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1. Introduction

Large scale multimedia storage servers will be an integral part of a ubiquitous distributed multimedia
infrastructure that is taking shape. The users of this infrastructure will have access to exciting
applications such as multimedia mail, orchestrated presentations, high quality on-demand audio
and video, collaborative multimedia document editing, browsing remote multimedia archives and
virtual reality environments. The recognition of the fact that the existing network based servers
cannot meet the requirements of these new applications, has led to a urry of research activity in
the area of design of high performance network based multimedia storage servers. To comprehend
the challenges in designing such servers, it is important to understand their requirements. These
include : 1) support potentially thousands of concurrent customers all accessing the same or di�erent
data, 2) support large capacity (in excess of terabytes) storage of various types, 3) deliver storage
and network throughput in excess of a few Gbps, and 4) provide deterministic or statistical qos
guarantees in the form of bandwidth and latency bounds.

Given the trends towards multi-participant and interactive applications, in addition to the four
basic requirements, a storage server must support interactivity. Interactivity can be de�ned as the
ability of a client to control a multimedia stream delivered by the server. The stream control can be
of two types: stream playout control and the stream content control. The stream playout control
allows the user to perform operations such as fast forward (�), rewind (rw), pause, frame advance,
slow play, and stop-and-return on a media stream. On the other hand, the stream content control
allows the client to modify the stream content by performing appropriate media edit functions.
For example, in case of audio, video and image streams, a client may want to enhance the stream
and store it back to the server. Note that for most of the on-demand applications, interactivity in
the form of stream playout control will be su�cient. In other words, a retrieval environment that
supports data retrieval but no data edits, will be more prevalent.

One of the greatest hurdles in designing high performance storage servers that meet all above
requirements stems from the persistent storage i/o bottleneck. The primary reason for such a
bottleneck is that the processor, memory and network speeds keep improving faster than that of on-
line secondary storage [5]. The mismatch between the requirements of multimediaand the traditional
operating system support for secondary storage devices aggravates this bottleneck even further.

Given these observations, addressing the challenge of high performance storage i/o will be critical
to the design of multimedia clients and servers. Our project called the Massively-parallel and Real-
time Storage (mars) represents an e�ort in this direction. The salient feature of our architecture is
the use of some of the well known techniques in parallel i/o such as data striping and Redundant
Arrays of Inexpensive Disks (raid), and an innovative atm based interconnect inside the sever,
to achieve a scalable architecture that transparently connects storage devices to an atm based
broadband network. The atm interconnect within this architecture uses a custom asic called ATM
Port Interconnect Controller (apic), which will serve as the basic building block for a high bandwidth
networked-i/o subsystem. The apic is currently being developed in an arpa sponsored gigabit lan
testbed, whereas the apic based mars storage server will be designed and prototyped as a part of
the recently initiated nsf funded Grand Challenges project. In our opinion, this research e�ort in
storage server design is the �rst one to propose a system architecture that is scalable in terms of
throughput and number of clients, and take an integrated approach that collectively satis�es all the
requirements.

In this paper, we will consider only a retrieval environment and primarily focus on the strong
interaction between the architecture, data layout, data compression, and scheduling. In particular,
we will present distributed multilevel data layout, scheduling and playout control schemes developed
in conjunction with our architecture. These schemes allow all clients to access the same data without
data replication and support both bu�ered as well as bu�erless clients. Also, they provide strict
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deterministic guarantees to each active client during normal playout as well as a full spectrum of
interactive stream control operations (namely, fast forward, rewind, frame advance, slow play, slow
rewind, pause, stop-and-return and stop). Our implementation of the stream control operations
requires no extra bandwidth reservation and provides acceptable operation latency of a few hundread
milliseconds.

The rest of this paper is organized as follows: Various service models that are possible for a on-
demand multimedia server are illustrated in Section 2. The basics of our prototype implementation
of a large scale server are presented in Section 3. Section 4 describes the distributed and hierarchical
data layout scheme. Next, our basic multilevel scheduling scheme is illustrated in Section 5. Various
ways of implementing playout control operations and their implications on scheduling are described
in Section 6. This section also presents modi�cations that must be made in the basic scheduling
scheme to achieve smooth transition between normal playout and operations such as � and rw.
Section 7 presents some interesting analytical results on distributed data layout. These results
guarantee that no extra bw reservation is required, at the storage nodes in the architecture, to allow
each active client to independently do � and rw. Section 8 gives a brief overview of related research
e�orts in high performance i/o and multimedia storage servers, reported in literature. Finally, the
conclusions from the present status of the work and the expected results of the ongoing work are
outlined in Section 9.

2. Service Models for a On-demand Multimedia Storage Server

MOD
Server

1 2 3

4 5 6

Network
Req1Req1

N-2 N-1 N
Req1 Req2 Req2

ReqNReq2 Req2 Req4 Req10

Multimedia Files

Data

Figure 1: mod server request-response model

Figure 1 shows the access model of a mod server in a retrieval environment. Typically, the mod sever
will have N multimedia �les, each of which has two attributes associated with it. The �rst attribute,
duration, is the length of the time that would be required to play the �le at normal playout rate,
whereas the other attribute, demand, measures the number of simultaneous connections the server
can support for the �le. The clients can access the multimedia �le (s) by sending requests to the
server. The server performs admission control, which, based on the existing load and the resource
usage, admits or rejects the client requests.

The request arrival process at a mod server is likely to exhibit spatial and temporal locality.
The spatial locality property refers to the fact that some of the data items are likely to be accessed
more frequently than the others. For example, in case of an on-demand movie application, a large
fraction of requests received are likely to be for popular and recently released movies. However,
some applications may exhibit lesser spatial locality than the others, for example, in an on-demand
digital library or a radiological image database, all documents are likely to be uniformly accessed.

The temporal locality property signi�es that depending on the application, the request arrival
process will be temporally clustered to various extent. For example, in case of on-demand movies,
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request rate will be higher during the evening time period of a weekend than on the weekdays, and
more requests will be received during the 6 to 9 pm than any other period of the day.

Service Types

Shared Viewing
(SV)

Dedicated Viewing
(DV)

Shared Viewing with
Constraints (SVC)

Figure 2: On-demand service types

Given such an access model and request arrival pattern, the extent to which various requirements
outlined earlier in Section 1 are met by a storage server depends on the service model that underlies
its design. Figure 2 illustrates various service models that are possible for an on-demand storage
server. Of these, the shared viewing and dedicated viewing models have been discussed in literature,
whereas the shared viewing with constraints model is a generalization of a service commonly known
as \near-video" [14, 4]. Note that this classi�cation is based on the degree of personalization and
interactivity provided by a service.

