
An E�cient Signaling Structure for ATM Networks

WUCS-95-09

Dakang Wu

Department of Computer Science

Washington University

dw@dworkin.wustl.edu

April 25, 1995

Abstract

As ATM becomes widely accepted as the communication standard for high speed networks,

the signaling system structure and protocols that support ATM become more and more impor-

tant. To support existing, future and unknown applications, the signaling system has to be very

exible and e�cient. In this paper we de�ne the signaling problem, present several possible sig-

naling system structures, compare the advantages and disadvantages of these systems, and then

we propose a new signaling system structure. The fundamental idea of the new signaling system

is the logical separation of the signaling system structure from the underlying communication

network, even though they may be built on the same physical network. The proposed signaling

system structure shows very promising performance in terms of signaling latency, scalability,

and reliability.

1 ATM Network and Signaling Problem

In an ATM network, user data are divided into small �xed size packets, called cells. Each cell
carries, in its header, a label. At each switch in the network, the incoming cell label is used as
an index to access a table which translates the label into an output port number and the label
for the next hop. Since all the table look-up and transmission are performed by the hardware,
cells can travel very quickly through the network. This basic scheme provides great exibility to
the communication system. Cells from di�erent sources can be interleaved to share a physical link
capacity so that the link bandwidth can be e�ciently used. Since it is not di�cult for the hardware
to make multiple copies, multicast can be naturally and e�ciently supported. ATM treats di�erent
media, such as voice, video and data, in exactly the same way, so that the communications for
di�erent media can be integrated on the same ATM network.

Since ATM is basically connection-oriented, before the data communication can take place, the
tables at switches have to be set up. It is the signaling system's job to maintain these tables at
switches. After a connection has been accepted by the system, some quality of services (QOS)
should be guaranteed. To guarantee the QOS, resource reservation is necessary. The signaling
system is responsible for managing the resources, such as bandwidth and table entries, on each link
to maximize the network performance. Since the telecommunication system may involve hundreds
or even thousands of switches, it is not practical for all of them to be controlled by a single controller.
In our model, one or more interconnected switches are grouped to form a node which is under the

1

control of a single control processor(CP), which could be a general purpose computer. The control
processor manages the resources of the underlying switches. To the outside world, a node is a
virtual switch with information storing and processing capabilities. Nodes have to communicate in
order to establish and maintain connections. Briey, signaling can be described as the \Exchange
of information speci�cally concerned with the establishment and control of connections, and with
network management, in a telecommunication network"[?]. These management tasks are performed
at the nodes. To design a signaling system for an ATM network, we have to address the following
issues: how to organize the nodes; how to distribute the information among the nodes; how the
nodes pass information and what are the protocols the nodes must follow; how e�cient are the
protocols; how to deal with failures.

In the rest of the paper, we consider these issues. In this section, we will formally de�ne
the multipoint signaling problem and we will give some measures to evaluate the goodness of a
signaling system. Section 2 briey introduces several signaling system designs and compares their
performance in terms of the measures given in section 1. Section 3 proposes a Virtually Hierarchical
Signaling System(VHSS) which is very simple and performs well in terms of almost all the important
measurements. The fundamental concept is logical separation of the signaling network from the
underlying communication network. Like Signaling System No.7 (SS7) [?], the signaling network
is independent of the communication network. Unlike SS7, our signaling network is built on the
same ATM network taking advantage of the exibility ATM provides. A virtually hierarchical
signaling system does not require that the network nodes and links be hierarchically organized.
A hierarchical signaling system is built on the top of an arbitrary topology network. Section 4
concludes the paper and raises some issues for further research.

1.1 Signaling Problem

A communication network that supports multi-point connections can be modeled as an undirected
graph 1 G = (V;E). Each link (u; v) has an integral capacity (u; v). We assume that each vertex
of the graph has an identi�er that uniquely distinguishes itself from other vertices. A connection
request is a tuple [c; T; r;w], where c is a connection identi�er that uniquely identi�es a connection
in the network, T � V is a set of terminals, r 2 T is a distinguished terminal, called the root of the
connection and w is the resource requirement. For simplicity, in this paper, we consider bandwidth
as the only resource managed so that we use the word bandwidth and resource interchangeably.

Let H = (W;F) be a subtree of G. We say that H is a connection graph that implements a
connection request [c; T; r;w] i� for any u, v 2 T , there exists, in H , a path from u to v, and no
subgraph of H has this property.

A connection descriptor is a pair (q;H) where q is a connection request and H is a connection
graph that implements q. For a set of connection descriptors C and any link (u; v) 2 E, de�ne the
relative load on edge (u; v) imposed by C to be

�C(u; v) =
P

([c; T; r;w];H = (W;F)) 2 C
Such that (u; v) 2 F

w = (u; v)

We say that C is feasible if for all edges (u; v), �C(u; v) � 1.
A Signaling system is said to be incremental if end-points can be added or removed at any time

and no rerouting of existing connections is allowed. Since most multipoint applications need to
maintain connections dynamically, we only consider algorithms for an incremental system.

1More generally, we can model the network as a directed graph. To use a directed graph model, we have to

distinguish sources from sinks. For simplicity, in this paper, we use the undirected model.

2

A Signaling System dynamically maintains a feasible set C of connection descriptors for a
network G under the following operations.

createx(r; w) adds a connection descriptor ([c; frg; r;w];H = (frg; fg)] to C where c is a new
connection identi�er.

destroyx(c) removes the connection with identi�er c from C and releases all the resources taken by
connection c. Only the root of a connection is permitted to issue this request.

joinx(c; u) adds a new terminal u to a connection identi�ed by c. When successful, this operation
replaces the old connection descriptor D = (q;H) with a new connection descriptor D0 =
(q0; H 0) where q0 is equal to q except with u added to the terminal set, H 0 implements q0, and
H is a subgraph of H 0. An unsuccessful join operation returns nil and no resources will be
allocated.

dropx(c; u) removes an end-point u from the connection indicated by c and releases the resources
related to the end-point u. This operation replaces the old connection descriptor D = (q;H)
with a new connection descriptor D0 = (q0; H 0) where q0 is equal to q except with u removed
from the terminal set, H 0 implements q0, and H 0 is a subgraph of H .

In each of the above operations, the subscript x 2 V is called the invocation point indicating
the location at which the operation was requested and at which a response is expected. To simplify
the algorithms, in the following discussion, we assume that the invocation point is the node that
starts the operation. For example, the invocation point of a create operation is the root of the
connection, and the invocation point of a join is the node that is to be added to the connection.
It is not di�cult to pass the request and response between the invocation point and the node that
starts the operation.

Notice that only join requests really need to allocate resources. Other operations either only
release resources (e.g. drop and destroy) or only record some information (e.g. create). A create
request does need to allocate bandwidth on the access link. Since we are considering the problem
of network signaling, we assume that only when the access link is availablecan the create request
reach the network. From the resource management point of view, there is no reason to reject drop,
destroy or create requests. So we can focus most of our attention on processing of join requests.

