
Jammer Language Description

W
WASHI

Page 1
1. Introduction

Jammer is an interactive script language interpreter designed to enable testing of the prototype
ATM switches built at Washington University. Jammer was originally created for testing of the
first Washington University prototype ATM switch [1,2] and has been updated for testing of the
new Gigabit ATM switch [3]. To provide the test engineer with as much flexibility and testing
power as possible, Jammer enables full access to all tables and registers within the switch. It also
provides basic programming constructs to allow iterative and conditional testing.

2. Context
To understand how Jammer works, it is important to understand the communication structure
shown in Figure 2.1 below.

Figure 2.1: Jammer, Switch Controller, and Switch Communication

As can be seen, Jammer provides the test engineer with a direct interface to the switch controller
via the Node Controller Communications Protocol (NCCP) [7]. Direct access to all registers and
tables in the switch is thus provided to the user for both interactive and batch testing.

3. Language Overview

Jammer provides a number of constructs which enable flexible and thorough testing of the Gigabit
switch. These constructs can be divided into programming constructs, session constructs, and test
constructs. Programming constructs enable iterative and conditional control of the test session.
Session constructs provide control of session-related variables such as current host, node, and ad-
dress. Test constructs allow direct access to the internal hardware tables and registers of the switch
for testing and manipulation of the switch. Each of the three construct groups will be described in
detail in the following sections.

The Jammer syntax is a loose adaptation of the C and shell language syntaxes. To provide a certain
degree of simplicity, some of the C syntax was modified and certain additions were made. How-
ever, programmers familiar with C or shell programming should have little difficulty adapting to
writing Jammer scripts. For experienced programmers, the most challenging part of writing Jam-
mer scripts will be learning the low level switch details. To study the Jammer syntax in detail, see
the source code (jammer.y).

Before explaining the different constructs, it is necessary to explain some of the notation which
will be used throughout this document. When describing Jammer commands, the courier font will

Switch

Switch
Controller

Jammer
NCCP

Interactive

Test

Sessions

Scripts
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 2
be used to show the command. Any variables or user-selectable values will be denoted by italics.
For example, to make Jammer display verbose output, the following command would be used:

set print VERBOSE

In this case, set print is the primary part of the Jammer command. For the set print vol-
ume command, the user could have input VERBOSE, NORMAL, QUIET_ACK, or QUIET as the
volume.

When there are a limited number of options for a command setting, each option will be described
in the section which documents the use of the corresponding construct. In the case that a numerical
range is involved, the range may be described in either the switch specification [3], the language
documentation (Section 3), or both. Because these ranges may be difficult to find in the switch
specification, every attempt will be made to make sure that all relevant ranges and limitations be
explained in this document.

3.1. Program Constructs

3.1.1 A Basic Script
The basic Jammer procedure consists of a single procedure of arbitrary name. For example, a script
which prints to the screen takes the form:

#this sample prints the Hello! message to screen
proc PrintToScreen()

echo “Hello!”
end

To run this script, using a text editor, create a file named print_to_screen.js. (The file ex-
tension .js is typically used for Jammer scripts.) Next, invoke Jammer. At the Jammer prompt,
type:

include print_to_screen.js

to import the PrintToScreen() procedure into the current Jammer session. At the next Jammer
prompt, invoke the procedure by typing:

PrintToScreen()

This will cause Jammer to execute the PrintToScreen() procedure. More complicated and sophis-
ticated procedures can be written, but each must follow the basic format of the one above. That is,
each must begin with the word proc followed by the procedure name followed by a parenthesized
list of parameters. (The example above does not have any parameters.) The body of the procedure
follows and is concluded by end. Local variables are typically declared in a group on the first lines
of the procedure. The functional part of the procedure follows the variable declarations. Still more
complicated scripts can be created by linking a number of Jammer procedures using the include
command at the head of the script file.

Once Jammer has executed the procedure of a script file, the Jammer prompt will be redisplayed
and interactive control will be returned to the user.

