
Load Balance Properties of

Distributed Data Layouts for

Clustered MOD Servers �

Milind M. Buddhikot, Guru Parulkar

wucs-95-32

May 95

Department of Computer Science
Campus Box 1045
Washington University
One Brookings Drive
St. Louis, MO 63130-4899

�This work was supported in part by the ARPA, National Science Foundation, and an industrial consortium of

Ascom Timeplex, Bellcore, BNR, Goldstar, NEC, NTT, SynOptics, and Tektronix.

Load Balance Properties of Distributed Data

Layouts for Clustered MOD Servers

Milind M. Buddhikot Gurudatta M. Parulkar

milind@dworkin.wustl.edu guru@ora.wustl.edu

small +1 314 935 4203 +1 314 935 4621

Abstract

Large scale storage servers that provide location transparent, interactive access to hundreds
or thousands of concurrent, independent clients will be important components of the fu-
ture information super-highway infrastructure. Two key requirements of such servers are
as follows: support high parallelism and concurrency in data access to allow large number
of access to the same or di�erent data. Second, support independent interactive playout
control operations such as fast-forward, rewind, slow-play, pause, resume, random access
etc. with minimal latency. This paper assumes a distributed storage server architecture
consisting of several high performance storage nodes interconnected by a high speed desk
area network into a cluster as a candidate architecture that can meet these two require-
ments. For such an architecture, we explore generalized distributed data layouts to satisfy
the requirement of large number of scalable concurrent data accesses. We also quantify
certain interesting properties of these data layouts that guarantee e�cient implementation
of interactive operations.

1. Introduction

Large scale storage servers that provide location transparent, interactive access to hundreds or
thousands of concurrent, independent clients will be important components of the future information
super-highway infrastructure. MIMD and SIMDMultiprocessor supercomputer based machines have
been considered as candidate architectures for such high performance servers [2, 3, 1]. However, these
server architectures tend to be specialized, expensive and may prove to be overkill. An alternate
architecture shown in Figure 1, commonly called as Clustered Multimedia Storage (CMS), has been
proposed by several research groups including ours [8, 4, 5, 14]. It essentially consists of a set of
independent storage nodes that are connected together by a fast packet based interconnect such as
a packet switched bus, a ring or even a general purpose multicast switch. The interconnect directly
interfaces to an external high speed network such as an atm architecture.

Figure 2 illustrates an example CMS architecture that uses a novel ATM Port Interconnect Chip
(apic) based 2.4 Gbps cell swicthed interconnect and high performance storage nodes constructed

This work was supported in part by the ARPA, National Science Foundation, and an industrial consortium of

ascom Timeplex, Bellcore, BNR, Goldstar, NEC, NTT, Southwestern Bell, SynOptics, and Tektronix.

1

Distributed Data Layouts 2

Storage
Node

Storage
Node

Storage
Node

High Speed
Network

Central
Manager

Fast

ATM-based

Interconnect

Figure 1: Clustered Multimedia Storage Server

out of Pentium pcs. This architecture is currently being prototyped at the Washington University
in St. Louis under the NSF's National Challenge Award (NCA) grant aimed at deploying a scalable
Multimedia-On-Demand (mod) server. Details of this architecture can be found in [8].

Two important performance metrics of such any large scale server are parallelism and concur-
rency [9]. The parallelism (Pf) metric is de�ned as the number of storage devices simultaneously
participating in supplying data for a document being accessed by a connection. Large parallelism
increases network and storage throughput and thus, increases scalability. On the other hand, the
concurrency Cf metric is de�ned as the number of clients that can simultaneously access the same
document f . Ideally, maximum number of clients should be served from a single copy. In other
words, higher concurrency minimizes need for copy replication. Clearly, Pf and Cf are related;
increasing Pf increases Cf . Thus, key to achieving scalability is to increase parallelism and con-
currency. The parallelism can be increased by physically distributing data over multiple storage
nodes.

We use these key observations to devise data layouts called Generalized Staggered Distributed
Cyclic (g-sdcl) data layouts. In these layouts, the data for bandwidth internsive streams such as
video, graphics, animation documents are physically striped over multiple storage nodes, whereas
the data for streams such as audio, text, data that are less bandwidth intensive are however, con�ned
to a single storage node.

The remainder of this paper concerns with various issues in the design of such data layouts and
is organized as follws. Section 2 describes the basic Generalized Staggered Distributed Cyclic layout
and motivates the need for certain load-balance properties such layouts must posses to allow e�cient
implementation of interactive operations such as � and rw and de�nes the \safe skipping distance"
(df , dr) for implementation of such operations. Section 3 develops the theorems that characterize the
safe values for df , dr for g-sdcl0, g-sdcl1, g-sdclks layouts. Section 4 provides a brief discussion
of implication of non-unit chunk size on load-balance properties and implementation of � and rw
operation. In Section 5 we present related work. Finally, Section 6 presents the conclusions and
on-going work

Distributed Data Layouts 3

CPU

MMU
&

Cache

Main System

APIC APIC APIC

Storage

Node

Storage

Node

Storage

Node

APIC

Storage

Node

 Bus

Central Manager

High Speed
Network

Client

Server

Link
Interface

APIC:ATM Port Interconnect Controller

MMU: Memory Management Unit

ATM Interconnect

CPU

MMU
&

Cache

CPU

MMU
&

Cache

APIC

Main
Memory

Figure 2: A prototype implementation of a cms server

2. Distributed Data Layouts

This section �rst discusses the basic Generalized Staggered Distributed Cyclic Layout (GSDCL)
and then, motivates the need for investigating of \load-balance properties" of such layouts that are
crucial to e�cient implementation of interactive operations such as fast-forward and rewind. We
assume that these operations are implemented by keeping the display rate constant and skipping
frames, where the number of frames to skip is determined by the � rate and the data layout. Thus, �
may be realized by displaying every alternate frame, every 5th frame, or every dth frame in general.