One constraint of the algorithm is that it must be on-line, in the sense that the decision about
routing or rejecting a join request has to be made without any knowledge of future requests.

The goal of a signaling system design is to design both the architecture and algorithms of the
signaling system so that it maintains a feasible set of connection descriptors e�ciently.

1.2 Correctness and Performance Measures

To evaluate a system, some performance measures must be provided. In this section, we discuss
some of the design issues and give some quantitative measurements so that we can evaluate a
signaling system.

1.2.1 Correctness

The signaling system has to solve the signaling problem correctly. Correctness can be divided into
two parts: safety and liveness. Safety conditions state that the result of all operations maintains
or implies a global feasible set of connection descriptors as de�ned in section 1.1. The safety
conditions do not always guarantee a useful system. A signaling system that responds to any

3

request with \No" and does not allocate any resources is a safe system. To exclude such a trivial
design, the liveness conditions require that the system do something useful. One example of a
liveness condition is \whenever the system has enough bandwidth (resource), a request should be
satis�ed." Unfortunately, since operations may be initiated at di�erent nodes concurrently with
conicting bandwidth requirements, this condition can be di�cult to satisfy. Another way to de�ne
the liveness is that no live-lock exists in the system. In our presentation of the VHSS algorithm in
section 3, we will prove the correctness of the algorithms.

1.2.2 E�ciency of The Signaling System

As for most distributed systems, time complexity and message complexity are the measures used
to evaluate the e�ciency of a system. In the theoretical analysis, we assume message transmission
can occur instantly. Processing a message at a CP takes one unit of time. These assumptions are
justi�ed as follows.

Cells of a signaling message are transmitted on a prede�ned signaling connection. Compared
with software message processing, hardware transmission takes very little time. Lower level network
interfaces take care of segmentation and reassembly. To the CP, it sees a whole message instead of
multiple cells. With more and more built-in resource checking and reservation functions to serve
increasing number of service requirements, together with interrupt and context-switching incurred
with each message, the time to process a message dominates the time consumed in the entire
message processing.

To simplify the analysis of time complexity, we de�ne a single request response time to be the
number of time units that elapse from sending of an operation request to receiving the response
with no other message processing in the whole system.

1.2.3 Scalability

Since telecommunication systems can become very large, scalability is a big concern. We say a
system is scalable if the worst case response time increases at most logarithmically with increasing
network size. Since each signaling connection at a signaling point, de�ned in next section, imposes
some computational load on the signaling point, we require that the number of signaling connections
at any signaling point should not grow with the network size. Routing is one of the biggest
computational jobs in the signaling system. We say a signaling system is not scalable if the routing
algorithm has to keep track of the network status for all the nodes in the network.

2 Signaling System Design

We de�ne a Signaling Point (SP) to be any entity in the network that can generate and process
signaling messages. A CP of a node is an SP. Notice that an operation request is initiated by the
user who is not part of our network signaling system model. To unify the processing, we assume
that user requests come from SPs which are outside of the signaling network through signaling
messages. The results of requests are sent to the user through response messages delivered to the
SPs who sent the requests.

A signaling system consists of two parts: the signaling network and the signaling protocol.
A signaling network de�nes the topological connection of SPs, which can be di�erent from the
topology of the network it controls. For example Signaling System No. 7, which has been widely
deployed, is a separate signaling network designed to control the underlying telephone network and
provide data communication services. With ATM, people can setup signaling connections freely.

4

Two SPs that are connected by a signaling connection are considered signaling neighbors even
though they may not be connected by a physical link. In this way, the signaling network can be
con�gured with great exibility.

Like any distributed protocol, a signaling protocol is composed of three parts: a data store that
records the current state of the system; message types and formats that de�ne the information
passed among signaling points; the signaling algorithms that solve the signaling problem based on
the system state and the message processed.

To decide to accept and route a join request or to reject it, two types of information are
necessary: network status information which includes network topological information and network
load information; and connection information which includes the resource requirement for each
connection and the layout of the connection graphs. If these two pieces of information are available,
a signaling system can make the admission and routing decision easily. Unfortunately, these two
pieces of information are not always available. One of the signaling system's job is to get this
information or to use incomplete information together with heuristics.

We assume that a connection identi�er contains the address of the root of the connection. This
root address information can be used in our routing algorithm to �nd a next hop towards the
root. The root address information can be retrieved through a mapping root(cid) where cid is the
connection identi�er. We assume that signaling links preserve the message order. We assume that,
at each SP, there exists a resource manager which records the link capacity and usage. The resource
manager provides several SP-wide accessible functions that are used to manage the resources.

� findPath(bandwidth; sp1; s) �nds a path from the signaling point sp1 to any element in a
set of signaling points s with the required bandwidth. Some shortest path algorithm and cost
metric can be built into this algorithm. For now we just assume that it �nds a path that
satis�es the load constraint. If such a path exists, the path, a sequence of SPs that control
the connected segments of the network, is returned. Otherwise nil will be the return value.

� reserve(bandwidth; path) reserves the bandwidth on all the links of the given path.

� allocate(bandwidth; path) initializes switch tables to setup a connection with the reserved
bandwidth on all the links of the path.

� release(bandwidth; graph) releases the bandwidth on all the links speci�ed in graph and
modi�es the switch tables to release the bandwidth on all the links speci�ed in graph.

In this section, we give several signaling system designs and list the advantages and disad-
vantages of each of the designs. At the end, we give a performance comparison of the systems
discussed.

2.1 Centralized Signaling System

A centralized signaling system is the simplest to design. Figure ?? shows such a system. Every
user has a signaling connection to a central control processor. Every user connection request is
forwarded to the central Control Processor, the CP. Since the CP manages all the resources and
knows all the connection status, it can make routing decisions easily.

A connection is a data structure that stores the connection information. A new operation
creates a new connection data object with the root as the only vertex in the connection graph. A
delete operation removes a connection data object from the system. Assume that there exists a
global function getConnection(cid) which returns a connection data object if the connection does
exist. Otherwise a nil is the return value. A connection object contains a graph data structure that

5

stores the connection graph. An access function updateGraph(cid; updateCommand; path) is called
to update the connection graph. If the value of updateCommand is ADD, a path speci�ed by the
path parameter is added into the connection graph. If the value of updateComand is REMOVE, the
path is removed from the connection graph. A path is a data structure that contains a list of SPs.
If r is a SP in a path, then L(path; r) returns the left link of r in the path or nil if r is the leftmost
SP in the path. Similarly R(path; r) returns the right link of r. A function �ndPathToBranch(sp)
returns a path in the connection graph from the sp to the �rst branching point of the connection
tree. A general routine send(destination;message) sends the message to the destination. The
connection data structure is de�ned in Figure ??. Figure ?? shows the algorithm at the CP that
implements the centralized signaling system.

a
b

d

e

5 12

data link

signaling link
c

2

1

3 7 10

11

96

84

CP

Figure 1: A Centralized Signaling System

We present the algorithms in an event processing fashion. An event occurs when an operation
request message (create, destroy, join, drop) is received. Messages are queued. Only the one at the
head of the queue causes the corresponding event to occur. Every event processing routine executes
as an atomic operation.

