
Connection Management Software System (CMSS) Architecture
John D. DeHart

Applied Research Laboratory
Department of Computer Science

Washington University
St. Louis, Missouri 63130

jdd@arl.wustl.edu

Working Note ARL-95-03
Version 1.2

Original 1995
Revised January 1998

Revised June 1998

Abstract
In this document we describe the architecture for our Connection Management Software System. This soft-

ware system has been under development in the Applied Research Laboratory of the Computer Science Depart-
ment at Washington University since 1989. The architecture and the design of individual components have
gone through a great deal of evolution over the years. The current state of the system is described. The devel-
opment of this object oriented software system is being done in C++.

Connection Management Software System Architecture Page 1
1. Introduction
In this document we describe the architecture for our Connection Management Software System. This software

system has been under development in the Applied Research Laboratory of the Computer Science Department at
Washington University since 1989. The architecture and design of individual components have gone through a great
deal of evolution over the years. A lot of the high level design of the architecture was done in collaboration with
Bellcore and Southwestern Bell. The development of this object oriented software system is being done in C++.

There are several other documents that describe individual components of the CMSS in more detail. All of these

documents can be accessed through the Applied Research Laboratory WWW pages which can be found at:

http://www.arl.wustl.edu/arl

2. The Connection Management Software System

2.1 Software Architecture Overview

We anticipate that the heterogeneity of ATM switching network equipment will add greatly to the complexity of
controlling these networks. As shown in Figure 1, networks will consist of heterogeneous switching systems pro-
duced by various vendors which may differ considerably in their control requirements and protocols, although all will
presumably conform to the appropriate ATM standards. The same will undoubtedly be true of the client terminals
connected to the network. A third source of network heterogeneity lies in the links connecting the switches and termi-
nals, which will vary in bandwidth.

Managing such networks requires the introduction of a number of control abstractions which serve to encapsu-
late and conceal the differences in equipment. Figure 2 illustrates a number of these abstractions. A node abstracts a
switch or collection of switches, providing a view of the group as a single large switch with a known interface and
capabilities. A control processor (CP) is an abstraction of the control software for a single node; in some cases the
software may actually run on a single machine, while in others it may be distributed. In our control model, this soft-
ware is the Core Connection Management Software System (CMSS). The control software for multiple nodes must
communicate to set up inter-nodal connections. This communication is in accord with specified, uniform Network
Node Interface (NNI) protocols (e.g., CMNP[13] in our system). Finally, the terminal-network control interface is
encapsulated by User to Network Interface (UNI) protocols which specify the manner in which clients request con-
nections through the network. Examples of such UNI protocols would be CMAP[11] and Q.2931 (or Q.93B) [1, 2, 8].

The Core CMSS present at each node is structured in three layers as shown in Figure 3. The Connection Manage-
ment Layer is distributed across all the nodes of the network, and uses the NNI protocols of Figure 2 to set up inter-
nodal connections. At each node, the Connection Management Layer communicates with the Node Management

Topic Report Number Author Title

CMSS ARL-95-03 DeHart
Connection Management Software System (CMSS) Architec-
ture

CMAP WUCS-94-21 DeHart and Cox
Connection Management Access Protocol (CMAP) Specifica-
tion - Version 3.0

CMNP ARL-94-14 Wu and DeHart
Connection Management Network Protocol (CMNP) Specifi-
cation-Version 1.0 DRAFT

GNBSC ARL-94-12 Wu, Cox and DeHartGBNSC: The GigaBit Network Switch Controller

Jammer ARL-96-01 Beal
Jammer Language Description: A Script Language for GigaBit
Switch Testing

NCCP/NCMO ARL-96-03 Wu and DeHart
Node Controller Management Object (NCMO) and Node Con-
troller Communication Protocol (NCCP)

Installation ARL-96-02 DeHart
Washington University GigaBit Network Software Installation
and Start-up - DRAFT

Table 1. Documentation Roadmap
Applied Research Laboratory Zeus Project

Connection Management Software System Architecture Page 2
Layer for that node. The Node Management Layer abstracts the collection of switches in the node so that they are pre-
sented as a single large switch to the Connection Management Layer. The Node Management Layer is responsible for
managing intra-nodal connections within the node. It issues commands to the Switch Management Layer, which han-
dles connections within the individual switches and conceals hardware dependencies from the other layers. The UNI
protocols are implemented by a fourth layer, the Session Management Layer, which is not considered part of the core
CMSS. This layer is only necessary at nodes which support links to clients. It abstracts the whole network and pre-

Figure 1. Heterogeneous ATM Networks.

