Uni Objects in the
message.

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, BAD_NUM_CONS, UNKNOWN_CALL, ILL_REQUEST,
VERIFY_REFUSED, EP_REFUSED, INSUFF_BW, TIMEOUT }

••• (num_cons)

num_cons (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

call_type (1) acc (1) mon (1) priority (1)mod (1) trace (1)

user_call_type (4)call_status (2) reserved (2)

user_con_type (4)con_status (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

uni_status (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) ep_status (2) reserved (4)

reserved (2)

00000111 00000001

Connection Management Access Protocol (CMAP) Specification Page 58

Applied Research Laboratory Zeus Project

• call_status - this field may take on the following values:

 call_status ∈ { OK, BAD_CALL_TYPE, BAD_ACC, BAD_MOD, BAD_TRACE,
BAD_MON, BAD_PRIORITY }

• con_status - this field may take on the following values:

 con_status ∈ { OK, DUP_CON_ID, BAD_CON_TYPE, BAD_CON_DEF,
BAD_CON_PERM, BAD_BW }

• ep_status - this field may take on the following values:

 ep_status ∈ { OK, BAD_EP_ADDR, DUP_EP_ID }

• uni_status - this field may take on the following values:

 uni_status ∈ { OK, BAD_CON_ID, DUP_CON_ID, BAD_EP_MAP, ILL_EP_MAP,
BAD_EP_DEF, BAD_EP_PERM, NO_AVAIL_VPI, NO_AVAIL_VCI,
TRANS_VPI_IN_USE, TRANS_VPI_RESERVED, TRANS_VPI_NOT_SUPPORTED,
TRANS_VCI_IN_USE, TRANS_VCI_RESERVED, TRANS_VCI_NOT_SUPPORTED,
RCV_VPI_IN_USE, RCV_VPI_RESERVED, RCV_VPI_NOT_SUPPORTED,
RCV_VCI_IN_USE, RCV_VCI_RESERVED, RCV_VCI_NOT_SUPPORTED }

In an ACK, the UNI objects contain the values of the endpoint’s UNI parameters for each connection in the call.

6.8.4 Parameter Negotiation

ep_addr. The local address field of the address may differ between the REQUEST and the RESPONSE — for
example, the address supplied in the REQUEST may deliver the message to a server on a specific machine, which
uses the user call type to start a process that becomes the actual client. The address in the RESPONSE is the actual
address of the client.

ep_id. The network will pass this field to the endpoint client in the invite_add_ep REQUEST. Thus, if the re-
quester leaves it blank the endpoint client will have the opportunity to select a value. If the client also leaves it blank,
the network will select an appropriate value.

ep_map, ep_def, ep_perm. If any of these fields are left blank, the network assigns the corresponding connection
value (con_def for ep_map and ep_def, con_perm for ep_perm) to the field before offering it to the endpoint client in
the invite_add_ep REQUEST.

trans_vpi/trans_vci, rcv_vpi/rcv_vci. If any of these pairs are blank, the network will select a value before offer-
ing it to the endpoint client. The endpoint client may accept these values or propose different ones in its response. Thus,
both the requester and the endpoint client have an opportunity to specify the VPI/VCI pairs.

6.8.5 Operation

If the call and connection parameters supplied in the REQUEST do not correspond to the actual parameters of
the call, a NACK will be returned with one or more of the status fields set to indicate the problem.

As with the open_call command, execution of add_ep by the owner for another client is made more complex by
the possibility that the owner will receive a verify_mod_ep REQUEST while waiting for the response to the add_ep
REQUEST. This is handled in the same way as in the open_call operation.

Connection Management Access Protocol (CMAP) Specification Page 59

Applied Research Laboratory Zeus Project

6.9 mod_ep Command

6.9.1 Synopsis

This operation requests a change in the parameters of an existing endpoint. The operation may be requested by
the owner or by the client whose endpoint parameters are being changed. The owner may change the endpoints map-
ping, defaults, permissions, and VPI/VCI pairs; the client may only change its mapping and VPI/VCI pairs. When the
owner changes a client’s parameters, the client is not permitted to refuse the change.

6.9.2 Message Traffic

Figure 45 shows the message traffic for the case where the owner initiates the operation. The owner begins by
sending a mod_ep REQUEST (1). If there are any errors in the request, the network responds with a mod_ep NACK
(6). Otherwise, the endpoint is invited to accept the new parameters with an invite_mod_ep REQUEST (2), to which
it replies with an ACK, NACK, or NEG (3); the operation may then be confirmed with a COM or ABORT. The net-
work sends a mod_ep ACK or NACK (6) to the owner and announce_mod_ep REQUESTs (5) to all interested par-
ties (as determined by the call’s monitoring parameter).

Figure 46 shows the traffic in the endpoint-initated case. The requesting client initiates the operation by sending
a mod_ep REQUEST (1). The network checks this message, and if errors are found (including mapping changes for-
bidden by the endpoint’s permissions) it sends a mod_ep NACK (5) to the requester and the operation is complete. If
no errors are found and the requested changes are allowed by the endpoint’s permissions, the network sends a mod_ep
ACK (5) to the requester and announce_mod_ep REQUESTs (4) to all interested parties. If the permission corre-
sponding to any of the requested changes is VERIFY, the network queries the owner with a verify_mod_ep RE-
QUEST (2), to which the owner must respond with a verify_mod_ep ACK or NACK (3). If the owner responds with
an ACK, the network sends a mod_ep ACK (5) to the requester and announce_mod_ep REQUESTs (4) to all inter-
ested parties. If the owner responds with a NACK, the network sends a mod_ep NACK (5) to the requester.

Message list:
1: mod_ep REQUEST
2: invite_mod_ep REQUEST
3: invite_mod_ep ACK/NACK/NEG
4: invite_mod_ep COM/ABORT
5: announce_mod_ep REQUEST
6: mod_ep ACK/NACK

Client list:
endp.: client being modified
owner: owner of call
trans.: any transmitter in call
part.: other participant in call

Figure 45. Message Traffic for mod_ep by Owner

1

6

trans.5

part.5owner N
et

w
or

k

5

2

4

3endp.

Message list:
1: mod_ep REQUEST
2: verify_mod_ep REQUEST
3: verify_mod_ep ACK/NACK
4: announce_mod_ep REQUEST
5: mod_ep ACK/NACK

Client list:
req.: client requesting operation
owner: owner of call
trans.: any transmitter in call
part.: other participant in call

Figure 46. Message Traffic for mod_ep by Non-Owner

N
et

w
or

k trans.4

part.4

1

5

req. 4

2

4

3owner

Connection Management Access Protocol (CMAP) Specification Page 60

Applied Research Laboratory Zeus Project

6.9.3 Message Formats

mod_ep REQUEST

Data:

• num_cons - the number of UNI Objects specified in the call. Must be at least 1.

• ep_addr, ep_id - identifier of the endpoint to be modified.

The UNI objects contain the new values of the mapping.

• ep_con_id, ep_map - must be specified.

• ep_map, ep_def, ep_perm, trans_vpi, trans_vci, rcv_vpi, rcv_vpi - may be left blank.

••• (num_cons)

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

00001000 00000000

Connection Management Access Protocol (CMAP) Specification Page 61

Applied Research Laboratory Zeus Project

mod_ep RESPONSE

Data:

• num_cons - the number of Endpoint Objects in the message; equal to the number of connections.

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, BAD_NUM_CONS, UNKNOWN_CALL, NOT_OWNER,
VERIFY_REFUSED, EP_REFUSED, INSUFF_BW, TIMEOUT }

• ep_status - this field may take on the following values:

 ep_status ∈ { OK, BAD_EP_ADDR }

• uni_status - this field may take on the following values:

 uni_status ∈ { OK, BAD_CON_ID, DUP_CON_ID, BAD_EP_MAP, BAD_EP_DEF,
ILL_EP_MAP, BAD_EP_PERM, NO_AVAIL_VPI, NO_AVAIL_VCI,
TRANS_VPI_IN_USE, TRANS_VPI_RESERVED, TRANS_VPI_NOT_SUPPORTED,
TRANS_VCI_IN_USE, TRANS_VCI_RESERVED, TRANS_VCI_NOT_SUPPORTED,
RCV_VPI_IN_USE, RCV_VPI_RESERVED, RCV_VPI_NOT_SUPPORTED,
RCV_VCI_IN_USE, RCV_VCI_RESERVED, RCV_VCI_NOT_SUPPORTED }

The UNI objects contain the new values of the endpoint’s UNI parameters.

6.9.4 Parameter Negotiation

There is no parameter negotiation in this operation.

••• (num_cons)

num_cons (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

uni_status (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) ep_status (2) reserved (4)

00001000 00000001

Connection Management Access Protocol (CMAP) Specification Page 62

Applied Research Laboratory Zeus Project

6.10 drop_ep Command

6.10.1 Synopsis

This operation requests that an endpoint or a client be dropped from a call. This may be requested by the owner
of the call or the client to be dropped. The last endpoint of the root may not be dropped.

6.10.2 Message Traffic

The message traffic of the drop_ep operation differs slightly, depending on whether the owner or the endpoint
itself initiates the operation. Figure 47 shows the message traffic in the owner-inititated case. The owner initiates the
operation by sending a drop_ep REQUEST (1), which may specify either a specific endpoint or all endpoints at a
client. The network performs a number of parameter checks. If errors are found a drop_ep NACK (4) is sent to the
owner and the operation is complete. If no errors are found, an announce_drop_ep REQUEST (2) is sent to the end-
point being dropped, announce_drop_ep REQUESTs (3) are sent to all appropriate endpoints (as determined by the
call’s monitoring parameter (Section 4.3.8)), a drop_ep ACK (4) is sent to the owner, and the operation is complete.

 Figure 48 shows the message traffic in the endpoint-initiated case. The endpoint initiates the operation by sending
a drop_ep REQUEST (1), which may specify either a specific endpoint or all endpoints at the client. The network
performs a number of parameter checks. If errors are found a drop_ep NACK (3) is sent to the endpoint and the op-
eration is complete. If no errors are found, announce_drop_ep REQUESTs (2) are sent to all appropriate endpoints,
a drop_ep ACK (3) is sent to the endpoint and the operation is complete.

owner

trans. 3 part.3

drop
1

4

3
2

Message list:
1: drop_ep REQUEST
2: announce_drop_ep REQUEST
3: announce_drop_ep REQUEST
4: drop_ep ACK/NACK

Client list:
owner: owner of call
drop: client being dropped
trans.: any transmitter in call
part.: other participant in call

Figure 47. Message Traffic for drop_ep by Owner

N
et

w
or

k

Figure 48. Message Traffic for drop_ep by Non-Owner

drop

trans. 2 part.2

owner
1

3

2

Message list:
1: drop_ep REQUEST
2: announce_drop_ep REQUEST
3: drop_ep ACK/NACK

Client list:
owner: owner of call
drop: client being dropped
trans.: any transmitter in call
part.: other participant in call

N
et

w
or

k

Connection Management Access Protocol (CMAP) Specification Page 63

Applied Research Laboratory Zeus Project

6.10.3 Message Formats

drop_ep REQUEST

Data:

• ep_addr - address of the client to be dropped.

• ep_id - identifier of the endpoint to be dropped. If left blank, specifies that all endpoints at the client are to be
dropped.

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

options_size (4) options (options_size)

00001001 00000000

Connection Management Access Protocol (CMAP) Specification Page 64

Applied Research Laboratory Zeus Project

drop_ep RESPONSE

Data:

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, UNKNOWN_CALL, NOT_OWNER, ILL_DROP_ROOT, TIMEOUT }

• ep_status - this field may take on the following values:

 ep_status ∈ { OK, BAD_EP_ADDR }

6.10.4 Parameter Negotiation

There is no parameter negotiation in this command.

6.10.5 Operation

The owner is permitted to drop all its own endpoints, but it must still manage the call. If the owner or root attempts
to drop the last endpoint of the root, it will be refused (a status field of ILL_DROP_ROOT in the returned drop_ep
RESPONSE). If there are network errors, the drop_ep is acknowledged as successful and it is up to the network to
clean up any problems it may have had.

When a client provides a valid drop_ep REQUEST, the endpoint is closed. If there is a failure in the network,
or if the network has problems tearing down all the connections, the drop_ep will still be acknowledged as successful
(i.e., the owner will not receive an error indication). It is up to the connection management layer to correct any such
problems. The clients are not burdened by connections that remain up after the drop_ep REQUEST, nor should they
be billed for any resources not properly freed after the drop_ep.

unused (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

ep_addr (24)

ep_id (2) ep_status (2) reserved (4)

options_size (4) options (options_size)

00001001 00000001

Connection Management Access Protocol (CMAP) Specification Page 65

Applied Research Laboratory Zeus Project

6.11 trace_call Command

6.11.1 Synopsis

This operation requests that a call be traced, i.e., that information about the call be supplied to the client. It may
be requested by any client, subject to the call’s traceability (Section 4.3.7).

6.11.2 Message Traffic

Figure 49 shows the message traffic for trace_call. The client sends a trace_call REQUEST (1). The network
performs a number of parameter checks, and in particular checks the call traceability to see if the operation is permit-
ted. If errors are found a trace_call NACK (2) is sent to the requester. If no errors are found, a trace_call ACK (2) is
sent to the requester.

6.11.3 Message Formats

trace_call REQUEST

Data:

• call_id - identifier of the call to be traced.

trace

1

2

Message list:
1: trace_call REQUEST
2: trace_call ACK/NACK

Client list:
trace: client performing trace

Figure 49. Message Traffic for trace_call

N
et

w
or

k

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

00001010 00000000

Connection Management Access Protocol (CMAP) Specification Page 66

Applied Research Laboratory Zeus Project

trace_call RESPONSE

Data:

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, UNKNOWN_CALL, ILL_REQUEST, TIMEOUT }

• num_cons - the number of connections in the call, and the number of Connection Objects in the message.

• num_eps - the number of endpoints in the call, and the number of Endpoint Objects in the message.

• owner_addr - the address of the owner/manager of the call.

••• (num_eps)

num_cons (2)

reserved (2)

num_eps (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

user_con_type (4)unused (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

00001010 00000001

owner_addr (24)

call_type (1) acc (1) mon (1) priority (1)mod (1) trace (1)

user_call_type (4)unused (2) reserved (2)

reserved (2)

Connection Management Access Protocol (CMAP) Specification Page 67

Applied Research Laboratory Zeus Project

The Call Object contains the call parameters. The Connection Objects contain the parameters of the connections.
The Endpoint Objects contain the addresses of the endpoints participating in the connection (parameters of individual
endpoints may be obtained with the trace_ep command).

In a NACK, num_cons = num_eps = 0 and the message contains no owner_addr or Call, Connection, or End-
point Objects. The Trailer Object immediately follows the Header Object.

6.11.4 Parameter Negotiation

There is no parameter negotiation in this command.

Connection Management Access Protocol (CMAP) Specification Page 68

Applied Research Laboratory Zeus Project

6.12 trace_ep Command

6.12.1 Synopsis

This operation requests that an endpoint be traced, i.e., that information about the endpoint be supplied to the cli-
ent. It may be requested by any client, subject to the call’s traceability (Section 4.3.7).

6.12.2 Message Traffic

Figure 50 shows the message traffic for trace_ep. The client sends a trace_ep REQUEST (1). The network per-
forms a number of parameter checks, and in particular checks the call traceability to see if the operation is permitted.
If errors are found a trace_ep NACK (2) is sent to the requester. If no errors are found, a trace_ep ACK (2) is sent
to the requester.

6.12.3 Message Formats

trace_ep REQUEST

Data:

• ep_addr, ep_id - identifier of the endpoint to be traced.

trace

1

2

Message list:
1: trace_ep REQUEST
2: trace_ep CK/NACK

Client list:
trace: client performing trace

Figure 50. Message Traffic for trace_ep

N
et

w
or

k

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

00001011 00000000

ep_addr (24)

ep_id (2) unused (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 69

Applied Research Laboratory Zeus Project

trace_ep RESPONSE

Data:

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, UNKNOWN_CALL, ILL_REQUEST, TIMEOUT }

• num_cons - the number of connections in the call, and the number of UNI Objects in the message

• ep_status - this field may take on the following values:

 ep_status ∈ { OK, BAD_EP_ADDR }

The UNI Objects contain the per-connection parameters of the endpoint. In a NACK num_cons = 0 and the UNI
Objects are omitted.

6.12.4 Parameter Negotiation

There is no parameter negotiation in this command.

num_cons (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

00001011 00000001

••• (num_cons)

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

ep_addr (24)

ep_id (2) ep_status (2) reserved (4)

options_size (4) options (options_size)

Connection Management Access Protocol (CMAP) Specification Page 70

Applied Research Laboratory Zeus Project

6.13 change_owner Command

6.13.1 Synopsis

This operation requests that the owner of a call be changed. It may only be requested by the owner of the call. The
new owner need not be a participant in the call.

6.13.2 Message Traffic

Figure 51 shows the message traffic. The owner initiates the operation by sending a change_owner REQUEST
(1). If the message contains any errors, a change_owner NACK (6) is sent to the owner and the operation is complete.
Otherwise, the network sends an invite_change_owner REQUEST (2) to the candidate new owner, which must re-
spond (3) with an invite_change_owner ACK or NACK. If it sends an ACK and the operation can be completed, the
call owner is changed, the old owner is sent a change_owner ACK (5), the new owner is sent an
invite_change_owner COM (4) and all participants in the call are sent announce_change_owner REQUESTs (4).
If it sends an ACK and the operation cannot be competed, the call owner is unchanged, the candidate new owner is
sent an invite_change_owner ABORT (4), and the owner is sent a change_owner NACK (5). If the candidate owner
sends a NACK, the call owner is unchanged and the owner is sent a change_owner NACK (5).

N
et

w
or

k

2

4

part.5

new

Message list:
1: change_owner REQUEST
2: invite_change_owner REQUEST
3: invite_change_owner ACK/NACK
4: invite_change_owner COM/ABORT
5: announce_change_owner REQUEST
6: change_owner ACK/NACK

Client list:
owner: owner of call
new: new owner of call
part.: participant in call

1

6

owner

Figure 51. Message Traffic for change_owner

3

Connection Management Access Protocol (CMAP) Specification Page 71

Applied Research Laboratory Zeus Project

6.13.3 Message Formats

change_owner REQUEST

Data:

• new_owner - address of the candidate new owner.

new_owner (24)

options_size (4) options (options_size)

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

00001100 00000000

Connection Management Access Protocol (CMAP) Specification Page 72

Applied Research Laboratory Zeus Project

change_owner RESPONSE

Data:

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, UNKNOWN_CALL, NOT_OWNER,
EP_REFUSED, BAD_OWNER_ADDR, INSUFF_BW, TIMEOUT }

• new_owner - address of the new owner.

6.13.4 Parameter Negotiation

new_owner. The address of the new owner may differ between the REQUEST and the RESPONSE. The address
in the RESPONSE is the correct address of the new owner.

6.13.5 Operation

The change_owner command has no effect on any endpoints that the old or new owner has in the call.

new_owner (24)

options_size (4) options (options_size)

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

00001100 00000001

Connection Management Access Protocol (CMAP) Specification Page 73

Applied Research Laboratory Zeus Project

6.14 change_root Command

6.14.1 Synopsis

This operation requests that the root of a call (and hence the call identifier) be changed. It may only be requested
by the owner of the call. The new root must be a participant (i.e., have an endpoint) in the call.

6.14.2 Message Traffic

Figure 52 shows the message traffic. The owner initiates the operation by sending a change_root REQUEST (1).
The network checks the message for errors, and if any are found a change_root NACK (3) is sent to the owner and
the operation is complete. If no errors are found, the call root is changed, the owner is sent a change_root ACK (3),
and all participants in the call are sent announce_change_root REQUESTs (2).

6.14.3 Message Formats

change_root REQUEST

Data:

• new_call_id (r_addr) - address of the new root. This must be a client with an endpoint in the call.

• new_call_id (lcid) - suggested new local call identifier. May be left blank.