When a join request comes, the CP calls the routine �ndPath to �nd a path to route the request
from the invocation point to the connection tree. If such a path exists, the path is added to the

connection f
connectionId: cid;
bandwidth: bw;
connectionGraph: graph;
void updateGraph(ConnectionId, fADD j REMOVEg, path);
Path �ndPathToBranch(sp);
/* returns a path from the sp to the �rst branching point */

g

Figure 2: Connection Data Structure

6

� create(cid, bw, sp)
new con(cid, bw)
/* establish a connection structure with
root(cid) as the only vertex in its graph*/

send(sp, createResp(cid, ACK));

� join(cid,bw,sp)
/* sp indicates the sender of the request */
con := getConnection(cid);
path: = �ndPath(bw,sp,con.graph(V))
if (path = nil)
send(sp, joinResp(cid, NACK))

else
allocate(bw, path)
con.updateGraph(cid, ADD, path)
send(sp, joinResp(cid, ACK));

endif

� drop(cid,sp)
con := getConnection(cid);
if (con 6= nil)
path := con.�ndPathToBranch(sp);
updateGraph(cid, REMOVE, path);
release(con.bw, path);

endif
send(sp, dropResp(cid, ACK));

� destroy(cid)
con := connection(cid);
if (con 6= nil)
release(con.bw, con.graph);
delete con;

endif
send(sp, destroyResp(cid, ACK));

Figure 3: Algorithms for Central Controlled System

connection graph and bandwidth is allocated along the path for the request. Since the capacity
constraint is observed by �ndPath, no overload of links may occur. The connection graph gets
updated any time a join is successful or a drop is processed, so that the connection graph of every
connection is consistent with our de�nition of the connection graph in section 1.1. The safety
condition can be easily proved by induction on the number of operations. It is easy to design
�ndPath to always �nd a path if such a path exists (use a modi�ed version of Dijkstra's shortest
path algorithm that consider only the links with the required bandwidth for example). If �ndPath
satis�es this property, the liveness condition \A join request will be successful whenever the network
has enough bandwidth to support it" can be guaranteed.

The advantages of a centrally controlled signaling system are: it is easy to design the protocol
and make it correct; there is little communication overhead.

Disadvantages of the centralized design are obvious: it is not scalable since the central controller
has to maintain the whole network; the requests are processed one by one which eliminates any
possibility to process requests concurrently; if the CP fails, so does the whole system.

Before we switch to other signaling system designs, it is interesting to estimate how far a
centralized signaling system can go. Let d be the average path length of an operation. For each
switch on the path and the user at the end of the path, the central controller has to send a request
and receive a response, (to set up the switch tables and to communicate with the user), so that 2�d
messages are needed to process one operation. Let m be the number of messages that a computer
can process each second. Let n be the number of users in the system and s be the average number
of operations initiated by a user in a minute during the busiest hour. Then the number of users
the centralized system can support is given by following formula:

n �
60�m

2� d� s

Assume that m = 2000, d = 6, and s = 1. The number of users that can be supported by such
a centralized system can be as much as 10000. While this calculation is somewhat simpli�ed, it
seems likely that networks with a few thousand users could be supported e�ciently. This calculation

7

shows that for a medium size network, a centralized signaling system could be a good choice.

2.2 Layered Signaling system

One way to distribute the computational tasks among CPs is to layer the network into small slices.
In a layered signaling system, multiple CPs are used, each manages part of the resources. Figure
?? shows a two-layer signaling system. The bandwidth of each link (u; v) is divided into two. For
example, link B-D is a 155M link. CPa manages 80M and CPb manages the remaining 75M. When
the user starts a create request, (s)he has to decide which layer (s)he wants to use. If the connection
is created in layer A, all the subsequent requests for that connection are routed to CPa and use only
the bandwidth managed by CPa. In a layered system, a physical ATM network becomes multiple
independent networks with smaller capacities.

b

75M

80M

data link

signaling link

A’

C’ D’

DB’C

BA

Cb

Ca

a

Figure 4: A Layered Signaling System

Layered design retains the simplicity of the centralized system and provides some degree of
concurrency and reliability. One disadvantage is that it may unnecessarily block some requests.
For example, if a join request comes with 20M bandwidth requirement to layer A, The residual
capacity on link l is 20M and CPa and CPb each controls only 10M. The request has to be rejected
even though the link can support that request in a centrally controlled system. Some protocols
can be designed among CPs to negotiate and adjust the bandwidth managed by CPs, but that
will make the system more complicated especially when the number of layers increases. A layered
system is essentially a combination of centralized systems. So it su�ers the same scalability problem
as a centralized system. A layered system may work well when the managed links are high capacity
multiple trunks. Since the bandwidth requirement of each individual request is relatively small
comparing with the link capacity, fragmentation is not a serious problem.

2.3 Completely Distributed Signaling System

Both network information and connection information can be distributed in the network. In a
completely distributed signaling system, every node (a virtual switch) manages the bandwidth of
the links that are adjacent or internal to that node. CPs do not have global knowledge about the

8

network status, nor do they have global knowledge about connections. They retrieve the necessary
knowledge by message-passing.

When a join request comes to a node, the node checks if the connection exists at the node. If
the connection does not exist, the request will be forwarded to the next node towards the root of
the connection based on the routing table at the node. This forwarding continues until it touches
a node where the connection exists or there is no link that can support the request. A response
message will travel backwards to the origin of the request.

The advantages of such a system are: requests can be processed concurrently; there is no
computational bottle neck as in the centrally controlled case; the number of signaling connections
at each node equals the number of its external links which is much smaller than the network size;
and a single node or link failure only a�ects the connections routed through the node or link.

The disadvantages are: messages go hop by hop so that the single request response time is �(d)
where d 1 is the network diameter. E�ciency of the signaling system depends greatly on the routing
algorithm. If the routing algorithm does not have enough global network status knowledge, it could
be very ine�cient.

2.4 Traditional Hierarchical Network and Signaling

In a traditional hierarchical network like the traditional telephone network [?], user addresses are
organized hierarchically. Each signaling point has its management domain. The domain of a higher
level signaling point is the union of the domains of its signaling children's, the next lower level
signaling points. When a connection request comes with the user address out of its domain, the
signaling point passes the request to its signaling parent, the next higher level signaling point.
When the connection has been set up, all the data tra�c goes through the same hierarchy as the
control signals go.

The advantages of this design are: the number of signaling connections at a node equal the
number of its signaling children plus one, which counts the connection to the signaling parent; if
the branching factor is a constant B, then the single response time is O(minflogBn; dg) where n is
the network size; it is easy to design the signaling algorithm for such a network since there exists
exactly one path for each pair of nodes.

The disadvantages are: it is too restrictive for the communication network so that the resources
will be wasted on the way up and down the hierarchy; and some higher level signaling points may
become bottlenecks for signaling processing as well as bottlenecks for resources.