Shared Viewing (sv) service:
In this type of service, the time of access for a multimedia document is decided by the server rather
than the client. The mod server multicasts the multimedia program at �xed times and the clients
interested in receiving the program tune in to the server at those �xed times. Existing Pay-Per-View
(ppv) channels on cable networks represent this service. Clearly, a client of such a service can not
control the stream playout and also has minimal freedom as to when the multimedia stream will
be available. In other words, the term "on-demand" in this model is quite a misnomer. Given that
the existing shared media networks such fddi support broadcast and that the future broadband
networks, such as atm, will support multicast, a mod system o�ering sv service can be easily
implemented by multi-casting data retrieved o� a simple disk or even a digital tape. In short,
implementing such a server presents hardly any technological challenges.

Shared Viewing with Constraints (svc):
In this type of service, the client accesses the multimedia documents at any time it desires by
sending request to the mod server. The server processes and accepts requests in groups to exploit
the clustering property of the arrival process. Typically, a new client request may face a variable
admission latency, after which the client is assigned to a multicast group, all members of which are
connected to the server by a single multicast network connection. The svc represents incremental
improvement over the sv service, as it allows user to access multimediadocuments at nearly arbitrary
instances, unlike the �xed instances in sv service. This service may make sense in case of certain
applications, such as on-demand movies, where request arrivals are likely to exhibit signi�cant
temporal and spatial clustering. However, supporting interactive behavior is di�cult in this service
and hence, it will be unsuitable for applications such as digital library or database browsing, where
request clustering is di�cult to achieve and interactivity is important.

Dedicated Viewing (dv):
In this type of service, illustrated in Figure 3, the client accesses the multimedia documents by

sending requests to the server. Each such request, from the same or di�erent client, is treated
independently at the server. For example, in Figure 3, requests received at time t1 and t2, though
close in time and for the same video X, are treated as two separate requests and hence, require
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Figure 3: mod server for a Dedicated Viewing service (DV)

separate retrieval and delivery. Thus, in an on-demand movie server supporting maximum 1000
users with dv service, all 1000 users, in extreme case, may watch the same movie independently and
will therefore, require 1000 independent retrievals, and deliveries over separate network connections.
Note that each of these 1000 clients has its own strict timing requirements that need to be met in
presence of other clients that are active concurrently. The primary advantage of this service is that
it is a natural paradigm for personalized, interactive multimedia delivery.

We believe that in future, aforementioned three services will co-exist and cater to di�erent classes
of applications. The dv services are not possible at present, but will be important for a large class of
exciting new applications that are inherently interactive. However, designing a server which o�ers dv
services and meets all the requirements mentioned earlier is a challenging task. Our (mars) project
uses dv service as an underlying model and attempts to meet this challenge. The basic mars
architecture has been detailed in [2] and here, we will briey present a prototype implementation
that is relevant for the rest of the paper.

3. A Prototype Architecture

Figure 4 shows a prototype architecture of a mars server. It consists of three basic building blocks: a
cell switched atm interconnect, storage nodes and the central manager. The atm based interconnect
uses a custom asic called ATM Port Interconnect Controller (apic) currently being developed as a
part of an arpa sponsored gigabit local atm testbed. The apic is designed to support a data rate
of 1.2 Gbps in each direction[9].

The central manager is responsible for managing the storage nodes and the apics in the atm
interconnect. For every media document, it decides how to distribute the data over the storage
nodes and manages the associated meta-data information. It receives the connection requests from
the remote clients and based on the availability of resources and the qos required, admits or rejects
the requests. For every active connection, it also schedules the data read/write from the storage
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Figure 4: A prototype architecture

nodes by exchanging appropriate control information with the storage nodes. Note that the central
manager only sets up the data ow between the storage devices and the network and does not
participate in actual data movement. This ensures a high bandwidth path between storage and the
network.

The architecture of the storage node described here assumes the storage at the node to be a
raid, however it can be easily extended to accommodate other forms of storage such as a set of
independent high capacity optical disks or tertiary storage in the form of optical or magnetic tapes.
A raid storage node is illustrated in Figure 5. The disk array at the node is constructed out of a
set of Small Computer System Interconnect (scsi) strings, with a �xed number of disks per string.
The multiple scsi strings are controlled by an array controller, which interfaces to the apic through
a dual ported memory, such as a video ram (vram).

In a read-only environment, the array controller asynchronously writes the data in the vram
and the apic consumes it to transfer it to the network. The vram is shared by a set of bu�ers such
as: circular bu�ers for periodic streams, bu�ers for non-real time tasks (for streams such as still
images, text, and progressive image transmissions), request bu�ers used by the central manager to
write control commands for read and write schedule management, and positional meta-data bu�ers.

The array controller is responsible for managing the local storage and providing one or more of
the resource management functions, such as �le system operations, scheduling, and compute support.
The control block, the heart of the array controller, can be a �nite state machine or an embedded
processor that runs a small real-time executive (or a real-time os). Additional details on the storage
node and a scalable extension of the prototype architecture can be found in [2].

4. Hierarchical Data Layout

The motivation for our hierarchical data layout schemes results from following two observations:
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� Disk arrays have limited scalability: The disk arrays and the associated data strip-
ing schemes introduce parallelism to overcome the storage throughput bottleneck. However,
though these ideas have been demonstrated to be useful, disk arrays will not be able to support
a large number of clients with aggregate throughput of the order of few Gbps [15]. Also, though
very high throughputs have been demonstrated in disk arrays developed for supercomputers
and mainframes [3, 19], they are expensive custom solutions designed for applications very
di�erent from multimedia applications.

� Multimedia data is amenable to striping: The periodic nature of multimedia data is well
suited to spatial distribution or striping. For example, a video stream can be looked upon as a
succession of logical units repeating periodically at a �xed rate. A logical unit for video can be
a single frame or a collection of frames, and the period of repetition can be the frame period,
say 33 msecs/frame or an integral multiple thereof. Each such logical unit or the parts of it
can be physically distributed on di�erent storage devices and accessed in parallel.

Thus, key to getting a large throughput when accessing multimedia documents, is to distribute
the contents to a greater degree on autonomous, co-operating storage nodes, such as the one's in our
architecture discussed earlier. With this prelude, we will now present our basic distributed layout
scheme.

4.1. Distributed Chunked Layout

Figure 6 illustrates an example layout scheme, called as Distributed Cyclic Chunked Layout (dccl),
that uses a logical unit consisting of k successive frames as a basic layout unit. We call such
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a unit, a chunk. The frames in a single chunk are con�ned to one storage node. The chunk
size can be any number of frames ranging from, k = 1 { one frame per chunk, to k = Fmax =
Maximum number of frames in the stream, which is the entire duration of the media stream. Also,
the chunk size may be di�erent for di�erent multimedia documents. The successive chunks of a
stream are distributed on the storage nodes as per a certain logical layout topology. For example,
as shown in Figure 6, the chunks are laid out following a ring topology. Note that in this topology,
the data layout consists of a repetition of a basic pattern, called Distribution Cycle, consisting of
D consecutive chunks. The �rst chunk in such a cycle is called the anchor chunk and the node
to which it is assigned is called anchor node. In the case when the chunk size is one, the anchor
chunk is termed as an anchor frame and the resulting layout is called Distributed Cyclic Layout
(dcl). Also, unlike some of the other layouts presented in subsequent sections, in case of dccl (as
well dcl), the location of the anchor node is always �xed and is the same for all distribution cycles.