N
et

w
or

k

part.2

Message list:
1: change_owner REQUEST
2: announce_change_owner REQUEST
3: change_owner ACK/NACK

Client list:
owner: owner of call
part.: participant in call

1

3

owner

Figure 52. Message Traffic for change_root

reserved (2)reserved (2)

new_call_id (r_addr) (24)

new_call_id (lcid) (2) reserved (2)

options_size (4) options (options_size)

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

00001101 00000000

Connection Management Access Protocol (CMAP) Specification Page 74

Applied Research Laboratory Zeus Project

change_root RESPONSE

Data:

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, BAD_CALL_ID_ADDR, DUP_CALL_ID,
UNKNOWN_CALL, NOT_OWNER, INSUFF_BW, TIMEOUT }

• new_call_id - new identifier (root address and local id) of the call.

6.14.4 Parameter Negotiation

lcid. If the owner does not supply a value for the new local call identifier, the network will select one, with pref-
erence being given to the existing local call identifier. If the owner supplies a value, the network will check that it is
not already in use; if it is in use, the network will return a NACK (status = DUP_CALL_ID), otherwise it will use the
owner-supplied value.

reserved (2)reserved (2)

new_call_id (r_addr) (24)

new_call_id (lcid) (2) reserved (2)

options_size (4) options (options_size)

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

00001101 00000001

Connection Management Access Protocol (CMAP) Specification Page 75

Applied Research Laboratory Zeus Project

6.15 invite_add_con Prompt

6.15.1 Synopsis

This operation invites an endpoint to join one or more connections which have been added to a call in which the
endpoint is participating. The endpoint is forced to join the new connections, although it may do so with a NULL map-
ping. The invite_add_con prompt is triggered by the add_con command.

6.15.2 Message Traffic

Figure 53 shows the message traffic. As part of a successful add_con, an invite_add_con REQUEST (1) is sent
to each endpoint in the call. The endpoint may return an invite_add_con ACK (2), joining the connections with the
suggested parameters and completing the operation. It may return an invite_add_con NACK (2); in this case the end-
point still joins the connections, but it will receive a NULL mapping for each new connection (i.e., it can neither trans-
mit nor receive). It may return an invite_add_con NEG (2), requesting a modification in some of its endpoint
parameters. If verification with the owner is required (if the endpoint attempts to change its mapping and the corre-
sponding permissions are set to VERIFY), the owner is sent a verify_mod_ep REQ (3) to which it responds (4) with
a verify_mod_ep ACK or NACK. If the owner sends a verify_add_ep ACK (4), or if the requested changes were
acceptable without verification, the endpoint is sent an invite_add_con COM (5) and the endpoint is added to the con-
nections. If the owner sends a verify_add_ep NACK (4), or if the requested changes were not acceptable, the endpoint
is sent an invite_add_con ABORT (5) and the endpoint is added to the connections with a NULL mapping.

Figure 53. Message Traffic for invite_add_con

owner endp.

N
et

w
or

k

2

Message list:
1: invite_add_con REQUEST
2: invite_add_con ACK/NACK/NEG
3: verify_mod_ep REQUEST
4: verify_mod_ep ACK/NACK
5: invite_add_con COM/ABORT

Client list:
owner: owner of call
endp.: endpoint receiving prompt

3

4

1

5

Connection Management Access Protocol (CMAP) Specification Page 76

Applied Research Laboratory Zeus Project

6.15.3 Message Formats

invite_add_con REQUEST

Data:

• num_cons - the number of connections that were added; equal to the number of Connection and UNI Objects.

• ep_addr, ep_id - identifier of the endpoint which is being invited to join the new connections.

For each of the num_cons connections, the message has a Connection Object containing the parameters of the
connection and a UNI Object containing the (suggested) per-connection endpoint parameters. Within each pair, the
con_id and ep_con_id will be identical.

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

user_con_type (4)unused (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

options_size (4) options (options_size)

00001110 00000000

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

ep_addr (24)

ep_id (2) ep_status (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 77

Applied Research Laboratory Zeus Project

invite_add_con RESPONSE

Data:

• num_cons - the number of UNI objects in the message; must be less than or equal to the value of num_cons in
the REQUEST.

• op_status - the client may set the status portion of this field to the following values (indicating, respectively, an
ACK, NACK, and NEG):

 status ∈ { OK, REFUSED, NEGOTIATING }

The UNI Objects describe the per-connection parameters of the endpoint. The client must include a UNI Object
for any parameter set it is negotiating. UNI Objects for other connections may be included or omitted.

num_cons (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

••• (num_cons)

options_size (4) options (options_size)

00001110 00000001

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

Connection Management Access Protocol (CMAP) Specification Page 78

Applied Research Laboratory Zeus Project

invite_add_con CONFIRMATION

Data:

• num_cons - the number of UNI objects in the message; equal to num_cons in the REQUEST.

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, BAD_NUM_CONS, UNKNOWN_CALL, VERIFY_REFUSED,
INSUFF_BW, TIMEOUT }

The UNI Objects describe the final per-connection parameters of the endpoint.

• uni_status - this field may take on the following values:

 uni_status ∈ { OK, BAD_CON_ID, DUP_CON_ID, BAD_EP_MAP, BAD_EP_DEF,
ILL_EP_MAP, BAD_EP_PERM, NO_AVAIL_VPI, NO_AVAIL_VCI,
TRANS_VPI_IN_USE, TRANS_VPI_RESERVED, TRANS_VPI_NOT_SUPPORTED,
TRANS_VCI_IN_USE, TRANS_VCI_RESERVED, TRANS_VCI_NOT_SUPPORTED,
RCV_VPI_IN_USE, RCV_VPI_RESERVED, RCV_VPI_NOT_SUPPORTED,
RCV_VCI_IN_USE, RCV_VCI_RESERVED, RCV_VCI_NOT_SUPPORTED }

6.15.4 Parameter Negotiation

ep_map. In the REQUEST, this field will equal the connection’s con_def. The client may attempt to modify it in
the RESPONSE. After the usual checks (the ep_perm field and possibly verification with the owner), the network will
return the final values in the CONFIRMATION.

trans_vpi, trans_vci, rcv_vpi, rcv_vci. The network will choose values for these parameters and supply them in
the REQUEST. The client may suggest new values in the RESPONSE. The network returns the final values in the
CONFIRMATION; if the pair suggested by the client is unacceptable, the network uses the pair it originally chose.

If the operation fails for any reason, including failure in negotiation, the client will receive an invite_add_con
ABORT with all UNI objects having a NULL ep_map — even for connections that were not negotiated, or for which
the negotiation was successful. The endpoint is then participating in all the new connections, but with NULL map-
pings. The client may then use the mod_ep command to change the mappings as it sees fit.

num_cons (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

••• (num_cons)

options_size (4) options (options_size)

00001110 00000010

uni_status (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

Connection Management Access Protocol (CMAP) Specification Page 79

Applied Research Laboratory Zeus Project

6.16 invite_add_ep Prompt

6.16.1 Synopsis

This operation invites a client to join a call as a new endpoint. The client has the option of refusing to join the call.
The invite_add_ep prompt is triggered by the open_call and add_ep commands.

6.16.2 Message Traffic

Figure 54 shows the message traffic. As part of an open_con or add_ep, an invite_add_ep REQUEST (1) is sent
to the client. The client may return an invite_add_ep NACK (2); in this case the endpoint does not join the call, and
the operation is complete. The client may return an invite_add_ep ACK (2), joining the call with the suggested pa-
rameters. The network will then return an invite_add_ep COM or ABORT (5) to complete the operation. Finally,
the client may return an invite_add_ep NEG (2), requesting a modification in some of its endpoint parameters. If
verification with the owner is required (if the endpoint attempts to change its mapping and the corresponding permis-
sions are set to VERIFY), the owner is sent a verify_mod_ep REQ (3) to which it responds (4) with a verify_mod_ep
ACK or NACK. If the owner sends a verify_mod_ep ACK (4), or if the requested changes were acceptable without
verification, the endpoint is sent an invite_add_ep COM (5) and the endpoint is added to the call. If the owner sends
a verify_mod_ep NACK (4), or if the requested changes were not acceptable, the endpoint is sent an invite_add_ep
ABORT (5) and the endpoint is not added to the call.

Figure 54. Message Traffic for invite_add_ep

owner endp.

N
et

w
or

k

2

Message list:
1: invite_add_ep REQUEST
2: invite_add_ep ACK/NACK/NEG
3: verify_mod_ep REQUEST
4: verify_mod_ep ACK/NACK
5: invite_add_ep COM/ABORT

Client list:
owner: owner of call
endp.: client receiving prompt

3

4

1

5

Connection Management Access Protocol (CMAP) Specification Page 80

Applied Research Laboratory Zeus Project

6.16.3 Message Formats

invite_add_ep REQUEST

Data:

• num_cons - the number of connections in the call; equal to the number of Connection and UNI Objects.

• req_addr - the address of the client which requested the endpoint addition.

The Call Object gives the parameters of the call.

The Endpoint Object gives the identifier of the endpoint; the ep_id field may be blank.

req_addr (24)

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

user_con_type (4)unused (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

options_size (4) options (options_size)

00001111 00000000

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

call_type (1) acc (1) mon (1) priority (1)mod (1) trace (1)

user_call_type (4)unused (2) reserved (2)

reserved (2)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 81

Applied Research Laboratory Zeus Project

For each of the num_cons connections, the message has a Connection Object containing the parameters of the
connection and a UNI Object containing the (suggested) per-connection endpoint parameters. Within each pair, the
con_id and ep_con_id will be identical.

invite_add_ep RESPONSE

Data:

• num_cons - the number of UNI objects in the message; must be less than or equal to the value of num_cons in
the REQUEST.

• op_status - the client may set the status portion of this field to the following values (indicating, respectively, an
ACK, NACK, and NEG):

 status ∈ { OK, REFUSED, NEGOTIATING }

The UNI Objects describe the per-connection parameters of the endpoint. The client must include a UNI Object
for each parameter set it is negotiating. UNI Objects for other connections may be included or omitted.

num_cons (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

••• (num_cons)

options_size (4) options (options_size)

00001111 00000001

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 82

Applied Research Laboratory Zeus Project

invite_add_ep CONFIRMATION

Data:

• num_cons - the number of UNI objects in the message; equal to num_cons in the REQUEST.

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, BAD_NUM_CONS, UNKNOWN_CALL, VERIFY_REFUSED,
INSUFF_BW, TIMEOUT }

• ep_status - this field may take on the following values:

 ep_status ∈ { OK, BAD_EP_ADDR, DUP_EP_ID }

The UNI Objects describe the final per-connection parameters of the endpoint.

• uni_status - this field may take on the following values:

 uni_status ∈ { OK, BAD_CON_ID, DUP_CON_ID, BAD_EP_MAP, ILL_EP_MAP,
BAD_EP_DEF, BAD_EP_PERM, NO_AVAIL_VPI, NO_AVAIL_VCI,
TRANS_VPI_IN_USE, TRANS_VPI_RESERVED, TRANS_VPI_NOT_SUPPORTED,
TRANS_VCI_IN_USE, TRANS_VCI_RESERVED, TRANS_VCI_NOT_SUPPORTED,
RCV_VPI_IN_USE, RCV_VPI_RESERVED, RCV_VPI_NOT_SUPPORTED,
RCV_VCI_IN_USE, RCV_VCI_RESERVED, RCV_VCI_NOT_SUPPORTED }

6.16.4 Parameter Negotiation

r_addr and lcid. The r_addr field may be equal to the ep_addr field. If it is, and if the client is not already part of
the call, then this invite_add_ep must be for the root client as part of an open_call operation. The root client may then

num_cons (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

••• (num_cons)

options_size (4) options (options_size)

00001111 00000010

uni_status (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

ep_addr (24)

ep_id (2) ep_status (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 83

Applied Research Laboratory Zeus Project

propose a new lcid value in its RESPONSE. If the value it proposes is already in use, the root will receive an ABORT
and the owner will receive an open_call NACK, with status = DUP_CALL_ID in both cases.

ep_id. The client may propose a new value in its RESPONSE. If the value it proposes is invalid, an ABORT will
be sent as the CONFIRMATION. If the field is blank, the client must return a NEG whether it chooses a value or not.
If the client selects an acceptable value, the network will send a COM; if it selects an unacceptable value, the network
will send an ABORT; and if it leaves the field blank the network will choose a value and send it in the COM.

ep_map. In the REQUEST, this field will equal the connection’s con_def. The client may attempt to modify it in
the RESPONSE. After the usual checks (the ep_perm field and possibly verification with the owner), the network will
return the final values in the CONFIRMATION.

trans_vpi, trans_vci, rcv_vpi, rcv_vci. The network will choose values for these parameters and supply them in
the REQUEST. The client may suggest new values in the RESPONSE. The network will return the final values in
the CONFIRMATION; if the pair suggested by the client is unacceptable, the network will use the pair it originally
chose.

If the operation fails for any reason, including failure in negotiation, the client will receive an invite_add_ep
ABORT with num_cons equal to 0. The endpoint is then not added to the call.

Connection Management Access Protocol (CMAP) Specification Page 84

Applied Research Laboratory Zeus Project

6.17 invite_mod_ep Prompt

6.17.1 Synopsis

This operation invites a client to accept changes to its endpoint mapping. The client has the option of refusing to
accept the changes. The invite_mod_ep prompt is triggered when the mod_ep command is issued by the owner for
another client’s endpoint.

6.17.2 Message Traffic

Figure 55 shows the message traffic. As part of a mod_ep by the call owner, an invite_mod_ep REQUEST (1)
is sent to the client. The client may return an invite_mod_ep NACK (2); in this case the endpoint parameters are not
modified, and the operation is complete. The client may return an invite_mod_ep ACK (2), accepting the suggested
parameters. The network will then return an invite_mod_ep COM or ABORT (5) to complete the operation. Finally,
the client may return an invite_mod_ep NEG (2), requesting a modification in some of its endpoint parameters. If
verification with the owner is required (if the endpoint attempts to change its mapping and the corresponding permis-
sions are set to VERIFY), the owner is sent a verify_mod_ep REQ (3) to which it responds (4) with a verify_mod_ep
ACK or NACK. If the owner sends a verify_mod_ep ACK (4), or if the requested changes were acceptable without
verification, the endpoint is sent an invite_mod_ep COM (5) and the endpoint is added to the call. If the owner sends
a verify_mod_ep NACK (4), or if the requested changes were not acceptable, the endpoint is sent an invite_mod_ep
ABORT (5) and the endpoint is not added to the call.

Figure 55. Message Traffic for invite_mod_ep

owner endp.

N
et

w
or

k

2

Message list:
1: invite_mod_ep REQUEST
2: invite_mod_ep ACK/NACK/NEG
3: verify_mod_ep REQUEST
4: verify_mod_ep ACK/NACK
5: invite_mod_ep COM/ABORT

Client list:
owner: owner of call
endp.: client receiving prompt

3

4

1

5

Connection Management Access Protocol (CMAP) Specification Page 85

Applied Research Laboratory Zeus Project

6.17.3 Message Formats

invite_mod_ep REQUEST

Data:

• num_cons - the number of connections in the call; equal to the number of Connection and UNI Objects.

• req_addr - the address of the client which requested the endpoint modification.

The Endpoint Object gives the identifier of the endpoint; the ep_id field may be blank.

For each of the num_cons connections, the message has a UNI Object containing the (suggested) per-connection
endpoint parameters.

req_addr (24)

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

••• (num_cons)

options_size (4) options (options_size)

00010000 00000000

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 86

Applied Research Laboratory Zeus Project

invite_mod_ep RESPONSE

Data:

• num_cons - the number of UNI objects in the message; must be less than or equal to the value of num_cons in
the REQUEST.

• op_status - the client may set the status portion of this field to the following values (indicating, respectively, an
ACK, NACK, and NEG):

 status ∈ { OK, REFUSED, NEGOTIATING }

The UNI Objects describe the per-connection parameters of the endpoint. The client must include a UNI Object
for each parameter set it is negotiating. UNI Objects for other connections may be included or omitted.

num_cons (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

••• (num_cons)

options_size (4) options (options_size)

00010000 00000001

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 87

Applied Research Laboratory Zeus Project

invite_mod_ep CONFIRMATION

Data:

• num_cons - the number of UNI objects in the message; equal to num_cons in the REQUEST.

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, BAD_NUM_CONS, UNKNOWN_CALL, VERIFY_REFUSED,
INSUFF_BW, TIMEOUT }

• ep_status - this field may take on the following values:

 ep_status ∈ { OK, BAD_EP_ADDR, DUP_EP_ID }

The UNI Objects describe the final per-connection parameters of the endpoint.

• uni_status - this field may take on the following values:

 uni_status ∈ { OK, BAD_CON_ID, DUP_CON_ID, BAD_EP_MAP, ILL_EP_MAP,
BAD_EP_DEF, BAD_EP_PERM, NO_AVAIL_VPI, NO_AVAIL_VCI,
TRANS_VPI_IN_USE, TRANS_VPI_RESERVED, TRANS_VPI_NOT_SUPPORTED,
TRANS_VCI_IN_USE, TRANS_VCI_RESERVED, TRANS_VCI_NOT_SUPPORTED,
RCV_VPI_IN_USE, RCV_VPI_RESERVED, RCV_VPI_NOT_SUPPORTED,
RCV_VCI_IN_USE, RCV_VCI_RESERVED, RCV_VCI_NOT_SUPPORTED }

6.17.4 Parameter Negotiation

ep_map. The client may attempt to modify the value in the RESPONSE. After the usual checks (the ep_perm
field and possibly verification with the owner), the network will return the final values in the CONFIRMATION.

num_cons (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

••• (num_cons)

options_size (4) options (options_size)

00010000 00000010

uni_status (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

ep_addr (24)

ep_id (2) ep_status (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 88

Applied Research Laboratory Zeus Project

trans_vpi, trans_vci, rcv_vpi, rcv_vci. The network will choose values for these parameters and supply them in
the REQUEST. The client may suggest new values in the RESPONSE. The network will return the final values in
the CONFIRMATION; if the pair suggested by the client is unacceptable, the network will use the pair it originally
chose.

If the operation fails for any reason, including failure in negotiation, the client will receive an invite_mod_ep
ABORT with num_cons equal to 0. The endpoint is then not added to the call.

Connection Management Access Protocol (CMAP) Specification Page 89

Applied Research Laboratory Zeus Project

6.18 invite_change_owner Prompt

6.18.1 Synopsis

This operation invites a client to become the new owner of a call. It is triggered by a change_owner.

6.18.2 Message Traffic

Figure 56 shows the message traffic for invite_chagne_owner. The client receives an invite_change_owner RE-
QUEST (1), to which it must respond (2) with an invite_change_owner ACK or NACK. The network then either
confirms or cancels the operation with an invite_change_owner COM or ABORT (3).

client

1

3

Message list:
1: invite_change_owner REQUEST
2: invite_change_owner ACK/NACK
3: invite_change_owner COM/ABORT

Client list:
client: client receiving prompt

Figure 56. Message Traffic for invite_change_owner

N
et

w
or

k
2

Connection Management Access Protocol (CMAP) Specification Page 90

Applied Research Laboratory Zeus Project

6.18.3 Message Formats

invite_change_owner REQUEST

Data:

• num_cons - the number of connections in the call, and the number of Connection Objects in the message.

• num_eps - the number of endpoints in the call, and the number of Endpoint Objects in the message.

• owner_addr - the address of the current owner of the call; also the client that requested the operation.

The Call Object contains the call parameters. The Connection Objects contain the parameters of the connections.
The Endpoint Objects contain the addresses of the endpoints.

••• (num_eps)

num_cons (2)

reserved (2)

num_eps (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

user_con_type (4)unused (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

00010001 00000000

owner_addr (24)

call_type (1) acc (1) mon (1) priority (1)mod (1) trace (1)

user_call_type (4)unused (2) reserved (2)

reserved (2)

Connection Management Access Protocol (CMAP) Specification Page 91

Applied Research Laboratory Zeus Project

invite_change_owner RESPONSE

Data:

• op_status - the client may set the status portion of this field to the following values (indicating, respectively, an
ACK and NACK):

 status ∈ { OK, REFUSED }

invite_change_owner CONFIRMATION

Data:

• op_status - the network uses the status portion of this field to indicate a commit or abort:

 status ∈ { OK, REFUSED }

6.18.4 Parameter Negotiation

There is no parameter negotiation in this prompt.

unused (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

00010001 00000001

unused (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

00010001 00000010

Connection Management Access Protocol (CMAP) Specification Page 92

Applied Research Laboratory Zeus Project

6.19 verify_add_ep Query

6.19.1 Synopsis

This operation queries the call owner to see if a new endpoint should be added to a call. It is triggered when a non-
owner performs an add_ep operation and either (1) the call’s accessibility (Section 4.3.5) is VERIFY or (2) the non-
owner requests an endpoint mapping (Section 4.5.3) or defaults (Section 4.5.4) that differs from the connection’s de-
faults (Section 4.4.4) and one or more of the corresponding connection permissions (Section 4.4.5) are VERIFY. The
verification is performed before the endpoint is invited. See add_ep.