2.5 Performance Comparison

Table ?? compares the performance of the signaling system designs discussed where n is the net-
work size, L is the number of layers in a layered system, d is the diameter of the network, and
B is the maximum branch factor in a hierarchical network. From the table we can see that both
centralized and layered systems are not scalable since the number of signaling connections is n,
as well as that their routing algorithms have to collect network status information for the whole
network. Their performance could be acceptable for medium size networks. The distributed ap-
proach also su�ers from the scalability problem because the single request response time is O(d).
The traditional hierarchical signaling system scales well, but it mixes the signaling system and the
data communication system. All the data tra�c has to go up through the hierarchy and then go
down creating unnecessary tra�c and cause possible high level bottlenecks.

1Assume that the routing algorithm at each node can �nd a neighbor which is at least one hop closer to the root

of the connection than the current node is

9

System Single Request Number of Number of Users
Type Response Time Signaling Connections can be supported

Centralized O(1) n � 60�m
2�d�s

Layered O(1) n � L�
�

60�m
2�d�s

�

Distributed O(d) deg(v) any practical number

Hierarchical O(logB(n)) O(B) any practical number

Figure 5: Signaling System Performance Comparison

3 Virtually Hierarchical Signaling System

3.1 Virtually Hierarchical System

The main disadvantage of a traditional hierarchical network is that it restricts the network topology
to be hierarchical which is not desirable in general networks. We don't want to put any restriction
on the topology of the communication network. On the other hand, hierarchies are natural in
the communication world. General communication patterns show great locality geographically and
organizationally. There are much more local calls than long distance calls, more inter-state calls
than international calls. There are much more intra-organization calls than inter-organization calls,
etc. Accordingly, the user address usually reects this hierarchy. The administration domain also
suggests some natural hierarchies.

In this paper, we propose a Virtual Hierarchical Signaling System(VHSS) in which a hierarchi-
cally organized signaling network controls a communication network with arbitrary topology. Like
Signaling System No 7 (SS7) [?], a signaling network is independent of the communication network
so that all the advantages of common channel signaling apply here. Unlike SS7, where a complete
physical network could be built just for signaling, in our proposal, the signaling system is built on
the same ATM network so that the cost of the signaling system can be greatly reduced.

Figure ?? shows a hierarchical signaling network with three levels of hierarchy that controls
an underlying general communication network. The hierarchical signaling network is composed
of signaling points and signaling links. A circle node in the picture represents a node in the
communication network with its CP. To make it more general, we call it a level 1 SP. Each level
i SP, except the highest level SP, has a signaling connection, the dotted line in the �gure, with
a level i + 1 SP. The level i + 1 SP becomes the signaling parent of the level i SP. A SP is
a logical concept. A SP comprises software running on a computer together with signaling links
to its signaling parent and signaling children. Multiple SP processes can be running on the same
physical computer so that a powerful computer can be e�ciently used.

Each SP knows its management domain, the set of node addresses under its control. Each
signaling point manages the resources for all the links that connect two of its child signaling domains.
A level i domain is identi�ed by the level i SP which manages it. A link that connects two level
i � 1 domains is called a level i link. Two level i SPs that are connected by at least one level
i + 1 link are called neighbors. Besides the parent signaling connection, each level 1 SP has a
signaling connection with each of its neighboring nodes. At any SP, there de�nes a mapping SP (u)
which maps a level 1 node u to its next lower level SP when u is in the current SP's domain or
a neighboring SP if u is in this neighbor's domain or nil otherwise. For example, in Figure ?? a
level 2 signaling point S22 manages the bandwidth for level 2 links l3, l4 and l7, but not the level
1 links internal to node S13, S14 and S16. S21 and S22 are neighbors since link l2 and l6 connect
their management domains. SP (S16) at S31 returns S22 since S22 is the next lower level SP that

10

S21

S12

S14

S15

S16

S17

S18

l2

l1

l3

l4

l5

l6
l7

S22

S31

l8

l9

l10

l11

l12

S24

S23

l2 l6

l9

l5

l8 l10
l12

S13

Layer 3

Layer 2

Layer 1

S11

A Level 1 SP (a node)

An SP with its topology view

A data link (only at level 1)

A signaling link

a

b
c

Figure 6: A Virtually Hierarchical Signaling System

contains node S16, and SP (4) at S13 returns S11 since S11 is S13's neighbor that contains node 4.
Only a level 1 SP really sets up switch tables that physically allocates bandwidth to a connection.
The higher level SPs manage resources while making routing decisions.

The signaling algorithm is quite simple. Each SP maintains a connection data structure, like
the one de�ned in section ??, for every connection that has registered at that SP. When one SP can
not resolve a join request, (the connection data structure does not exist at the SP and the root of
the connection is not in the SP's management domain), the request is passed to its signaling parent.
This upward message passing continues until either a connection data object for the connection is
found or the root of the connection is in the SP's management domain. At that time a shortest
path from the requesting point to the connection is calculated for the request. This shortest path
only works at the current level. A setup request will be sent to all the signaling children along the
path to request that they set up the connection. This setup message propagates downwards until it
reaches the level 1 SPs. If all the level 1 SPs successfully allocate the bandwidth for the request, an
ACK will propagate back to the higher level SP who sent the setup message. Otherwise a NACK

11

will be passed to that SP. The result will pass back to the user down the hierarchy along the reverse
path of the join request messages.

Before we de�ne the details of the algorithm, let's look at some examples based on Figure ??.
Example 1: User b tries to join a connection c which is owned by user a (S11 is the root). User

b sends a join request to S11. Since the connection c exists at S11, S11 just allocates the resources
to connect b to the connection.

Example 2: user c tries to join the same connection. When S17 receives the join request from
user c, it can not resolve the problem since the connection does not exist at S17. It sends a join
request to the higher level SP, S24. Since S24 can not resolve the request either, it forwards the
request to S31. By checking the connection identi�er, S31 knows that the connection should exist
at S21. S31 picks a route from S24 to S21. In this case, it picks l5. It then sends a setup message
to both S24 and S21. When S21 receives the message, it tries to �nd a route to connect S11 with
l5. It picks l1. It then sends a setup message to both S11 and S12. When S11 and S12 successfully
�nd a route to connect l1 with the existing connection and l1 with l5, they ACK their parent, S21.
S24 does the similar thing. In this way, SPs work together to �nd a complete path to connect the
user c with the connection.

3.2 VHSS Signaling Algorithms

Each operation is assigned a unique identi�er when it starts. At each SP that participates in the
operation there exists an object called an operation handler. An operation handler is created when
a message related to that operation is delivered at the SP for the �rst time. It is the operation
handler's responsibility to process all the messages related to that operation. An operation handler
is destroyed when the operation completes. For any connection, at most one operation handler is
assigned as the current handler. Only the current handler can process an incoming message. The
operation corresponding to the current handler is said to be the current operation. A handler has
a priority attribute which can be either HIGH or LOW. A handler created as the consequence of
receiving a message from its signaling parent is assigned a HIGH priority. Otherwise it has LOW
priority. A High priority handler will never change its priority. A LOW priority handler may
change its priority to HIGH when a message from its signaling parent is processed or it has sent
messages to its signaling children. A HIGH priority handler prevents the creation of other handlers
for the same connection. Generally speaking, top-down operations have higher priority than the
bottom-up operations.