3.1.2 Comments
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 3
Comments in Jammer are like the comments of the Unix Shell language, they begin with the # char-
acter and are one line each. Any characters from the # character to the end of the line are considered
part of the comment text.

3.1.3 Variable Declarations
Before writing more useful Jammer scripts, it is necessary to understand how to define and use
variables. To fully test the switch, only integer values are needed, so Jammer only supports integer
variables, in scalar and vector form. A scalar integer variable is defined as:

int variable

Similarly, the vector form of this declaration is:

int var_array[size]

In this case, size indicates the number of elements in the integer array var_array and ranges from
0 to size-1. This value must be indicated before the script can be run. Dynamic memory allocation
is not currently supported in Jammer.

Depending on the scope desired, variables can be defined locally or globally. Local variables are
defined at the top of each procedure while global variables are defined outside of the procedure.
Additionally, variables can be passed between various procedures as parameters.

3.1.4 Variable Evaluation
In order to fully utilize the variables once they have been defined, it is necessary that they be eval-
uated. In a Jammer script, to indicate that a variable should be evaluated, a dollar sign is prepended
to the variable name. For example, to evaluate the number represented by the variable node, the
programmer types:

$node

Evaluation of array variables can be performed in similar fashion:

$node_array[2]

This command causes Jammer to evaluate the value of the second element (0th, 1st, 2nd,...) of the
node array. Note that if the index is out of range, Jammer will return a value of -1 and output an
error message.

3.1.5 Assignment Operators
In Jammer, the assignment operator is a single equal sign. Assigning the number 10 to the variable
node is accomplished by typing:

node = 10

Setting the value of a variable to that of another variable is done like this:

node = $variable

3.1.6 Mathematical Operations
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 4
During testing, a number of mathematical operations on numbers and variables are necessary. To
allow full modification and manipulation, Jammer offers the four basic mathematical operations:

+ - addition
- - subtraction
* - multiplication
/ - division

Additionally, Jammer also provides postincrement and postdecrement (but not preincrement or
predecrement) operators familiar to C programmers:

++ - postincrement
-- - postdecrement

The use of the basic operations is shown in the following example which increments the value of
the variable node by 10:

node = $node + 10

To decrement the value by one:

node--

3.1.7 Negation Operator
Jammer also supports logical negation of a variable in a manner similar to that of C. This is
achieved by prepending an exclamation point to a variable name. For example, to negate the value
of the variable result, type:

!($result)

3.1.8 Comparison Operators
Like C, Jammer uses the double equals ‘==’ to test for equality between two values. The set of
comparison operators supported by Jammer is:

== - equal to
!= - not equal to
> - greater than
< - less than
>= - greater than or equal to
<= - less than or equal to

The usage of the comparison operators is similar to that of the assignment operator except that both
the left and the right side variables must be evaluated. That means that to compare the value of the
node variable, the left side must be evaluated:

$node <= 10

and:

$node <= $variable

Used in conjunction with the conditional constructs, the comparison operators enable conditional
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 5
control of Jammer scripts.

3.1.9 Conditional Constructs
The basic conditional control structure provided by Jammer is the if-else statement. The Jam-
mer syntax for this structure differs from the C syntax in that an if-else statement must be ter-
minated by the word ‘fi’. A number of if-else statements may be nested together as:

if(conditional)
operations

else
if(conditional)

operations
else

operations
fi

fi

or the else part may be omitted:

if(conditional)
operations

fi

This construct provides a great deal of flexibility in testing one or many conditions and performing
different operations based on the result of the tests. In syntax, it differs little from the if-else
statements provided by other programming languages.

3.1.10 Iterative Constructs
A second structure provided for program control is the while-done loop. Again, the syntax for
this construct differs from C syntax only in the termination string and its lack of curly braces. In
use, it appears as:

while(conditional)
operations

done

Since the while loop can be generalized to perform the same function as a C for loop, Jammer
does not provide a separate for construct. To enable further control of the while loop, Jammer
also provides a break command analogous to the C command of the same name. For example,
the break command can be used to exit a while loop upon satisfaction of a certain condition:

while(conditional)
if(conditional)

operations
break

else
operations

fi
operations

done

In providing conditional and iterative constructs, Jammer allows the programmer to exhaustively
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 6
test the switch and to devise tests which would not be possible otherwise.