6.19.2 Message Traffic

The network traffic is shown in Figure 57. The network initiates the operation by sending a verify_add_ep RE-
QUEST to the owner. If the requested addition is acceptable, the owner must respond with a verify_add_ep ACK. If
it is unacceptable, the owner must respond with a verify_add_ep NACK.

owner

1

2

Message list:
1: verify_add_ep REQUEST
2: verify_add_ep ACK/NACK

Client list:
owner: owner of call

Figure 57. Message Traffic for verify_add_ep

N
et

w
or

k

Connection Management Access Protocol (CMAP) Specification Page 93

Applied Research Laboratory Zeus Project

6.19.3 Message Formats

verify_add_ep REQUEST

Data:

• num_cons - number of UNI Objects in the message; also number of connections in the call.

• req_addr - address of the client which requested the operation.

• ep_addr, ep_id - address and identifier of the endpoint to be added.

The UNI Objects give the requested UNI parameters for the endpoint for each connection.

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

req_addr (24)

••• (num_cons)

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

00010010 00000000

Connection Management Access Protocol (CMAP) Specification Page 94

Applied Research Laboratory Zeus Project

verify_add_ep RESPONSE

Data:

• op_status - the status portion of this field may take on the following values (indicating, respectively, an ACK
and a NACK):

 status ∈ { OK, REFUSED }

6.19.4 Parameter Negotiation

There is no parameter negotiation in this command. The owner is permitted to examine the fields of the Endpoint
and UNI Objects of the REQUEST in making its decision, but is not permitted to modify them (hence they are not
returned in the RESPONSE). The op_status field in the RESPONSE is used to return an ACK (the value OK) or
NACK (any other value, with VERIFY_REFUSED indicating that the owner does not accept the addition).

unused (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

00010010 00000001

Connection Management Access Protocol (CMAP) Specification Page 95

Applied Research Laboratory Zeus Project

6.20 verify_mod_ep Query

6.20.1 Synopsis

This operation queries the call owner to see if modifications to an endpoint’s parameters should be permitted. It
is triggered (1) when an endpoint responds to an invite_add_ep or invite_add_con REQ with a NEG, requesting an
endpoint mapping (Section 4.5.3) or defaults (Section 4.5.4) that differs from the connection’s defaults (Section 4.4.4)
and one or more of the corresponding connection permissions (Section 4.4.5) are VERIFY, or (2) when a non-owner
endpoint issues a mod_ep REQ and the above conditions apply. See open_call, invite_add_ep, invite_add_con, and
mod_ep.

6.20.2 Message Traffic

The message traffic is shown in Figure 58. The network initiates the operation by sending a verify_mod_ep RE-
QUEST to the owner. If the requested addition is acceptable, the owner must respond with a verify_mod_ep ACK.
If it is unacceptable, the owner must respond with a verify_mod_ep NACK.

owner

1

2

Message list:
1: verify_mod_ep REQUEST
2: verify_mod_ep ACK/NACK

Client list:
owner: owner of call

Figure 58. Message Traffic for verify_mod_ep

N
et

w
or

k

Connection Management Access Protocol (CMAP) Specification Page 96

Applied Research Laboratory Zeus Project

6.20.3 Message Formats

verify_mod_ep REQUEST

Data:

• num_cons - number of UNI Objects in the message; also number of connections in the call.

• req_addr - the address of the client which requested the modification.

• ep_addr, ep_id - address and identifier of the endpoint to be modified.

The UNI Objects give the requested UNI parameters for the endpoint for each connection.

req_addr (24)

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

••• (num_cons)

unused (2)ep_con_id (2) unused (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm (1)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

00010011 00000000

Connection Management Access Protocol (CMAP) Specification Page 97

Applied Research Laboratory Zeus Project

verify_mod_ep RESPONSE

Data:

• op_status - the status portion of this field may take on the following values (indicating, respectively, an ACK
and a NACK):

 status ∈ { OK, REFUSED }

6.20.4 Parameter Negotiation

There is no parameter negotiation in this command. The owner is permitted to examine the fields of the Endpoint
and UNI Objects of the REQUEST in making its decision, but is not permitted to modify them (hence they are not
returned in the RESPONSE). The op_status field in the RESPONSE is used to return an ACK (the value OK) or
NACK (any other value, with VERIFY_REFUSED indicating that the owner does not accept the addition).

unused (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

00010011 00000001

Connection Management Access Protocol (CMAP) Specification Page 98

Applied Research Laboratory Zeus Project

6.21 announce_mod_call Notification

6.21.1 Synopsis

This operation notifies an endpoint that the call parameters have been modified. See mod_call.

6.21.2 Message Traffic

No additional traffic results from the announce_mod_call REQUEST.

6.21.3 Message Formats

announce_mod_call REQUEST

Data:

• call_type, acc, mod, trace, mon, priority - new values of the call parameters.

6.21.4 Parameter Negotiation

There is no parameter negotiation in this notification.

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

call_type (1) acc (1) mon (1) priority (1)mod (1) trace (1)

user_call_type (4)unused (2) reserved (2)

reserved (2)

options_size (4) options (options_size)

00010100 00000000

Connection Management Access Protocol (CMAP) Specification Page 99

Applied Research Laboratory Zeus Project

6.22 announce_close_call Notification

6.22.1 Synopsis

This operation notifies the owner or an endpoint that a call has been deleted. See drop_con, close_call.

6.22.2 Message Traffic

No additional traffic results from the announce_close_call REQUEST.

6.22.3 Message Formats

announce_close_call REQUEST

6.22.4 Parameter Negotiation

There is no parameter negotiation in this notification.

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

00010101 00000000

Connection Management Access Protocol (CMAP) Specification Page 100

Applied Research Laboratory Zeus Project

6.23 announce_add_con Notification

6.23.1 Synopsis

This operation notifies the call owner that one or more connections have been added. See add_con.

6.23.2 Message Traffic

No additional traffic results from the announce_add_con REQUEST.

6.23.3 Message Formats

announce_add_con REQUEST

Data:

• num_cons - number of connections that were added, and number of Connection Objects in the message. The
Connection Objects contain the descriptions of the connections that were added.

6.23.4 Parameter Negotiation

There is no parameter negotiation in this notification.

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

user_con_type (4)unused (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

options_size (4) options (options_size)

00010110 00000000

Connection Management Access Protocol (CMAP) Specification Page 101

Applied Research Laboratory Zeus Project

6.24 announce_mod_con Notification

6.24.1 Synopsis

This operation notifies a participant that one or more connections have been modified. See mod_con.

6.24.2 Message Traffic

No additional traffic results from the announce_mod_con REQUEST.

6.24.3 Message Formats

announce_mod_con REQUEST

Data:

• num_cons - number of connections that were modified, and number of Connection Objects in the message. The
Connection Objects contain the new parameters of the connections that were modified.

6.24.4 Parameter Negotiation

There is no parameter negotiation in this notification.

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

user_con_type (4)unused (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

options_size (4) options (options_size)

00010111 00000000

Connection Management Access Protocol (CMAP) Specification Page 102

Applied Research Laboratory Zeus Project

6.25 announce_drop_con Notification

6.25.1 Synopsis

This operation notifies a participant that one or more connections have been dropped.

6.25.2 Message Traffic

No additional traffic results from the announce_drop_con REQUEST.

6.25.3 Message Formats

announce_drop_con REQUEST

Data:

• num_cons - number of connections that were dropped, and number of Connection Objects in the message. The
Connection Objects contain the last parameters of the connections that were modified.

6.25.4 Parameter Negotiation

There is no parameter negotiation in this notification.

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

user_con_type (4)unused (2)

bw (12)

con_id (2)

con_perm (1)con_type (1) reserved (1) con_def (1)

••• (num_cons)

options_size (4) options (options_size)

00011000 00000000

Connection Management Access Protocol (CMAP) Specification Page 103

Applied Research Laboratory Zeus Project

6.26 announce_add_ep Notification

6.26.1 Synopsis

This operation notifies the call owner or a participant that an endpoint has been added. See add_ep, open_call.

6.26.2 Message Traffic

No additional traffic results from the announce_add_ep REQUEST.

6.26.3 Message Formats

announce_add_ep REQUEST

Data:

• num_cons - number of UNI Objects in the message; also the number of connections in the call.

The Endpoint Object contains the description of the endpoint that was added. Each of the num_cons UNI Objects
contain the endpoint parameters for the corresponding connection of the call.

6.26.4 Parameter Negotiation

There is no parameter negotiation in this notification.

••• (num_cons)

unused (2)ep_con_id (2) reserved (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm(1)

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

00011001 00000000

Connection Management Access Protocol (CMAP) Specification Page 104

Applied Research Laboratory Zeus Project

6.27 announce_mod_ep Notification

6.27.1 Synopsis

This operation notifies a client that an endpoint has been modified. See mod_ep.

6.27.2 Message Traffic

No additional traffic results from the announce_mod_ep REQUEST.

6.27.3 Message Formats

announce_mod_ep REQUEST

Data:

• num_cons - number of UNI Objects in the message; also the number of connections in the call.

The Endpoint Object contains the description of the endpoint that was added. Each of the num_cons UNI Objects
contain the endpoint parameters for the corresponding connection of the call.

6.27.4 Parameter Negotiation

There is no parameter negotiation in this notification.

••• (num_cons)

unused (2)ep_con_id (2) reserved (1)

trans_vci (2) rcv_vci (2)

ep_map (1) ep_def (1)

reserved (1) trans_vpi (1) reserved (1) rcv_vpi (1)

ep_perm(1)

num_cons (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

00011010 00000000

ep_addr (24)

ep_id (2) unused (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 105

Applied Research Laboratory Zeus Project

6.28 announce_drop_ep Notification

6.28.1 Synopsis

This operation notifies the call owner or a participant that an endpoint has been dropped. It is triggered by the
successful execution of a drop_ep by a client.

6.28.2 Message Traffic

No additional traffic results from the announce_drop_ep REQUEST.

6.28.3 Message Formats

announce_drop_ep REQUEST

Data:

The Endpoint Object contains the identifier of the endpoint that was dropped.

6.28.4 Parameter Negotiation

There is no parameter negotiation in this notification.

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

ep_addr (24)

ep_id (2) unused (2) reserved (4)

00011011 00000000

Connection Management Access Protocol (CMAP) Specification Page 106

Applied Research Laboratory Zeus Project

6.29 announce_change_owner Notification

6.29.1 Synopsis

This operation notifies a participant that the call’s owner has been changed. See change_owner.

6.29.2 Message Traffic

No additional traffic results from the announce_change_owner REQUEST.

6.29.3 Message Formats

announce_change_owner REQUEST

Data:

• new_owner - address of the new owner of the call.

6.29.4 Parameter Negotiation

There is no parameter negotiation in this notification.

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

new_owner (24)

options_size (4) options (options_size)

00011100 00000000

Connection Management Access Protocol (CMAP) Specification Page 107

Applied Research Laboratory Zeus Project

6.30 announce_change_root Notification

6.30.1 Synopsis

This operation notifies a participant that the call’s root has been changed. See change_root.

6.30.2 Message Traffic

No additional traffic results from the announce_change_root REQUEST.

6.30.3 Message Formats

announce_change_root REQUEST

Data:

• new_call_id (r_addr), new_call_id (lcid) - new identifier (root address and local identifier) of the call.

6.30.4 Parameter Negotiation

There is no parameter negotiation in this notification.

6.30.5 Operation

On receiving an announce_change_root REQUEST, the client must update all records associated with the call
to change the call identifier.

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

new_call_id (r_addr) (24)

new_call_id (lcid) (2) reserved (2) reserved (4)

options_size (4) options (options_size)

00011101 00000000

Connection Management Access Protocol (CMAP) Specification Page 108

Applied Research Laboratory Zeus Project

6.31 status Maintenance Operation

6.31.1 Synopsis

This two-phase operation requests the status of another operation, identified by msg_id. It may be initiated by the
client or by the network.

6.31.2 Message Traffic

Figure 59 shows the traffic for the network-initiated case. The network sends (1) a status REQUEST to the client,
which responds (2) with a status ACK.

Figure 60 shows the traffic for the client-initiated case. The client sends (1) a status REQUEST to the network,
which responds (2) with a status ACK.

client

1

2

Message list:
1: status REQUEST
2: status ACK/NACK

Client list:
client: client receiving signal

Figure 59. Message Traffic for Network-Initiated status

N
et

w
or

k

client

1

2

Message list:
1: status REQUEST
2: status ACK/NACK

Client list:
client: client sending signal

Figure 60. Message Traffic for Client-Initiated status

N
et

w
or

k

Connection Management Access Protocol (CMAP) Specification Page 109

Applied Research Laboratory Zeus Project

6.31.3 Message Formats

status REQUEST

Data:

• op_msg_id - operation whose status is being requested.

status RESPONSE

Data:

• op_msg_id - operation whose status is being returned.

• op_status - in messages from the network, the status portion of this field may take on the following values:

 status ∈ { OK, UNKNOWN_CALL, TIMEOUT }

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

10000000 00000000

op_msg_id (2) unused (2) reserved (4)

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

10000000 00000001

op_msg_id (2) op_msg_status (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 110

Applied Research Laboratory Zeus Project

• op_msg_status - this field may take on the following values:

 op_msg_status ∈ { OK_RESPONSE, OK_CONFIRMATION, NO_SUCH_OPERATION }

6.31.4 Parameter Negotiation

There is no parameter negotiation in this operation.

Connection Management Access Protocol (CMAP) Specification Page 111

Applied Research Laboratory Zeus Project

6.32 alert Maintenance Operation

6.32.1 Synopsis

This one-phase operation is used by either the network or a client to inform the other of the status of an operation
(to, for example, inform the other side that the operation is proceeding normally).

6.32.2 Message Traffic

No additional traffic results from the alert REQUEST.

6.32.3 Message Formats

alert REQUEST

Data:

• op_msg_id - operation whose status is being reported.

• op_msg_status - this field may take on the following values:

 op_msg_status ∈ { OK_RESPONSE, OK_CONFIRMATION }

6.32.4 Parameter Negotiation

There is no parameter negotiation in this operation.

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

call_id (r_addr) (24)

call_id (lcid) (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

10000001 00000000

op_msg_id (2) op_msg_status (2) reserved (4)

Connection Management Access Protocol (CMAP) Specification Page 112

Applied Research Laboratory Zeus Project

6.33 client_reset Maintenance Operation

6.33.1 Synopsis

This two-phase operation informs the network that a client has been reset and all call informarion concerning it
has been cleared.

6.33.2 Message Traffic

The client sends a client_reset REQUEST to the network, which responds with a client_reset ACK.

6.33.3 Message Formats

client_reset REQUEST

Data:

• s_addr - client which was reset.

The call_id fields are unused in this message, since it applies to all calls in which the client is involved.

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

unused (24)

unused (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

10000010 00000000

Connection Management Access Protocol (CMAP) Specification Page 113

Applied Research Laboratory Zeus Project

client_reset RESPONSE

Data:

• op_status - the status portion of this field may take on the following values:

 status ∈ { OK, TIMEOUT }

6.33.4 Parameter Negotiation

There is no parameter negotiation in this operation.

unused (2)

reserved (2)

unused (2)

op_status (2)

msg_id (2)

unused (24)

unused (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

10000010 00000001

Connection Management Access Protocol (CMAP) Specification Page 114

Applied Research Laboratory Zeus Project

6.34 network_reset Maintenance Operation

6.34.1 Synopsis

This one-phase operation is used by the network to inform a client that the network has been reset and all call
information concerning the client has been lost.

6.34.2 Message Traffic

No additional traffic results from the network_reset REQUEST.

6.34.3 Message Formats

network_reset REQUEST

Data:

• s_addr - client whose network was reset.

The call_id fields are unused in this message, since it applies to all calls in which the client is involved.

6.34.4 Parameter Negotiation

There is no parameter negotiation in this notification.

6.34.5 Operation

On receiving a network_reset REQUEST, the client disconnects itself from all calls in which it was involved
(adjusting its internal data structures as necessary). It may then perform whatever actions are necessary to recreate the
calls that were lost.

unused (2)

reserved (2)

unused (2)

unused (2)

msg_id (2)

unused (24)

unused (2)

m_addr (24)

s_addr (24)

reserved (2)

options_size (4) options (options_size)

10000011 00000000

Connection Management Access Protocol (CMAP) Specification Page 115

Applied Research Laboratory Zeus Project

6.35 error_report Maintenance Operation

6.35.1 Synopsis

This one-phase operation is used by the network or by the client to report serious (header or formatting) errors in
messages which make the processing of the message impossible.

6.35.2 Message Traffic

No additional traffic results from the error_report REQUEST.

6.35.3 Message Formats

error_report REQUEST

Data:

The msg_id field for an error_report is alway 0xffff.

The call_id fields are unused in this message, since it does not apply to any call in particular.

• op_status - this field reports on the error that occurred in the original message. The status portion of this field
may take on the following values:

 status ∈ { BAD_OP_TYPE, BAD_PHASE_EXP_REQUEST, BAD_PHASE_EXP_RESPONSE,
BAD_PHASE_EXP_CONFIRMATION, DUP_MSG_ID, BAD_MSG_ID,
BAD_MADDR, BAD_SADDR, FORMAT_ERROR }

• message_length - a four-byte unsigned integer giving the length of the original message.

• message - the complete contents of the erroneous message as received by the network (no changes in any fields).
The message is end-padded with 0 bytes to equal a multiple of eight bytes (so that options_size falls on an
eight-byte boundary).

6.35.4 Parameter Negotiation

There is no parameter negotiation in this operation.

unused (2)

reserved (2)

unused (2)

op_status (2)

0xffff

unused (24)

unused (2)

m_addr (24)

s_addr (24)

reserved (2)

message_length (4) reserved (4)

11111111 00000000

message (message_length)

options_size (4) options (options_size)

Connection Management Access Protocol (CMAP) Specification Page 116

Applied Research Laboratory Zeus Project

6.35.5 Operation

When the client receives a message which it cannot process it sends an error_report message and remains in the
same state.

The situation when a client receives an error_report message is somewhat more complex. This message indi-
cates that the client sent an erroneous message. When the client sent that message, it made a state transition; the net-
work has not made a corresponding change of state. The correct action for the client is thus to undo its state transition.
On receiving the error_report message from the network, the client should examine the original message to determine
with which of its state transitions it was associated. It should then return to the previous state, recreate and resend the
message (checking the message format to ensure that it is correct), and make the same state transition. If the error oc-
curs again, the client should report it to a network manager and possibly to the programmer of the client application.

NB. In many cases (e.g., after sending an open_call REQUEST) the receipt of an error_report message is func-
tionally equivalent to receiving a NACK or ABORT in that the client returns to its previous state. However, there is
a crucial difference, in that in the NACK case the network processed the message and indicated that the requested ac-
tion was not acceptable, while in the error_report case the network was unable to process the message. The two cases
must thus be treated differently.

Connection Management Access Protocol (CMAP) Specification Page 117

Applied Research Laboratory Zeus Project

7. Examples
This section describes, through three examples, how common CMAP operations interact by demonstrating how

a variety of calls can be established and dynamically change. These examples also illustrate parameter negotiation dur-
ing operations. The first example is a simple data transfer, such as might be used for interprocess communication. The
second example is a video server with a mute transmitter. The final example is a multipoint multiconnection confer-
ence call.