2.1. Generalized Staggered Distributed Cyclic Layout (GSDCL)

We use the fact that the multimedia data is amenable to spatial striping to distribute it hierarchically
over several autonomous storage nodes within the server. Figure 3 illustrates the a data layout called
Generalized Staggered Distributed Cyclic Layout (g-sdcl). It uses The layout uses a basic unit called
\chunk" consisting of k consecutive frames. All the chunks in a document are of the same size and
thus, have a constant time length in terms of playout duration. In case of a Variable Bit Rate
(vbr) video such as mpeg video, a chunk therefore represents a Constant Time Length (ctl) but
a variable data length unit. In case of a Constant Bit Rate (cbr) source, it also has constant size
[10, 13]. Di�erent documents may have di�erent chunk sizes, ranging from k = 1 to k = Fmax, where
Fmax is the maximum number of frames in a multimedia document. In case of mpeg compressed
streams, the group-of-pictures (gop) is one possible choice of chunk size. A chunk is always con�ned
to one storage node. The successive chunks are distributed over storage nodes using a logical layout
topology. For example, in Figure 3 the chunks have been laid out using a ring topology. Each such
ring is called a distribution cycle. The layout can thus be thought of as a succession of such cycles

Distributed Data Layouts 4

APIC

Storage
Node

APIC

Storage
Node

fk
fk+1

f2k-2
f2k-1

Node 0 Node 1

C0

Chunk

C1

(k)

Distribution Cycle

APIC

Storage
Node

Node 2

APIC

Storage
Node

APIC

Storage
Node

Node 3 Node 4

APIC

Storage
Node

Node 5

C2
f2k

f2k+1

f3k-2
f3k-1

C3
f3k

f3k+1

f4k-2
f4k-1

C4
f4k

f4k+1

f5k-2
f5k-1

C5
f5k

f5k+1

f6k-2
f6k-1

f0
f1

fk-2
fk-1

C11C10 C7 C8 C9C6
Ks=2

C15C14 C17C16 C13C12

C19 C22C21C20 C23C18

Figure 3: A Generalized Staggered Distributed Data Layouts

each containing D chunks for a layout on D storage nodes. The �rst chunk in a distribution cycle
is called an anchor chunk and the node to which it is assigned is called the anchor node for that
distribution cycle. As shown in the Figure 3, the anchor node for successive distribution cycles is
staggered by a stagger factor ks in a modD order. Clearly, changing k and ks results in a new
layout and thus, g-sdclks(k) de�nes a family of data layouts. Note that in this scheme, the two
consecutive chunks at the same node are separated in time by at least (D � ks)kTf time units and
at the most (2D� ks)kTf time units. Thus, if the chunk is fetched as a single data unit, the stream
is slowed down by at least (D � ks) from the perspective of each storage node or the throughput
required per stream from each storage node is reduced by a factor of (D � ks). This in turns helps
in masking the large prefetch latencies introduced by very slow storage devices at each node.

We will evaluate these distributed layouts using two performance metrics. The �rst one called
parallelism (Pf), is de�ned as the number of storage nodes participating concurrently in
supplying the data for a document f . The second metric called concurrency (Cf) de�nes the
number of active clients that can simultaneously access the same document f . The value
of Pf ranges from 1 to D, where D represents the number of storage nodes. Pf is D, when the data
is distributed over all nodes, whereas, it is one when the entire document is con�ned to a single
storage node. A higher value of Pf implies larger number of nodes are involved in transfer of data
for each connection/request, which in turn improves node utilization and proportionately increases
concurrency.

If each storage node n (n 2 [1 : : :D]) has an available sustained throughput ofBn, and the average
storage/network throughput required for accessing the document f is Rf , then the concurrency
supported by a layout with parallelism Pf is

Cf = min
n

�
BnPf
Rf

�

Distributed Data Layouts 5

From above expression, we can see that the concurrency is a function of the parallelism sup-
ported by the data layout. Higher concurrency is desirable as it allows larger number of clients to
simultaneously access the same document and thus minimizes the need for replicating the document
to increase concurrent accesses.

2.2. Load balance properties of GSDCL

Consider a simple dcl1 layout (recall chunk size k = 1) described in Section 2. When a document
is accessed in a normal playout mode, the frames are retrieved and transmitted in a linear (modD)
order. Thus, for a set Sf of any consecutive D frames (called \frame set"), the set of nodes Sn
(called \node set") from which these frames are retrieved contains each node only once. Such a node
set that maximizes parallelism is called a balanced node set. A balanced node set indicates that
the load on each node, measured in number of frames, is uniform. However, when the document is
accessed in an interactive mode, such as � or rw, the load-balance condition may be violated. We
de�ne the fast forward (rewind) distance df (dr) as the number of frames skipped in a fast forward
(rewind) frame sequence. Consider a connection in a system with D = 6 storage nodes, a dcl1

layout, and a fast forward implementation by skipping alternate frames. The frame sequence for
normal playout is f0; 1; 2; 3; 4;5; : : :g, whereas for the fast forward the same sequence is altered to
f0; 2; 4; 6; 8; 10; : : :g. This implies that in this example, the odd-numbered nodes are never visited for
frame retrieval during �. Thus, when a connection is being serviced in � mode, the load measured
in terms of the number of frames retrieved doubles for even numbered nodes and reduces to zero
for odd numbered nodes. In other words, the parallelism Pf is reduced from D to D=2 during � of
a connection and the concurrency must be proportionately reduced. Clearly, in presence of a large
number of connections independently exhibiting interactivity, this can lead to occasional severe load
imbalance in the system and can make it di�cult to satisfy the qos contract agreed upon with each
client at the time of connection setup. Thus, if we can ensure that Pf and consequently, Cf are
una�ected during � or rw, we can guarantee load-balance situations. One way to do this, is to use
only those frame skipping distances that do not a�ect Pf and Cf . We call such skipping distances
as \safe skipping distances" (ssd). Thus, given a data layout, we want to know in advance all the
ssds a distributed data layout can support.