High-Bandwidth Links
Low-Bandwidth Links
Heterogeneous Switching Systems

Heterogeneous Network Terminals

Figure 2. Control Abstractions for ATM Networks.

Control Processors

High-Bandwidth Links

Low-Bandwidth Links

Heterogeneous Switching Systems

Heterogeneous Network Terminals

Nodes

UNI
Protocols

NNI
Protocols
Applied Research Laboratory Zeus Project

Connection Management Software System Architecture Page 3
sents a unified view of it to the clients.

In the current design, the Core CMSS is realized as a tree of processes running on the node’s CP, as shown in
Figure 4. The top process in the tree is the Connection Manager (CM) for the node. This process communicates with
the CMs of other nodes and with one subsidiary process. For the node shown in the figure, where three switches are
grouped and managed as a single node, the subsidiary process is a Node Controller (NC). This NC in turn communi-
cates with its subsidiaries; in the example these are one Switch Controller (SC) for each switch. If, as in the example,
the switch hardware is supplied by several different vendors, these SC processes will be from different executables,
each tailored to control the specific hardware. However, the API provided by each SC is identical, and is also identical
to the NC API.

CMSS processes communicate only along the links of the process tree. For example, in Figure 4, the CM and NC
may communicate and the NC may communicate with each SC. However, the CM does not communicate directly

Switch
Management

Node Management

Session (Call) Management
Heterogeneous

Connection Management

Switch
Management

Switch
Management

Heterogeneous Switches

Homogeneous, distributed
“ATM” Network Control

Node “abstraction”

Internal
Protocols

Access
Protocols

Nodes

Terminals

Prototype “1”
Vendor

“2”
Vendor

Core
CMSS

Figure 3. Core Connection Management Software System Plus Session Management

Figure 4. Example CMSS Process Structure.

CM

SC

NC

SC SC
Applied Research Laboratory Zeus Project

Connection Management Software System Architecture Page 4
with the SCs, nor do the SCs communicate with one another — indeed, the encapsulation provided by the CMSS is
such that these processes have no knowledge that the others exist.

2.2 Interfaces Between Processes - The MO-API Model
The model used for the interfaces between processes in the CMSS is one of a Managed Object Application Pro-

grammers Interface. As shown in Figure 6, the development of Process Y includes the development of a MO-API to

be used by Process X and the protocol necessary to communicate between the MO-API and Process Y. When Process
X creates the MO-API, it is the responsibility of the MO-API to take the necessary steps to spawn Process Y and set

Figure 5. Additional CMSS Process Structures.

CM

SC

CM

SC

NC

SC SC

NC

Process X

Process Y

Y’s MO-API
Protocol

Protocol

Figure 6. Managed Object Application Programmers Interface Model
Applied Research Laboratory Zeus Project

Connection Management Software System Architecture Page 5
up the appropriate communications mechanism. Process X then manipulates the objects presented by the MO-API in
order to use the services offered by Process Y. In fact, it is not, in general, necessary for Process X to understand that
there is another process below the MO-API.

2.3 Common Code

Software processes in the CMSS are built using objects from the ARL/Project Zeus common code library. The
objects in this library are primarily concerned with interprocess communication and context switching, and are con-
structed for a UNIX environment with shared memory and semaphores. The next several paragraphs provide a brief
description of some of these objects.

ByteBuffer. A ByteBuffer is an array of bytes. Overloaded shift operators are supplied, allowing the user to store
binary data in and retrieve binary data from the buffer. ByteBuffers are used primarily to format messages used in
interprocess communication, to guarantee that the format and interpretation of the data is uniform — even if the two
processes run on different machines, or were built with different compilers.

Scheduler. A Scheduler_class object provides a means for scheduling timeouts using a shared-memory timer.
Objects that should time out are derived from the SCHEDULER_base_class, and must provide a virtual timed_out()
function which is called when a timeout occurs. The timeout is scheduled by providing the derived object to a sched-
uler object’s registration function. When the scheduler object’s touch() function is called, the object examines its
internal lists to determine if any timeouts have occurred. If so, it calls the timed_out() functions for those objects.