All three examples use the simple network shown in Figure 61. This network consists of four nodes N1, N2, N3
and N4 (the first interior, the others exterior) and four clients A, B, C, and D. The nodes and clients are connected by
fiber links as indicated; we will use the pen pattern to represent links without calls and the pen pattern to rep-
resent links with calls throughout this section. The location of the CMAP Session Managers within this network is im-
material, as the configuration of the Session Management Layer (Section 3.1) is hidden from the clients. All four
clients might be served by a single Session Manager, or each might have a separate Session Manager (even the two
clients C and D, which connect to the same exterior node, may send requests to different managers). The client simply
“knows” that it sends and receives CMAP messages on a particular VPI/VCI pair using the CTL protocol (Section 3.4).
The establishment of this configuration is not a part of CMAP’s functionality,

B

C

Figure 61. Network Used in Examples

NETWORK

A

D

N4

N3

N1

N2

Connection Management Access Protocol (CMAP) Specification Page 118

Applied Research Laboratory Zeus Project

7.1 Data Transfer
The first example is based on a simple data transfer, such as a “remote copy” or file-transfer operation between

two computers. One client (A in our sample network) wishes to transmit data to a second client (B). Client A must first
set up a data connection between itself and B, then transfer data, and finally close down the call.

7.1.1 Call Setup (Method 1)

In the first method that we illustrate, client A uses two separate commands (open_call and add_ep) to establish
the data connection between itself and B. One possible sequence of operations is shown in Figure 62.

Client A first sends an open_call REQUEST to the network. The message might look like that in Figure 63.
Notable aspects of this message are:

• num_cons = 1; there is only one connection in this datagram call.

• num_eps = 1; the open_call is only adding the root.

• r_addr = client A; client A will be the root.

• lcid = blank; client A is willing to allow the network to assign a local call identifier.

• user_call_type = IP_DATAGRAM; this is actually a symbolic constant known to both client A and B.

• call_type = POINT_TO_POINT; this is a point-to-point call.

• mod = CLOSED; non-owners are not allowed to add or modify endpoints.

• con_id = blank; client A is willing to allow the network to assign a connection identifier.

• con_type = <VC, DYNAMIC, HIGH>; client A wants a virtual channel connection.

• con_def = <ON, OFF, OFF>, con_perm = <OFF, OFF, OFF>; by default, new endpoints can receive but not
transmit or echo, and cannot change their mapping.

B

C

NETWORK

A

D

N4

N3

N1

N2

invite_add_ep REQ2

open_call REQ1

invite_add_ep ACK

open_call ACK4

3

B

C

NETWORK

A

D

N4

N3

N1

N2

Figure 62. Building a Point-to-Point Call with Two Commands

 add_ep ACK9

 add_ep REQ5 invite_add_ep REQ6

 invite_add_ep NEG7

 invite_add_ep COM8

1

Connection Management Access Protocol (CMAP) Specification Page 119

Applied Research Laboratory Zeus Project

• ep_id = 0; client A is selecting an endpoint identifier.

• ep_con_id = blank; this is required, since the con_id is also blank.

• ep_map = ep_def = <OFF, ON, OFF>; client A is overriding the connection defaults and assigning itself a
transmit-only mapping.

• trans_vpi = trans_vci = rcv_vpi = rcv_vci = blank; client A is willing to allow the network to assign pairs.

When this message is received by the network (CMAP Session Manager), it is checked for correctness (e.g., that
the ep_id is not in use). The network selects values for the blank fields—possibly lcid = 0, con_id = ep_con_id = 1,
transmit pair = 3/10, and receive pair = 3/11. It then sends an invite_add_ep REQUEST to client A asking the
client to join the call with these parameters. Assuming the parameters are acceptable, client A responds with an
invite_add_ep ACK. The network establishes the ATM connections between client A and its exterior node N2 (solid
line in Figure 62 top), although for the time being these connections do not lead anywhere. The network then sends
an open_call ACK to client A. The call, with one connection and endpoint, now exists within the network.

1

0

1

0

0x0001

blank

client A

client A

0

P-TO-P CLOSED OF,OF,OF NORMALCLOSED CLOSED

IP_DATAGRAM0 0

IP_DATAGRAM_CON0

0, 0, 0 (BEST-EFFORT)

blank

ON,ON,ONVC,DY,HI 0 ON,OF,OF

0blank 0

blank blank

OF,ON,OF OF,ON,OF

0 blank 0 blank

OF,OF,OF

0

client A

0 0 0

0

00000001 00000000

client A

Figure 63. open_call Message for Data Transfer Example

2
3

4

Connection Management Access Protocol (CMAP) Specification Page 120

Applied Research Laboratory Zeus Project

The call setup in Figure 62 then continues when client A sends an add_ep REQUEST to the network asking
that client B be added to the call. The mechanism whereby client A discovers client B’s address does not fall within
the scope of CMAP. One possible method would be a “name-server” client with a well-known CMAP address; client
A could connect to this client and request the address of client B.

The add_ep REQUEST message might look like that in Figure 64. Notable aspects of this message are:

• msg_id = 0x0001; since the open_call is complete, client A is free to re-use this message identifier. (Of course,
any unused identifier could have been used in this message.)

• num_cons = 0; client A is not supplying any UNI Objects for client B’s parameters.

• ep_id = blank; client A is willing to allow client B or the network to assign this value.

After receiving and checking this message, the network begins reserving bandwidth for the connection. How this
is done depends somewhat on the algorithms used in the Connection Management Layer (Section 3.5). One reason-
ably-efficient algorithm [64] is illustrated by the arrows in the lower portion of Figure 62. The network routes “toward
the root”, working from B’s exterior node N4 toward A’s node N2, reserving bandwidth on each link and within each
node. If there are any problems (e.g., insufficient bandwidth) the network will send an add_ep NACK to client A.

Assuming that the needed bandwidth can be reserved, the network next sends an invite_add_ep REQUEST
to client B. Since client A did not supply any UNI Objects in the add_ep REQUEST, the invite_add_ep REQUEST
will select values for client B’s UNI parameters for connection 1. Specifically:

• ep_map = ep_def = <ON, OFF, OFF>, ep_perm = <OFF, OFF, OFF>; these parameters are taken from the
con_def and con_perm of the connection. The ep_perm value prevents client B from negotiating its mapping.

• transmit pair = 3/23, receive pair = 3/24; these are chosen by the network and offered to client B, which may
negotiate them.

In addition, the network will present the blank ep_id value to client B. Client B may select a value for this field, or
return a blank value; in either case, it must respond with an invite_add_ep NEG (if it selects a value, the network

0

0

0

0

0x0001

client A

0

client A

client A

0

0

client B

blank 0 0

00000111 00000000

Figure 64. add_ep Message for Data Transfer Example

5

6

7

Connection Management Access Protocol (CMAP) Specification Page 121

Applied Research Laboratory Zeus Project

must approve it; if it does not select a value, the network must select one and return it to B). Had client A provided a
value for client B’s ep_id, the network would have presented it to B, which could then accept the value and simply
return an invite_add_ep ACK. Of course, if in the latter case client B wished to negotiate new VPI/VCI pairs it would
still return an invite_add_ep NEG. We may assume that client B proposes an acceptable value (say, ep_id = 0) in its
response. The network will then finalize the reserved connection and return an invite_add_ep COM to client B
and an add_ep ACK to client A.

7.1.2 Call Setup (Method 2)

The second method of setting up the call uses the single open_call command to establish the data conection be-
tween clients A and B. One possible sequence of operations is shown in Figure 65.

Client A first sends an open_call REQUEST to the network. This message differs from the previous one
(Figure 63) in that num_eps = 2 and client A provides the address of client B and its UNI Object for the connection in
the open_call REQUEST (B’s UNI Object will still specify a receive-only mapping). This single message thus com-
bines the previous two.

During execution of the command, both clients A and B will be sent invite_add_ep REQUESTs (and).
The addition of the two endpoints occurs in parallel, and both must succeed for the operation to succeed. If, for exam-
ple, client A sends an ACK while client B sends a NACK, client A will receive an ABORT to tell it not to
join the connection; it its other capacity as owner of the call, client A will also receive an open_call NACK. If both
endpoints are successfully added, both will receive CONFs and client A will receive an open_call ACK.

7.1.3 Data Transmission

Once the call is established, data transfer may begin. Data transfer protocols are outside the scope of CMAP,
which only provides ATM connections between endpoints. Clients are free to use any protocol they wish in sending
data. Note that in many cases (for example, an IP protocol, where the data sink detects missing or erroneous packets
and requests retransmission from the source) this may involve bidirectional communication between endpoints. The
setup for our simple unidirectional connection would have to be modified accordingly. Similarly, careful selection of
call and connection parameters (priority, QOS, bandwidth) may be required to support certain protocols.

One aspect of data transmission is general enough to be mentioned here. Assume that both clients in our example
can transmit and receive. Neither party should transmit until receiving the last message (and in Figure 62) from
the network, since the connection is not known to be established until this time. Since these last two messages are in-
dependent and can be received in any relative order, either party could begin receiving data before receiving the last
message. Thus, client A must be prepared to receive data as soon as it sends the add_ep REQUEST, and client B
must be prepared to receive data as soon as it sends the invite_add_ep RESPONSE. Similar precautions apply to
the call setup depicted in Figure 65—neither party should transmit until it receives its last message (and), but
either may receive data anytime after sending its last message (and). This precaution also applies to the other
examples in this section; clients cannot reliably transmit until after the message that confirms they have been added to
the call, but they may have to receive anytime after the last CMAP message that they send.

8
9

C

NETWORK

A

D

N3

N1

N2

invite_add_ep REQ2

open_call REQ1

invite_add_ep ACK3

BN4

Figure 65. Building a Point-to-Point Call with One Command

 invite_add_ep REQ4

 invite_add_ep NEG5

 invite_add_ep COM6

open_call ACK8

invite_add_ep COM7

1

2 4

3 5 7
8

8 9

5
7

6 8
3 5

Connection Management Access Protocol (CMAP) Specification Page 122

Applied Research Laboratory Zeus Project

7.1.4 Call Closedown

Once data transfer is complete, client A closes down the call by sending a close_call REQUEST which might
look like that in Figure 66. This causes an announce_close_call REQUEST to be sent to each endpoint (including
client A’s) and a close_call ACK to be returned to client A. The network also begins tearing down the call and freeing
the resources used by the call. The latter operation may take some time and the connections may actually remain valid
for a short period, but clients should not send any data after receiving the announce_close_call REQUESTs.

0

0

0

0

0x07A1

client A

0

client A

client A

0

0

00000011 00000000

Figure 66. close_call Message for Data Transfer Example

Connection Management Access Protocol (CMAP) Specification Page 123

Applied Research Laboratory Zeus Project

7.2 Audio/Video Server
In this example, we assume that one of the clients (A in our sample network) is a mute source of audio and video

data—it may be a simple camera, or some more complex piece of equipment. Another client (C) is set up as the sur-
rogate (Section 3.4.2) for this mute client and will handle all its signalling. The manner in which network managment
establishes such surrogate signalling is outside the scope of CMAP. In this example, we will set up a point-to-multi-
point call whereby data from the mute client A can be distributed to other clients. We will assume that for some reason
(security, perhaps) access to this data is to be controlled and monitored by the surrogate C.

7.2.1 Call Setup

The sequence of operations in the call setup is shown in Figure 67. Client C creates a call rooted at the mute trans-
mitter client A by sending an open_call REQUEST as shown in Figure 68. Note the following:

• num_cons = 2; there are separate audio and video connections in this call.

• num_eps = 1; only the root (client A) is in the call initially.

• r_addr = client A; the root is at client A.

• s_addr = client C; client C is the one sending the open_call signal, and will thus be the owner of the call. This
is discussed in greater detail below.

• call_type = MULTIPOINT; any number of clients may participate in the call, and all will receive data trans-
mitted by any of the other clients.

• acc = VERIFY; attempts by clients to join the call or add other clients will be checked by the owner.

• mon = <ON, OFF, OFF>; the owner will be notified of all client joins, modifications, and drops.

• con_def = <ON, OFF, OFF> and con_perm = <OFF, OFF, OFF> for both connections; by default, new cli-
ents are receive-only and cannot change their mapping.

• bw has very specific values for both connections, reflecting the requirements of the audio and video transmis-
sion hardware. Similarly, con_type requests STATIC, HIGH-quality connections.

• ep_map = ep_def = <OFF, ON, OFF> for both connections; the owner is overriding the connection defaults
and making itself a transmit-only endpoint.

• VPI/VCI pairs for client A are specified. This may be required by the mute client’s hardware, for example the
signal-to-ATM transcoders may produce cells with fixed headers.

The matter of the call ownership deserves further comment. In our setup, the r_addr field of the open_call must
be client A, since the call (and all data transmissions) will be rooted there. Similarly, the m_addr field must be client
C, since C is the client actually sending the CMAP message. However, the s_addr field in our example could be either
client A or client C. Whichever is selected becomes the owner of the call.

B

C

NETWORK

A

D

N4

N3

N1

N2

open_call REQ1

open_call ACK5

Figure 67. Setup for the Audio/Video Server

invite_add_ep REQ2

invite_add_ep COM4
invite_add_ep ACK3

1

Connection Management Access Protocol (CMAP) Specification Page 124

Applied Research Laboratory Zeus Project

The message in Figure 68 makes client C the owner, and thus all management operations (e.g., verify_add_ep)
will be directed to client C. If instead the s_addr field were client A, client A would be the owner; however, all mes-
sages sent to the mute client A would be redirected to its surrogate, client C. The overall effect is thus the same in either
case, although the specific processing of messages within the network might differ significantly.

As a final note, client C is only allowed to put the address of client A into the s_addr field of the open_call because
client C is the surrogate for client A. It is not permissible for client C to put the address of a client for which it was not

01 0

21 21

OF,ON,OF OF,ON,OF

0 5 0 5

OF,OF,OF

2

0

1

0

0x0001

0

client C

client C

0

MULTIPT VERIFY ON,OF,OF NORMALCLOSED CLOSED

PAY_PER_VIEW0 0

PAY_PER_VIEW_AUDIO_CON0

100, 100, 0

0

OF,OF,OFVC,ST,HI 0 ON,OF,OF

00 0

20 20

OF,ON,OF OF,ON,OF

0 5 0 5

OF,OF,OF

0

client A

0 0 0

0

00000001 00000000

client A

Figure 68. open_call Message for Video Server Example

PAY_PER_VIEW_VIDEO_CON0

25000, 25000, 0

1

OF,OF,OFVC,ST,HI 0 ON,OF,OF

Connection Management Access Protocol (CMAP) Specification Page 125

Applied Research Laboratory Zeus Project

the surrogate into the s_addr field. This applies to all operations, of course; client X is not allowed to signal for client
Y (putting the address of Y into the s_addr field of a message) unless client X is the surrogate for client Y.

After receiving the request, the network invites client A to join the call. Because client A is mute the invitation
is redirected to its surrogate—client C. In this message, m_addr = client C (the client to which the message is directed),
while s_addr = client A (the client to which the signal is directed). Client C accepts on behalf of client A, sending
an ACK in which m_addr = client C and s_addr = client A. The network signals to client A that the connections to
the endpoint were established and signals the owner that the call wass created. Initially the only connection is from
client A to its exterior node. Client A may be sending data at this point, but the network discards it.

7.2.2 First Client Joins

Assume now that client B wishes to join the call. The mechanism whereby client B finds out about the existence
of the call, its identifiers, and its parameters is not within the scope of CMAP. One possible method would be for client
C, once it has created the call, to “publish” the call identifier in some manner, possibly registering it with some well-
known “video directory” client.

The signalling sequence is shown in Figure 69. Client B sends an add_ep REQUEST asking that it be added
to the call. For simplicity, we will assume that client B specifies all its endpoint parameters in this add_ep and an
invite_add_ep prompt is thus not required. Because the call’s accessibility parameter is VERIFY, the network
sends a verify_add_ep prompt to the owner, client C. Assuming that client C responds affirmatively, the net-
work next reserves sufficient resources for the connection from the root A to the client B. Once the resources are re-
served, the network finalizes the reserved connections, sends an add_ep ACK to client B and (in accord with the
call’s monitoring parameter) sends an announce_add_ep REQUEST to client A.

The above operation could have had several other outcomes. For example, client C could have refused to permit
client B to join the call (e.g., if client B was not a subscriber to the service, or did not have the necessary security clas-
sification to receive the data). Another possibility might be that client B proposed improper values (e.g., it asked to
map in as a transmitter, which is forbidden by the connection defaults and permissions). Finally, there is always the
possibility that the network was unable to support the connections from A to B, due to existing network traffic. In all
of these cases client B would receive a NACK containing the reason it could not join the call (VERIFY_REFUSED,
ILL_EP_MAP, INSUFF_BW, etc.).

7.2.3 Second Client Joins

Assume now that client D wishes to join the call. The signalling sequence (shown in Figure 70) is identical to that
of Figure 69. Three points are noteworthy:

• The transition from a point-to-point call to a point-to-multipoint call is seamless, in that the operation that adds
the third endpoint (add_ep) is the same operation that added the second endpoint.

• Endpoints may be added while existing endpoints are communicating. The addition of client D does not inter-
fere with client B’s reception (assuming, of course, that the physical network and the Connection Management
Layer can support this type of addition).

2

3
4

3

1

2 3

4
5

B

C

Figure 69. First Client Joins Video Server Call

NETWORK

A

D

N4

N3

N1

N2

announce_add_ep REQUEST5

add_ep REQ1

add_ep ACK4
verify_add_ep REQ2

verify_add_ep ACK3

Connection Management Access Protocol (CMAP) Specification Page 126

Applied Research Laboratory Zeus Project

• The “toward-the-root” routing algorithm can stop when it reaches any node that is already in the call. In this
case, the algorithm reserves bandwidth between D and N3 and between N3 and N1. Node N1 is already in the
call and the algorithm stops. When the new connection is finalized, the Connection Management software only
needs to set up N1 so that all cells arriving from the “upstream” (A) side are duplicated and one copy sent to
each “downstream” (B, D) side.

7.2.4 Client Drops Out

Figure 71 illustrates what happens when client B drops out of the call. Client B sends a drop_ep REQUEST
for itself. The network responds with a drop_ep ACK and (in accord with the call’s monitoring parameter)
sends an announce_drop_ep REQUEST to the owner. The network also tears down the connection from client B
to client A, leaving any links that are used by other endpoints in the call in place.

By setting the monitoring parameter for the owner to ON, client C guarantees that it will receive notification of
all endpoint adds, modifications, and drops. This facility could be used in a variety of ways. One of the most obvious
is in the area of service billing—the owner is able to keep track of when other clients join and leave the call, and can
thus charge them for use of the call. Of course, the current facilities are arguably imprecise, in that the service time
that the owner computes would have to be based on the times at which it received the notifications, which may not
relate closely to the actual times when endpoints were added or dropped. A more complete timestamping facility could
be added as an extension to CMAP, using the options field in the Trailer Object.

B

C

Figure 70. Second Client Joins Video Server Call

NETWORK

A

D

N4

N3

N1

N2

announce_add_ep REQUEST5

verify_add_ep REQ2

verify_add_ep ACK3

add_ep REQ1

add_ep ACK4

1
2

3

B

C

Figure 71. Client Drops Out of Video Server Call

NETWORK

A

D

N4

N3

N1

N2

announce_drop_ep REQUEST3

drop_ep REQ1

drop_ep ACK2

Connection Management Access Protocol (CMAP) Specification Page 127

Applied Research Laboratory Zeus Project

7.3 Conference Call
In this example, we assume that the clients wish to engage in a multimedia conference call. Each client might be

a workstation equipped with an MMX [50], cameras, microphones, and other hardware which allows the user of the
workstation to transmit a compressed audio/video data stream to other users at other workstations. Specialized client
software manages the conference call according to the following protocol:

• All users may transmit simultaneously. However, each user may only receive the transmissions from one user
at a time. Users are allowed to receive their own transmission (but this shuts out others).

• Any existing user may invite another user to join the call.

• Any user may drop out at any time. If all the users drop out, the call is to be terminated.

• Each workstation has a user-interface process which both handles the receipt and transmission of data and pro-
vides controls whereby the user manages his end of the call (by selecting which transmission to view, etc.).

• The user interface is to provide a visual indication of what users are in the call and at what transmitter each user
is looking.

• The user interface must also provide a means whereby the user can signal that he wishes to speak, and an indi-
cation of what users wish to speak.

The purpose of this section is to examine how such a conference call might be implemented in CMAP. We begin with
an overview of the way in which the above setup might be mapped to the CMAP call model, then provide examples
of the call operations.