In the next section, we will characterize the safe skipping distances for various data layouts in
the g-sdclks(k) family of layouts. We will assume that the chunk size k = 1, and thus, call anchor
chunk as anchor frame. Later, we will discuss implications of using non-unit k.

3. Safe Skipping Distances for Various Layouts

In this section, we will �rst derive some basic equations and later use them to derive ssds for various
layouts.

3.1. Basic Equations

We will assume that there are in all D storage node and the stagger distance is ks. Consider any
arbitrary distribution cycle in this layout with the anchor frame assigned to node p (0 � p � D�1).
Figure 4 illustrates this cycle. The jth frame in this distribution cycle is then de�ned as in Equation 1,
where f is the anchor frame in this cycle.

Distributed Data Layouts 6

f f +1

Distribution Cycle

p p+1 p+2 p+3

f +2 f +3 f +D-1-pf + j -pf +D-p

0

f +D-p+1

1 j D-1

Figure 4: General distribution cycle with anchor node p

fj =

�
f +D + j � p 0 � j � p� 1
f + j � p p � j � D � 1

(1)

The anchor frame in the ith distribution cycle is iD and it is assigned to the node with id
iks modD. Thus, the jth frame in the ith distribution cycle of 0th stagger cycle is given as per
Equation 2

fij =

�
iD +D + j � iks modD 0 � j � iks modD � 1
iD + j � iks modD iks modD � j � D � 1

(2)

lth frame at node n:
Note that adding kD2 to the frames in the 0th stagger cycle, frames in any kth stagger cycle can be
computed. Also, the lth frame at a node belongs to kthcyc stagger cycle where kcyc = l DIV D and

kthloc distribution cycle where kloc = l modD.

Hence, the id of the lth frame at node n is given as

f l =

�
kcylD

2 + klocD +D � (klocks modD � n) 0 � n � klocks modD � 1 : : : (a)
kcylD

2 + klocD + n� klocks modD klocks modD � n � D � 1 : : : (b)
(3)

Frame f to node n mapping:
The layout pattern repeats itself after every D cycles. This repeating pattern, called as \Stagger
Cycle" contains D2 frames. Hence a given frame with id f will belong to a stagger cycle with id

Cstg = f DIV D2

The e�ective id of the frame in this stagger cycle is given as:

f
0

= f modD2

Each stagger cycle contains D distribution cycles. Therefore, the id of the distribution cycle to
which frame f belongs is i = f

0

DIV D. Since, f
0

is less than D2, 0 � i � D � 1. The stagger
distance for this distribution cycle is ((iks) modD. The id of the frame within the ith distribution
cycle is given as f

0

modD. Hence, the id of the node to which the frame is assigned is as follows:

f
0

= f mod D2

f 7�! fn = [iks modD + f
0

modD] modDg (4)

Distributed Data Layouts 7

Link
Interface

f0 f1 f2 f3 f4

f5 f6 f7 f8 f9

f10 f11 f12 f13 f14

Storage

Node

APIC APIC APIC APIC APIC

Storage

Node

Storage

Node

Storage

Node

Storage

Node

Distribution Cycle

Anchor Frames

Figure 5: General distribution cycle with ks = 0 and k = 1

3.2. GSDCL with ks = 0: Distributed Cyclic Layout (DCL)

Let us take a closer look at the example g-sdcl shown in Figure 5. Assume that the fast forward
starts from frame 0 with a fast forward distance df of 2. First D = 5 frames in the fast forward
sequence are f0; 2; 4; 6; 8g, which are retrieved from a balanced node set f0; 2; 4; 1; 3g. If the fast
forward distance is 3, the node set if altered to ordered set f0; 3; 1; 4; 2g, which is still balanced. It
can be easily veri�ed that the node set is balanced when df = 4, but is unbalanced when df = D = 5
or df = integral multiple of D. Following theorem that relates D and df explicitly for this layout.

Theorem 1. Given a g-sdcl layout over D storage nodes with ks = 0 and k =, the following holds
true:Re1

� If the fast forward (rewind) distance df (dr) is relatively prime to D, then

1. The set of nodes Sn, from which consecutive D frames in fast forward (rewind) frame set
Sf (Sr) are retrieved, is load-balanced.

2. The fast forward (rewind) can start from any arbitrary frame (or node) number.

Proof : We give a proof by contradiction. Let f be the number of the arbitrary frame from which
the fast forward is started. The D frames in the fast forward frame set are then given as:

ff; f + df ; f + 2df ; f + 3df ; : : : ; f + idf ; : : : f + jdf + : : : f + (D � 1)dfg

Without any loss of generality, assume that two frames f + idf and f + jdf , are mapped to the
same node np.

Substitute ks = 0 in Equation 3 (b). Clearly, the lth frame at any node n in this layout is given
as f l = n + lD.Since any two frames mapped to the same node di�er by an integral multiple of D,
we have

(j � i) = k �
D

df
(5)

Two cases that arise are as follows:
1The result was �rst pointed out in a di�erent form by Dr. Arif Merchant of the NEC Research Labs, Princeton,

New Jersey, during the �rst author's summer research internship.

Distributed Data Layouts 8

� Case 1: k is not a multiple of df : If D and df are relatively prime, then, D
df

cannot be

an integer. However, (j � i) is an integer. Thus, the Equation 5 cannot be true, which is a
contradiction.