Rendezvous objects. The rendezvous mechanism provides a safe means to access objects, which is robust even
if those objects have been deleted. Objects are derived from the REND_base_class and must provide a virtual
REQ_rendezvous() function. A rendezvous “marker” may be extracted from such an object and treated as simple data
— for example it can be transmitted to another process, which can then send the marker back. The marker can be used
to request a rendezvous with the original object, supplying a pointer to (arbitrary) data. If the object still exists, its
REQ_rendezvous() function will be called with the supplied data pointer. If the object does not exist, the rendezvous
request is ignored.

Join objects. The JOIN base classes provides a standard mechanism for building parent-child and sibling rela-
tions between objects.These objects guarantee the safe deletion of child objects when the parent is deleted. Efficient
management of addition, deletion and maintenance of the lists involved in a 1-many relationship is also provided.

TCPObject. The TCPObject class provides an easy to use wrapper around the system calls needed to set up and
use TCP socket connections.

PRIQUE and PriquePair. A PRIQUE is a communications link between two processes on the same machine.
The PRIQUE is implemented using shared memory and is suitable for message-based communications. Several vari-
eties of PRIQUE are supported, including ones with high-priority (out-of-band) messages and forward stores (mes-
sages stored in local memory until there is room in the shared memory). The PriquePair class implements two
PRIQUEs between a pair of processes and includes a small protocol supplying send and receive functions. Each pro-
cess sends on one PRIQUE and receives on the other.

Context_switcher. A Context_switcher object accesses a shared memory segment. Processes using the
Context_switcher register their PRIQUEs, file descriptors and other information in the shared segment. When a pro-
cess determines that it may not have any additional work (because, e.g., it is waiting for input) it calls the
Switch_If_Idle() function of the object. This function decides if the process should be swapped out, examining the
shared-memory PRIQUEs to determine if any input may be available. If the Context_switcher decides the process
should be swapped, it selects another process that is registered with the Context_switcher and sends a UNIX signal to
that process. This causes the original process to be swapped out, and the other process to be scheduled for swapping
in, by the operating system.

The Context_switcher object was of great use with SunOS4.x. We no longer use most of it. The only thing it is
Applied Research Laboratory Zeus Project

Connection Management Software System Architecture Page 6
still in use for is its interface to select().

ATMCard. The interface to the ATM link is hardware-dependent. The ATMCard object provides a uniform API
for this link.

NCCP. The Node Controller Communications Protocol [28] defines the interface between two processes in the
CMSS tree, or between Jammer (Section 3) and a GigaBit Network Switch Controller [27]. The protocol is message-
based and uses many of the objects described above.

NCMO. The Node Controller Managed Object [28] defines the API that can be used to build general multipoint
connections in the switch. Operations on NCMO objects cause NCCP messages to be sent to the switch controller
which in turn manipulates connections in the switch.

3. Jammer
Jammer [4] is a laboratory testing tool that we have developed to aid in the testing of the prototype switches that

we develop. It provides a programming language interface with block and conditional constructs like procedures,
while loops and if-then-else blocks as well as commands to directly manipulate the hardware tables in a particular pro-
totype switch. This provides the test engineer with a very powerful mechanism for generating automated tests to verify
the correct operation of the switch.

Jammer communicates directly to a switch controller via the NCCP (Figure 7).

4. Conclusion
We have given a general overview of the software that comprises the Connection Management Software System.

Separate documents describe some of the components in more detail. Anyone wanting to utilize or modify any of those
components should refer to the specific documents covering them and to the source code.

Jammer

Prototype

NCCP

Switch
NCCP

Controller

Switch

Figure 7. Jammer
Applied Research Laboratory Zeus Project

Connection Management Software System Architecture Page 7
References
[1] ANSI T1S1 Technical Sub-Committee. Broadband Aspects of ISDN Baseline Document. T1S1.5/90-001, June

1990.

[2] ATM Forum, “The ATM Forum Technical Committee User-Network Interface (UNI) Specification Version 3.1”,
The ATM Forum 1994.

[3] ATM Forum, “ATM Forum 94-0471R7 PNNI Draft Specification”, The ATM Forum 1994.