3.1.11 Creating Large Scripts
At the beginning of this section a basic script was presented to illustrate some of the elementary
characteristics of Jammer scripts. In order to support dynamic switch testing, Jammer was designed
to allow the test engineer great latitude in designing any number of tests. To facilitate this, Jammer
procedures may be linked to provide a hierarchical test facility for the Gigabit Switch. The mech-
anism which enables this capability is the include command. This command is analogous to the
C #include directive, but it might be better compared to the import command in Java. The
syntax for the include statement is:

include filename

The function of this statement is to cause Jammer to interpret multiple script files as a single test
script. This allows the user to create modular testing procedures which can then be utilized in a
number of different situations. In this way, the script writer is not bound to immense files of pro-
cedures and is freed to configure the test suite in any fashion.

3.2. Session Constructs
The session constructs provide access to session-related variables.

3.2.1 set switch switch_id host port
Jammer can communicate with multiple switches during the same session. To change which switch
is being manipulated, the set switch command is used. The first time a switch is contacted it
is necessary to tell Jammer on what host it is running and on what TCP port it is listening for con-
nections. After this information has been provided once, it does not need to be entered again. Just
the switch_id is sufficient. For example:

set switch 1.3 wugs1 5345
echo “on switch 1.3 now”
set switch 1.2 wugs2 5340
echo “on switch 1.2 now”
set switch 1.3
echo “back to 1.3”

3.2.2 ! system_command
At times, it is desirable to execute a Unix system command without exiting from Jammer. For ex-
ample, in the instance that last minute changes are needed in a script file, the user can edit the script
file without exiting from Jammer or opening a new window by invoking a text editor using the
Jammer system command.

As an example of the usage of this construct, it is frequently useful to be able to do a file listing to
find all script files which are available for inclusion in the current test session. To do this, one
would type:

! ls
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 7
Optionally, to list all script files saved with the extension .js, this command would take the form:

! “ls *.js”

When the system command requires more than one token, it is necessary to include the command
in quotations.

3.2.3 cd path
Jammer provides the cd command to allow the user to change the current working directory from
within Jammer. Its path argument conforms to the Unix path syntax.

3.2.4 CTRL-C
In Jammer, the signal sent in response to typing CTRL-C is caught and handled by resetting the
Jammer process. In this way, Jammer forces the user to exit from Jammer using the quit com-
mand. This ensures a clean exit which will release all communication structures that were allocated
when Jammer was invoked. It also gives the user a mechanism for interrupting a running script
without actually killing the Jammer session.

3.2.5 date
This command prints the current time and date to the screen. This command enables timestamping
operations during testing which is useful when compiling test logs.

3.2.6 echo
Jammer provides limited IO facilities. Like the Unix command of the same name, the echo com-
mand allows the script writer to output desired messages to the screen in the middle of a script run.
The message output is not limited strictly to static status messages, since it can also be used to out-
put the current value of a program variable. For instance, in testing the switch, if an error occurs in
a loop test of VCXT tables, the tester will want to know which VCXT experienced the failure. The
easiest way to do this is to include an error test within the test loop. If a failure occurs, it can be
reported using the echo command as shown below:

if(failed)
echo “Failure in testing VCXT number $vcxtIndex”

fi

In the above code fragment, failed is a Jammer session variable which can be checked to see if
an error occurred and vcxtIndex is a user defined loop counter used to iterate through the dif-
ferent VCXT table entries.

3.2.7 help
Typing help from the Jammer prompt will cause Jammer to output a listing of all Jammer com-
mands. This is a rather terse listing and provides minimal information. For more detailed informa-
tion, consult the appropriate sections of this manual, the Jammer script documentation and the
switch specification.