We assume that there exists a message delivery system. The message delivery system guarantees
the reliable delivery of messages to their proper operation handlers. When a message is received,
the message delivery system will deliver the message to the current handler if this message is part
of the current operation. If the handler for the message does not exist, the message delivery system
may either create a new operation handler and deliver the message to the newly created handler
or block the message depending on the priority of the current operation handler and the incoming
direction of the message. The decision is made based on the algorithm shown in Figure ??. When
the current handler �nishes, the message delivery system will scan through the blocked messages
as if they were just received. Some of the message delivery system's functions de�ned here could be
modeled in our signaling algorithm. We put them in the message delivery system only to simplify
the presentation of the signaling algorithms. The priority assignment and FIFO property of the
message delivery system are crucial to guarantee the correct behavior of the protocol. Figure ??

and Figure ?? show the signaling algorithms for each of the operation handlers.
We de�ne some functions and mappings used in the algorithms. A mapping root(cid) maps the

connection identi�er cid to the address of the root node of the connection. A function domain() at

12

a SP gives a set of addresses that are under the control of the current SP. FindPath(), reserve(),
allocate() and release() are the resource manager's functions as de�ned in section 2. An SP-wide
accessible routine send(dest;message) sends the message to the destination dest. A connection

object has the structure as de�ned in section 2.1. The function getConnection(cid) searches the
system to �nd the connection with identi�er cid. A connection object is returned if the search is
successful. At each SP, a mapping SP (u) or SP (lk) maps a node u or a link lk to a child SP or a
neighbor SP depending on the context. A level i path is a list of interleaved level i� 1 SPs and
level i links. A macro L(p; r) returns the link which is on the left of SP r in the path p. Similarly
R(p; r) gives the right link of r. A macro numberOfSP (p) gives the number of SPs in the path p.
A macro lastLink(p) gives the last link in path p.

A join message is processed in four phases. When a join operation is initiated by a user, a
joinReq message is generated and this joinReq message is passed up the signaling hierarchy until
either a connection data object is found or the root of the connection is in the SP's domain. A
multicast phase begins when the higher level SP chooses a path to route the connection request
and multicast a setup message to all the child SPs along the path. A converge-cast phase followes
in which every SP reports the operation status after it gets a response from its children that are
involved in the operation. In the fourth phase, a joinCommit message propagates to all the SPs
participated in the operation to inform the SPs to commit or abort the operation. At the same
time a joinResp message is passed to the user to report the result of the operation.

There are �ve types of messages that are involved in the join operation. A joinReq message
conveys the operation request going up the signaling hierarchy. It contains the connection identi�er,
the bandwidth requirement, and the source SP address as the information elements. A joinResp is
the response message for a joinReq. It carries an operation status, either ACK or NACK, along with
the connection identi�er. A setup message is used by a higher level SP to request a set of signaling
children to set up a path to route a connection request. It contains the connection identi�er, the
bandwidth requirement, and the sending SP as the information elements. A setupResp is a response
message for a setup message. A commit message informs the lower level SPs to commit or abort a
join operation. Besides the connection identi�er, it carries a command information element. If the
command is ACK, it directs the receiver to commit the operation. A NACK command directs the
receiver to abort the operation.

A create operation handler is the simplest. A create handler only appears at the lowest level.
When a createReq is received, the level 1 SP creates a connection data object and sends an ACK
back. A createReq message carries the connection identi�er, the bandwidth and the user sp identi-
�er.

A drop operation is a little bit tricky. Since the higher level SP does not know the connection
graph internal to a lower level signaling domain, the drop operation has to proceed hop by hop at
the lowest level. Whenever a level i link is involved, a dropReq message is passed to the level i SP.
The SP makes a commit/abort decision based on the connection graph at that level. Two message
types are involved in a drop operation. A dropReq message carries a connection identi�er, the sender
SP, and the link identi�er indicating the link the dropReq came from. A dropReq message serves to
report to the signaling parent to start a drop operation as well as to be passed at the lowest level
to request release of physical resources.

Figure ?? illustrates the drop operation. The �gure inside a SP shows the SP's view of the
connection which is shown as the thick line in the �gure. When a dropReq reaches S11, a level 1
SP, S11 releases the resources up to link l2 which is a level 2 link. It requests the release of link
l2 by sending a dropReq to its signaling parent, S21. Since l2 is the only link incident to S11, S21
agrees to release l2 by sending a positive dropCommit message to S11. Receiving the dropCommit,
S11 releases the resources on l2, and sends a dropReq to its neighbor S13. S13 releases the resources

13

Join Handler

/* Handler-wide accessible variables
and initial values */
Link srcLK := nil;
Path p := nil;
integer receivedResp := 0;
OpResult opResult := ACK;
integer i := Current SP's level;

� joinReq(cid,bw,lk)
/* comes from a child SP */
srcLK := lk;
con := getConnection(cid);
if ((con 6= nil) OR (root(cid) 2 domain()))
if (con = nil)
con := new connection(cid, bw);

p := �ndPath(bw,SP(lk),con.graph(V));
if (p = nil)
send(SP(lk),joinResp(cid,NACK));

else
reserve(bw,p);
if (i = 1)
/* level 1 SP really allocate bandwidth */
allocate(bw,p);
send(SP(lk),joinResp(cid,ACK));

else
for (r 2 p)
send(r,setup(cid,bw,L(p,r),R(p,r)));

end for
endif

endif
else
send(parentSP, joinReq(cid,bw,lk));

endif

� joinResp(cid,result)
send(SP(srcLK), joinResp(cid,result));

� joinCommit(cid,command)
if (command = ACK)
if (i = 1)
allocate(bw,p);

else
for (r 2 p)
send(r,joinCommit(cid,command));

end for;
endif
con.updateGraph(ADD, p);

else
go back to the state before the operation

endif
delete myself;

� setup(cid,bw,lk1,lk2)
/* come from the signaling parent */
if (lk1 = nil)
lk1 = srcLK;

endif
if (lk2 6= nil)
con := new connection(cid, bw);
p := �ndPath(bw,SP(lk1),fSP(lk2)g);

else
con := getConnection(cid);
if (con = nil)
con := new connection(cid, bw);

endif
p := �ndPath(bw,SP(lk1),con.graph(V));

endif
if (p = nil)
send(parentSP,setupResp(cid,NACK));

else
reserve(bw,p);
if (i = 1)
send(parentSP,setupResp(cid,ACK));

else
for (r 2 p)
send(r,setup(cid,bw,L(p,r),R(p,r)));

end for
endif

endif

� setupResp(cid,result)
receivedResp := receivedResp + 1;
if ((result = NACK) AND (opResult = ACK))
opResult := NACK;

endif
if (receivedResp = numberOfSP(p))
if (parentSP 6= nil)
send(parentSP, setupResp(cid,opResult));

else
send(SP(srcLK), joinResp(cid, result));
for (r 2 p)
send(r,joinCommit(cid,opResult));

end for
if (opResult = ACK)
con.updateGraph(ADD,p);

else
go back to the state before the operation

endif
delete myself;
endif

endif

Figure 7: Signaling Algorithms for VHSS (join Operation Handler)