In this simple scheme, the time separation between consecutive chunks of the same stream as-
signed to a storage node is D�Tf�k. This amount, in turn, represents time between two consecutive
pre-fetches, if the entire chunk is fetched as a single unit. Similarly, in case of dcl, two consecutive
frames of a stream at a storage node are separated by D frames, thus, increasing the e�ective period
of the stream from Tf to Tf � D. In other words, the stream is slower by a factor of D from the
perspective of each node.

Each node stores the chunks assigned to it on the local storage devices as per a node-speci�c
storage policy. For example, in case of storage in the form of a disk array, various possible options
are: 1) Store the chunk contiguously on the same disk, 2) Store every frame in the chunk on a
separate disk, and 3) Stripe each frame in the chunk on the disk array. The detailed discussion of
several tradeo�s associated with each of these options is beyond the scope of this paper.

A storage node may retrieve the chunks assigned to it from its local storage as a single unit or
in parts (frames). The tradeo�s involved in the choice of the option stem from following factors: 1)
size of bu�er available at the client, 2) amount of per-connection bu�er available at the server, and
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3) type of network service used for data transport between the client and the server.
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Figure 7: Bu�er scenarios at the client

Figure 7 illustrates the two possible bu�er scenarios at the client. Typically, aBu�erless Client
has a few frames worth of bu�ers required by the decompression hardware. For example, a typical
mpeg decoder may have bu�er for at least three frames - for I and P anchor frames required to
decode B frames and the frame bu�er. On the other hand, a Bu�ered Client, in addition to the
decoder bu�er, has a bu�er large enough to store several (100 to 200 - approx. few seconds worth)
frames. Availability of such bu�er makes network delay and jitter a non-issue, but requires bu�er
management on the part of the client.

Next, assuming a dcl layout, we will present our hierarchical scheduling schemes.

5. Hierarchical Scheduling

Given a chunked layout, a storage node in our architecture has following three options as to how it
schedules prefetch and transmission of chunks:

1. Fetch and transmit the chunk frame-by-frame

2. Fetch the chunk as a single unit and transmit it as a single burst

3. Fetch chunk as a unit and transmit it frame-by-frame

In each of these options, in order to support guaranteed periodic retrieval of data for all active
connections, we use a 3-level hierarchical scheduling scheme. The highest level of this scheme consists
of a scheduling policy that schedules data retrievals from the unsynchronized storage nodes. The
second level consists of a scheme for scheduling the storage devices at a node (e.g.: scheduling reads
from the disks in the disk array, scheduling disk head movement etc.). The last level guarantees
periodic pacing of data by each apic associated with a storage node, on to the apic interconnect and
subsequently to the network, as per a rate speci�cation. The complexity of scheduling algorithms
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used at all levels depends on various factors such as, size of the bu�er available at the client side,
type of data transport service provided by the network, size of per connection bu�er at the server,
design of the data layout, and the extent of support for sophisticated interactive playout control. In
following subsections, we will discuss the �rst option in detail and briey describe the rest of the
options.

5.1. Scheme 1: Fetch and transmit the chunk frame-by-frame

As shown in this subsection and subsequent sections, using simple scheduling schemes, this approach
can provide strict deterministic qos guarantees to all active clients during normal playout as well
as stream control operations. It minimizes bu�er required at the client and the server, o�ers the
best operation latency, and allows e�cient implementation of playout control operations. At �rst
thought, it may seem that fetching a chunk frame-by-frame increases seek overhead at the disks.
However, we believe that under near-full load (i.e when number of active clients and hence, request
per disk are large in number), an appropriate disk head scheduling policy that minimizes rotational
and seek latency by ordering disk requests, in conjunction with smallest chunk size, will provide
good disk utilization and allow the disk arrays at the storage nodes to be used in a load-balanced
fashion.

Due to space constraints, here we will present only one scheme for scheduling data reads over
multiple, unsynchronized storage nodes. First, we will describe a simple scheduling scheme that
e�ciently supports independent normal playout of same or di�erent document for all active con-
nections. In the next section, we will illustrate the modi�cations to this scheme to support playout
control operations. The salient feature of these modi�cations is that they that require no extra
bw reservation and o�er tolerable operation latency at the cost of doubling per connection bu�er
requirement.
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Node

APIC APIC APIC APIC APIC

Storage

Node
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Figure 8: A simple layout example

Figure 8 and Figure 9 together illustrate a simple data layout and a scheme for scheduling data
retrieval from storage nodes when clients are bu�erless. In this scheme, each storage node maintains
Ca bu�ers, one for each active connection. In a retrieval environment, the data read from the disks
at the storage node is placed in these bu�ers and read by the apic. At the time of connection
admission, every stream experiences a playout delay required to �ll the corresponding bu�er, after
which the data are guaranteed to be periodically read and transmitted as per a global schedule.

The global schedule consists of periodic cycles of time length Tc. Each cycle consists of three
phases: data transmit, handover and data pre-fetch. During the data transmit phase (TTx), the
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apic corresponding to a storage node reads the bu�er and transmits it over the interconnect to the
network. Once this phase is over, the apic sends control information (control cell) to the downstream
apic so that it can start it's data transmit phase. The last phase in the cycle, namely the data pre-
fetch phase (Tpf ) is used by the storage node to pre-fetch data for each connection that will be
consumed in the next cycle.

As an example, consider a prototype with 15 storage nodes (D = 15) servicing a �xed number
of video connections which have frame period of Tf = 33 msecs (ms). If the apic interconnect
bandwidth is 622 Mbps, the e�ective data bandwidth available is 563 Mbps, excluding the bandwidth
lost due to the atm header overhead in each cell. Using these values, if the cycle time is set to
Tc = 33� 15 � 495 ms, the length of the transmit phase can be at most TTx = 33 ms. Thus, each
storage node has to pre-fetch a frame worth of data for each connection every ((495� 33)� TH ) =
462� TH ms. Assuming that the TH is of the order of 1 ms, the pre-fetch time is 461 ms. A simple
raid constructed using disks with maximum rotational and seek latencies of 10 ms can deliver 5
MBps. Thus, a storage node with such a raid can pre-fetch 2.3 megabytes of data in 461 ms. A
bu�er of this size can store approximately 27 frames, each of 84 kb - the average size of a mpeg
encoded 20 Mbps hdtv video stream. Since each frame belongs to an independent connection, � 27
independent hdtv connections are possible. The total bandwidth requirement of these connections
is 27� 20 Mbps = 540 Mbps, which is less than the e�ective interconnect bandwidth of 563 Mbps.
Thus, � 27 compressed hdtv clients can be supported simultaneously. Similar calculations show
that approximately 110 standard ntsc quality mpeg clients can be supported in this setup.