3.2.8 pause and upause
To provide temporal script control, Jammer provides the pause and upause commands. The
pause invocation takes the form pause value where value is an integer value indicating the de-
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 8
sired duration of the command in seconds. Once invoked, Jammer will idle for the requested
amount of time before continuing with script processing. The upause command takes the same
form and provides the same function, except that it causes Jammer to idle for value microseconds,
not seconds.

3.2.9 ping arg
To check the status of the switch controller or the switch module, the ping command is used. To
do this, the command is invoked as shown below:

ping entity

where entity takes one of two arguments, either SC or SM depending on whether one wishes to
check the status of the switch controller or the switch module. The difference between these two
is that when the switch controller is the target of the ping, the ping message goes to the switch
controller and immediately back to Jammer. When the switch module is the target, the switch con-
troller sends a test cell through the switch and returns the result of the test cell.

This is quite often the first command entered when Jammer is started.

3.2.10 prompt “string”
Just as echo provides the output functions of Jammer, prompt provides the input functions. This
command can be used to cause Jammer to request and retrieve user input. Currently, user input is
restricted to integer requests. For instance, in a script which allows the user to indicate which main-
tenance register will be tested will contain a line similar to:

mr = prompt “Please indicate which MR should be tested next: ”

This will display the message within quotes and wait until the user has typed in the desired value.
The script will then continue processing. Note that if the user responds by typing a non-integer
string, Jammer will not explicitly handle the error, so the script programmer will have to provide
any desired error checking.

A prompt command of the form:

prompt “Hit return when you are ready to continued...”

takes no integer value but merely waits for the user to hit a <return>. This can be useful when run-
ning a test that requires ports to be connected in a certain way. In this case, a message can be printed
indicating exactly how things should be connected and then Jammer waits for the user to indicate
that all is ready.

3.2.11 quit
This command causes Jammer to shut down and close the appropriate communication links. Note
that Jammer will handle CTRL-C by resetting and returning to the Jammer prompt. In this way it
forces the user to use the quit command to exit from Jammer.

3.2.12 reset entity
Occasionally it is necessary to reinitialize and clear the state of the switch or switch controller to
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 9
which Jammer is attached. As with the ping command, entity can take the form of SC or SM de-
pending on whether the switch controller or switch module should be reset. This command is used
most frequently during interactive testing. It should be noted that hitting CTRL-C while running
Jammer resets only Jammer itself.

reset SC currently does nothing to the switch controller, it just returns a positive response.

3.2.13 shutdown switch_address
During testing, the user may choose to disable a switch by issuing a shutdown command. The
desired switch is indicated by the switch_address variable. This variable takes the form of two
numbers separated by a period, like 1.1 or 0.0. This command causes the switch controller to be
shut down, thus disabling that access to the corresponding switch.

3.2.14 set print volume
The set print volume command allows the user to select the amount of feedback printed by
Jammer during the course of a test session. The four volume options are:

• QUIET - display only echo information
• QUIET_ACK - display failure messages
• NORMAL - display acknowledgments also
• VERBOSE - display everything possible

During the course of any test session, the print volume may be changed at any time according to
the needs of the user. It is advisable to reset the print volume to NORMAL at any point where a
Jammer script might terminate so that when Jammer returns to interactive mode it will display
enough information to communicate with the user.

Also, it should be noted that the result of different Test commands will not provide the same
amount of output. For example, issuing a read command with the print volume set to NORMAL
will produce more output than issuing the corresponding write command. Because of the nature
of these commands, the read command will cause Jammer to output a list of the current values of
the table being read while the write command will cause Jammer to output the success or failure
of the attempted write.

3.2.15 status
When invoked, this command causes Jammer to output the current status of the session variables
SWITCH, FAILED and PRINT.

3.2.16 wait and waiting
The wait and waiting commands are closely related in functionality. Like pause, the wait
command provides temporal control of script execution, but unlike pause, wait does not involve
any time specifications. When invoked, wait causes Jammer to cease processing new commands
until all outstanding commands have succeeded, timed out, or failed. This functionality can be ap-
proximated using waiting and pause together as shown below.

while(waiting)
pause 1

done

While wait causes Jammer to pause until all outstanding commands have completed, waiting
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 10
checks for the existence of outstanding commands.