� Case 2: k is a multiple of df : If this condition is true, then (j�i) = k1�D, where k1 =
k
df
.

However, this contradicts our assumption that the two selected frames are in the set which
has only D frames and hence, can di�er at the most D � 1 in their ordinality.

Since the frame f from which fast-forward begins is selected arbitrarily, the claim 2 in the Theorem
statement is also justi�ed. The proof in the case of a rewind operation is similar and is not presented
here.

As per this theorem, if D = 6, skipping by all distances that are odd numbers (1; 5; 7; 11 : : :) and
are relatively prime to 6 will result in a balanced node set. We can see that if D is a prime number,
then all distances df that are not multiples of D produce a balanced node set. Also, given a value
D, there are always some distances df such as when df is a multiple of D or has a common factor
with D, that cannot be safely supported.

3.3. GSDCL with ks = 1 and k = 1

We will illustrate some of the special properties of this layout with an example. Let us consider ex-
ample in Figure 6 and a � implementation by skipping alternate frames (that is df = 2) starting from
frame 0 . The original frame sequence f0; 1; 2; 3; 4;5;6; 7g is then altered to f0; 2; 4; 6;8;10;12;14g.
The node set for this new sequence is then altered from the balanced set f0; 1; 2; 3; 4;5;6; 7g to
f0; 2; 4; 6; 1; 3;5;7g. Clearly, this new node set is re-ordered but still is balanced. However, if df = 3,
the similar node set is given as f0; 3; 6; 2; 5; 0;4;7g, which contains 0 twice and hence is unbalanced.
It can be veri�ed that cases df = 4, df = 8 and df = m � D, where m is relatively prime to D
produce balanced nodes sets as well. Note here that 2; 4 are factors of D = 8, but 3 is not.

Theorem 2. Given a g-sdcl layout with ks = 1 overD storage nodes, and numbers d1; d2; d3; � � �dp
that are factors of D, the following holds true:

� Load balance condition for fast forward: If the fast forward starts from an anchor frame
fa, with fast forward distance df , then the node set Sn is load-balanced, provided:

1. df = di (where 1 � i � p) or

2. df = m�D where m and D are relatively prime or

3. df = di + kD2 (k > 0)

� Load balance condition for rewind: The same result holds true for rewind if the rewind
starts from a frame 2D � 1 after the anchor frame.

Proof : We will prove this condition by contradiction. We will assume that there are maximum
Fmax frames in the stream. Let us �rst consider the case of fast forward.

Distributed Data Layouts 9

APIC

Storage

Node

f0 f1 f2 f3 f4

Node 0

APIC

Storage

Node

Node 1

APIC

Storage

Node

Node 2

APIC

Storage

Node

Node 3

APIC

Storage

Node

Node 4

APIC

Storage

Node

Node 5 Node 7

APIC

Storage

Node

Node 6

f5 f6 f7

f15 f8 f9 f10 f11 f12 f13 f14

f22 f23 f16 f17 f18 f19 f20 f21

f29 f30 f31 f24 f25 f26 f27 f28

f36 f37 f38 f39 f32 f33 f34 f35

f43 f44 f45 f46 f47 f40 f41 f42

f50 f51 f52 f53 f54 f55 f48 f49

f57 f58 f59 f60 f61 f62 f63 f56

f64 f65 f66 f67 f68 f69 f70 f71

ks = 1

APIC

Storage

Node

Stagger

Cycle

Distribution Cycle

Figure 6: Staggered Distributed Cyclic Layout(sdcl) with ks = 1

Fast Forward Operation

The fast forward be started from the anchor frame fa. The set of D frames in the fast forward frame
set is then given as

Sf = ffa; fa + df ; fa + 2df ; fa + 3df ; : : : ; fa + idf ; : : : fa + jdf + : : : fa + (D � 1)dfg (6)

If na (0 � na � D � 1) is the node to which the anchor frame fa belongs, the ids of the nodes to
which the successive D � 1 frames in the fast-forward sequence are mapped, can be easily written
down.

In particular, consider frame fa + df . If the g-sdcl0(1) had been followed, this frame would
have been mapped to storage node (na + df) modD. But due to the staggered layout, a stagger
factor of df DIV D must be added. Since the storage node id is always less than D, the e�ective
id is given by modD of this number. Therefore, fa + df is mapped to

fa + df 7! ((na + df) modD + df DIV D) mod D

Distributed Data Layouts 10

In general, we can write down the following mapping relation

fa 7! na;

fa + df 7! ((na + df) modD + df DIV D) modD;

...

fa + idf 7! ((na + idf) modD + idf DIV D) modD;

...

fa + (D � 1)df 7! ((na + (D � 1)df) modD + (D � 1)df DIV D)x modD;

(7)

Now we must we prove that none of frames in Sf map to the same node. for all the three cases
mentioned in the theorem.

Note that the lth frame at any node n in this layout is computed by substituting ks = 1 in Eqn 3.

f l =

�
n + kcyD

2 + kloc � (D � 1) +D if kloc > n
n + kcyD

2 + kloc � (D � 1) kloc � n
(8)

Also, note that every nth; (n+D)th; (n+ 2D)th : : : frames at node n are anchor frames.