5.2. Scheme 2: Fetch the chunk as a single unit and transmit it as a single
burst

Fetching the entire chunk as a single unit has the advantage of amortizing the seek overhead at the
disks over large transfers. This may improve the disk utilization, but will increase the per-connection
bu�er requirements at the server.

In the case of a bu�ered client, the server can transmit the prefetched chunk as a single burst.
Figure 10 illustrates the basic idea behind scheduling transmissions in this fashion. In this example,
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the global schedule is a recurring super-cycle that consists of D cycles. One such cycle, each of
time length Tc = Tf � k, is assigned to every storage node. In each cycle, the apic associated
with the node transmits the prefetched chunk of every active connection as a single burst. At the
end of its assigned cycle, the node hands over transmission to the successor node in the linear
(modulo D) order. Thus, the server assigns the entire interconnect and the network link bw to a
single connection and sends long burst of data into the network. However, this requires that the
network support a transport service that allows reliable transmission of such large bursts of data
at link rates. Also, such burst transmission has to occur periodically (every D � k � Tf ) for each
connection, with minimum burst loss and/or blocking probability. Supporting a large number of
such active connections is a non-trivial task for a network designer.

Another interesting observation is that to ensure qos to a large number of concurrent clients,
between any two consecutive chunk transmissions for a stream, the server has to successfully transmit
the chunks from the rest of the clients. The time between consecutive chunk transmissions for a
stream depends on the amount of bu�er at the client side. For example, a smaller client bu�er needs
to be �lled more often by frequent chunk transmissions. This implies that a client with the smallest
bu�er dictates the periodicity of chunk transmissions for all connections. Thus, even if some of the
admitted clients have large bu�ers, server has to treat all clients to have bu�er of only one size - the
one which is smallest among all. In other words, all clients must have the same bu�er size equal to
the chunk size.

Consider, a scenario in which all clients are identical (have same amount of bu�er) and the
network provides necessary burst transmission service. Let the number of storage nodes be D = 15
and the chunk size k = 30 frames. This means that a node must prefetch and transmit a chunk every
33� 30� 15 = 14:85 secs for each active connection. Given that the average frame size of an mpeg
compressed ntsc quality video is approximately 20 kb, the chunk size is approximately 600 kbs. In
order to serve 100 independent, identical clients, 100 such chunks must be retrieved in a cycle time
of 14:85 secs. Therefore, the average throughput of the storage device, such as a disk array, at the
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storage node must be approximately 4:1 MBps. If the chunk size is reduced to 2 frames (k = 2),
the disk array throughput requirement is unchanged, but the cycle time is now reduced to mere 990
msecs. This cycle time a�ects the latency for playout control operations. Also, unrestricted playout
control is problematic with large chunk sizes (large cycle lengths) and requires over-engineering the
architecture by reserving extra bw at each node for certain playout control operations.

5.3. Scheme 3: Fetch chunk as a unit and transmit it frame-by-frame

Node i

 Tc

 Co  C1  C2 C3 C4  Ca -1

Each block contains  frame or it’s poritons

Ca

Figure 11: Interleaving transmissions of all connections in frame-by-frame transmission

At the client, this approach minimizes the bu�er requirement, but at the server, the advantages as
well as the disadvantages of fetching the chunk as a single unit are the still the same as in Scheme
2.

The frame-by-frame transmission in this scheme allows the server to use the e�cient vbr trans-
port services that will be provided by future atm networks. Thus, in this case, the apic associated
with each node would interleave transmission of data for all connections over the interconnect and
subsequently to the network. Figure 11 illustrates such interleaving in a single cycle assigned to a
typical Node i.

Note that in presence of delay jitter introduced by network congestion and instantaneous sever
overloads, frame-by-frame transmission used in Scheme 1 and 3 may cause data to be delivered to
the client beyond required deadlines. However, standard techniques, such as a small playout bu�er
at the client, can easily mask this e�ect.

To summarize, Scheme 1 and 3 are two promising approaches available to a server to fetch and
transmit the data. In the rest of the paper, we will concern ourselves with special case of Scheme 1
that uses chunk size of one frame.

6. Scheduling Playout Control Operations

As discussed earlier, future on-demand multimedia applications will require interactivity in the form
of stream playout control that allows user to do fast forward, rewind, slow play, slow rewind, frame
advance, pause, and stop-and-return on a media stream. Also, unlike the linear access supported by
present-day video cassettes, a user may access the media streams in a random fashion (as permitted
by existing cd-roms and laser disks). These operations can be classi�ed into three groups as shown
in Table 1. Note that logically similar operations are grouped together. For example, � and rw
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Table 1: Classi�cation of playout control operations

Group 1 �, rw, fast play, fast rewind
Group 2 slow-play, slow-rewind, frame advance
Group 3 pause, stop-and-return , stop

increase the perceived rate of display and hence are in the same group. Similarly, slow-play, slow-
rewind and frame-advance reduce the perceived rate and hence, belong to same group.

In order to understand implications of these operations on data layout and scheduling, it is
necessary to �rst understand various ways of implementing the playout control operations.

6.1. Semantics of Playout Control Operations

The two ways of implementing the stream control operations are as follows:

� Rate variation scheme (RVS): In this scheme, the operation changes the rate of display at
the client and hence the rate of data retrieval and transmission at the server. The performance
analysis of a large-scale server using such a scheme has been analyzed in [8].

� Sequence variation (SVS) scheme: In this scheme, the operation changes the sequence of
frame display and hence the sequence of data retrieval and transmission at the server. The
display rate at the client side is unaltered but the retrieval rate and the transmission rate at
the server may be a�ected.

As an example, consider the fast forward operation. In the implementation using RVS, the
display rate at the client terminal is increased to give the user a perception of fast forward. For
example, a video stream may be played at 90 frames/sec (fps) instead of standard 30 fps. On the
other hand in case of SVS, irrespective of whether a video stream is in normal play mode or � mode,
display rate is always 30 fps. The perception of fast forward is achieved by displaying a altered frame
sequence. e.g.: playing only every alternate frame, every 5th frame, or in general, every dth frame
(d = fast forward distance).

However, the RVS implementation of � and rw has following signi�cant drawbacks:

1. Increased network and storage BW requirement: RVS approach increases the resource
requirements at the server in the form of increased bu�er and storage and network BW. Since
the interactive behavior is typically unpredictable, any deterministic guarantees to interactive
operations would require the server to be highly over-engineered. Also, no matter how the
server makes n (fast forward factor) times the normal playout bw available for fast forward,
the network may not be able support such increases in bw requirement without high cost
and/or signi�cant blocking.