The importance of the wait command may not be immediately apparent, but it is very helpful in
many test situations where large groups of tables or registers are tested. If a loop test iterates
through all possible VPXTs and writes to every VPXT in the table, Jammer will not wait for the
result of a write before writing to the next VPXT unless specifically instructed to do so by the
wait command.

Even though wait makes it possible to retrieve a response after each operation, it is typically in-
efficient to do so. Instead, it is usually more efficient to go through the entire test, then issue the
wait command, and finally to test for success of the entire test. The drawback to this method is
that in case of a failure or timeout, it is difficult to verify which of the individual tests caused the
failure without somehow iterating through the loop again, checking explicitly for failure at each
test. However, experience has shown that this method is more efficient than checking for failures
the first time through.

3.2.17 clear failed
Jammer keeps a session variable which indicates whether a command failure has occurred. During
a test session, it is useful to reset the value of this variable when entering a new phase of testing.
For this reason, the clear failed command is provided to allow the user to set the variable
back to the non-failure state.

3.3. Test Constructs

3.3.1 clear
The function of this command is to allow the test engineer to clear (i.e. set to zero) the entries of
the tables and registers of the switch. For detailed information on the tables and registers controlled
with this command, refer to Chapter 7 of the System Architecture Document [3].

At invocation, the clear command takes either two or three arguments where the first argument
is one of the following four selection variables:

• mr - maintenance register
• vcxt - virtual circuit table
• vpxt - virtual path table
• vxt - both virtual circuit and virtual path tables

When clearing the maintenance registers of the switch, this command takes the form:

clear mr [switch] port_proc [field]

The switch variable is an optional variable which can be used to specify which switch’s registers
will be cleared. This variable takes the form x.x where x is an integer. This address is not an IP
address but is an address assigned to the switch for the benefit of switch testing.

The port_proc variable indicates which of the eight port processors contains the maintenance reg-
isters to be cleared. It will take a value ranging from 0 to 7 or the string all where all indicates
that every field of each port processor will be cleared.

If port_proc is not all, then the field variable must also be included. The field variable indicates
which of the twenty-one maintenance register fields will be cleared. It can take a value from 1 to
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 11
22 or the string all. Similar to the port_proc variable, when the field variable is set to all each
field of the indicated port processor will be cleared.

Great care should be taken when clearing or even setting the maintenance register fields. Setting
some fields to inappropriate values can make the switch inaccessible. A hardware reset might be
necessary to regain access to the switch.

The form of the command will be similar when clearing the virtual circuit and virtual path tables:

clear vcxt [switch] port_proc vci
clear vpxt [switch] port_proc vpi

Once again, the switch variable is an optional variable which can be used to specify which switch’s
tables will be cleared. This variable takes the form x.x where x is an integer. This address is not an
IP address but is an address assigned to the switch for the benefit of switch testing.

As before, the port_proc variable represents the port processor whose tables will be cleared. How-
ever, when clearing the tables, the port processor must be chosen singly, so the only valid values
are integers from 0 to 7. Therefore, the third argument, vci or vpi depending on whether virtual cir-
cuit or virtual path tables are the target, is mandatory. The third argument can take values from 0
to 1023, or the string all.

The fourth selection variable option is vxtwhich effectively combines clearing of virtual path and
virtual circuit tables. This option takes the form:

clear vxt [switch] port_proc [all]

Here, the variable port_proc can be set to values from 0 to 7 or the string all. If port_proc is not
all, then the command requires a final argument whose only valid value is the string all.

3.3.2 read
The read command allows the user to read entries from the registers and tables of the switch’s port
processors. The full syntax of this command is:

read sel_var [switch] port_proc field

Where the variable sel_var is one of the following selection variables:

• mr - maintenance register
• vcxt - virtual circuit table
• vpxt - virtual path table

As in the clear command, the first variable is used to indicate whether the maintenance register,
the virtual circuit table, or the virtual path table will be selected.