7.3.1 Use of CMAP to Support Conference Call

Each of the user interface processes will be a separate CMAP client. For purposes of the conference-call protocol,
each user will be internally identified by a small integer (starting with 1). This integer will also be used with the CMAP
operations as described below. Each user-interface client has one endpoint in the call.

One of the user interface processes will act as the owner of the CMAP call. This process will create the call and
enforce the requirement that users may join the call only if they are invited by a user already in the call. If the user with
the owner process drops out of the conference call, the ownership of the call will be transferred to some other user
interface process.

The call will contain a control connection with identifier 0. This is is used by the user interface processes to com-
municate any control information they need (e.g., to indicate which user each user is viewing, or to signal that a user
wishes to become the speaker). This connection will be multipoint-to-multipoint, with any transmission by an endpoint
being received by all other users. The connection type will be VP, allowing clients to use the VCI field for source dis-
crimination (as described in Section 2.3); the unique conference-call identifiers will be used for the VCI values.

The CMAP call will also contain one point-to-multipoint connection for each user in the call. This connection is
the one on which that user transmits audio/video data. When a user joins the call, it adds its connection; when the user
later drops out, it first removes the connection. The connection identifier will be equal to the user’s conference-call
identifier (actually, a simple way to assign a unique conference-call identifier is to allow the network to choose a
unique connection identifier, then use that value). The mapping for the user’s endpoint to its own video connection
will be either transmit-only (if the user is viewing some other user’s transmission) or transmit-with-echo (if the user
is viewing its own transmission)*. The mapping for the user’s endpoint to any other video connection will be either
receive-only (if the user is viewing that other connection) or receive-hold (if the user is not viewing the other connec-
tion). For any user, at most one video-connection mapping will be transmit-with-echo or receive-only at any time,
since the user can only view one other user (or itself) at a time.

7.3.2 Call Setup

Assume client A initiates the conference call. Figure 72 shows the open_call REQUEST. Note the following:

• num_cons = 1; A is creating only the control connection. Its audio/video connection will be added later.

* Some reduction in network traffic could be attained if clients do not transmit unless at least one other client is receiving them. A
user could then have a transmit-hold mapping for its transmission connection.

Connection Management Access Protocol (CMAP) Specification Page 128

Applied Research Laboratory Zeus Project

• num_eps = 1; A is only adding itself, as the root.

• acc = VERIFY; the owner will approve endpoint additions. This will be used to enforce the policy that only
clients already in the call may invite new clients (the owner can reject any addition request by a non-owner).

• mod = OPEN; participants in the call may add connections. This is needed so each client can add its own audio/
video connection as it joins.

• trace = MEMBERS; participants in the call may perform trace operations. This may not be directly required
(the control connection can be used by clients to obtain similar information), but it may be useful.

• mon = <ON, OFF, ON>; the owner and all participants will be informed of endpoint additions, modifications,
and drops. Again, this may not be required, as the control connection could perform some of the same functions.

• con_type = <VP, DYNAMIC, HIGH>; the connection is virtual path. Clients may use the VCI field of the
header for source discrimination as described above.

1

0

1

0

0x0001

0

client A

client A

0

MULTIPT VERIFY ON,OF,ON NORMALOPEN MEMBERS

MMX_CONFERENCE_CALL0 0

MMX_CONTROL_CON0

0, 0, 0

0

OF,OF,OFVP,DY,HI 0 ON,ON,OF

00 0

blank blank

ON,ON,OF ON,ON,OF

0 blank 0 blank

OF,OF,OF

0

client A

0 0 0

0

00000001 00000000

client A

Figure 72. open_call Message for Conference Call Example

Connection Management Access Protocol (CMAP) Specification Page 129

Applied Research Laboratory Zeus Project

• con_id = 0 and user_con_type = MMX_CONTROL_CON; this will allow ready identification of the vital
control connection.

• con_def = <ON, ON, OFF>, meaning that all endpoints are able to transmit and receive on the control connec-
tion. con_perm = <OFF, OFF, OFF>, meaning that endpoints can’t change the mapping (of course, they prob-
ably wouldn’t want to change it).

7.3.3 Addition of Connection

Once the call has been created, client A next adds its audio/video connection to the call. This is accomplished with
an add_con REQUEST as shown in Figure 73. Each other client will use a similar request to add its own audio/video
connection as it joins the call. Note the following:

• con_id = ep_con_id = blank; the network will select an unused identifier for the connection and return it in the
add_con RESPONSE. The client will then use this value as its conference-call unique identifier.

• con_def = <OFF, OFF, OFF>, con_perm = <ON, OFF, OFF>; clients will be offered a NULL mapping by
default but may change it to a receive-only mapping.

• ep_map = <OFF, ON, ON>, ep_def = <OFF, ON, ON>, ep_perm = <OFF, ON, ON>; for its own endpoint,
client A is given a transmit-with-echo mapping and can turn off transmission or echo.

1

0

1

0

0x0001

0

client A

client A

0

MMX_AV_CON0

25000,25000,0

blank

ON,OF,OFVC,ST,HI 0 OF,OF,OF

0

00000100 00000000

client A

Figure 73. add_con Message for Conference Call Example

0blank 0

blank blank

OF,ON,ON OF,ON,ON

0 blank 0 blank

OF,ON,ON

client A

0 0 0

Connection Management Access Protocol (CMAP) Specification Page 130

Applied Research Laboratory Zeus Project

7.3.4 Addition of New User to Conference Call

New users may be added to the call by users who are already in the call. Assume that client A is the owner of the
call, client B is also in the call, and B wishes to add a new client C to the call. The sequence of operations is then as
follows:

• Client B sends an add_ep REQUEST to the network, naming client C.

• Since the call accessibility is VERIFY, the network sends a verify_add_ep REQUEST to client A. This RE-
QUEST contains both the address of the new client C and that of the requesting client B.

• A checks the requesting client. Finding that it is a member of the call, it sends a verify_add_ep ACK to approve
the addition of client C.

• The network sends an invite_add_ep REQUEST to client C, which decides whether to join or not. (We can
imagine that upon receiving the REQUEST the user interface displays an icon and/or makes a “ringing” noise
to get the user’s attention. The user would then indicate whether to accept the call.)

If some client not in the call, say D, tried to add itself or another client, the owner A would detect this and send a NACK
for the verify_add_ep REQUEST. The network would then not invite the client to join the call.

When the new client C joins the call, it will accept the default NULL mapping for each of the video connections.
It will then add its own connection, set to transmit-with-echo (the client initially views its own transmissions). The
client may then request and receive information about the call status over the control connection. This data will include
the information needed for the visual interface (users in the call, which users are viewing which transmissions, etc.)
and may include information suggesting a video connection that it should view—reasonable choices would be either
that of the client B that invited the new client, or whichever transmission B itself was viewing.

7.3.5 User Changes View

Figure 74 depicts a possible state of the conference call with three users A, B, and C. All three users have the re-
ceive/transmit mapping for the control connection and the transmit-only mapping for their own video connection (1
for A, 2 for B, and 3 for C). Clients A and B are viewing (receive-only mapping) client C, and client C is viewing client
B. (Since no one is viewing client A, it could also use a transmit-hold mapping for its connection.) Assume now that
client B wishes to view client A instead (e.g., the user at client B may have “clicked” in the visual display to indicate
that client A’s transmission should be displayed).

B

C
B

C

Figure 74. Example Mappings for Conference Call

NETWORK

A

D

N4

N3

N1

N2
C

ep_map = <ON, ON, OFF>
trans = 2/*, rcv = 2/*

con 0

ep_map = <OFF, ON, OFF>
trans = 6/17, rcv = 6/17

con 1

ep_map = <HOLD, OFF, OFF>
trans = 6/22, rcv = 6/22

con 2

ep_map = <ON, OFF, OFF>
trans = 6/20, rcv = 6/20

con 3

ep_map = <ON, ON, OFF>
trans = 4/*, rcv = 4/*

con 0

ep_map = <HOLD, OFF, OFF>
trans = 13/0, rcv = 13/1

con 1

ep_map = <ON, OFF, OFF>
trans = 13/2, rcv = 13/3

con 2

ep_map = <OFF, ON, OFF>
trans = 13/4, rcv = 13/5

con 3

ep_map = <ON, ON, OFF>
trans = 1/*, rcv = 1/*

con 0

ep_map = <HOLD, OFF, OFF>
trans = 3/7, rcv = 3/7

con 1

ep_map = <OFF, ON, OFF>
trans = 3/8, rcv = 3/8

con 2

ep_map = <ON, OFF, OFF>
trans = 3/9, rcv = 3/9

con 3

Connection Management Access Protocol (CMAP) Specification Page 131

Applied Research Laboratory Zeus Project

Client B accomplishes this with a mod_ep REQUEST as shown in Figure 75. This operation requests that two
sets of endpoint mappings be changed. The mapping for connection 1 (that is, the one on which client A transmits) is
to be changed to a receive-only mapping. The mapping for connection 3 (client C’s) is to be changed to a receive-hold
mapping. All the other UNI parameters for these connections (defaults, permissions, transmit/receive pairs) are to re-
main unchanged. Since connections 0 and 2 are not listed in the REQUEST, their parameters also remain unchanged.

The network will change the mappings upon receiving the request (no verification is required) and return a
mod_ep ACK. The network need not change the mappings simultaneously, and the sequence in which the mappings
are changed is unspecified. There may thus be a period where both mappings are receive-only or receive-hold. If one
of these should be avoided for hardware reasons, two separate mod_ep REQUESTs should be sent. In the above ex-
ample, if overlap must be prevented client B should first send a mod_ep to change connection 3 to receive-only, and
after that operation has finished send a mod_ep to change connection 1 to receive-only.

Following the execution of the mod_ep, client B will broadcast information on the control connection indicating
that it is now viewing client A. On receipt of this information the user interfaces will update their visual displays.

7.3.6 Endpoint Drops Out

When a user wishes to drop out of the conference call, the user-interface client uses this procedure:

• If the user is the last one in the call, the client sends a close_call to shut down the entire call. The close_call will
be legal, since the client must be the owner of the call at this point.

2

0

0

0

0x0001

client A

0

client B

client B

0

01 0

7 7

ON,OF,OF OF,OF,OF

0 3 0 3

ON,OF,OF

client B

0 0 0

00001000 00000000

Figure 75. mod_ep Message for Conference Call Example

03 0

8 8

HLD,OF,OF OF,OF,OF

0 3 0 3

ON,OF,OF

0

Connection Management Access Protocol (CMAP) Specification Page 132

Applied Research Laboratory Zeus Project

• If the user is not the last one in the call but is the owner of the call, it first selects another client (possibly by
negotiation over the control connection) to be the new owner. It then issues a change_owner command making
that client the new owner.

• The user sends a request to the owner of the call asking that it be dropped. The owner then performs the rest of
the procedure.

• If the user is the root of the call, the owner selects a new root endpoint and performs a change_root.

• The owner performs a drop_con on the user’s video connection. All clients receive the announce_drop_con
notification; clients who are viewing that connection should switch to some other one.

• The owner performs a drop_ep on the user’s endpoint. All clients, including the user being dropped, will re-
ceive the annouce_drop_ep notification. The client being dropped will then leave the call, while other clients
will update their visual displays.

Some additional coordination of this procedure is required—consider, for example, a two-user call where both users
drop out at nearly the same time. The non-owner will send (on the control connection) a request to the owner that the
non-owner be dropped, and the owner will send a request to the non-owner that the non-owner take over ownership.
These requests could pass one another in the network, causing some coordination problems. Algorithms to handle this
are relatively trivial.

7.3.7 Miscellaneous Control Functions

The procedure for closing down the call was covered in the above section—the call is closed when the last user
drops out. Most other desired functions, such as maintaining the visual display, are handled by broadcasting informa-
tion packets over the control connections. Each client transmits on this VP connection setting the VCI equal to its con-
ference-call identifier (video connection identifier). This allows all clients to broadcast simultaneously; at each
endpoint, cells from several clients may be interleaved, but the packets can be correctly reassembled using the VCIs
for source discrimination.

Connection Management Access Protocol (CMAP) Specification Page 133

Applied Research Laboratory Zeus Project

8. Future Directions in CMAP
This section briefly presents some possible enhancements or extensions to CMAP.

Reducing message size. The current design emphasizes ease of interpretation at the cost of message length. The
size of messages could easily be reduced. The many reserved fields could be eliminated; in many cases, so could the
unused fields. Redundancies could also be eliminated, for example, the separate con_id and ep_con_id fields that ap-
pear in such messages as the open_call and add_con.

Transactions. A transaction is defined as a grouping of multiple CMAP operations into a single, larger operation.
The operations in the transaction succeed or fail as a group, meaning that if any of the individual operations fail the
transaction as a whole fails and all the operations in the transaction are aborted. One mechanism whereby this might
be implemented is for the requesting client to issue a command which lists a group of msg_ids that form a transaction;
this would then be followed by the requests for the individual operations. Incorporating this capability may require a
reexamination of the phases of the existing operations: some two-phase operations might require a confirmation phase
in which the network confirms that the operation should complete, or aborts the operation if other operations in its
transaction have failed.

More specific parameters. The current call, connection, and endpoint parameters may not be detailed enough.
For example, at the moment call accessibility (indicating whether arbitrary clients may add new endpoints) is OPEN,
VERIFY, or CLOSED and applies to all clients in the network. This parameter could be made more specific by al-
lowing the owner to indicate to which clients the parameter applies. This could be done at a group level, for example
by having the equivalent of OPEN/VERIFY/CLOSED for each of the operations: a client in the call adds a new end-
point for itself; a client in the call adds a new endpoint for another client in the call; a client in the call adds a new
endpoint for a client not in the call; a client not in the call adds a new endpoint for itself; and so on. It could also be
done on a per-client basis, where the owner could (for example) indicate that client A may add new endpoints for itself,
client B may add new endpoints itself and add new endpoints for any client with the owner’s approval, and client C
may not add new endpoints at all. Obviously this extension would involve major changes to the message formats and
require the CMAP Session Managers to maintain a great deal of additional information.

Connection ownership. The current specification allows any member of a call to add new connections, but man-
agement of the connection is then taken over by the owner. This was clearly seen in the conference-call example of
Section 7.3, where each new client added a connection when it joined the call but had to ask the owner to remove the
connection when it dropped out. The simplest way to improve this situation would be to add an ownership parameter
to connections. Clients could then modify and drop connections that they owned. Of course, mechanisms for transfer-
ring ownership would also have to be added.

Multiple-endpoint operations. Most CMAP operations act on a group of connections but only one (or at most
two) endpoints. This arrangement is sensible from the point of view of the network implementation—connections are
global across the call, while each endpoint belongs to a specific client. However, there seems no obvious reason why
the operations could not be generalized to act simultaneously on several endpoints. For example, the mod_ep opera-
tion could request changes in multiple endpoints, and for each endpoint request changes to multiple connections. This
would obviously require some modification of the message formats. There would also be some control problems, e.g.,
if an add_ep requests that six endpoints be added and two refuse the invitation, what should the status of the operation
be and should the four endpoints be added?

Client registration and signalling connections. The current specification assumes that clients simply exist and
are known to the network, and that CTL-based signalling connections exist between the clients and the CMAP Session
Managers (Section 3.1). These issues are primarily a concern of network management, but some limited CMAP-level
support may be appropriate. For example, we might imagine that a new client would have to “register” itself with a
session manager by sending a message on a well-known signalling connection. This registration process would also
provide an opportunity for the client to request and receive a new signalling connection.

Surrogate configuration. The current specification makes network management responsible for the setup of sur-
rogate signalling. Such facilities could be incorporated into CMAP, in the form of new commands to set up surrogate
signalling, transfer surrogacy responsibilities, and so forth. Of course, the use of these commands would have to be
carefully safeguarded—clearly we do not wish to allow a client to assign itself as the surrogate for any other client it
chooses.

Connection Management Access Protocol (CMAP) Specification Page 134

Applied Research Laboratory Zeus Project

Network query. Facilities whereby clients can query the network and determine what capabilities and resources
are available would be a useful enhancement. These queries might allow the client to determine if the network supports
point-to-multipoint and multipoint-to-multipoint calls, find out which VPI/VCI pairs are legal and/or available, and
determine how much bandwidth is available for the client’s use. The first facility is particularly important, since it
would allow clients to support multipoint calls in software (by multiple point-to-point calls) even if hardware support
is unavailable. The network query function could be easily supported by adding a new CMAP command.

“Yellow Pages” support. CMAP only provides facilities for manipulating calls, and does not provide facilities
for determining what CMAP clients or calls are on the network. We envision that such services would be provided by
dedicated CMAP client processes with well-known addresses—a client-address server, an active-call server, and so
forth. Some additional CMAP support may be required for the implementation of these processes; for example, it
might be useful if these clients could query the network for call identifiers, or perform a call trace even if the call pa-
rameters do not allow it. This is closely related to the next topic.

Security and privileged clients. At the moment CMAP provides only minimal security, and that largely through
the call owner—for example, the owner can set up a call so that outside clients cannot join or trace the call. However,
global security concerns are lacking; there is, for example, no means to specify that certain clients should not create
calls, or that certain VPI/VCI pairs should not be allocated to clients. There is also no way to indicate that certain cli-
ents should have additional privileges, such as the ability to trace arbitrary calls, close other client’s calls, or add them-
selves to a call without the owner’s permission. Although these are largely a concern of network management, they
will obviously impact the design of the CMAP Session Managers and further study is warranted.

Inter-client signalling. A CMAP operation which allows clients exchange arbitrary data in the form of CMAP
signals might be of some use. For example, in the conference call example (Section 7.3) such signals could be used to
replace the control connection. The obvious problem with such a facility is in billing; clients could send data with
CMAP signals, bypassing normal connections and accounting. However, with appropriate safeguards (such as billing
clients for data transmitted on CMAP signals, as well as for data transmitted on connections) the facility might be us-
able.

Connection Management Access Protocol (CMAP) Specification Page 135

Applied Research Laboratory Zeus Project

Appendix A: References

The reference list contains items that pertain to the area of fast packet switching and broadband networks, possibly of
interest to the CMAP user or implementor. Many of the references apply directly to the issue of call management and
are cited in this document. Other references are for general background purposes only.

[1] H. Ahmadi, W.E. Denzel, C.A. Murphy, and E. Port. “A High-Performance Switch Fabric for Integrated Circuit
and Packet Switching.” In IEEE Infocom ‘88: Proceedings of the Seventh Annual Joint Conference of the IEEE
Computer and Communications Societies, pages 9-18, March 1988.

[2] H. Ahmadi and W. E. Denzel. “A Survey of Modern High-Performance Switching Techniques.” In IEEE Journal
on Selected Areas in Communications, 7(7):1091-1103, September 1989.

[3] ANSI T1S1 Technical Sub-Committee. Broadband Aspects of ISDN Baseline Document. T1S1.5/90-001, June
1990.

[4] R. Ballart and Y.C. Ching. “SONET: Now It’s the Standard Optical Network.” In IEEE Communications Maga-
zine, 27(3):8-15, March 1989.

[5] Bell Communications Research. Generic System Requirements in Support of Switched Multi-Megabit Data Ser-
vice. Technical Advisory TA-TSY-000772, Issue 3, October 1989.

[6] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems. Ad-
dison-Wesley, 1987.

[7] R.G. Bubenik and J.S. Turner. “Performance of a Broadcast Packet Switch.” In IEEE Transactions on Commu-
nications, 37(1):60-69, January 1989.

[8] R. G. Bubenik, J. D. DeHart and M. E. Gaddis. “Multipoint Connection Management in High Speed Networks.”
In IEEE Infocom ‘91: Proceedings of the Tenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, pages 59-68, April 1991.

[9] R. G. Bubenik, M. E. Gaddis and J. D. DeHart. “A Strategy for Layering IP over ATM”. Washington University
Applied Research Laboratory, Working Note 91-01, Version 1.1, April 1991.

[10] R.G. Bubenik, M.E. Gaddis, and J.D. DeHart. “Virtual Paths and Virtual Channels.” To appear in IEEE Infocom
‘92: Proceedings of the Eleventh Annual Joint Conference of the IEEE Computer and Communications Societies,
May 1992.