14

Create Handler

� create(cid,bw,sp)
con := newconnection(cid,bw);
send(sp,createResp(cid,ACK));
delete myself;

Drop Handler

SignalingPoint srcSP := nil;
Path p := nil;
Link l;
integer i := Current SP's level;

� dropReq(cid,sp,l)
/* a dropReq may come from a signaling child
or a level 1 signaling neighbor */
srcSP := sp;
con := getConnection(cid);
if (i = 1)
p := con.�ndPathToBranch(sp);
l := lastLink(p);
if (l is a higher level link)
release(bw,p-l);
con.updateGraph(con.bw,REMOVE,p-l);
send(parent,dropReq(cid,currentSP,l));

else
release(bw,p);
con.updateGraph(con.bw,REMOVE,p);
delete myself;

endif
else
if (l is a higher level link)
send(parent,dropReq(cid,currentSP,l));

else
if (l is the only level i link in con for sp)
release(con.bw, flg);
con.updateGraph(cid,REMOVE,flg);
send(sp,dropCommit(cid,ACK));

else
send(sp,dropCommit(cid,NACK));

endif
delete myself;

endif
endif

� dropCommit(cid,command)
con := getConnection(cid);
if (i = 1)
if (command = ACK)
release(bw,l);
con.updateGraph(cid,REMOVE,flg);
send(SP(l),dropReq(cid,currentSP,l));

endif
else
if (command = ACK)
delete con;

endif
send(srcSP,dropCommit(cid,command));

endif
delete myself;

Destroy Handler

� destroyReq(cid)
con := getConnection(cid);
if (exist higher level links in con)
send(parent,destroyReq(cid));

else
release(con.bw, con.graph);
for (r 2 con.graph(V))
send(r,destroyCommit(cid));

end for
delete myself;

endif
delete con;

� destroyCommit(cid)
con := getConnection(cid);
release(con.bw,con.graph);
if (i 6= 1)
for (r 2 con.graph(V))
send(r,destroyCommit(cid));

end for
endif
delete con;
delete myself;

Figure 8: Algorithms for VHSS (create, drop, destroy Handlers)

15

S11

S12

S13

S21

S11

S12

S13

S21

l1

l2 l2

S11

S12

S13

S21

l2

S11

S12

S13

S21

l2

a) a dropReq is issued by user. b) S11 request S21 to release l2.

c) when S21 changed its view,
 S21 confirms drop l2.
 S11 sends dropReq to S13.

d) S13 changes its local view.
 No need to report to its parent.

dropReq

dr
op

R
eq

dr
op

C
om

m
it

dropReq

Figure 9: An Example of Drop Operation

16

if (the message is for the current handler)
deliver the message to the current handler

else
if (the current handler has LOW priority and

the message comes from the parent)
create a new operation handler for the
message, then deliver the message to that
handler and assign it as the current handler

else
block the message

endif
endif

Figure 10: Algorithm for the Message Delivery System

to complete the drop operation. S13 does not need to send a request to its signaling parent since
no more higher level links are involved in the drop operation.

A destroy operation is started by the owner of the connection by sending a destroyReq. This
destroyReq is passed up the hierarchy until the highest level SP that is involved in the connection
is reached. Then a destroyCommit message is multicast to all the SPs that are involved in the
connection. The connection data object is deleted when the destroyCommit is received. At the
bottom level, all the resources allocated for the connection are released.

3.3 Correctness and Performance Evaluation

In this section, we will prove the correctness of VHSS and evaluate its performance.
In a centralized signaling system, the correctness can be easily guaranteed since the central CP

keeps track of all the network status and maintains the entire connection graph in its connection
data structures. Furthermore, all the operation requests are processed sequentially. In this case,
it can guarantee that a join request will always go through if the network has enough bandwidth
to support it. In a distributed signaling system, the network status and the connection graph
information is distributed in the network. To prove the correctness of the distributed algorithms
for a signaling system, we need to extend our problem de�nition in a distributed way.

A local connection descriptor at a SP s is de�ned as a tuple [s; cs; rs; ws; Hs = (Ws; Fs)] where
s is the SP's identi�er, cs is a connection identi�er, rs is the root of the connection, ws is the
bandwidth requirement and: if s is a level 1 SP, Hs is a subgraph of G whose vertices are restricted
to s and/or its neighbors in G; if s is a higher level SP, Hs is a graph whose vertices are its child
SPs and its signaling neighbor SPs, and whose edges are the links of G that connect two signaling
domains of its vertices.

Let GD denote a set of (global) connection descriptors. Let GD(c) be a connection descriptor
with connection identi�er c. Let LD be a set of local connection descriptors. Let LD(c) be the
subset of LD with connection identi�er c, and LDs(c) = [s; c; rs; ws; Hs = (Ws; Fs)] denote the
elements of LD(c) whose �rst element is s.

We say that LD(c) implements GD(c) = ([c; T; r;w];H = (W;F)) if for all LDs(c) 2 LD(c),
r = rs, w = ws, and

(1) if s is a level 1 SP

17

W =
S
LDs(c)2LD(c)Ws, and F =

S
LDs(c)2LD(c) Fs and

for all u; v 2 V , (u; v) 2 Fu , (u; v) 2 Fv
(2) if s is not a level 1 SP

for all (u; v) 2 Fs , (u; v) 2 FSP (u); (u; v) 2 FSP (v) and
(u; v) 2 Fs) SP (u); SP (v) 2Ws

We say that LD implements GD if LD implements every descriptor in GD and no others. This
de�nes the safety conditions for the VHSS in a distributed way. The condition (1) is general
enough to give the correctness conditions for any distributed signaling system. The condition (2)
only applies to VHSS and is included to ensure that VHSS ful�ls condition (1). The local connection
manager algorithm, running at each SP of a signaling network, maintains a set of local connection
descriptors. Together, they implement a set of global connection descriptors. Notice that our
connection data structure is consistent with a local connection descriptor. We de�ne a good state
to be a state where both condition (1) and (2) are satis�ed.

Before we start to prove the correctness of the algorithms, let's introduce some notations. We
de�ne an event e(s; c; op; typ; [status]) to be one call of any handler's event processing routine, where
s is a SP's identi�er indicating the place where the event occurs, c is the connection identi�er, op
is the operation identi�er, typ is the message type, and the optional status 2 f ack, nack g gives
the result of the event. We say E is an execution of the system i� E is a sequence of events that
satis�es the natural order of events, such as the event for sending a message always appears before
the event for receiving the same message. Let E(c) be the subsequence of E with all events related
to connection c. A stable state is a state in which no event will occur if there are no new user
requests. We de�ne a complete execution to be an execution with all the operations are completed.
We say that a system is correct if starting from any good stable state, it is guaranteed to reach a
good stable state after any complete execution.