[4] O.M. Beal, “Jammer Language Description: A Script Language for GigaBit Switch Testing,” Washington Uni-
versity, Applied Research Laboratory Working Note ARL-96-01, March 1996.

[5] R. G. Bubenik, J. D. DeHart and M. E. Gaddis. “Multipoint Connection Management in High Speed Networks.”
In IEEE Infocom ‘91: Proceedings of the Tenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, pages 59-68, April 1991.

[6] R. G. Bubenik, M. E. Gaddis and J. D. DeHart. “A Strategy for Layering IP over ATM”. Washington University
Applied Research Laboratory, Working Note 91-01, Version 1.1, April 1991.

[7] R.G. Bubenik, M.E. Gaddis, and J.D. DeHart. “Virtual Paths and Virtual Channels.” In IEEE Infocom ‘92: Pro-
ceedings of the Eleventh Annual Joint Conference of the IEEE Computer and Communications Societies, May
1992.

[8] CCITT. Recommendations Drafted by Working Party XVIII/8 (General B-ISDN Aspects) to be Approved in
1992, Study Group XVIII—Report R 34, December 1991.

[9] CCITT Recommendation Q.931 (I.451), ISDN User-Network Interface Layer 3 Specification, Geneva, 1985.

[10] J. R. Cox and J. S. Turner. “Project Zeus Design and Application of Fast Packet Campus Networks”. Washington
University, Department of Computer Science Technical Report 91-45, July 1991.

[11] K. Cox and J. DeHart. “Connection Management Access Protocol (CMAP) Specification,” Washington Univer-
sity, Department of Computer Science Technical Report WUCS-94-21, Version 3.0, July 1994.

[12] J. DeHart, “Washington University GigaBit Network Software Installation and Start-up”, Washington University,
Applied Research Laboratory Working Note ARL-96.-02, DRAFT, March 1996

[13] J. DeHart and D. Wu, “Connection Management Network Protocol (CMNP) Specification,” Washington Univer-
sity, Applied Research Laboratory Working Note ARL-94-14, Version 1.0 DRAFT, September 1994.

[14] M. E. Gaddis, R.G. Bubenik, and J.D. DeHart. “Connection Management for a Prototype Fast Packet ATM B-
ISDN Network.” In Proceedings of the National Communications Forum, vol. 44, pp. 601-608, October 8-10,
1990.

[15] M. E. Gaddis, R.G. Bubenik, and J.D. DeHart. “A Call Model for Multipoint Communications in Switched Net-
works.” submitted for publication to ICC ‘92, Chicago, Illinois, June 1992.

[16] S.E. Minzer. “Broadband ISDN and Asynchronous Transfer Mode (ATM).” In IEEE Communications Magazine,
27(9):17-24, September 1989.

[17] S.E. Minzer and D.R. Spears. “New Directions in Signaling for Broadband ISDN.” In IEEE Communications
Magazine, 27(2):6-14, February 1989.

[18] G.M. Parulkar, J.S. Turner. Towards a Framework for High Speed Communication in a Heterogeneous Network-
ing Environment. In IEEE Infocom ‘89: Proceedings of the Eighth Annual Joint Conference of the IEEE Com-
puter and Communications Societies, pages 655-667, April 1989.

[19] G. M. Parulkar. “The Next Generation of Internetworking”. ACM SIGCOMM Computer Communications Re-
view. vol. 20, no. 1, New York, NY, pp. 18-43, January, 1990.

[20] A.S. Tanenbaum. Computer Networks. Prentice-Hall, 1981.

[21] J. S. Turner, “Fast Packet Switching System”, U.S. Patent 4 494 230, January 15, 1985.

[22] J.S. Turner. “New Directions in Communications.” In IEEE Communications Magazine, 24(10):8-15, October
1986.
Applied Research Laboratory Zeus Project

Connection Management Software System Architecture Page 8
[23] J.S. Turner. “Design of an Integrated Services Packet Network.” In IEEE Transactions on Communications,
4(8):1373-1380, November 1986.

[24] J.S. Turner. “Design of a Broadcast Packet Switching Network.” In IEEE Transactions on Communications,
36(6):734-743, June 1988.

[25] J. S. Turner. “A Proposed Management and Congestion Control Scheme for Multicast ATM Networks.” Wash-
ington University, Computer and Communication Research Center Technical Report 91-01, May 1991.