2. Inappropriate for real-time decoders: Most of the decompression engines at the client
handle real-time decoding of incoming data at a rate smaller than or equal to a maximum
frame rate. Thus, a mpeg decoder hardware can decode at the most 30 fps. Therefore, any
attempt to increase the decoding/display rate by increasing the data rate will not work. In
other words, it does not help to use complex (presumably intelligent) algorithms at the server
to send data at higher rate, if the client cannot handle it.
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3. Increased bu�er requirement at the client: Given the cost factor, a typical real-time
mpeg decoder has minimal (3 frames worth) bu�ers. This implies that data coming in at n
times the normal playout rate cannot be bu�ered at the client and will be dropped, wasting
all the \good" work server and network did to transport it to the client.

Due to these compelling reasons, we choose to implement � and rw using SVS approach. We
distinguish fast-play (fp) and � as two di�erent operations and implement fp using RVS approach.
Similar distinction can be made between fast-rewind (fr) and rw. Typically, � (rw)will be supported
for all active connections, whereas fp (fr) will be a special operation, subject to resource availability.

Note that operations such as slow play and slow rewind can only be implemented in RVS. How-
ever, these operations reduce the resource usage, and hence are easier to implement. Also, operations
such as pause, frame-advance and stop-and-return do not fall under any particular classi�cation and
are easy to implement.

6.2. Scheduling for FF and RW is problematic

The simple data layout and scheduling scheme described in Section 5 works for normal stream
playout but not for � and rw. Consider a connection in an example system with number of storage
nodes D = 6 and a fast forward implementation by skipping alternate frames. The frame sequence
for normal playout is f0; 1; 2; 3;4;5; : : :g, whereas for the fast forward the same sequence is altered to
f0; 2; 4; 6; 8; 10; : : :g. The set of nodes from which the frames are retrieved in the normal playout is
f0; 1; 2; 3; 4; 5; : : :g . Upon � this node set is altered to f0; 2; 4; 0; 2;4; : : :g. Clearly, in this example,
during � the odd-numbered nodes are never visited for frame retrieval. This means that for every
active connection performing fast forward or rewind, even numbered nodes have to fetch frames
twice as often. Another serious implication of this is that as the display rate is constant, node 2 for
example, must retrieve and transmit data in a time position which is otherwise allocated to node 1
in normal playout.

Thus, there are two main problems: �rst, the stream control alters the sequence of node-visits
from the normal linear (modulo D) sequence. In other words, the transmission order is no longer
the same for all connections when some of them are doing fast forward or rewind. Therefore, the
transmission of all connections can no longer be grouped into a single transmission phase. Secondly, it
forces some nodes to retrieve and transmit more often, creating \hot-spots" and, in turn, requiring
bandwidth to be reserved at each node to deal with the overloads. Such additional bandwidth
reservation will lead to conservative admission control and poor utilization. If no such bandwidth
reservation is made, qos may be violated during overloads.

The �rst step in �xing these problems is to decide the order of transmissions for di�erent nodes
on a per-connection basis. Figure 12 illustrates this with an example of a system with D = 6
nodes and 4 active connections, of which C0 is performing �. It shows two consecutive (ith and
(i + 1)th) cycles. The transmission order in the ith cycle is represented by the ordered node set
Splay = hD0; D1; D2; D3; D4; D5i, which is identical for all connections. Note that the during the
time duration assigned to each node, transmissions for connections C0; C1; C2 and C3 need not be
in strict sequential order and can be interleaved at the cell level.

When the � request for connection C0 received in ith cycle becomes e�ective, the transmission
order for it is altered to the ordered node set Sff = hD0; D2; D4; D0 : : :i in the (i + 1)th cycle. The
transmission order for the rest of the connections is unchanged. Figure 13 illustrates this when
M out of Ca active connections are performing fast forward. At a typical node i the transmission
occurs in multiple phases, one of which is for connections performing normal playout and rest are for
connections performing fast forward. These phases cannot be combined into a single phase as the
transmission order of all the M connections performing fast forward is not identical. The sequence
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Node 0
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Node 5

Cycle i+1

Figure 12: Revised schedule when C0 performs fast forward

of frames appearing on the wire consists of two sequences: a sequence of frames transmitted from an
apic followed by frames transmitted from possibly all apics for connections performing fast forward.
It must however be noted that at any time, only one apic transmits frames for a connection.

The side e�ect of this revised schedule is that now the prefetch and the transmission phases for
a storage node overlap. In presence of a large number of connections doing fast forward and rewind,
this overlap makes it di�cult to guarantee that data to be transmitted has been prefetched into
the bu�ers. Hence, to achieve a smooth transition from normal playout to fast forward without
violating qos guarantees, we provide two bu�ers per connection: one bu�er used to store the data
being prefetched and the other used to transmit the previously prefetched data. This e�ectively
decouples transmission and prefetching and allows transmission order to be modi�ed on a per cycle
basis.

When a � request is received, the next D frames in fast forward frame sequence and sequence of
nodes to which they correspond are computed. These frames are retrieved and bu�ered in the existing
prefetch cycle. The ordered set of nodes from which the frames are read represents the transmission
order for the next transmission cycle. Note that the central manager in our architecture receives the
� (or rw) requests and computes the new transmission order for each connection doing fast forward
or rewind at the start of each prefetch cycle. Since cycle length is typically a few hundread msecs,
and computation of transmission (prefetch) order involves simple modulo arithmetic, the overhead
incurred is minimal. Note that in this scheme, the operation latency for the � or rw is a maximum
of one cycle. Consider the example, of D = 15 and frame period is Tf = 33msec in the Section 5.
In this example, the � request from any (potentially all) of the 110 clients can be realized in 1 cycle
time of 495 msecs. The � and other playout control operations increase the scheduling overhead,
but we believe that it is insigni�cant.

As can be seen in the above example, the load distribution is still unbalanced. Load balance is
ensured, if we can guarantee that each storage node fetches and transmits a �xed number of frames
per connection in each prefetch and transmission cycle irrespective of whether a connection is per-
forming normal playout or other playout control operations. This is achieved by either constraining
the data layout or modifying the data layout. We will revisit this topic again in Section 7.
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Figure 13: General case of m out of Ca connections doing fast forward
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Figure 14: Structure of mpeg stream

6.3. Implications of MPEG

The structure of mpeg compressed streams has implications for the data layout, scheduling and
playout control. In its simplest form an mpeg stream, illustrated in Figure 14 consists of a succession
of group-of-pictures (gop), each of which for example, has a structure [IBBPBBPBB]. The I frames
are coded using a Discrete Cosine Transform(dct) without reference to any other pictures, and
hence, can be decoded independently. Thus, they can be treated as anchor frames in the stream
from which decoding can begin. However, intra-coding achieves moderate compression and hence,
I frames are very content intensive. The P frames are coded using motion compensated prediction
from a past I or a P frame and are normally used for further prediction. Clearly, P frames cannot
be transmitted independently. The B frames achieve the highest compression and hence, have the
smallest content. They are encoded using non-causal prediction from both past and future reference
frames (i.e I and/or P frames). Clearly, B frames cannot be transmitted independently and cannot
be used as a reference frame. Empirical evidence shows that depending upon the scene content, I to
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P frame variability is about 3:1, whereas P to B frame variability is about 2:1 [23].