We prove the correctness by induction. Initially the system starts in a good stable state since
there is no connection at all. We prove the correctness in three steps. First we prove that the system
behaves correctly if there is only one operation in the execution. Then we prove that the system
behaves correctly if the execution contains multiple operations for a single connection. Finally we
prove the correctness for any complete execution.

Lemma 1 If the system starts in any good stable state and starts a complete execution E in which
all events relate to a speci�c operation of connection c, then the system will stop at a good stable
state where the new LD(c) implements the new GD(c).

proof : The lemma can be proved by carefully checking the algorithms for each operation
separately.

� case 1: op = create

When the level 1 SP, the CP, receives a create(cid; bw; sp), it creates a connection data object
with itself as the only vertex in the connection graph. It sends a response immediately and
no follow up event will occur. Obviously, the new LD(c) implements the new GD(c). The
execution E contains only one event.

� case 2: op = join

The joinReqmessage propagates up the hierarchy. Since the highest level SP can see the whole
network, this upward propagation has to stop at some SP. Then the downward propagation
begins. During the downward propagation of the setup, each level i SP chooses a level i

18

path to complete a section of a level i + 1 path. When the setup reaches the level 1 SPs, a
whole path from the requesting user to the node where the connection exists is found. When
successful, this path is added into all participating SPs after a positive joinCommit. The
resulting connection data structure at all the SPs implements the new GD(c). If one of the
SPs fails to �nd a path, the negative joinCommit erases all the modi�cations for the operation,
and the new LD(c) at the end of the operation is same as the old LD(c) that implements the
old GD(c). Since the request is rejected, the new GD(c) is equivalent to the old GD(c).

� case 3: op = drop

From the algorithm, we can see that a level 1 node releases the bandwidth on a level i link
only when it is approved by the level i SP who manages that level i link. When the drop-
Commit that approves the release of bandwidth propagates downwards, all the intermediate
SPs modi�es their connection data structures. Since no other operations are performed in
the execution, the dropReq will propagate to the place where the connection branches. At the
end of the operation, the new LD(c) implements the new GD(c).

� case 4: op = destroy

A destroy operation releases all the bandwidth reserved for the connection and deletes all the
connection data structures at all the SPs. So at the end of the operation, the new LD(c)
implements the new GD(c).

#
A drop operation propagates and gets committed hop by hop. So we can think an external drop

operation as composed of multiple internal drop operations, each of which starts when a level 1
SP receives a dropReq and ends when a dropCommit has been processed at the same SP. When we
refer to an operation in the following lemmas, we refer to this kind of internal operation.

Lemma 2 If the system starts in any good stable state and starts a complete execution E in which
all operations relate to a single connection c, then there exists another execution E' which is a
permutation of E such that in E' all the events relating to a single operation are consecutive and
both E and E' leave the system in the same �nal state.

proof : The SPs that are involved in an operation form a tree. We call it an operation tree. If two
operation trees are disjoint, we can reorder the events so that all events for one operation appear
before all events for the other. Since events for di�erent operations modify di�erent connection
objects at di�erent SPs, the reordering does not a�ect the �nal state.

Notice that the propagation of joinReq, joinResp, and destroyReq do not change connection
graphs at any SP, we can rearrange all joinReq for one join operation just before the root of the
join operation tree starts changing joinReq to setup. This reordering does not a�ect the end state
of an execution. The same arguments can be applied to joinResp and destroyReq. So from now on,
we can view a join operation as starting at the root of the operation tree when the root sends setup
messages to its children and ends when the joinCommit messages have propagated to the whole
operation tree. Notice that a join or destroy operation starts at the root of the operation tree, and
an internal drop operation starts at one leaf of the operation tree, a single branch tree. We call a
join or destroy operation a top-down operation, and a drop operation a bottom-up operation.

Let's consider a join operation interleaved with a drop operation. If the dropReq reaches its
root of the operation tree before the setup reaches the same SP. Due to the FIFO characteristic of
the signaling channel, the drop operation will be complete at any SP before the starting of the join

19

operation at the same SP. In this case, rearranging the drop operation before the join operation
does not change the �nal state. If a SP receives a setup message while waiting for the dropCommit,
the dropReq and the setup must have crossed on their way. Since the downward setup will generate
a HIGH priority join handler, no dropCommit will be received by any SP before the completion of
the join operation. In this case, we can rearrange the whole join operation ahead of the entire drop
operation without changing the �nal state of the execution.

The result of interleaved join and drop operations can be generalized. Any top-down operation
has higher priority than any bottom-up operation. Any blocked bottom-up operation can be
rearranged totally after the top-down operation that blocks the bottom-up operation. A bottom-
up operation that reaches its operation root before a top-down operation can be rearranged totally
before the top-down operation due to the FIFO characteristic of the message delivery system. Two
top-down operations will be serialized when they propagate to a common SP which must be the
root of one of the operation trees. As a result, any execution for one connection can be serialized.
#

Corollary 3.1 If the system starts in any good stable state and starts a complete execution E in
which all operations relate to a single connection c, it will end in a good stable state.

proof : Based on ??, operations can be serialized. According to ??, after each operation, the system
goes to a good state. #

The operations for di�erent connections only interact through the resource manager. We call
the points when a SP executes a reserve, an allocate, or a release the resource access point. If we
can rearrange the execution sequence so that the operations for each connection are serialized and
the order of the resource access points are unchanged at each SP, then the new execution will lead
to the same state as the original execution. This argument leads to the following lemma.

Lemma 3 If the system starts in any good stable state and starts a complete execution E, then
there exists another execution E' which is a permutation of E such that 8c 2 C, E'(c) is serialized
and for all SPs, the order of the resource access points are the same as the order in E.

proof : From the proof of the ??, we can see that the order of the resource access points are
preserved at each SP when we serialize the operations for one connection. We can serialize each
E(c) individually and then mix the E(c)s by preserving the order of the resource access points for
each SP. #

Lemma 4 The capacity constraint is always strictly observed.

proof : In VHSS, links are partitioned by their management SPs. The bandwidth of a level i link is
solely managed by a level i SP. Any allocation or release of the bandwidth on that link is initiated
by that SP. At a level i SP, to route a join request it calls a global resource manager function
�ndPath to �nd a level i path with required bandwidth. Before sending a setup message to all
signaling children on the path, the SP reserves the bandwidth on all the level i links in the path.
The bandwidth reserved will not been seen by the later call of �ndPath until it is released. A level
1 node will only allocate the bandwidth for a level i link when it has been reserved by the level i
SP. #

Theorem 3.1 (Safety) The VHSS is a safe system.

20

proof: By lemma ??, any execution is equivalent to another execution in which operations for every
connection are serialized. By lemma ??, every individual operation maintains a global connection
descriptor. Di�erent connections only interact through the resource manager when they request or
release resources. Lemma ?? proves that the resource constraint is always preserved. Altogether,
VHSS is safe. #

Now we will prove the low level liveness of our system, that is that every operation will complete.