As before, the switch variable is an optional variable which can be used to specify which switch’s
registers or tables will be read. This variable takes the form x.x where x is an integer. This address
is not an IP address but is an address assigned to the switch for the benefit of switch testing.

The port_proc variable indicates which of the switch’s port processors will be tested. Again, this
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 12
value can be any integer from 0 to 7.

The final argument is the field variable. When sel_var is mr, this variable indicates which of the
maintenance register’s fields will be read and can be any number from 1 to 22. When sel_var is
vcxt or vpxt, the field variable ranges from 0 to 1023 and represents the virtual circuit or virtual
path table entry to be read.

For virtual circuit and virtual path table reads, the output of this command will take the form:

Jammerlist: Read VCXT Operation Completed Successfully
bi = 0
rc = 0
d = 0
cyc1 = 0
cyc2 = 0
cs = 0
ud1 = 0
ud2 = 0
sc = 0
vpt = 0
rco = 0
mapt1vpi = 0
mapt1vci = 0
bdi1 = 0
mapt2vpi = 0
mapt2vci = 0
bdi2 = 0
adr1 = 0
adr2 = 0

Of course, the values for each of the table entries will depend on the actual contents at the time of
the read operation. See Section 7.1 of the System Architecture Document [3] for more detailed in-
formation on the table entries.

For maintenance register reads, the fields output by the read command will depend on which of the
twenty-two fields was read. Each has a different number of entries. For information on the nature
of these entries, refer to Section 7.2 of the System Architecture Document [3].

3.3.3 test
In order to enable testing of the contents of switch registers and tables, Jammer provides the test
command. This command allows the user to specify the contents of each of the register or table
entries. These values are then compared with the current values stored in the switch. If all of the
values are the same, the command will succeed. If one or more of the values differ, it will fail.

This command can be somewhat difficult at first since it takes a variable number of arguments for
maintenance register testing and a different number of arguments for virtual circuit and virtual path
table testing. For maintenance register testing, the number of arguments required depends on which
of the maintenance register field being tested.
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 13
All tests begin with the same core arguments regardless of the table or register to be tested. This
core takes the same form as the read command syntax:

test sel_var [switch] port_proc field

Each of the arguments in the core of the test command has the same limitations as the corre-
sponding argument in the read command (Section 3.3.2). In the test command, this core is then
followed by a string of integer values whose length is dependent on the value of the variables
sel_var and field.

When testing the contents of the maintenance register, it can be difficult to remember which fields
are correlated with which maintenance registers. Section 7.2 of the System Architecture Document
[3] documents the various fields. During interactive testing, Jammer will prompt the user for the
appropriate fields. When testing the virtual circuit and virtual path tables, the field values are those
described in Section 3.3.2 above.

3.3.4 write
The final table manipulation command is the write command. The write command is identical
in syntax and format to the test command described in Section 3.3.3. Using this command, the
user can selectively manipulate any bit in the switch tables and registers by choosing the appropri-
ate field values for each field of the table or register being written. When invoked, this command
will succeed if the indicated values can be successfully written into the desired tables or registers.
If the values cannot be written into the switch, the command will fail.

3.3.5 get cells
The get cells command allows the user to retrieve and test data cells from the switch. These
cells are typically created using the put cells command and allow the user to fully define the data
sent through the switch. By allowing the user to specify the data cells in a bitwise fashion, Jammer
provides the user with a powerful tool for checking for the existence of various errors which are
detectable only by careful analysis of the data in the switch.

The syntax for this command is:

get cells vpi vci cell_count timeout repeat_count offset arg_list

The vpi and vci fields indicate from which VPI/VCI pair the cells will be retrieved. Using the
cell_count field, it is possible to specify an arbitrary number of cells to be retrieved at any time.
The amount of time to wait before failing is specified in seconds using the timeout field. Any time
greater than one second may be specified. However, the default maximum timeout value (approx-
imately two years) can be selected by setting the timeout field to zero.