[11] R. G. Bubenik. “BPN Reliable Datagram Protocol”. Washington University Applied Research Laboratory Work-
ing Note 91-11, in progress, June 1991.

[12] J. Burgin and D. Dorman. “Broadband ISDN Resource Management: The Role of Virtual Paths.” In IEEE Com-
munications Magazine, 29(9):44-48, September 1991.

[13] CCITT. Blue Book, volume II, fascicle II.2, “Telephone network and ISDN—Operation, numbering, routing, and
mobile service,” Recommendations E.100--E.300, Geneva, Switzerland, 1989.

[14] CCITT. Recommendations Drafted by Working Party XVIII/8 (General B-ISDN Aspects) to be Approved in
1992, Study Group XVIII—Report R 34, December 1991.

[15] CCITT Recommendation Q.931 (I.451), ISDN User-Network Interface Layer 3 Specification, Geneva, 1985.

[16] D.R. Cheriton and W. Zwaenepoel. “Distributed Process Groups in the V Kernel.” In Transactions on Computer
Systems, 3(2):77-107, May 1985.

[17] R. Colella, E. Gardner and R. Callon. “Guidelines for OSI NSAP Allocation in the Internet.” INTERNET
DRAFT, Networking Group, March 1, 1991.

[18] D. Comer. Internetworking With TCP/IP Principles, Protocols, and Architecture. Prentice Hall, 1988.

[19] J.P. Coudreuse and M Servel. “PRELUDE: An Asynchronous Time-Division Switched Network.” In ICC ‘87:
Proceedings of the IEEE International Conference on Communications, pages 69-773, June 1987.

[20] Jr. R. Cox. “Overview of the Washington University Fast Packet Project”. Washington University, Applied Re-
search Laboratory Working Note 89-02, September 1989.

Connection Management Access Protocol (CMAP) Specification Page 136

Applied Research Laboratory Zeus Project

[21] J. R. Cox and J. S. Turner. “Project Zeus Design and Application of Fast Packet Campus Networks”. Washington
University, Department of Computer Science Technical Report 91-45, July 1991.

[22] G.E. Daddis, Jr. and H.C. Torng. “A Taxonomy of Broadband Integrated Switching Architectures.” In IEEE
Communications Magazine, 27(5):32-42, May 1989.

[23] S.E. Deering. “Multicast Routing in Internetworks and Extended LANs.” In Proceedings of the SIGCOMM ‘88
Symposium: Communications Architectures & Protocols, pages 55-64, August 1988.

[24] K.Y. Eng, M.G. Hluchyj, and Y.S. Yeh. “Multicast and Broadcast Services in a Knockout Packet Switch.” In
IEEE Infocom ‘88: Proceedings of the Seventh Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, pages 29-34, March 1988.

[25] H.C. Folts. “Procedures for Circuit-Switched Service in Synchronous Public Data Networks.” In IEEE Transac-
tions on Communications, 28(4):489-496, April 1980.

[26] M. E. Gaddis. “ATM-TAP: Patent Disclosure Statement”. Washington University, Applied Research Laboratory
Working Note 90-12, Version 1.2, May 1990.

[27] M. E. Gaddis, R.G. Bubenik, and J.D. DeHart. “Connection Management for a Prototype Fast Packet ATM B-
ISDN Network.” In Proceedings of the National Communications Forum, vol. 44, pp. 601-608, October 8-10,
1990.

[28] M. E. Gaddis, R.G. Bubenik, and J.D. DeHart. “A Call Model for Multipoint Communications in Switched Net-
works.” submitted for publication to ICC ‘92, Chicago, Illinois, June 1992.

[29] J.N Giacopelli, W.D. Sincoskie, and M. Littlewood. “Sunshine: A High Performance Self-Routing Broadband
Packet Switch Architecture.” In Proceedings of the International Switching Symposium, Volume 3, pages 123-
129, May 1990.

[30] W.M. Harman and C.F. Newman. “ISDN Protocols for Connection Control.” In IEEE Journal on Selected Areas
in Communications, 7(7):1034-1042, September 1989.

[31] K. Haserodt and J.S. Turner. “An Architecture for Connection Management in a Broadcast Packet Network.”
Washington University, Department of Computer Science, Technical Report-WUCS-87-03, 1987.

[32] M.G. Hluchyj and M.J. Karol. “Queueing in Space-Division Packet Switching.” In IEEE Infocom ‘88: Proceed-
ings of the Seventh Annual Joint Conference of the IEEE Computer and Communications Societies, pages 334-
343, March 1988.

[33] A. Huang and S. Knauer. “Starlite: a Wideband Digital Switch.” In Proceedings of Globecom 84, pages 121-125,
December 1984.

[34] J. Hui. “A Broadband Packet Switch for Multi-Rate Services.” In ICC ‘87: Proceedings of the IEEE International
Conference on Communications, pages 782-788, June 1987.

[35] K. Iguchi, H. Takeo, S. Amemiya, and K. Tezuka. “Subscriber Access Scheme for Broadband ISDN.” In ICC ‘90:
Proceedings of the IEEE International Conference on Communications, pages 663-669, April 1990.

[36] A.R. Jacob. A Survey of Fast Packet Switches. Computer Communication Review, 20(1):54-64, January 1990.

[37] Y. Kato, T. Shimoe, K. Hajikano, and K. Murakami. “Experimental Broadband ATM Switching System.” In Pro-
ceedings of Globecom 88, pages 1288-1292, December 1988.

[38] H.S. Kim and A. Leon-Garcia. “A Self-Routing Multistage Switching Network for Broadband ISDN.” In IEEE
Journal on Selected Areas in Communications, 8(3):459-466, April 1990.

[39] J.C. Kohli, D.S. Biring, and G.L. Raya. “Emerging Broadband Packet-Switch Technology in Integrated Informa-
tion Networks.” In IEEE Network, 2(6):37-38,47-51, November 1988.

[40] T.R. La Porta and M. Schwartz. “Architectures, Features, and Implementation of High-Speed Transport Proto-
cols.” In IEEE Network, 4(2):14-22, May 1991.

[41] T.T. Lee, R. Boorstyn, and E. Arthurs. “The Architecture of a Multicast Broadband Packet Switch.” In IEEE In-
focom ‘88: Proceedings of the Seventh Annual Joint Conference of the IEEE Computer and Communications So-
cieties, pages 1-8, March 1988.

Connection Management Access Protocol (CMAP) Specification Page 137

Applied Research Laboratory Zeus Project

[42] T. Lyon. “Simple and Efficient Adaptation Layer” ANSI T1S1.5 proposal for type 5 AAL by Sun Microsystems,
Inc., August, 12-16, 1991.

[43] S.E. Minzer. “Broadband ISDN and Asynchronous Transfer Mode (ATM).” In IEEE Communications Magazine,
27(9):17-24, September 1989.

[44] S.E. Minzer and D.R. Spears. “New Directions in Signalling for Broadband ISDN.” In IEEE Communications
Magazine, 27(2):6-14, February 1989.

[45] S.E. Minzer. “A Signalling Prototype for Complex Multimedia Services.” In IEEE Journal on Selected Areas in
Communications, 9(9):1383-1394, December 1991.

[46] J.E.B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. MIT Press, 1985.

[47] C.H. Papadimitriou. The Theory of Concurrency Control. Computer Science Press, 1986.

[48] G.M. Parulkar, J.S. Turner. Towards a Framework for High Speed Communication in a Heterogeneous Network-
ing Environment. In IEEE Infocom ‘89: Proceedings of the Eighth Annual Joint Conference of the IEEE Com-
puter and Communications Societies, pages 655-667, April 1989.

[49] G. M. Parulkar. “The Next Generation of Internetworking”. ACM SIGCOMM Computer Communications Re-
view. vol. 20, no. 1, New York, NY, pp. 18-43, January, 1990.

[50] W.D. Richard, J. R. Cox Jr., A. M. Engebretson, J. Fritts, B. Gottlieb and C. Horn. “The Washington University
MultiMedia eXplorer”. Technical Report WUCS-93-40, Department of Computer Science, Washington Univer-
sity in St. Louis, 1993.

[51] F.E. Ross. “An Overview of FDDI: The Fiber Distributed Data Interface.” In IEEE Journal on Selected Areas in
Communications, 7(7):1043-1051, September 1989.

[52] A. Rybczynski. “X.25 Interface and End-to-End Virtual Circuit Service Characteristics.” In IEEE Transactions
on Communications, 28(4):500-510, April 1980.

[53] R.M. Sanders. The Xpress Transfer Protocol (XTP)—A Tutorial. Computer Networks Laboratory, Department
of Computer Science, University of Virginia, January 15, 1990.

[54] J.S. Stacey, T. Pham, and J. Chiou. “Modeling Call Control for Distributed Applications in Telephony.” In IEEE
Network, 4(6):14-22, November 1990.

[55] H. Suzuki, H. Nagano, T. Suzuki, T. Takeuchi, and S. Iwasaki. “Output-buffer Switch Architecture for Asynchro-
nous Transfer Mode.” In ICC ‘89: Proceedings of the IEEE International Conference on Communications, pages
99-103, 1989.

[56] H. Suzuki, T. Murase, S. Sato, and T. Takeuchi. “A Burst Traffic Control Strategy for ATM Networks.” Submit-
ted for publication (conference unknown).

[57] A.S. Tanenbaum. Computer Networks. Prentice-Hall, 1981.

[58] S.C. Tu and W.H. Leung. “Multicast Connection-Oriented Packet Switching Networks.” In Proceedings of the
International Communications Conference, volume 2, pages 495-501, April 1990.

[59] J. S. Turner, “Fast Packet Switching System”, U.S. Patent 4 494 230, January 15, 1985.

[60] J.S. Turner. “New Directions in Communications.” In IEEE Communications Magazine, 24(10):8-15, October
1986.

[61] J.S. Turner. “Design of an Integrated Services Packet Network.” In IEEE Transactions on Communications,
4(8):1373-1380, November 1986.

[62] J.S. Turner. “Design of a Broadcast Packet Switching Network.” In IEEE Transactions on Communications,
36(6):734-743, June 1988.

[63] J. S. Turner. “A Proposed Management and Congestion Control Scheme for Multicast ATM Networks.” Wash-
ington University, Computer and Communication Research Center Technical Report 91-01, May 1991.

[64] Waxman, B. A paper on the “toward-the-root” routing algorithm.

Connection Management Access Protocol (CMAP) Specification Page 138

Applied Research Laboratory Zeus Project

[65] XTP® Protocol Definition, Revision 3.5. Protocol Engines Incorporated, Technical Report PEI 90-120,
September 10, 1990.

[66] Y.S. Yeh, M.G. Hluchyj, and A.S. Acampora. “The Knockout Switch: A Simple, Modular Architecture for Per-
formance Packet Switching.” In International Switching Symposium, volume 3, pages 801-808, March 1987.

Connection Management Access Protocol (CMAP) Specification Page 139

Applied Research Laboratory Zeus Project

Appendix B: Acronym List

The following acronyms and abbreviations are used within this document in reference to ATM networks, fast
packet switches, and our protocols.

ABORT — Abort confirmation message (Section 5.1)

ACK — Acknowledgment response message (Section 5.1)

ATM — Asynchronous Transfer Mode (Section 2)

BPN — Broadcast Packet Network (Section 2.1)

BISDN — Broadband Integrated Services Digital Network

BW — Bandwidth (Section 4.4.3)

CCITT — International Telegraph and Telephone Consultative Committee (Section 4.2.1)

CLP — Cell Loss Priority (ATM header field) (Section 2.2)

CMAP — Connection Management Access Protocol (Section 1)

CML — Connection Management Layer (Section 3.5)

CMNP — Connection Management Network Protocol (Section 3.5)

CN — Copy Network (Section 2.1)

COM — Commit confirmation message (Section 5.1)

CONF — Confirmation message (Section 5.1)

CP — Control Processor (Section 2.1)

CTL — CMAP Transport Layer (Section 3.3)

GFC — Generic Flow Control (ATM header field) (Section 2.2)

HEC — Header Error Check (ATM header field) (Section 2.2)

ISO-OSI — International Standards Organization - Open System Interconnection

PT — Payload Type (ATM header field) (Section 2.2)

QOS — Quality of Service (Section 4.4.2)

NACK — Negative acknowledgment response message (Section 5.1)

NEG — Negotiation response message (Section 5.1)

NNI — Network Node Interface (Section 2.1)

REQ — Request message (Section 5.1)

RES — Response message (Section 5.1)

RN — Routing Network (Section 2.1)

SONET — Synchronous Optical NETwork

SMI — Switch Module Interface (Section 2.1)

UNI — User Network Interface (Section 2.1)

VC — Virtual Channel (Section 2.3)

VCI — Virtual Channel Identifier (ATM header field) (Section 2.2)

VP — Virtual Path (Section 2.3)

VPI — Virtual Path Identifier (ATM header field) (Section 2.2)

Connection Management Access Protocol (CMAP) Specification Page 140

Applied Research Laboratory Zeus Project

Appendix C: CMAP Message Field Values

This appendix contains the values of the symbolic constants used in CMAP messages. The fields are sorted by
message object. Values are in hexadecimal (expressed using the “C” programming language “0x” format) except as
noted. All unused values (those not appearing below) are reserved for future use.

Header Object: op_type (value in binary)
00000000 no operation

00000001 open_call
00000010 mod_call
00000011 close_call
00000100 add_con
00000101 mod_con
00000110 drop_con
00000111 add_ep
00001000 mod_ep
00001001 drop_ep
00001010 trace_call
00001011 trace_ep
00001100 change_owner
00001101 change_root
00001110 invite_add_con
00001111 invite_add_ep
00010000 invite_mod_ep
00010001 invite_change_owner
00010010 verify_add_ep
00010011 verify_mod_ep
00010100 announce_mod_call
00010101 announce_close_call
00010110 announce_add_con
00010111 announce_mod_con
00011000 announce_drop_con
00011001 announce_add_ep
00011010 announce_mod_ep
00011011 announce_drop_ep
00011100 announce_change_owner
00011101 announce_change_root
10000000 status
10000001 alert
10000010 client_reset
10000011 network_reset
11111111 error_report

Header Object: phase (value in binary)
00000000 REQUEST
00000001 RESPONSE
00000010 CONFIRMATION

Connection Management Access Protocol (CMAP) Specification Page 141

Applied Research Laboratory Zeus Project

Header Object: op_status: call_status_bit
0x0 OK
0x1 ERROR

Header Object: op_status: connection_status_bit
0x0 OK
0x1 ERROR

Header Object: op_status: endpoint_status_bit
0x0 OK
0x1 ERROR

Header Object: op_status: uni_status_bit
0x0 OK
0x1 ERROR

Header Object: op_status: status
0x000 OK
0x001 REFUSED
0x002 NEGOTIATING
0x003 BAD_OP_TYPE
0x004 BAD_PHASE_EXP_REQUEST
0x005 BAD_PHASE_EXP_RESPONSE
0x006 BAD_PHASE_EXP_CONFIRMATION
0x007 DUP_MSG_ID
0x008 BAD_MSG_ID
0x009 BAD_MADDR
0x00a BAD_SADDR
0x00b FORMAT_ERROR
0x00c BAD_NUM_CONS
0x00d BAD_NUM_EPS
0x00e BAD_CALL_ID_ADDR
0x00f DUP_CALL_ID
0x010 UNKNOWN_CALL
0x011 NOT_OWNER
0x012 ILL_REQUEST
0x013 ILL_DROP_ROOT
0x014 VERIFY_REFUSED
0x015 EP_REFUSED
0x016 BAD_OWNER_ADDR
0x017 INSUFF_BANDWIDTH
0x018 TIMEOUT

Connection Management Access Protocol (CMAP) Specification Page 142

Applied Research Laboratory Zeus Project

Call Object: call_status
0x0000 OK
0x0001 BAD_CALL_TYPE
0x0002 BAD_ACC
0x0003 BAD_MOD
0x0004 BAD_TRACE
0x0005 BAD_MON
0x0006 BAD_PRIORITY

Call Object: call_type
0x0 MULTIPOINT
0x1 POINT_TO_POINT

Call Object: acc
0x0 CLOSED
0x1 OPEN
0x2 VERIFY

Call Object: mod
0x0 CLOSED
0x1 OPEN

Call Object: trace
0x0 CLOSED
0x1 OPEN
0x2 MEMBERS

Call Object: mon (owner, transmitters, all)
0x0 OFF
0x1 ON

Call Object: priority
0x0 NORMAL
0x1 PREEMPT
0x2 OVERRIDE

Connection Object: con_status
0x0000 OK
0x0001 BAD_CON_ID
0x0002 DUP_CON_ID
0x0003 BAD_CON_TYPE
0x0004 BAD_CON_DEF
0x0005 BAD_CON_PERM
0x0006 BAD_BW

Connection Object: con_type: channel_type
0x0 VP
0x1 VC

Connection Management Access Protocol (CMAP) Specification Page 143

Applied Research Laboratory Zeus Project

Connection Object: con_type: bw_type
0x0 DYNAMIC
0x1 STATIC

Connection Object: con_type: qos
0x0 HIGH
0x1 MEDIUM
0x2 LOW

Connection Object: con_def (receive, transmit, echo)
0x0 OFF
0x1 ON
0x2 HOLD

Connection Object: con_perm (receive, transmit, echo)
0x0 OFF
0x1 ON
0x2 VERIFY

Endpoint Object: ep_status
0x0000 OK
0x0001 BAD_EP_ADDR
0x0002 DUP_EP_ID
0x0003 BAD_EP_ADDR_NOT_ROOT

UNI Object: uni_status
0x0000 OK
0x0001 BAD_CON_ID
0x0002 DUP_CON_ID
0x0003 BAD_EP_MAP
0x0004 ILL_EP_MAP
0x0005 BAD_EP_DEF
0x0006 BAD_EP_PERM
0x0007 NO_AVAIL_VPI
0x0008 NO_AVAIL_VCI
0x0009 TRANS_VPI_IN_USE
0x000a TRANS_VPI_RESERVED
0x000b TRANS_VPI_NOT_SUPPORTED
0x000c TRANS_VCI_IN_USE
0x000d TRANS_VCI_RESERVED
0x000e TRANS_VCI_NOT_SUPPORTED
0x000f RCV_VPI_IN_USE
0x0010 RCV_VPI_RESERVED
0x0011 RCV_VPI_NOT_SUPPORTED
0x0012 RCV_VCI_IN_USE
0x0013 RCV_VCI_RESERVED
0x0014 RCV_VCI_NOT_SUPPORTED

Connection Management Access Protocol (CMAP) Specification Page 144

Applied Research Laboratory Zeus Project

UNI Object: ep_map (receive, transmit, echo)
0x0 OFF
0x1 ON
0x2 HOLD

UNI Object: ep_def (receive, transmit, echo)
0x0 OFF
0x1 ON
0x2 HOLD

UNI Object: ep_perm (receive, transmit, echo)
0x0 OFF
0x1 ON
0x2 VERIFY

Operation Object: op_msg_status
0x0 OK_RESPONSE
0x1 OK_CONFIRMATION
0x2 NO_SUCH_OPERATION

client address: addr_type
0x0 undefined

0x1 IP
0x2 ISDN_E_164
0x3 NSAP

Connection Management Access Protocol (CMAP) Specification Page 145

Applied Research Laboratory Zeus Project

Appendix D: CMAP Status Codes

Each of the sections of this Appendix lists all the codes that may appear in the status fields of CMAP messages.
An explanation of the meaning of the code is given, together with a list of possible actions that the client may try if it
receives the code from the network.

If a message has more than one error, CMAP is only required to report any one of the errors. CMAP is permitted
to report several errors simultaneously, if possible—obviously it is impossible to simultaneously report any two dis-
tinct errors that use the same field for the error.

D.1 op_status Field
call_status_bit = connection_status_bit = endpoint_status_bit = uni_status_bit = OK

• Description: No errors occurred in the message objects.

• Recommended Action: Check the status portion of op_status to determine if there were errors in the mes-
sage header or in its execution.

call_status_bit = ERROR

• Description: An error occurred in the message Call Object.

• Recommended Action: Check the call_status field of the Call Object to determine the error, correct the
problem, and re-submit the request.

connection_status_bit = ERROR

• Description: An error occurred in one of the message Connection Objects.