These properties have serious implications for � 1. First, a � sequence obtained by skipping
constant number of frames, can contain only I and/or P frames and no B frames. If the �rst P frame
in a gop is skipped, no other P frame from the same gop can belong to the � sequence. Thus, the
simplest � frame sequences for such a stream are [IPIPIP: : :] or [IIII: : :]. This implies that the set
of fast forward distances (df ) for a SVS implementation of � on a mpeg stream will be a function
of M and N parameters in Figure 14.

There are two problems with sending only I frames on �. First, it increases the network and stor-
age bw requirement by at least a factor 3. For example, a mpeg compressed ntsc video connection
that requires 5 Mbps on average during playout would require approximately 15 Mbps for the entire
duration of the �, if only I frames are transmitted. In presence of many such connections, network
will not be able easily meet such dramatic increases in bw demand Clearly, reserving such bw at
the connection setup will be immensely wasteful. Second problem is that if the standard display
rate is maintained, skipping all the frames between consecutive I frames, may make the e�ective fast
forward rate unreasonably high. For example, if I-to-I separation is 9 frames, perceived fast forward
rate will be 9 times the normal playout rate. There are three possible solutions to these problems:

1. Reduce frame display rate: One way to reduce the transmission rate at the server and the
network connection bw is to do \temporal down-sampling", which reduces the display rate.
For example, one may expect that in a fast forward implementation by skipping (N � 1) = 8
frames, if the display rate is reduced from 30 fps to 15 fps, the perceived � rate will be 4 times
normal playout rate. However, reducing display rate may cause perception of jerkiness.

2. Reduce the content of the I and P frames: Clearly, reducing the number of bits in each
I and P frame will reduce the bandwidth requirement. In case of live sources, mpeg encoder
can accomplish this by reducing the quantization factors used for coding the I and P frames.
However, in case of stored compressed streams (\canned") streams, as in case of a multimedia
server, such reduction will be possible only if the versions of these frames corresponding to
reduced quantization factors are also stored. However, reducing quantization factor unduly
can deteriorate detail and result in poor subjective quality.

3. Reduce the frame resolution: Another way of reducing the content of the frame is to
reduce the resolution of the frames i.e perform spatial domain down-sampling. Thus, when
the stream is stored on the server, the I and P frames are stored in multiple resolution. On a
�, the server would retrieve and transmit I and P frames with reduced resolution. However,
to keep the resolution unchanged at the client, up-sampling hardware (such as [1]) needs to be
used at the client side.

We believe that in order to keep the network bw requirements during � under control, a combi-
nation of these techniques will have to be employed.

mpeg does have implications on the data layout schemes used at the server. Speci�cally, the
data layout must ensure that the I frames in all gops are not assigned to the same node. This is
important, as the nodes handling (retrieving and transmitting) I frames will be loaded more than
those responsible for P and I frames. It is desirable that the server be able to exploit this vbr
characteristics to avoid always reserving peak storage bw.

We claim that our data layout schemes compensate for the load-imbalance inherent in distributing
frames for an mpeg stream. Also, our dynamic cycle-by-cycle scheduling allows the vbr character-
istics of such streams to be exploited.

1
mpeg allows D-frames to support simple, but limited quality �. These frames are not likely to be included in �nal

mpeg-2 standard and hence, are not considered in our study.
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7. Load Balancing

In the previous section, we discussed the two main problems that playout control operations create
for the distributed scheduling of data reads over multiple storage nodes. The reader may recall
that fast forwarding (or rewinding) by an arbitrary distance modi�es the normal linear (modulo
D) sequence of node visits to a new sequence in which some of the nodes might be visited more
often and thus, create \hot-spots". This requires extra bw to be reserved at each node to meet
overloads and hence, will lead to conservative admission control and poor utilization. The key to
avoid such conditions is to ensure that irrespective of the state of the connections (whether they are
doing normal playout or other playout control operations), each node handles the same number of
frames in each pre-fetch/ transmission cycle. This condition can be achieved in two ways: either
by constraining the dcl data layout and or by designing a new layout scheme. In the rest of this
section, we will present some interesting results on both these approaches.

7.1. Load Balance with a Distributed Layout

In the discussion here on, it is important to understand the de�nition of load-balance. We de�ne
a set of D frames to be load-balanced, if the set of nodes from which these frames are retrieved
contains each of the D nodes only once. The set of nodes from which the frames are retrieved is also
termed as a balanced node set.

The implication of distributed data layout in conjunction with periodic scheduling on load-
balance is that � and rw implementation by skipping frames can not realize arbitrary fast for-
ward/rewind rates without violating the load-balance condition. This can be stated formally as
follows.

Theorem 1. Given that the number of storage nodes is �nite, no distributed (multimedia) data
layout scheme will support fast forward (rewind) of arbitrary skipping distance without violating
the load balance condition.

Proof : Let the number of storage nodes beD and the set of frames in the stream be ff0; f1; f2; f3; : : : ; fFmax;d
g.

Since D � Fmax;d � 1, if a distributed data layout is followed, any given storage node will have
multiple frames of the stream. In particular, let frames at storage node p be ffk1 ; fk2 ; fk3 ; : : : ; fkmax

g
(where 0 � ki � Fmax;d). Clearly, if the fast forward starts from frame number fk1 with a distance
of k2 � k1, node p will be visited consecutively, before any other node is visited. This violates the
load balance condition. Hence, given a distributed layout scheme, fast forward (rewind) of arbitrary
distances is not possible.

7.2. Load Balance in a Distributed Cyclic Layout

In order to make the vod service attractive it is desirable that the on-demand multimedia server o�er
a rich choice of � (rw) speeds to the user of on-demand multimedia. In light of this requirement and
the above theorem, a distributed data layout scheme should allow as many fast forward distances as
possible without violating the load balance. One of the important factors that will decide extent of
such choice is the number of storage nodes D on which the data is distributed. We conjecture that
there will be a relationship between the fast forward (df )

2 distance and D3.