Additionally, the user may designate any bit pattern for the cells using the remaining fields. The
repeat_count field indicates how many times the pattern is repeated in the cell while the offset field
indicates the number of bytes in the cell before the start of the pattern. Finally, the pattern is indi-
cated using the comma separated argument list of the final field of this command.

This command is typically issued prior to invoking the accompanying put cells command,
otherwise the cells placed in the switch may have already passed through the switch before the get
cells command can capture them. Because of this, it is necessary to specify a timeout value large
enough that the get cells command will not expire before the put cells command can be
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 14
invoked.

For a detailed example, see Section 5.2.1 later in this document.

3.3.6 put cells
The put cells command allows the user to create data cells and inject them into the switch.
Used in conjunction with the get cells command, this allows the user to test the ability of the
switch to correctly transmit data. By allowing the user to specify the data cells in a bitwise fashion,
Jammer provides the user with a powerful tool for checking for the existence of various errors
which are detectable only by careful analysis of the data in the switch.

This command has a syntax which is approximately the same as the get cells command in the
previous section. It is:

put cells vpi vci cell_count offset repeat arg_list

The only difference between the syntax of the two commands is the lack of the timeout field in this
command. Because the cells are placed immediately in the switch when this command is invoked,
a user-specified timeout is not necessary. For further detail on the other fields, refer to the preced-
ing section.

3.3.7 build
The build command is the first of the Jammer commands used to build multipoint connec-
tions.These commands are intended to make it easier to build complex general multipoint to mul-
tipoint connections. (It is still unclear how much easier these commands make it but experience
will tell more.)

This command is used to indicate the number of transmitters and receivers which will make up the
multipoint tree, as illustrated in detail in Section 5.2.2. This command takes four arguments and is
followed by a combination of merge, xmit, recycle, and receive commands. Its syntax is:

build vxt mpt num_tx num_rx cs

The first argument can take one of two values, either VCXT or VPXT, depending on whether the
connection will be a virtual circuit or virtual path multipoint connection. The next two fields take
integer arguments and specify respectively the number of transmitters in the connection and the
number of receivers in the connection. The final argument indicates whether the connection is to
be a continuous stream connection. As values, the cs field accepts values of one if it is to be a con-
tinuous stream connection and zero if it is not.

For further information on multipoint connections, refer to Section 3.2 of the System Architecture
Document [3] as well as Section 5.2.2 of this document.

Note that multipoint connections can be created without using any of these specialized commands.
They are intended only as an aid to the construction of multipoint connections. Using the basic ta-
ble manipulation commands, the switch tables can be modified in a manner which will provide the
same functionality as the suite of multipoint commands.

3.3.8 merge
The merge command is one of the suite of commands used to create multipoint connections. The
role merge plays in the creation of multipoint connections is to specify how the multiple inputs to
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 15
a switch are to be merged and rebroadcast to multiple output ports.

The syntax of this command is:

merge port vpi vci

This command indicates that all transmitters in the multipoint connection on the indicated VPI/
VCI will be merged at the switch port indicated by the port argument. Each multipoint connection
will have either zero or one merge ports, so at most one merge command is needed for any mul-
tipoint connection. Any multipoint connection with multiple transmitters and more than two re-
ceivers requires a merge command.

The merge command is similar to a recycle command in that it makes use of the recycling ca-
pabilities of the switch. The primary difference is that the merge command multiplexes the input
streams while the recycle command duplicates the resulting multiplexed stream, but the under-
lying mechanism which enables these operations is the same. For further information on the recy-
cling capabilities of the switch, see Section 3.2 of the System Architecture Documentation [3].