• Recommended Action: Check the con_status field of each of the Connection Objects to determine the
error(s), correct the problem, and re-submit the request.

endpoint_status_bit = ERROR

• Description: An error occurred in one of the message Endpoint Objects.

• Recommended Action: Check the ep_status field of each of the Endpoint Objects to determine the er-
ror(s), correct the problem, and re-submit the request.

uni_status_bit = ERROR

• Description: An error occurred in one of the message UNI Objects.

• Recommended Action: Check the uni_status field of each of the UNI Objects to determine the error(s),
correct the problem, and re-submit the request.

status = OK

• Description: Provided the high-order bits are all OK, no errors occurred in the header or in the execution
of the command and the operation completed successfully.

• Recommended Action: none.

status = REFUSED

• Description: The client refuses to perform the operation. Used only in NACK RESPONSEs from cli-
ents.

• Recommended Action: none.

status = NEGOTIATING

• Description: The client wishes to negotiate operation parameters. Used only in NEG RESPONSEs from
clients.

• Recommended Action: none.

Connection Management Access Protocol (CMAP) Specification Page 146

Applied Research Laboratory Zeus Project

status = BAD_OP_TYPE

• Description: An undefined value was found in the op_type field. This can only appear in error_report
messages.

• Recommended Action: Generate the message again and resend, checking that the op_type field contains
a legal value. If the same error occurs, report it so that the client’s message-generating routines may be
checked.

status = NO_SUCH_OPERATION

• Description: The value in the msg_id field does not correspond to an existing operation. This can only
appear in error_report messages.

• Recommended Action: “Back up” the state machine and regenerate and resend the message, checking
that the msg_id field contains a valid operation identifier. If the same error occurs, report it so that the
client’s message-generating routines may be checked.

status = BAD_PHASE

• Description: An undefined value was found in the phase field. This can only appear in error_report
messages.

• Recommended Action: “Back up” the state machine and regenerate and resend the message, checking
that the phase field contains a valid value. If the same error occurs, report it so that the client’s message-
generating routines may be checked.

status = BAD_PHASE_EXP_REQUEST

• Description: An undefined value was found in the phase field. Based on the msg_id supplied a RE-
QUEST was expected. This can only appear in error_report messages.

• Recommended Action: “Back up” the state machine and regenerate and resend the message, checking
that the phase field contains REQUEST. If the same error occurs, report it so that the client’s message-
generating routines may be checked.

status = BAD_PHASE_EXP_RESPONSE

• Description: An undefined value was found in the phase field. Based on the msg_id supplied a RE-
SPONSE was expected. This can only appear in error_report messages.

• Recommended Action: “Back up” the state machine and regenerate and resend the message, checking
that the phase field contains RESPONSE. If the same error occurs, report it so that the client’s message-
generating routines may be checked.

status = BAD_PHASE_EXP_CONFIRMATION

• Description: An undefined value was found in the phase field. Based on the msg_id supplied a CON-
FIRMATION was expected. This can only appear in error_report messages.

• Recommended Action: “Back up” the state machine and regenerate and resend the message, checking
that the phase field contains CONFIRMATION. If the same error occurs, report it so that the client’s
message-generating routines may be checked.

status = DUP_MSG_ID

• Description: The msg_id given in the REQUEST is still active from a previous operation. This can only
appear in error_report messages.

• Recommended Action: “Back up” the state machine and regenerate and resend the message, checking
that the message identifier is not already in use. If the same error occurs, report it so that the client’s mes-
sage-generating routines may be checked.

status = BAD_MSG_ID

• Description: The msg_id given in the REQUEST is illegal. This can only appear in error_report mes-
sages.

Connection Management Access Protocol (CMAP) Specification Page 147

Applied Research Laboratory Zeus Project

• Recommended Action: “Back up” the state machine and regenerate and resend the message, checking
that the message identifier is in the correct format. If the same error occurs, report it so that the client’s
message-generating routines may be checked.

status = BAD_MADDR

• Description: The maddr given in the REQUEST is illegal. This can only appear in error_report mes-
sages.

• Recommended Action: “Back up” the state machine and regenerate and resend the message, checking
that the message address is in the correct format. If the same error occurs, report it so that the client’s
message-generating routines may be checked.

status = BAD_SADDR

• Description: The msg_id given in the REQUEST is illegal. This can only appear in error_report mes-
sages. It may indicate that the sender attempted signalling for a client for which it was not the surrogate.

• Recommended Action: “Back up” the state machine and regenerate and resend the message, checking
that the message identifier is in the correct format. If the same error occurs, report it so that the client’s
message-generating routines may be checked.

status = FORMAT_ERROR

• Description: The message cannot be matched to the template for its op_type (it may be too short or too
long, or the internal fields may make no sense). This can only appear in error_report messages.

• Recommended Action: “Back up” the state machine and regenerate and resend the message. If the same
error occurs, report it so that the client’s message-generating routines may be checked.

status = BAD_NUM_CONS

• Description: The number of connections specified in the num_cons field was out of range. The range of
values is [0, MAX_CONS], where MAX_CONS is implementation dependent.

• Recommended Action: Redefine the call, possibly splitting the call into multiple calls.

status = BAD_NUM_EPS

• Description: The number of endpoints specified in the num_eps field was out of range. The range of val-
ues is [0, MAX_EPS], where MAX_EPS is implementation dependent; for particular operations (e.g.,
open_call) the range may be further restricted.

• Recommended Action: Redefine the call, possibly splitting the call into multiple calls.

status = BAD_CALL_ID_ADDR

• Description: The owner address portion of the call_id specified in an open_call REQUEST was not a
proper endpoint address or did not match the address of the client that sent the REQUEST.

• Recommended Action: Check the address given and correct it. Resend the open_call REQUEST with
the correct address.

status = DUP_CALL_ID

• Description: The call_id specified in an open_call REQUEST is already in use. This means that the root
address is legitimate, but the local identifier is in use.

• Recommended Action: Select a new lcid and resend the open_call REQUEST.

status = UNKNOWN_CALL

• Description: The call_id specified in an operation does not correspond to any active call.

• Recommended Action: Verify the call_id and resend the REQUEST.

status = NOT_OWNER

• Description: The client is not the owner of the call and attempted to perform an operation that can only
be performed by an owner (e.g., mod_call), or on its own endpoints (e.g., drop_ep).

Connection Management Access Protocol (CMAP) Specification Page 148

Applied Research Laboratory Zeus Project

• Recommended Action: The client should contact the owner of the call and ask it to perform the operation.

status = ILL_REQUEST

• Description: The client attempted to perform an operation that is forbidden by the call parameters (e.g.,
an add_ep on a call with CLOSED accessibility, or changing an endpoint mapping in a way not permit-
ted by the endpoint’s defaults and permissions).

• Recommended Action: The client should contact the owner of the call and request that it perform the op-
eration or give the client permission to perform the operation.

status = ILL_DROP_ROOT

• Description: The client attempted to perform a drop_ep on the last endpoint of the call’s root client.

• Recommended Action: If the client is the owner, it should first perform a change_root operation then
attempt the drop_ep again. If the client is not the owner (meaning it is the root), it should contact the
owner and request that the owner change the root so the client can drop out.

status = VERIFY_REFUSED

• Description: During the operation a query was sent to the owner (e.g., to verify the addition of an end-
point or the modification of a mapping). The owner refused to allow the operation.

• Recommended Action: The client should contact the owner of the call to discuss the operation.

status = EP_REFUSED

• Description: An endpoint refused an invitation to join a call or modify its parameters.

• Recommended Action: The client should try again at a later time.

status = BAD_OWNER_ADDR

• Description: The new owner address (in change_owner) is illegal or unknown.

• Recommended Action: The client should check the address to ensure it is properly formed and is a known
address, then resend the REQUEST.

status = INSUFF_BW

• Description: There was not enough bandwidth in the network to perform the requested operation.

• Recommended Action: The client should check that it has enough bandwidth on its access link. If it does
not have the bandwidth to support the new request, it should drop or drop out of some calls to free some
bandwidth. If the access link has the bandwidth to support the new request dropping or dropping out of
some calls may free enough bandwidth in the network. Otherwise the client should wait and try the re-
quest at a later time.

status = TIMEOUT

• Description: A timeout occurred somewhere in the network.

• Recommended Action: Attempt the operation again. If it still fails with this status, the client’s network
manager should be notified.

D.2 call_status Field
call_status = OK

• Description: No errors were found in this Call Object.

• Recommended Action: None.

call_status = BAD_CALL_TYPE

• Description: An undefined value was found in the call_type field.

• Recommended Action: Correct the value and resend the REQUEST.

Connection Management Access Protocol (CMAP) Specification Page 149

Applied Research Laboratory Zeus Project

call_status = BAD_ACC

• Description: An undefined value was found in the acc field.

• Recommended Action: Correct the value and resend the REQUEST.

call_status = BAD_MOD

• Description: An undefined value was found in the mod field.

• Recommended Action: Correct the value and resend the REQUEST.

call_status = BAD_TRACE

• Description: An undefined value was found in the trace field.

• Recommended Action: Correct the value and resend the REQUEST.

call_status = BAD_MON

• Description: An undefined value was found in the mon field.

• Recommended Action: Correct the value and resend the REQUEST.

call_status = BAD_PRIORITY

• Description: An undefined value was found in the priority field.

• Recommended Action: Correct the value and resend the REQUEST.

D.3 con_status Field
con_status = OK

• Description: No errors were found in this Connection Object.

• Recommended Action: None

con_status = BAD_CON_ID

• Description: The connection identifier in con_id does not belong to any connection in the call.

• Recommended Action: Select a different connection identifier and resend the REQUEST.

con_status = DUP_CON_ID

• Description: The connection identifier in con_id is already in use for this call, or appears twice among
the Connection Objects.

• Recommended Action: Select a different connection identifier and resend the REQUEST.

con_status = BAD_CON_TYPE

• Description: An undefined value was found in the con_type field.

• Recommended Action: Correct the value and resend the REQUEST.

con_status = BAD_CON_DEF

• Description: An undefined value was found in the con_def field..

• Recommended Action: Correct the value and resend the REQUEST.

con_status = BAD_CON_PERM

• Description: An undefined value was found in the con_perm field.

• Recommended Action: Correct the value and resend the REQUEST.

con_status = BAD_BW

• Description: An illegal or impossible specification was given for the bandwidth for this connection.

• Recommended Action: One possible cause for an illegal bandwidth specification is if the average is
greater than the peak. The client should check that the specification is correct and resend the REQUEST.

Connection Management Access Protocol (CMAP) Specification Page 150

Applied Research Laboratory Zeus Project

D.4 ep_status Field
ep_status = OK

• Description: No errors were found in this Endpoint Object.

• Recommended Action: None

ep_status = BAD_EP_ADDR

• Description: The client address in ep_addr is unknown.

• Recommended Action: Check the address to ensure it is properly formed and is a known address. Correct
the address and resend the REQUEST.

ep_status = DUP_EP_ID

• Description: The endpoint identifier in ep_id is already in use for this client.

• Recommended Action: Select a new ep_id and resend the REQUEST.

ep_status = BAD_EP_ADDR_NOT_ROOT

• Description: The endpoint address given for the root in an open_call message is not the same as that of
the call identifier’s root address.

• Recommended Action: Correct the address and resend the REQUEST.

D.5 uni_status Field
uni_status = OK

• Description: No errors were found in this UNI Object.

• Recommended Action: None

uni_status = BAD_CON_ID

• Description: The connection identifier in con_id does not belong to any connection in the call.

• Recommended Action: Select a different connection identifier and resend the REQUEST.

uni_status = DUP_CON_ID

• Description: The connection identifier in ep_con_id is already in use for this call, or appears twice among
the UNI Objects.

• Recommended Action: Select a different connection identifier and resend the REQUEST.

uni_status = BAD_EP_MAP

• Description: An undefined value was found in the ep_map field..

• Recommended Action: Correct the value and resend the REQUEST.

uni_status = ILL_EP_MAP

• Description: The requested mapping is not allowed by the endpoint’s defaults and permissions.

• Recommended Action: The client should contact the owner of the call and request permission to change
its mapping.

uni_status = BAD_EP_DEF

• Description: An undefined value was found in the ep_def field.

• Recommended Action: Correct the value and resend the REQUEST.

uni_status = BAD_EP_PERM

• Description: An undefined value was found in the ep_perm field.

• Recommended Action: Correct the value and resend the REQUEST.

Connection Management Access Protocol (CMAP) Specification Page 151

Applied Research Laboratory Zeus Project

uni_status = NO_AVAIL_VPI

• Description: There were no VPIs available to satisfy this REQUEST.

• Recommended Action: Wait for a time, then resend the REQUEST.

uni_status = NO_AVAIL_VCI

• Description: There were no VCIs available to satisfy this REQUEST.

• Recommended Action: Wait for a time, then resend the REQUEST.

uni_status = TRANS_VPI_IN_USE

• Description: The transmit VPI requested is already in use.

• Recommended Action: Select another VPI and resend the REQUEST.

uni_status = TRANS_VPI_RESERVED

• Description: The transmit VPI requested is reserved.

• Recommended Action: Select another VPI and resend the REQUEST. The reserved VPI should be
marked as such in the client database so that it is not selected again.

uni_status = TRANS_VPI_NOT_SUPPORTED

• Description: The transmit VPI requested is not supported. It is probably out of the range of VPIs support-
ed by the hardware.

• Recommended Action: Check the range of VPIs supported and select a new VPI. Resend the RE-
QUEST.

uni_status = TRANS_VCI_IN_USE

• Description: The transmit VCI requested is already in use.

• Recommended Action: Select another VCI and resend the REQUEST.

uni_status = TRANS_VCI_RESERVED

• Description: The transmit VCI requested is reserved.

• Recommended Action: Select another VCI and resend the REQUEST. The reserved VCI should be
marked as such in the client database so that it is not selected again.

uni_status = TRANS_VCI_NOT_SUPPORTED

• Description: The transmit VCI requested is not supported. It is probably out of the range of VCIs sup-
ported by the hardware.

• Recommended Action: Check the range of VCIs supported and select a new VCI. Resend the RE-
QUEST.

uni_status = RCV_VPI_IN_USE

• Description: The receive VPI requested is already in use.

• Recommended Action: Select another VPI and resend the REQUEST.

uni_status = RCV_VPI_RESERVED

• Description: The receive VPI requested is reserved.

• Recommended Action: Select another VPI and resend the REQUEST. The reserved VPI should be
marked as such in the client database so that it is not selected again.

uni_status = RCV_VPI_NOT_SUPPORTED

• Description: The receive VPI requested is not supported. It is probably out of the range of VPIs supported
by the hardware.

• Recommended Action: Check the range of VCIs supported and select a new VPI. Resend the RE-
QUEST.

Connection Management Access Protocol (CMAP) Specification Page 152

Applied Research Laboratory Zeus Project

uni_status = RCV_VCI_IN_USE

• Description: The receive VCI requested is already in use.

• Recommended Action: Select another VCI and resend the REQUEST.

uni_status = RCV_VCI_RESERVED

• Description: The receive VCI requested is reserved.

• Recommended Action: Select another VCI and resend the REQUEST. The reserved VCI should be
marked as such in the client database so that it is not selected again.

uni_status = RCV_VCI_NOT_SUPPORTED

• Description: The receive VCI requested is not supported. It is probably out of the range of VCIs support-
ed by the hardware.

• Recommended Action: Check the range of VCIs supported and select a new VCI. Resend the RE-
QUEST.

D.6 op_msg_status Field
op_msg_status = OK_RESPONSE

• Description: The operation is proceeding normally. The next message sent will be a RESPONSE.

• Recommended Action: None

op_msg_status = OK_CONFIRMATION

• Description: The operation is proceeding normally. The next message sent will be a CONFIRMATION.

• Recommended Action: None

uni_status = NO_SUCH_OPERATION

• Description: There is no record of any such operation (message identifier).

• Recommended Action: Return to the initial state, cleaning up local data as required, and resend the RE-
QUEST.

Connection Management Access Protocol (CMAP) Specification Page 153

Applied Research Laboratory Zeus Project

Appendix E: Endpoint Mappings

A client has three choices for its receive mapping (ON, OFF, HOLD), three for its transmit mapping (ON, OFF,
HOLD), and two for its echo mapping (ON, OFF). Although this allows 18 different mappings (ep_map), only twelve
are sensible—in those combinations with echo = ON and transmit = OFF or HOLD, the echo is non-functional since
there is no transmission. This is not to say that the latter six combinations are illegal, merely that they are unlikely to
arise in practice and so we do not examine them here. Table 11 lists the twelve useful endpoint mappings.

For each mapping, certain combinations of ep_def and ep_perm would disallow the mapping. Recall the rules for
the use of ep_def and ep_perm, which apply separately to each of the three mappings (receive, transmit, hold):

• If ep_perm is ON, the client may freely choose any value for the mapping.

• If ep_perm is OFF, the client must have a mapping equal to ep_def. (Exception: For receive and transmit, if
ep_def is ON the client may have a mapping of either ON or HOLD.)

• If ep_perm is VERIFY, the client may choose any value for the mapping but the choice will be confirmed with
the call owner. (Exception: For receive and transmit, if ep_def is ON the client may change between the map-
pings ON and HOLD without owner verification.)

Table 12 lists, for each of the twelve useful mappings, the combinations of ep_def and ep_perm that would disallow
the mapping. For notational convenience we separate out the receive, transmit, and echo mappings. When a set is used
it means that any of the values in the set will disable the mapping. It is sufficient for any one of the conditions to be
met for the mapping to be disallowed.

Table 11. The Twelve Endpoint Mappings

Receive = OFF Receive = HOLD Receive = ON

Transmit = OFF
Echo = OFF

NULL R-hold R-only

Transmit = HOLD
Echo = OFF

T-hold R-hold/T-hold R/T-hold

Transmit = ON
Echo = OFF

T-only R-hold/T R/T

Transmit = ON
Echo = ON

T-only w echo R-hold/T w echo R/T w echo

Table 12. Disabling Defaults and Permissions

Mapping Disabling Combinations

NULL Receive: ep_def ∈ {ON, HOLD}, ep_perm = OFF
Transmit: ep_def ∈ {ON, HOLD}, ep_perm = OFF

Echo: ep_def ∈ {ON}, ep_perm = OFF

R-hold Receive: ep_def ∈ {OFF}, ep_perm = OFF
Transmit: ep_def ∈ {ON, HOLD}, ep_perm = OFF

Echo: ep_def ∈ {ON}, ep_perm = OFF

R-only Receive: ep_def ∈ {HOLD, OFF}, ep_perm = OFF
Transmit: ep_def ∈ {ON, HOLD}, ep_perm = OFF

Echo: ep_def ∈ {ON}, ep_perm = OFF

ll pipe ll pipe ll pipe

ll pipe ll pipe ll pipe

ll pipe ll pipe ll pipe

ll pipe ll pipe ll pipe

ll pipe

ll pipe

ll pipe

Connection Management Access Protocol (CMAP) Specification Page 154

Applied Research Laboratory Zeus Project

One aspect of the table should be noted: Setting ep_perm = OFF for echo severely restricts the mappings available
to the client. For this reason it is recommended that the ep_perm field for echo always be either ON or VERIFY. This
seems a reasonable recommendation, since in most anticipated applications the client itself is best able to determine if
it needs a copy of the data it is transmitting.