To this end, let us take a closer look at the example dcl shown in Figure 8. Assume that
the fast forward starts from frame f0 with a fast forward distance df of 2. First D = 5 frames

2Since fast forward and rewind are complementary operations, here on we will only talk of the former.
3This result was �rst suggested by Dr. Arif Merchant in a di�erent form during the �rst author's summer internship

at NEC C&C Research Labs, in Princeton, New Jersey.
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in the fast forward sequence are ff0; f2; f4; f6; f8g, which are retrieved from a balanced node set
fD0; D2; D4; D1; D3g. If the fast forward distance is 3, the node set if altered to ordered set
fD0; D3; D1; D4; D2g, which is still balanced. It can be easily veri�ed that the node set is bal-
anced when df = 4, but is unbalanced when df = D = 5 or df = integral multiple of D. With this
background, we present the following theorem that relates D and df explicitly for a dcl layout.

Theorem 2. Given a dcl distributed layout over D storage nodes, the following holds true:

� If the fast forward (rewind) distance df is relatively prime to D, then

1. The set of nodes Sn from which consecutive D frames in fast forward frame set Sf are
retrieved is load-balanced.

2. The fast forward can start from any arbitrary frame (node) number.

Proof : We give a proof by contradiction. Let f be number of the arbitrary frame from which the
fast forward is started. The D frames in the transmission cycle are then given as:

ff; f + df ; f + 2df ; f + 3df ; : : : ; f + idf ; : : : f + jdf + : : : f + (D � 1)dfg

If the frame f is mapped to node nf , the set of nodes from which these D frames are retrieved
is as follows:

f 7! nf ;

f + df 7! (nf + df ) modD;

...

f + idf 7! (nf + idf ) modD;

...

f + (D � 1)df 7! (nf + (D � 1)df ) modD;

Without any loss of generality, assume np to be one of the D storage nodes that appears at least
more than once in this node set. This means two frames, say f + idf and f + jdf are mapped to
the same node np. If we carefully study the dcl we can see that the set of frames assigned to the
node np can be de�ned as follows:

Fp =

�
p; p+D; p+ 2D; P + 3D; P + 4D
� � � ; � � � ; p+ iD; p+ (i+ 1)D; p + (i + 2)D

�

that is

Fp = f8` 2 N : (p + ` �D) 7! npg (1)

Clearly, any two frames mapped to the same node di�er by an integral multiple of D. Hence,

(f + jdf )� (f + idf ) = kD

(j � i) = k �
D

df
(2)

Two cases that arise are as follows:
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� Case 1: k is not a multiple of df : If D and df are relatively prime 4, then, D
df

can not be

a integer. The l.h.s, being a di�erence of two integers, is an integer. Hence l.h.s 6= r.h.s. A
contradiction to our assumption.

� Case 2: k is a multiple of df : Then (j � i) = k1 �D, where k1 =
k
df
. But this contradicts

the assumption that the two selected frames are in the set which has only D frames and hence
can di�er at the most D � 1 in their ordinality.

Since, the frame f from which fast-forward begins is selected arbitrarily, the last Claim 2 in the
Theorem statement is also justi�ed. The proof in case of rw is similar to above proof and is not
presented here.

We state the following corollary to this theorem.

Corollary 1. Given a dcl distributed layout with cycle length D, such that D is prime, following
holds true:

� If the fast forward (rewind) distance df is not a multiple of D, then

1. The set of nodes Sn from which D frames in a transmission cycle are retrieved is load-
balanced

2. The fast forward can start from any arbitrary frame (node) number.

This follows immediately from Theorem 2.

7.3. Staggered Distributed Cyclic Layout (SDCL)

As explained in Theorem 2, the dcl works only when df is relatively prime to the number of storage
nodes D. Also, the proof of this theorem illustrated that if fast forwarding distance df is a multiple
of D or has a common factors with D, the load is not balanced across the nodes. In order to �x
this problem, we have designed a new data layout scheme called as the Staggered Distributed Cyclic
Layout (sdcl).

The key idea in this scheme is that the anchor frame in a frame distribution cycle is not always
assigned to the same node. Instead, the anchor node of successive distribution cycles is staggered
by a distance of ks and hence the term Staggered Distributed Cyclic Layout. Figure 15 illustrates
the layout for D = 8 and ks = 1. As seen in this �gure, the layout consists of a pattern called
\stagger cycle" composed of D (frame) distribution cycles and D2 frames. The anchor frame of the
ith(0 � i � D � 1) distribution cycle in the stagger cycle is assigned to the ith node. Thus, the
location of anchor frames in two consecutive distribution cycles is staggered by 1 node. Like the
dcl layout, the frames within the distribution cycle are distributed following a rotated (modulo D)
sequence.

We will illustrate some of the special properties of this layout with an example. Let us consider
� implementation by skipping alternate frames (that is df = 2) starting from frame 0. The original
frame sequence hf0; f1; f2; f3; f4; f5; f6; f7i is then altered to hf0; f2; f4; f6; f8; f10; f12; f14i. The node
set for this new sequence is then altered from the balanced set hD0; D1; D2; D3; D4; D5; D6; D7i to
hD0; D2; D4; D6; D1; D3; D5; D7i. Clearly, this new node set is re-ordered but still is balanced.
However, if df = 3, the similar node set is given as hD0; D3; D6; D2; D5; D0; D4; D7i, which contains
D0 twice and hence is unbalanced. It can be veri�ed that cases df = 4, df = 8 and df = m � D,

4If two numbers p and q are relatively prime, then their greatest common divisor is 1.
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where m is relatively prime to D produce balanced nodes sets as well. Note here that 2; 4 are factors
of D = 8, but 3 is not.

Another interesting property of sdcl is that in order to produce a balanced node set on �, the
fast forward must always begin at an anchor frame. For example, if the fast forward begins at
f30, a non-anchor frame and df = 4, then the 7th frame in the fast forward sequence - f58 has to
be retrieved from the same node (node 1) as frame �rst frame in the sequence - f30, producing a
unbalanced node set.
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Figure 15: Staggered Distributed Layout Scheme (sdcl)

Thus, we see that a sdcl with ks = 1 guarantees that if the fast forward (rewind) operation begins
from a anchor frame and if the fast-forward (rewind) distance df (dr) satis�es certain condition, then
the node set from which D frames in a transmission cycle are retrieved is balanced. We will now
state the following theorem which formalizes this property.

Theorem 3. Given a sdcl layout with ks = 1 over D storage nodes, and numbers d1; d2; d3; � � �dp
that are factors of D the following holds true:

� Load balance condition for fast forward: If the fast forward starts from an anchor frame
with a distance df , then the node set Sn consisting of nodes from which D frames in the fast
forward frame set Sf are retrieved is load-balanced, provided:

1. df = di (where 1 � i � p) or

2. df = m�D where m and D are relatively prime or
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3. df = di + kD2 (k > 0)

� The same result holds true for rewind if the rewind starts from a frame 2D�1 after the anchor
frame.