FF-PART I: df is a factor of D: Let's �rst prove that none of the frames other than fa in
the fast forward set belong to the node na. Since df = dx for some x (0 � x � p), df < D. Hence,
fa+df (D�1) < fa+(D�1)(D�1). Using the Equation 3, the set of D�1 frames following frame
fa at na is given as:

Fna = ffa + 2D � 1; fa + 3D � 2; : : : fa + k(D � 1) +D; : : :fa + (D � 1)(D � 1) +Dg: (9)

Clearly, fa + idf < fa + (D � 1)(D � 1) + D for any value of i � D � 1. Hence, if any of the
frames in the fast forward set reappears at na, then it must belong to Fna. This implies that

fa + idf = fa + k(D � 1) +D

i =
k(D � 1) +D

df

(10)

Since df is a non-trivial (non-unit) factor of D, it can not be a factor ofD�1. So for Equation 10
to be true, df must divide k. However, if k=df � 1, then i > (D� 1) which is not true. This implies
that no frames in the fast forward set, other than fa, can belong to the anchor node.

Therefore, if any two of the remaining D � 1 frames in the fast forward set appear at the same
node, that node must be di�erent than the anchor node. Without loss of generality assume that
frames fa+idf and fa+jdf are mapped to the same storage node, say p(0 � p � D�1 and p 6= na).
Since, none of these is an anchor frame, i; j 6= 0 and (1 � i; j � D � 1). Also, let i > j. Given this,
i� j can be at most D� 2. We note, from Eqn 8 above, that the di�erence between frame numbers
of any two frames at the same storage can be written down in general from as follows:

(fa + idf)� (fa + jdf) = k1D
2 + k2(D � 1) + k3D (11)

Distributed Data Layouts 11

In equation 11, k1; k2 and k3 are integers and 0 � k1 � (Fmax DIV D2), 0 � k2 � D � 1, and
�1 � k3 � 1. Also, if k1 6= 0 and k2 6= 0, then k3 = �1; 0; 1. If k1 = 0, then the two frames belong
to the same stagger cycle, thus, implying k2 6= 0, k3 = 0 or 1. Also, if k2 = 0, then k3 = 0.

Case I: df is a factor of non-zero k1 and k2

i� j =

8><
>:

k5D
2 + k6(D � 1) + D

df
if k3 = 1

k5D
2 + k6(D � 1) if k3 = 0

k5D
2 + k6(D � 1)� D

df
if k3 = �1

(12)

Clearly, since k5; k6 > 1, i � j > (D � 2), which is a contradiction. Hence, Equation 12 can not
be true,

Case II: k1 = 0 and df is a factor of non-zero k2: In this case the di�erence i� j is given as

i � j =

�
k6(D � 1) + D

df
if k3 = 1

k6(D � 1) if k3 = 0
(13)

Since df is a factor of D and k6 � 1, Equation 13 implies i � j > D � 2, which is a contradiction.

FF-PART II: df = m�D, where m is non-zero and relatively prime with D: Assume
that the �rst frame in fast forward set in Equation 6 maps to na. Consider, �rst the D � 1 frames
from fa as given in Equation 9. Clearly, if any frame in fast forward set reappears at na and belongs
to this set, then

fa + imD = fa + k(D � 1) +D

i =
1

m
+
k(D � 1)

mD
(14)

However, 1
m

is not an integer and hence equation 14 can not be true. Successive set of D frames
at na are obtained by adding integral multiple of D2 to the frames in the set Fna

S
fa. If any frame

fa + imD from Fff reappears at na, then

fa + imD = fa + k(D � 1) +D + lD2

i =
k(D � 1)

mD
+

1

m
+

l

m
D

or

fa + imD = fa + lD2

i =
lD

m
(15)

Clearly, equation 15 can not be true for reason similar to one mentioned for Equation 14. Since,
m and D are relatively prime, Equation 15 can not be true. Assume that two frames fa + idf and

Distributed Data Layouts 12

fa+ jdf from Sf appear at the same node, say p (p 6= na, 0 � p � D�1). Then, we can write down
Equation 16.

i� j =
k1D

2 + k2(D � 1) + k3D

mD

=
k1
m
D +

k2
m

D � 1

D
+
k3
m

(16)

� Case I: m is a factor of non-zero k1; k2: In this case the di�erence i � j is given as

i � j =

8><
>:

k5D + k6
(D�1)
D

+ 1
m

if k3 = 1 . . . (a)

k5D + k6
(D�1)
D

if k3 = 0 . . . (b)

k5D + k6
(D�1)
D

� 1
m

if k3 = 0 . . . (c)

(17)

Clearly, part (a) and part (b) of Equation 17 can not be true. Since, D�1
D

is not an integer,
part (b) of above equation also cannot be true.

� Case II: k1 = 0 and k2 6= 0: Equation 16 reduces to the following equation,

i� j =

(
k2(D�1)

mD
+ 1

m
if k3 = 1 : : : (a)

k2(D�1)
mD

if k3 = 0 : : : (b)
(18)

Clearly, Equation 18 (a) can not be true as 1
m
is not an integer. The part (b) of the equation can

not be true due to two reasons: one, even ifm dividesD�1, because 0 � k2 � D�1, k2
D
is not an inte-

ger. Also, even ifm divides k2,
D�1
D

is not an integer. Thus, equation 16 can never be true, which is a
contradiction to our assumption. Hence, the proof.

FF-PART III: df = di+kD2 (k > 0) The g-sdcl layout consists of a basic \stagger pattern"
that repeats itself every D distribution cycles or D2 frames. In other words, if we form sets of D
cycles starting at an arbitrary distribution cycle, they all will have the same structure. If one set of
D cycles is given, frames in the other set can be obtained by adding or subtracting integral multiple
of D2. Also, when skipping by distances di mentioned in part-i, the frame set Sf will contain
frames that belong to consecutive D distribution cycles. Combining these two facts we can easily
see that df = di + kD2 produce balanced node sets.

Thus, from PART I, II, III, we can see that fa + idf and fa + jdf can not belong to the same
node. Since, we have D storage nodes and D frames in the fast forward set Sf and no two frames
appear at the same node, each frame must be mapped to a separate node. This implies that, each
node appears once in the node set Sn and is perfectly load-balanced.