Theorem 3.2 (Low Level Liveness) If at some point in an execution, no new operation requests
are made, after a su�ciently long time period all operations �nish.

proof sketch: Operations for di�erent connections are processed independently. They never
block each other. We only need to prove that a set of operations for the same connection will
�nish. We prove the lemma by induction. When there is only one operation in the system, we
can prove the lemma in the same way as we prove lemma ??. Assume that any N operations for
the same connection can �nish. Now we consider the case that we have N + 1 operations. Notice
that when one HIGH priority operation, say op1, becomes the current operation at a node SP, it
will remain being current for its life time. The HIGH priority operation will propagate to all its
children in the operation tree. This propagation will only be blocked at some SP where a HIGH
priority operation, say op2 is current. Notice that the root of op2's operation tree is on the lower
level than the root of op1's. As the consequence, the HIGH priority operation that has the lowest
root can always go through. If all the operations are with LOW priority, then at least one of them
can reach its root. After that it becomes the HIGH priority operation. By the discussion, at least
one operation can go through. By the induction hypothesis, the lemma is true. #

Lemma 5 For every node u, the CP of u has deg(u)+1+(number of local users) signaling connec-
tions. For every other SP, there are O(B) signaling connections where B is the maximum branching
factor of the SP. The single request process times for di�erent requests are given in table 2 where
n is the network size, b is the minimal branching factor, and d is the diameter of the network.

System Single Request Single Request Busiest CP
Type Processing Time Message Complexity Message Complexity

create O(1) O(1) O(1)

join O(B � logb(n)) O(d) O(B)

drop O(d) O(d) O(B)

destroy O(logb(n)) O(d) O(B)

Figure 11: Single Request Processing Complexity

proof : The number of signaling connections for all SPs are obvious. A join operation has four
phases. Phase 1 takes O(logb(n)) time units. Phase 2 and 3 together takes O(B � logb(n)) time
units. B and b are usually constants decided by the network designer. A destroy operation does not
need response. So it take O(logb(n)) for the request to propagate to all the level 1 nodes. The drop
messages are passed hop by hop, so that the execution time is O(d). Since the user's satisfaction
depends mostly on the response time to join request, the system is scalable.#

3.4 Live Lock Problem

Live lock is an interesting phenomenon in a distributed system. In our context, the live-lock problem
can be stated as follows: There is a set of join operation requests, each of which can be successfully

21

routed by the findPath functions at di�erent levels if the operations come individually. Since the
events of the operations are interleaved in some order, none of them can be satis�ed. With the
con�guration of the system unchanged, the same sequence of events can occur again and again. No
progress is made even though all the SPs work properly. It is very similar to the classical deadlock
problem. Each request holds some resources and requests others. The wait-for relationship forms a
loop. In a distributed system, live-lock is an annoying problem. In the following lemma, we prove
that VHSS is live-lock free.

Lemma 6 Live-lock will never occur in VHSS.

proof sketch: We prove the lemma by contradiction. Assume that E is an execution with a set of
join operations, fj1; j2; : : : ; jmg, that leads to a live-lock. We assume, w.l.o.g, that fj1; j2; : : : ; jmg is
ordered by the time when the requests reached the roots of their corresponding operation trees. Let
ft1; t2; : : : ; tmg and fr1; r2; : : : ; rmg be the operation trees and the roots of the trees respectively.
Assume r1 is a level i SP. Since j1 is the �rst join request that reaches r1 and by the live-lock
assumption, r1 can chose a level i path to route j1. Since j1 can not successfully complete, there
must be another join operation request that reaches one of r01s descendents, say s, before j1 and
has taken the bandwidth that j1 requires to complete j1. Assume, w.l.o.g., j2 is the earliest that
reaches s. By the FIFO assumption of the message delivery system, s must be the root of the j02s
operation tree. Now we reorder the sequence of the operations as fj2; j1; : : : ; jmg where j2 is the
earliest to reach s and s is on the lower level than r1 is.

Apply the same argument repeatedly. Eventually we can �nd a sequence of operations fj 01; j
0

2; : : : ; j
0

m
g

which is a permutation of fj1; j2; : : : ; jmg. In this sequence, j01 is the �rst in E to reach its root
and when the setups for j01 propagate to the connection tree of j01, no other operation has taken
any bandwidth required by j 01. According to the live-lock assumption, j01 can go through. This
contradicts the assumption. #

4 Conclusion and Future Work

VHSS takes advantage of the exibility that an ATM network provides. It provides all the bene�t
of a common channel signaling system like SS7. The same ATM network works both for data
communications and signaling processing in an integrated way. The signaling protocol is simple to
implement. It scales well which is extremely important for a public telecommunication network.

In this paper, we assume all the system components are reliable which is not the case in a real
system. By combining VHSS with the layered approach, especially at the higher level, it can be
made reliable and cost e�cient.

In this paper we omit one important measure for a signaling system: how e�cient is the
signaling system in terms of managing the resources. Some measures such as the throughput,
pro�t, or competitive ratio can be used to evaluate the e�ciency of using resources. To evaluate
these measures, we may have to expand our model to include link cost, per call pro�t or similar
attributes for networks and connections. Awerbuch [?] proposed a point-to-point routing algorithm
for a central controlled system. Their algorithm is optimal in terms of competitive ratio, which
is de�ned as the ratio of the throughout of the algorithm to be evaluated versus the throughput
of an optimal o�-line algorithm. We have proved the similar result for a centralized multipoint
communication network. We need to expand our model to do some resource e�ciency analysis.

Besides theoretical analysis, we are planning to do some simulations to compare the performance
of a VHSS with other signaling systems. The proofs of the algorithms presented in this paper are
not complete. The detailed formal analysis will appear in follow up papers.

22

5 Acknowledgements

In completing this work, I have had the bene�t of many fruitful (and often spirited) discussions
with professors and colleagues at Washington University. Dr. Jonathan Turner spent a lot of his
time with me to discuss the ideas and detailed system design. Andy Fingerhut, John DeHart, and
Ken Goldman all provided very useful input.

References

[1] Baruch Awerbuch, Yossi Azar, and Serge Plotkin. Throughput-competitive on-line routing. In
Proceedings of 34th FOCS93, 1993.

[2] CCITT. Speci�cation of signaling system no. 7. CCITT Blue Book, 1988.

[3] M. Imase and B. M. Waxman. Dynamic steiner tree problem. SIAM J. on Disc. Math., pages
369{384, 3 1991.

[4] R. Rey. Engineering and Operations in the Bell System. Marray Hill, 1983.

[5] W. Stallings. ISDN. MaCMillan, 1989.

[6] J. S. Turner. An optimal non-blocking multicast virtual circuit switch. IEEE INFOCOM, pages
298{305, 1994.

[7] B. M. Waxman. Routing of multipoint connections. IEEE J. Select. Areas Comm., pages
1617{1622, 6 1988.

23