T-hold Receive: ep_def ∈ {ON, HOLD}, ep_perm = OFF
Transmit: ep_def ∈ {OFF}, ep_perm = OFF

Echo: ep_def ∈ {ON}, ep_perm = OFF

R-hold/T-hold Receive: ep_def ∈ {OFF}, ep_perm = OFF
Transmit: ep_def ∈ {OFF}, ep_perm = OFF

Echo: ep_def ∈ {ON}, ep_perm = OFF

R/T-hold Receive: ep_def ∈ {HOLD, OFF}, ep_perm = OFF
Transmit: ep_def ∈ {OFF}, ep_perm = OFF

Echo: ep_def ∈ {ON}, ep_perm = OFF

T-only Receive: ep_def ∈ {ON, HOLD}, ep_perm = OFF
Transmit: ep_def ∈ {HOLD, OFF}, ep_perm = OFF

Echo: ep_def ∈ {ON}, ep_perm = OFF

R-hold/T Receive: ep_def ∈ {OFF}, ep_perm = OFF
Transmit: ep_def ∈ {HOLD, OFF}, ep_perm = OFF

Echo: ep_def ∈ {ON}, ep_perm = OFF

R/T Receive: ep_def ∈ {HOLD, OFF}, ep_perm = OFF
Transmit: ep_def ∈ {HOLD, OFF}, ep_perm = OFF

Echo: ep_def ∈ {ON}, ep_perm = OFF

T-only w echo Receive: ep_def ∈ {ON, HOLD}, ep_perm = OFF
Transmit: ep_def ∈ {HOLD, OFF}, ep_perm = OFF

Echo: ep_def ∈ {OFF}, ep_perm = OFF

R-hold/T w echo Receive: ep_def ∈ {OFF}, ep_perm = OFF
Transmit: ep_def ∈ {HOLD, OFF}, ep_perm = OFF

Echo: ep_def ∈ {OFF}, ep_perm = OFF

R/T w echo Receive: ep_def ∈ {HOLD, OFF}, ep_perm = OFF
Transmit: ep_def ∈ {HOLD, OFF}, ep_perm = OFF

Echo: ep_def ∈ {OFF}, ep_perm = OFF

Table 12. Disabling Defaults and Permissions (Continued)

Mapping Disabling Combinations

ll pipe

ll pipe

ll pipe

ll pipe

ll pipe

ll pipe

ll pipe

ll pipe

ll pipe

Connection Management Access Protocol (CMAP) Specification Page 155

Applied Research Laboratory Zeus Project

Appendix F: Parameter Negotiation

Many of the call, connection and endpoint attributes must be agreed upon by clients and the network. These pa-
rameters are negotiable, in that either the client or the network may choose the values and the other must accept them.
This section summarizes the negotiation procedures.

In general, when a client sends a command REQUEST, the client may specify values for the negotiable param-
eters or leave the parameters blank and allow the network to choose. If the client chooses values, the network checks
them for correctness and returns a NACK in the RESPONSE if there are any problems. When a network sends a
prompt REQUEST to a client, the network will always choose values for the parameters but the client can override
the network’s choices by sending a NEG RESPONSE. If the client’s choices are illegal, the network will send an
ABORT.

F.1 Address Negotiation
We allow for the possibility that client identifiers may differ between the phases of an operation. This type of sit-

uation might arise, for example, in an environment where clients are processes and there are multiple clients on each
machine connected to the network. Client addresses would then consist of two parts, a machine portion which specifies
the machine and a process portion which selects a client on the machine (these might be implemented as the network
and local address fields of the CMAP address, see Section 4.2). The operation that adds a client (an open_call or
add_ep) might provide an address which directs the invite_add_ep prompt to a server process on the appropriate ma-
chine. This server would then use other information, such as the user_call_type, to create a new instance of the appro-
priate process and pass the message to that process. The client address returned in the response would then be that of
the new process, and should be used thereafter. This type of negotiation can arise in the following situations:

r_addr in open_call and invite_add_ep: The value provided by the owner in the open_call REQUEST is trans-
mitted to the root client in the invite_add_ep REQUEST. The root client may return a different address in its
invite_add_ep RESPONSE, which becomes the root address for the call and is returned to the owner in the open_call
RESPONSE. If the open_call REQUEST specified two endpoints, the final value will be provided to the additional
endpoint in its invite_add_ep COM.

m_addr and s_addr in invite_add_ep: The value in the network’s REQUEST may differ from that in the client’s
RESPONSE. The network matches the msg_ids and accepts the new value.

ep_addr in open_call, add_ep, and invite_add_ep: The new-client address supplied by the requesting client in
an open_call or add_ep is provided to the new client in the invite_add_ep REQUEST. The value that the new client
returns in the RESPONSE may differ; this value becomes the client address and is returned to the requesting client in
the open_call or add_ep REQUEST.

new_owner in change_owner: The value in the network’s REQUEST may differ from that in the client’s RE-
SPONSE. The network matches the msg_ids and uses the new value as the owner’s address.

F.2 Call Identifiers
r_addr in open_call and invite_add_ep: See the above comments.

lcid in open_call, change_root and invite_add_ep. If the owner leaves the lcid field in the open_call REQUEST
blank, the network will select an unused value and send it to the root client in the invite_add_ep REQUEST. Other-
wise the network sends the owner-proposed value to the root client. The root client then has the option of negotiating
a new value. If the owner selects a value that is in use, the network will send the owner an open_call NACK; if the
value selected by the root in negotiation is already in use, the network will send an open_call NACK to the owner and
an invite_add_ep ABORT to the root. In all these cases the message status = DUP_CALL_ID.

F.3 Connection Identifiers
con_ids in open_call and add_con. The network assigns values to any con_id field left blank by the requester.

Identifiers are by consecutive integers, starting with 1 and increasing throught the Connection Objects in the order giv-
en, skipping any identifiers already in use or appearing elsewhere in the message. As an example, assume that a call
has three connections with identifiers 1, 3, and 31. A client sends an add_con REQUEST with three Connection Ob-

Connection Management Access Protocol (CMAP) Specification Page 156

Applied Research Laboratory Zeus Project

jects. The first and second objects have a blank con_id and the third has a con_id of 4. Assuming the operation suc-
ceeds, the first blank con_id will receive the identifier 2 (1 is already in use) and the second the identifier 5 (3 is already
in use, and 4 is assigned to the third additional connection). The Connection Objects will appear in the same order in
the REQUEST as in the RESPONSE, so the first will have con_id 2, the second con_id 5, and the third con_id 4.

ep_con_ids in open_call and add_con. Both UNI Objects containing ep_con_ids and Connection Objects con-
taining con_ids appear in these two commands. We require that each non-blank ep_con_id equal one of the non-blank
con_ids and that no ep_con_ids be repeated (in other words, the set of non-blank ep_con_ids must exactly equal that
of the non-blank con_ids). The network will assign values to any blank ep_con_ids. Assignment will be by consecutive
integers starting with 1 and increasing through the Connection Objects in the order given, skipping any identifiers al-
ready in use. This will produce the same set of identifiers as for the con_ids as described above.

F.4 Endpoint Identifiers
ep_id in open_call, add_ep, and invite_add_ep. In the open_call or add_ep REQUEST the requesting client

may leave this field blank. The network will select a value and send it to the invited client in the invite_add_ep RE-
QUEST. That client may negotiate a new value for the parameter. If the requester selects a value that is in use, the
network will send the requester an open_call or add_ep NACK; if the value selected by the invited client in negotia-
tion is already in use, the network will send an open_call or add_ep NACK to the owner and an invite_add_ep
ABORT to the root. In all these cases the Endpoint Object’s ep_status = DUP_EP_ID.

F.5 Mappings, Defaults, and Permissions
ep_map in open_call, add_con, add_ep, and mod_ep. If the requester leaves the value of ep_map blank in the

command (open_call, add_con, add_ep, or mod_ep), the network will offer the value of the connection’s con_def
field to the invited endpoint in the prompt (invite_add_ep or invite_add_con). The invited endpoint may negotiate
the value of ep_map in its RESPONSE to the prompt, subject to the restrictions of ep_def and ep_perm. For each of
the three subfields (receive, transmit, and echo) of the mapping: if ep_perm = OFF the value of ep_map must equal
that of ep_def; if ep_perm = VERIFY the client may negotiate but verification will be required; and if ep_perm = ON
the client may change the value freely.

ep_def in open_call, add_con, add_ep, and mod_ep. If the requesting client leaves this field blank the network
will use the value of the connection’s con_def field. Negotiation of this value by the client is not permitted.

ep_perm in open_call, add_con, add_ep, and mod_ep. If the requesting client leaves this field blank the network
will use the value of the connection’s con_perm field. Negotiation of this value by the client is not permitted.

F.6 VPI/VCI Pairs
trans_vpi/trans_vci, rcv_vpi/rcv_vci in open_call, add_con, add_ep, and mod_ep. If any of these pairs is blank

in the command, the network will select a value before offering it to the invited client in the prompt. The client may
accept these values or negotiate different ones in its response. If the requester selects a value that is in use, reserved,
or otherwise unavailable, the network will send the requester an open_call or add_ep NACK; if the value selected by
the invited client in negotiation is unavailable, the network will send an open_call or add_ep NACK to the owner and
an invite_add_ep ABORT to the root.

Connection Management Access Protocol (CMAP) Specification Page 157

Applied Research Laboratory Zeus Project

ContentsTitle Figures BodyTables Index Quit

Index

ABORT confirmation 23, 33
defined 27

Accessibility 17, 28

ACK response 23, 33
defined 26

add_con command 46

add_ep command 55

Addresses
addr_type 144
CCITT E.164, represented as CMAP 15
client 22
CMAP 1, 15
determining client 120, 134
endpoint 20, 30
IP, represented as CMAP 15
OSI NSAP, represented as CMAP 15
types 15, 144

alert maintenance operation 111

announce_add_con notification 100

announce_add_ep notification 103

announce_change_owner notification 106

announce_change_root notification 107

announce_close_call notification 99

announce_drop_con notification 102

announce_drop_ep notification 105

announce_mod_call notification 98

announce_mod_con notification 101

announce_mod_ep notification 104

ATM
cells 2, 4
meta-signalling connection 9
networks 2
standard 4
switches 2

Audio/Video Server example 123-126
call setup 123
client drops out 126
client joins 125
transition to multipoint call 125

Bandwidth

average 19, 30
best-effort 19
connection 19
management 10
peak 10, 19, 30
peak burst length 19
peak burth length 30
reserved 19
static and dynamic 19, 29

Best-effort connections 10

Billing 45, 54, 64, 126

Broadcast packet switch 2

Call model 1, 14-22

Call Object 28
acc 28, 142
call_status 28, 142, 148-149
call_type 28, 142
mod 28, 142
mon 28, 142
priority 28, 142
trace 28, 142
user_call_type 28

Call operations 33, 36-??

Call parameters 16-18, 133
accessibility 17, 28
connection list 18
endpoint list 18
identifier 17
local identifier 17, 26
modifiability 17, 28
monitoring 17, 28
owner 14, 17
priority 18, 28
root 14, 17, 26
traceability 17, 28
type 17, 28
user type 18, 28

Calls 7, 16-18
changing owner of 70
changing root of 73
closing 44
defined 14
determining parameters of 65
modifying parameters of 42
multipoint 1, 17

Connection Management Access Protocol (CMAP) Specification Page 158

Applied Research Laboratory Zeus Project

opening 36
point-to-point 1, 17

Cell header fields
Cell Loss Priority (CLP) 4, 19
Global Flow Control (GFC) 4
Header Error Check(HEC) 4
Payload Type (PT) 4
Virtual Channel Identifier (VCI) 4
Virtual Path Identifier (VPI) 4

Cell pipes 4, 14

Cells, ATM 2
client data 4
format 4
header 2, 4
header fields 2
network control 4
payload 4

change_owner command 70

change_root command 73

Client parameters
address 15

client_reset maintenance operation 112

Clients 2, 7, 15-16
defined 14
mute 10
surrogate 10

close_call command 44

CMAP
as UNI protocol 1
CML requirements for 10
complete 11
CTL requirements for 8
environment 7
implementations 11
minimal 1, 11
network requirements for 8

CMAP Transport Layer (CTL) 1, 7, 8-9
requirements for CMAP 8

CMNP 11
as Connection Management Layer 11

COM confirmation 23, 33
defined 27

Complete CMAP
defined 11

Conference Call example 127-132
addition of connections 129
addition of users 130
call setup 127

changing endpoint mappings 130
control connection 127, 132
dropping user 131
implementation in CMAP 127
user interfaces 127
user-level protocol 127

CONFIRMATION phase 23

Congestion 4, 8, 19

Connection Management Layer (CML) 7, 10-11
CMNP 11
requirements for CMAP 10

Connection Object 29-30
bw 30
con_def 29, 143
con_id 29
con_perm 30, 143
con_status 29, 142, 149
con_type 29
con_type (bw_type) 29, 143
con_type (channel_type) 29, 142
con_type (qos) 29, 143
user_con_type 29

Connection parameters 18-20, 133
bandwidth 19, 30
defaults 20, 29
identifier 18, 29, 31
permissions 20, 30
type 18, 29
user type 20, 29

Connections 4, 18-20
adding to call 46
best-effort 10, 19
defined 14
determining parameters of 65
dropping from call 52
holding 10
modifying parameters of 50
multipoint 8
multipoint-to-multipoint 8
point-to-multipoint 8
point-to-point 8
Virtual Channel (VC) 5
Virtual Path (VP) 5

Control Processor (CP) 3

Data Transfer example 118-122
call closedown 122
call setup (one operation) 121
call setup (two operations) 118
data transmission 121

Connection Management Access Protocol (CMAP) Specification Page 159

Applied Research Laboratory Zeus Project

Data transmission
interaction with CMAP signals 121
protocols 1, 121

Defaults
connection 20, 29
endpoint 21, 31

drop_con command 52

drop_ep command 62

Echo mapping 21, 153

Endpoint Object 30-31
ep_addr 30
ep_id 30
ep_status 31, 143, 150

Endpoint parameters 20-21, 133
address 20, 30
defaults 21, 31
identifier 20
local identifier 20, 30
mapping 14, 21, 31
permissions 21, 31
receive pair 21
transmit pair 21
UNI parameters 31

Endpoints 20-21
adding to call 55
defined 14
determining members of call 65
determining parameters of 68
dropping from call 62
modifying parameters of 59

error_report maintenance operation 115

Errors
client recovery from 116
reporting 115, 145
status codes 26, 28, 29, 31, 32, 145-152

Examples 117-132
Audio/Video Server 123
Conference Call 127
Data Transfer 118

Extensions to CMAP 133

Exterior nodes 2

Header Object 25-27
lcid 26
m_addr 27
msg_id 26
num_cons 26
num_eps 26

op_status 26, 145
op_status (call_status_bit) 26, 141, 145
op_status (connection_status_bit) 26, 141,

145
op_status (endpoint_status_bit) 26, 141,

145
op_status (status) 141, 145-148
op_status (uni_status_bit) 26, 141, 145
op_type 25, 140
phase 26, 140
r_addr 26
s_addr 27

Identifiers
call 17, 22
client 22
connection 18, 22, 29, 31
endpoint 20, 22
message 26, 32
operation 26, 32

Interior nodes 2

invite_add_con prompt 75

invite_add_ep prompt 79

invite_change_owner prompt 89

invite_mod_ep prompt 84

Links 2, 8

Local identifier
call 17
endpoint 20, 30

Maintenance operations 33, 34, 108-116

Mappings 14, 153-154
disabling defaults and permissions 153
echo 21, 153
endpoint 21, 31, 153
example, for Conference Call 130
NULL 15, 153
receive 21, 153
transmit 21, 153

Message objects 23
Call Object 28
Connection Object 29
Endpoint Object 30
Header Object 25
Operation Object 32
Trailer Object 27
UNI Object 31

Messages 9, 10, 23-32

Connection Management Access Protocol (CMAP) Specification Page 160

Applied Research Laboratory Zeus Project

format 23
identifiers 23, 26, 32
reserved fields 24, 32
size of 133
structuring conventions 24
transmission 32
unused fields 24, 32
use in signalling 23

Minimal CMAP 1, 11
defined 11

mod_call command 42

mod_con command 50

mod_ep command 59

Modifiability 17, 28

Monitoring 17, 28

Multidrop signalling 9, 27

Multipoint calls 1, 17

Multipoint connections 8

Multipoint-to-multipoint connections 8

Mute clients 10

NACK response 23, 33
defined 26

NEG response 23, 33
defined 27

Negotiation. See Parameter negotiation

network_reset maintenance operation 114

Network-Node Interface (NNI) 2, 4

Networks
ATM 2
management 9, 10
requirements for CMAP 8

Nodes
abstraction as large switch 3
exterior 2
interior 2

open_call command 36

Operation list
add_con 46
add_ep 55
alert 111
announce_add_con 100
announce_add_ep 103
announce_change_owner 106
announce_change_root 107

announce_close_call 99
announce_drop_con 102
announce_drop_ep 105
announce_mod_call 98
announce_mod_con 101
announce_mod_ep 104
change_owner 70
change_root 73
client_reset 112
close_call 44
drop_con 52
drop_ep 62
error_report 115
invite_add_con 75
invite_add_ep 79
invite_change_owner 89
invite_mod_ep 84
mod_call 42
mod_con 50
mod_ep 59
network_reset 114
open_call 36
status 108
trace_call 65
trace_ep 68
verify_add_ep 92
verify_mod_ep 95

Operation Object 32
op_msg_id 32
op_msg_status 32, 144, 152

Operations 33-116
commands 33
identifier 32
identifiers 26
informing peer of status of 111
notifications 33
obtaining status of 108
phases 23, 26
prompts 33
queries 33
trace_ep 68
type 25

Owner 14, 17

Parameter negotiation 35, 155-156
in add_con 49, 155, 156
in add_ep 58, 155, 156
in change_owner 72, 155
in change_root 74, 155
in invite_add_con 78
in invite_add_ep 82, 155, 156
in invite_mod_ep 87

Connection Management Access Protocol (CMAP) Specification Page 161

Applied Research Laboratory Zeus Project

in mod_ep 156
in open_call 40, 155, 156
of addresses 155
of con_id 40, 49, 155
of ep_addr 40, 58, 155
of ep_con_id 40, 49, 156
of ep_def 40, 49, 58, 156
of ep_id 40, 58, 83, 156
of ep_map 40, 49, 58, 78, 83, 87, 156
of ep_perm 40, 49, 58, 156
of lcid 40, 74, 82, 155
of m_addr 155
of new_owner 72, 155
of r_addr 40, 82, 155
of s_addr 155
of VPI/VCI pairs 40, 49, 58, 78, 83, 88, 156

Permissions
connection 20, 30
endpoint 21, 31

Phases 23, 26

Point-to-multipoint connections 8

Point-to-point calls 1, 17

Point-to-point connections 8

Priority 10, 28
CMAP levels 18

Quality of Service
connection 29

Quality of Service (QOS) 10
CMAP levels 19

Receive mapping 21, 153

Receive pair 21, 31

REQUEST phase 23

reserved message fields 24, 32

Reset
of client 112
of network 114

RESPONSE phase 23

Root 14, 17, 26

Routing 2
"toward-the-root" algorithm 120, 126
in broadcast packet switch 3
in recycling switch 3
tables 2, 3
use of VPI/VCI fields 5
Virtual Channel (VC) 4, 5
Virtual Path (VP) 4, 5

Security 134

Session Management Layer (SML) 7
CMAP as a component of 7
Session Managers 7, 9

Signalling
CMAP 14
connections 9, 133
inter-client 134
meta-signalling 9
multidrop 9, 27
NNI 2
surrogate 10, 27, 123, 124, 133
UNI 2

Source discrimination 5
use of VCI fields for 6, 127

status maintenance operation 108

Surrogate clients 10

Surrogate signalling 10, 27, 123, 124, 133

Switch Module Interface (SMI) 3

Switches
ATM 2
broadcast packet 2
control processor 3
gigabit recycling 3

Tagged data 4

trace_call command 65

trace_ep command 68

Traceability 17, 28

Trailer Object 27
options 27
options_size 27

Transactions 133

Transmit mapping 21, 153

Transmit pair 21, 31

Type
call 17, 28
connection 18, 29

UNI (per-connection) parameters 21, 31
defined 14

UNI Object 31
ep_con_id 31
ep_def 31, 144
ep_map 31, 144

Connection Management Access Protocol (CMAP) Specification Page 162

Applied Research Laboratory Zeus Project

ep_perm 31, 144
rcv_vci 31
rcv_vpi 31
trans_vci 31
trans_vpi 31
uni_status 31, 143, 150-152

unused message fields 24, 32

User type
call 18, 28
connection 20, 29

User-Network Interface (UNI) 1, 2, 4

verify_add_ep query 92

verify_mod_ep query 95

Virtual Channel (VC)
allocation 11
connection 5
connection type 19
Identifier (VCI) 4
routing 4, 5

Virtual Path (VP)
allocation 11
connection 5
connection type 19
Identifier (VPI) 4
routing 4, 5

VPI/VCI pairs
allocation 11
receive 21, 31
transmit 21, 31