Rewind Operation

Assume that the rewind operation starts from the frame fa + 2D � 1, where fa is an anchor frame
that belongs to node na. The set of D frames in the rewind frame set is then given as

Sr = ffa+2D�1; fa+dr+2D�1fa+2df+2D�1; : : : ; fa+idf+2D�1; : : : fa+jdf+: : : fa+(D�1)df+2D�1g
(19)

Distributed Data Layouts 13

RW-PART I: dr is a factor of D: Let's �rst prove that none of the frames other than
fa+ 2D� 1 in the rewind set belong to the node na. Since dr = dx for some x (0 � x � p), dr < D.
Hence, fa + 2D � 1� df (D � 1) > fa + 2D � 1 + (D � 1)(D � 1). Using the Equation 3, the set of
D � 1 frames before frame fa + 2D � 1 at na is given as:

Rna = ffa; fa � (D � 1); fa � 2(D � 1); : : : fa � k(D � 1); : : :fa � (D � 1)(D � 1)g: (20)

Clearly, fa + 2D � 1� idr > fa � (D � 1)(D � 1)D for any value of i � D � 1. Hence, if any of
the frames in the fast forward set reappears at na, then it must belong to Fna . This implies that

fa + 2D � 1� idr = fa � k(D � 1)(0 � k � (D � 1)

i =
k(D � 1)

dr
+
D � 1

dr
+

D

dr
(21)

Since dr is a non-trivial (non-unit) factor of D, it can not be a factor of D � 1. Clearly, is
Equationeq:RWFirstPart can not be true. This implies that no frames in the rewind set, other than
fa, can belong to the anchor node na.

Therefore, if any two of the remaining D � 1 frames in the rewind set Sr appear at the same
node, that node must be di�erent than the anchor node. Without loss of generality assume that
frames fa� idr and fa�jdr are mapped to the same storage node, say p(0 � p � D�1 and p 6= na).
Since, none of these is an anchor frame, i; j 6= 0 and (1 � i; j � D � 1). Also, let i > j. Given this,
i� j can be at most D� 2. We note, from Eqn 8 above, that the di�erence between frame numbers
of any two frames at the same storage can be written down in general from as follows:

(fa + 2D � 1� idr) � (fa + 2D � 1� jdr) = �(k1D
2 + k2(D � 1) + k3D) (22)

In equation 22, k1; k2 and k3 are integers and 0 � k1 � (Fmax DIV D2), 0 � k2 � D�1, and�1 �
k3 � 1. Also, if k1 6= 0 and k2 6= 0, then k3 = �1; 0; 1. If k1 = 0, then the two frames belong to the
same stagger cycle, thus, implying k2 6= 0, k3 = 0 or 1. Also, if k2 = 0, then k3 = 0. For reasons sim-
ilar to Part I in the proof for fast-forward case, Equation 22 can not be true, which is a contradiction.

RW-PART II: dr = m�D, where m is non-zero and relatively prime with D: Assume
that the �rst frame in rewind frame set in Equation 19 maps to na. Consider, �rst the D�1 frames
from fa as given in Equation 9. Clearly, if any frame in fast forward set reappears at na and belongs
to this set, then

fa + 2D � 1� imD = fa � k(D � 1)(0 � k � (D � 1)

i =
k(D � 1)

mD
+
D � 1

mD
+

1

m
(23)

However, 1
m

is not an integer and hence equation 23 can not be true. Successive set of D frames
at na are obtained by adding integral multiple of D2 to the frames in the set Rna

S
fa. If any frame

fa + 2D � 1� imD from Sr reappears at na, then

Distributed Data Layouts 14

fa + 2D � 1� imD = fa � k(D � 1) � lD2

i =
k(D � 1)

mD
+

l

m
D +

2D � 1

mD

or

fa + 2D � 1� imD = fa � lD2

i =
lD

m
+
2D � 1

mD
(24)

Clearly, equation 24 can not be true for reason similar to one mentioned for Equation 23.
Since, m and D are relatively prime, Equation 24 can not be true. Using arguments similar to
one in Part II in case of fast-forward, it can be proved that any two frames fa + 2D � 1 � idr
and fa + 2D � 1 � jdr from Sr will not appear at the same node p (p 6= na, 0 � p � D � 1).

RW-PART III: df = di + kD2 (k > 0) This can be easily seen using arguments similar to
PART III. Thus, from PART I, II, III, we can see that fa� idr and fa� jdr can not belong to the
same node. Since, we have D storage nodes and D frames in the rewind set Sr and no two frames
appear at the same node, each frame must be mapped to a separate node. This implies that, each
node appears once in the node set Sn and is perfectly load-balanced. Hence, the proof.

3.4. GSDCL with arbitrary ks > 0

To study load balance properties of these generalized layouts, consider a g-sdcl with eight nodes
(D = 8) and a stagger distance of 3 (ks = 3) illustrated in Figure 7. Let the fast forward distance
df be four frames (df = 4), which is a factor of D = 8. Assume that the fast forward starts from the
frame f = 8. Then the fast forward frame set is Sf = f8; 12; 16; 20; 24; 28; 32; 36g. The set of nodes
from which these frames are retrieved is given as Sn = f3; 7; 6; 2;1; 5; 4;0g which is a balanced node
set. On the contrary, a fast forward starting at the same frame with a distance df = 3 produces a
node set Sn = f3; 6; 1; 7; 2; 5;3;6g which is unbalanced. Similarly, it can be veri�ed that df = 2; 8
produce balanced node sets, but df = 5; 6; 7 do not.