[26] J.S. Turner, “A Gigabit Local ATM Testbed for Multimedia Application.” Washington University, Applied Re
search Laboratory Technical Report ARL-94-11 Version 3.1, January 1996.

[27] D. Wu and J. DeHart, “GBNSC: The GigaBit Network Switch Controller,” Washington University, Applied Re-
search Laboratory Working Note ARL-94-12, Version 1.2, June 1996.

[28] D. Wu and J. DeHart, “Node Controller Managed Object (NCMO) and Node Controller COmmunication Protocol
(NCCP),” Washington University, Applied Research Laboratory Working Note ARL-96-03, June 1996.
Applied Research Laboratory Zeus Project

	Abstract
	Table 1. Documentation Roadmap
	2.1 Software Architecture Overview
	2.2 Interfaces Between Processes - The MO-API Model
	2.3 Common Code

	3. Jammer
	4. Conclusion
	References
	[1] ANSI T1S1 Technical Sub-Committee. Broadband Aspects of ISDN Baseline Document. T1S1.5/90-001...
	[2] ATM Forum, “The ATM Forum Technical Committee User-Network Interface (UNI) Specification Vers...
	[3] ATM Forum, “ATM Forum 94-0471R7 PNNI Draft Specification”, The ATM Forum 1994.
	[4] O.M. Beal, “Jammer Language Description: A Script Language for GigaBit Switch Testing,” Washi...
	[5] R. G. Bubenik, J. D. DeHart and M. E. Gaddis. “Multipoint Connection Management in High Speed...
	[6] R. G. Bubenik, M. E. Gaddis and J. D. DeHart. “A Strategy for Layering IP over ATM”. Washingt...
	[7] R.G. Bubenik, M.E. Gaddis, and J.D. DeHart. “Virtual Paths and Virtual Channels.” In IEEE Inf...
	[8] CCITT. Recommendations Drafted by Working Party XVIII/8 (General B-ISDN Aspects) to be Approv...
	[9] CCITT Recommendation Q.931 (I.451), ISDN User-Network Interface Layer 3 Specification, Geneva...
	[10] J. R. Cox and J. S. Turner. “Project Zeus Design and Application of Fast Packet Campus Netwo...
	[11] K. Cox and J. DeHart. “Connection Management Access Protocol (CMAP) Specification,” Washingt...
	[12] J. DeHart, “Washington University GigaBit Network Software Installation and Start-up”, Washi...
	[13] J. DeHart and D. Wu, “Connection Management Network Protocol (CMNP) Specification,” Washingt...
	[14] M. E. Gaddis, R.G. Bubenik, and J.D. DeHart. “Connection Management for a Prototype Fast Pac...
	[15] M. E. Gaddis, R.G. Bubenik, and J.D. DeHart. “A Call Model for Multipoint Communications in ...
	[16] S.E. Minzer. “Broadband ISDN and Asynchronous Transfer Mode (ATM).” In IEEE Communications M...
	[17] S.E. Minzer and D.R. Spears. “New Directions in Signaling for Broadband ISDN.” In IEEE Commu...
	[18] G.M. Parulkar, J.S. Turner. Towards a Framework for High Speed Communication in a Heterogene...
	[19] G. M. Parulkar. “The Next Generation of Internetworking”. ACM SIGCOMM Computer Communication...
	[20] A.S. Tanenbaum. Computer Networks. Prentice-Hall, 1981.
	[21] J. S. Turner, “Fast Packet Switching System”, U.S. Patent 4 494 230, January 15, 1985.
	[22] J.S. Turner. “New Directions in Communications.” In IEEE Communications Magazine, 24(10):8-1...
	[23] J.S. Turner. “Design of an Integrated Services Packet Network.” In IEEE Transactions on Comm...
	[24] J.S. Turner. “Design of a Broadcast Packet Switching Network.” In IEEE Transactions on Commu...
	[25] J. S. Turner. “A Proposed Management and Congestion Control Scheme for Multicast ATM Network...
	[26] J.S. Turner, “A Gigabit Local ATM Testbed for Multimedia Application.” Washington University...
	[27] D. Wu and J. DeHart, “GBNSC: The GigaBit Network Switch Controller,” Washington University, ...
	[28] D. Wu and J. DeHart, “Node Controller Managed Object (NCMO) and Node Controller COmmunicatio...