The proof of this theorem has not been included here due to space constraints. Note that the
Theorem 2 and 3 allow the server to know, at the time a multimedia document is laid out, the set
of fast forward distances that can be supported safely without requiring any bandwidth reservation.
Also, if the server stores a multimedia document using both the dcl and sdcl layout schemes, the
choice of fast forward distances can be increased signi�cantly. For example, if D = 16, the dcl
layout will produce load-balanced node sets for df = 3; 5; 7; 9; 11;13;15 which are relatively prime
to D, where as sdcl will produce load-balanced node sets for df = 2; 4; 8; 16.

8. Related Work

High performance i/o has been topic of signi�cant research in the realms of distributed and super-
computing for quite sometime now. In recent years, the interest in integrating multimedia data into
communications and computing has lead to a urry of activity in supporting high performance i/o
that satis�es special requirements of this data. Here we will summarize some notable e�orts.

Salem et al. [28] represents some of the early ideas on using disk arrays and associated data strip-
ing schemes to improve e�ective storage throughput. Observing that large disk arrays have poor
reliability and that small disks outperform expensive high-performance disks in price vs. perfor-
mance, Patterson et al. [22] introduced the concept of raid. A raid is essentially an array of small
disks with simple parity based error detection and correction capabilities that guarantee continuous
operation in the event of a single disk failure in a group of disks. The raid was expected to perform
well for two diverse types of workloads. One type, representative of supercomputer applications such
as large simulations, requires infrequent transfers of very large data sets. The other type, commonly
used to characterize distributed computing and transaction processing applications, requires very
frequent but small data accesses [22]. However, measurements on the �rst raid prototype at the
University of California, Berkeley revealed poor performance and less than expected linear speedup
for large data transfers [6]. The excessive memory copying overhead due to interaction of caching
and dma transfers, and restricted i/o interconnect (vme bus) bandwidth were cited to be the pri-
mary reasons of poor performance. Also, it is recognized now that large raid disk arrays do not
scale very well in terms of throughput.

The recent work on raid-ii at the University of California, Berkeley has attempted to use the
lessons learned from the raid prototype implementation to develop high bandwidth storage servers
by interconnecting several disk arrays through a high speed HIPPI network backplane [16]. It's
architecture is based on a custom board design called Xbus Card that acts as a multiple array
controller and interfaces to hippi as well as to fddi networks. Though the measurements on raid-ii
have demonstrated good I/O performance for large transfers, the overall solution employs fddi,
ethernet and hippi interconnects and is ad-hoc. Also, it has not been demonstrated to be suitable
for real-time multimedia, where the application needs are di�erent than the needs of supercomputer
applications.

Several recent proposals for �lesystems and servers have attempted to address the special require-
ments of multimedia streams. In particular, [29] represents one of the early qualitative proposals
for a on-demand video �le system. The work by Rangan et al. [24, 32] developed algorithms for
constrained data allocation, multi-subscriber servicing and admission control for multimedia and
hdtv servers. However, this work assumes an unrealistic single disk storage model for data layout.
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It is worth repeating that such a model is inappropriate, as the transfer speed of a single disk will
be barely su�cient to support a single hdtv channel and is about three orders of magnitude lower
than that required to support a thousand or more concurrent customers independently accessing the
same data.

Lougher et al. report a design of a small scale Continuous Media Storage Server (cmss) that
employs append-only log storage, disk striping and hard real-time disk scheduling [18]. Their trans-
puter based implementation handles very few simultaneous customers and supports small network
bandwidth. This implementation is clearly not scalable for large number of users and for high
bandwidth streams such as hdtv.

Tobagi et al. [30] report a small scale pc-at and raid based video server. A commercial
continuous video server called Shark [11] is currently being marketed by ibm. However, it is aimed
at the pc based clients and is not very scalable.

Little et al. [17] develop a workstation based non-scalable video server. Their main emphasis has
been on metadata database and a video browser. Similarly, Miller et al. [21] at nynex are working
with Dow Jones to develop a Multimedia News On-Demand Service. Again, the emphasis of their
work is on developing news information models, browsing interfaces and authoring systems. A very
similar project at the University of California at Berkeley [27] is aimed at developing metadata
indices and e�cient user interfaces for their large distributed video databases and servers.

Daigle et al. [7], Yu et al. [34], Reddy et al. [25] report work exclusively on disk scheduling
aimed at supporting retrieval of multimedia streams from single disks.

To summarize, all the proposals mentioned above address the problems of scheduling, data layout,
and metadata design in an isolated fashion and none describe a system architecture that is scalable
in terms of throughput and large number of clients. We believe that our research is the �rst to
address the problem of large scale server design by A taking an integrated approach that collectively
addresses all the issues.

9. Conclusions and On-going Work

Design of high performance large scale multimedia servers will be critical to wide deployment of
exciting new multimedia applications. In addition to the requirements of supporting large number
of clients with qos guarantees, and delivering a large network and storage throughput, a multimedia
server must be able to support full range of interactive stream control operations. Given the modest
rate of improvement in storage technologies, designing large scale servers is a challenging task. Our
project Massively-parallel and Real-time Storage architecture addresses this challenge.

In this paper, we focussed on some of the distributed data layout, scheduling and playout control
techniques that have been developed in conjunction with our architecture. Speci�cally, we presented
a general distributed chunk layout scheme and discussed tradeo�s associated with it. We also
illustrated a simple scheduling scheme for supporting large number of clients independently accessing
the same or di�erent multimedia documents.

In order to address the requirement of support for interactive operations, we showed that imple-
menting � and rw operations creates problems for distributed scheduling and presented a two fold
solution: one, modify the scheduling scheme and the second, constrain or modify the data layout
scheme. Our modi�cations to the basic scheduling, such as a providing two bu�ers per connec-
tion and performing transmissions on a per-connection basis, allow smooth transition from normal
playout to � and rw with minimal overheads and tolerable latency of few hundread msecs.
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We argued that unrestricted fast forward is not possible with distributed data layout. Recognizing
this fact, we provided analytical results that de�ned the set of fast forwarding distances for a given
number of nodes and required no extra storage and network bw reservation. For the case when
number of nodes and fast forward distance are not relatively prime, we designed a new data layout
scheme called Staggered Distributed Data Layout and presented an analytical result that provides
conditions on fast forward distances to guarantee no extra bw is required.

To summarize, we presented data layout, scheduling and playout control techniques that col-
lectively minimize bu�er requirements per client, allow a large number of independent, concurrent
accesses to the same or di�erent documents, support a full spectrum of playout control operations
with minimal latency and without extra bw reservation, and support bu�ered as well as bu�erless
clients.

In our ongoing work, we are re�ning our multilevel data layout, real-time scheduling algorithms
and developing e�cient admission control procedures. We will demonstrate these ideas in an im-
plementation of our prototype architecture. We also plan to extend our ideas to a server with a
hierarchical storage system that comprises of a large on-line and near-line (robotically controlled
optical juke box) storage.
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