Now let us consider a g-sdcl with ks = 2 shown in Figure 8. If the fast forward begins at
frame f = 16 with a distance df = 2, the corresponding node set f4; 6; 0; 2; 6; 0;2;4g is unbalanced.
Similarly, distances df = 3; 4; 5; 6; 7;8 produce unbalanced node sets. From these examples we
conjecture that if the the stagger distance ks is relatively prime with the number of nodes then a
result similar to the one mentioned in Theorem 1 is possible. Speci�cally, we conjecture that the
following result can be proved.

Conjecture 1. Given a g-sdcl layout with a stagger distance ks over D storage nodes and the
numbers d1; d2; d3; : : :dp that the are factors of D, the following holds true.

1. Load balance condition for fast-forward: If the fast forward always starts from an anchor
frame, with a fast forward distance df , the node mapping set Sn is load-balanced, provided:

(a) ks and D are relatively prime and

Distributed Data Layouts 15

APIC

Storage

Node

f0 f1 f2 f3 f4

Node 0

APIC

Storage

Node

Node 1

APIC

Storage

Node

Node 2

APIC

Storage

Node

Node 3

APIC

Storage

Node

Node 4

APIC

Storage

Node

Node 5 Node 7

APIC

Storage

Node

Node 6

f5 f6 f7

f13 f14 f15 f8 f9 f10 f11 f12

f18 f19 f20 f21 f22 f23 f16 f17

f31 f24 f25 f26 f27 f28 f29 f30

f36 f37 f38 f39 f32 f33 f34 f35

f41 f42 f43 f44 f45 f46 f47 f40

f54 f55 f48 f49 f50 f51 f52 f53

f59 f60 f61 f62 f63 f56 f57 f58

f64 f65 f66 f67 f68 f69 f70 f71

ks = 3

APIC

Storage

Node

Stagger

Cycle

Distribution Cycle

Figure 7: Generalized Staggered Distributed Layout with ks = 3

(b) df = di (1 � i � p� 1) or

(c) df = m�D, where m and D are relatively prime or

(d) df = di + kD2 (k > 0)

2. Load balance condition for rewind: A similar constraint de�ned in terms of anchor frame
value, ks and D holds for rewind operation.

The proofs of this conjecture will be provided in a later version of this technical report.

4. Implications of Non-Unit Chunk Size

The discussion of load balance properties of data layouts in Section 2, 3 assumes that frame skipping
required to implement � and rw operations can be performed e�ciently. This however may not be
true.

Distributed Data Layouts 16

APIC

Storage

Node

f0 f1 f2 f3 f4

Node 0

APIC

Storage

Node

Node 1

APIC

Storage

Node

Node 2

APIC

Storage

Node

Node 3

APIC

Storage

Node

Node 4

APIC

Storage

Node

Node 5 Node 7

APIC

Storage

Node

Node 6

f5 f6 f7

f14 f15 f8 f9 f10 f11 f12 f13

f20 f21 f22 f23 f16 f17 f18 f19

f26 f27 f28 f29 f30 f31 f24 f25

f32 f33 f34 f35 f36 f37 f38 f39

f46 f47 f40 f41 f42 f43 f44 f45

f52 f53 f54 f55 f48 f49 f50 f51

f58 f59 f60 f61 f62 f63 f56 f57

f64 f65 f66 f67 f68 f69 f70 f71

ks = 2

APIC

Storage

Node

Stagger

Cycle

Distribution Cycle

Figure 8: Generalized Staggered Distributed Layout with ks = 2

Suppose the chunk size used in k = 1. Several frames assigned to a node then can be saved
contiguously on local storage device at a node retrieved in large chunks to minimize the seek and
rotational latency by fetching large chunks in single seek operation. However, during the � and rw
implemented by frame skipping, individual frames must be read, which requires repositioning the
disk head after every frame retrieval. For large skipping distances and small frames sizes that are
common in compressed streams, each such read will su�er severe seek and rotation penalty. Such
penalties can be minimized under heavy load, if prefetch load over multiple connection is randomly
distributed over each disk and e�cient disk scheduling algorithms such as those reported in [15] are
used. However, under low or moderate loads, frame skipping may lead to poor disk utilization and
cycle overows.

Note that in case of k > 1, frame skipping causes load-imbalance. In other words, frame skipping
is suitable for g-sdclks(1) layouts.

An alternate approach to dealing with this problem is to always use a layout with a chunk size of
k frames and implement � and rw by increasing the granularity of skipping to chunks. This kind of
chunk skipping is analogous to segment skipping discussed in [12]. It has the advantage that during

Distributed Data Layouts 17

normal playout as well as � and rw, chunks are read from the disk in much the same way without any
additional seek/rotation penalties. Also, all the results mentioned in Section 3 for frame skipping on
g-sdclks(k) layouts with any stagger distance apply to chunk skipping over g-sdclks(k) layouts.
However, the visual quality of such chunk skipping is likely to be unacceptable at large chunk sizes.

5. Related Work

This section briey presents some of the related work. Keeton et. al. discuss schemes for placement
of sub-band encoded video data in units of constant playout length on a two dimensional disk array
[13]. They report simulation results which conclude that storage of multi-resolution video permits
service to more concurrent clients than storage of single resolution video. Similarly, Zakhor et. al.
report design of schemes for placing scalable sub-band encoded video data on a disk array. They
focus only on the path from the disk devices to the memory and evaluate using simulation, layouts
that use constant data or time length units. However, this paper does not address issues in the
implementation of interactive operations.

Chen et. al. report data placement and retrieval schemes for an e�cient implementation of �
and rw operations in a disk array based video server [12]. Our work is completely independent and
concurrent this work and has similarities and di�erences [6, 7]. Chen et. al.'s paper assumes a disk
array based small scale server whereas our work assumes a large scale server with multiple storage
nodes, each with a disk array. They de�ne a mpeg speci�c data layout unit called a segment, which
is a collection of frames between two consecutive I frames. Our de�nition of a chunk is a data unit
which requires a constant playout time at a given frames/sec rate. So a segment Chen et. al.'s
segment is a special case of our chunk. Chen et. al. discuss two schemes for segment placement: in
the �rst scheme, the segments are distributed on disks in a round robin fashion, in much the same
way as our dclk layout over multiple storage nodes. For �/rw operation, they employ a segment
selection method which ensures that over a set of retrieval cycles, each disk is visited only once.
Thus, here the load balance is achieved over multiple retrieval cycles.In second segment placement
scheme, the segments are placed on the disk array in such a way that for certain fast forward rates,
the retrieval pattern for each round contains each disk only once. Our g-sdclks=1(k) layout over
storage nodes with stagger distance of one is similar to this second segment placement scheme.
However, our result is more general, as it characterizes many more safe skipping rates for � and
gives a condition for safe implementation of rewind operation.

6. Conclusions

In this paper, we described distributed data layouts for clustered multimedia storage servers con-
structed out of distributed storage nodes interconnected high speed network. We illustrated a family
of hierarchical, distributed layouts calledGeneralized Staggered Distributed Data Layouts (g-sdclks),
that use constant time length logical units called chunks. For some of these layouts, we de�ned and
proved a load-balance property that is required for e�cient implementation of playout control op-
erations such as fast-forward and rewind. These distributed data layouts and associated scheduling
algorithms are currently being implemented in a testbed consisting of several pentium pcs equipped
with commercial disk arrays, and interconnected using an atm switch. Experimental measurements
will be used to evaluate our data layouts, scheduling schemes and and various node level layouts and
scheduling options.

Distributed Data Layouts 18

Acknowledgements

Some of the work reported in this paper was conducted during the �rst author's summer research
internship at the Computer and Communications (C&C) Research Laboratory at NEC Research
Institute, Princeton, New Jersey. We will therefore like to thank Dr. Kojiro Watanabe and Dr.
Deepankar Raychaudhuri for this invaluable opportunity. We would also like to thank Dr. Arif Mer-
chant and Daniel Reiniger, both at the NEC C&C Research Laboratory for many useful discussions.

References

[1] MAGICtm Media Server: A Scalable and Cost E�ective Video Server, Sarno� Real Time
Corporation, Princeton, NJ 08543.

[2] Whittakertm Media Server, Whittaker Communication Corporation, Oregon.

[3] Hsieh, J., et al., \Performance of a Mass Storage System for Video-On-Demand," Proceedings
of IEEE INFOCOM'95, pp. 771-778, April, 1995.

[4] Bernhardt, C., and Biersack, E., \A Scalable Video Server: Architecture, Design and Imple-
mentation," In Proceedings of the Realtime Systems Conference, pp. 63-72, Paris, France, Jan.
1995.

[5] Bernhardt, C., and Biersack, E., \The Server Array: A Scalable Video Server Architecture,"
To appear in High-Speed Networks for Multimedia Applications, editors, Danthine, A., Ferrari,
D., Spaniol, O., and E�elsberg, W., Kluwer Academic Press, 1996.

[6] Buddhikot, M., Parulkar, G., M., and Cox, J., R., Jr., \Distributed Layout, Scheduling, and
Playout Control in a Multimedia Storage Server," Proceedings of the Sixth International Work-
shop on Packet Video, Portland, Oregon, pp. C1.1 to C1.4, Sept. 26-27, 1994.

[7] Buddhikot, M., and Parulkar, G., M., \Distributed Scheduling, Data Layout and Playout Con-
trol in a Large Scale Multimedia Storage Server," Technical Report WUCS94-33, Department
of Computer Science, Washington University in St. Louis, Sept. 1994.

[8] Buddhikot, M., Parulkar, G., and Cox, J., R., Jr., \Design of a Large Scale Multimedia Storage
Server," Journal of Computer Networks and ISDN Systems, pp. 504-517, Dec. 1994.

[9] Buddhikot, M., and Parulkar, G., M., \E�cient Data Layout, Scheduling and Playout Control
in MARS," Invited for publication in the Special Issue of ACM/Springer Multimedia Systems
Journal.

[10] Chang, Ed, and Zakhor, A., \Scalable Video Placement on Parallel Disk Arrays," Image and
Video Databases II, IS&T/SPIE International Symposium on Electronic Imaging: Science and
Technology, San Jose, Feb. 1994.

[11] Chang, Ed, and Zakhor, A., \Variable Bit Rate MPEG Video Storage on Parallel Disk Arrays,"
First International Workshop on Community Networking, San Francisco, July 1994.

[12] Chen, M., Kandlur, D., and Yu, S., P., \Support for Fully Interactive Playout in a Disk-Array-
Based Video Server," Proceedings of Second International Conference on Multimedia, ACM
Multimedia'94, 1994.

Distributed Data Layouts 19

[13] Keeton, K., and Katz, R., \The Evaluation of Video Layout Strategies on a High Bandwidth
File Server," Proceedings of International Workshop on Network and Operating Support for
Digital Audio and Video (NOSSDAV'93), Lancaster, U. K., Nov., 1993.

[14] Tewari, R., Mukherjee, R., Dias, D., and and Harrick M. Vin. \Real-time Issues for Clustered
Multimedia Servers," Submitted for publication, April 1995. (Also available as IBM Research
Report RC 20020 (88561)).

[15] Vin, H., et al., \An Observation-Based Admission Control Algorithm for Multimedia
Servers," Proceedings of the IEEE International Conference on Multimedia Computing Systems
(ICMCS'94), Boston, pp. 234-243, May 1994.