3.3.9 receive
For each receiver in a multipoint connection, one receive command will have to be issued. This
command specifies the port, the VPI, the VCI and upstream discard flag for the receiver. The for-
mat of this command is:

receive lr_string port vpi vci ud

The port, vpi and vci arguments should be straightforward. The ud field takes as a value of either
1or 0 and indicates whether upstream cell discarding is turned on or not. However, the purpose of
the lr_string field is less intuitive. This field is used to indicate the path followed through the binary
multipoint tree to the receiver represented by this command. Each multipoint connection tree with
n receiver nodes will have at most n-2 recycling nodes. Each receiver node is a leaf in the tree, and
can be reached by making successive decisions of whether to follow the path to the left or the right
child from the current node. The length of this string is equal to the depth of the tree.

As an example, consider that the receiver in question is the left child of a single transmitter of a
multipoint connection on VPI 0 and VCI 40 and is attached to port 5. In this case, the command
would take the form:

receive l 5 0 40 1

Alternatively, if there are two more receivers in the connection, one attached to port 6 and the other
to port 2, their receive commands would take the form:

receive rl 6 0 40 1
receive rr 2 0 40 1

For each of these receivers we have turned the upstream discard feature on.

A more illustrative example can be found in Section 5.2.2 of this document where an entire multi-
point connection is constructed.

3.3.10 recycle
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 16
This command takes the same arguments as the preceding receive command. However, instead of
indicating the position and port for a receiver leaf in the multipoint tree, this command indicates
the position and port for a recycling or interior node in the multipoint tree.

For example, considering the illustration initiated in the previous section, if a multipoint connec-
tion has three receivers, it will have one recycling node as the right child of the transmitter and the
parent of the second and third receivers. In this case, if the recycling port for this node is port 5,
then the command to indicate this is:

recycle r 5 0 40

Again, for a more illustrative example, refer to Section 5.2.2.

3.3.11 xmit
The final command required to create a multipoint connection is the xmit command. This com-
mand must be invoked for each of the transmitters in the build command. This command takes
five arguments which will characterize the input traffic. Its syntax is:

xmit port vpi vci clp

Again, the vpi and vci indicate the VPI/VCI pair on which the data is transmitted and the port in-
dicates the switch port to which the transmitter is attached. The clp field takes a value of either 1
or 0 and indicates whether the CLP bit in the cells for this stream should be set or not.

A complete example of the construction of a multipoint connection is included in Section 5.2.2 of
this document.

4. Running Jammer
Before running Jammer it is necessary to first run the software which enables the communication
and control necessary for switch testing. This software has been consolidated into two programs:

• NodeSim - simulator of node controller
• GBNSC - GBN Switch Controller

Both NodeSim and GBNSC require certain configuration files for test network configuration and
initialization. Also, NodeSim is only needed if a real switch is not available.

Once these programs are running successfully, Jammer can be invoked by typing:

Jammer switch_address SC_host SC_port [include_file]

where switch_address is the address in the form 0.0 (note that this is not an IP address), SC_host
is the hostname on which the switch controller is running , SC_port is the TCP port on which the
switch controller is listening for new connections and include_file is an existing Jammer test script.
For further information, consult the installation documentation [4].

After invoking Jammer, the Jammer prompt will appear on the screen indicating that Jammer is
ready and in interactive mode. Interactive commands may now be entered. To begin working with
an existing test script which was not included at startup, type:

include filename
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 17
at the Jammer prompt where filename is the file containing the desired test script. Once this com-
pletes, type the procedure invocation of the main procedure in the file (if one exists). For instance,
continuing the print-to-screen example from Section 3, this would be:

Enter command: include print_to_screen.js
Enter command: PrintToScreen()

Hello!
Enter command:

After running the script, Jammer returns to interactive mode.

5. Testing
This section will contain a few general comments on testing. This section will grow as more of the
testing functions mature. For now, basic information on iterative and conditional testing will be
included to provide insight into the usage of Jammer. Also, detailed examples of data cell testing
and multipoint connection building are given.

5.1. Script Basics
To expand on the discussion begun in Section 3.1, this section is intended to illustrate the basic test
and program constructs necessary for switch testing. It is not intended to be an all inclusive illus-
tration of the Jammer programming environment, but just to offer a some basic examples of test
script constructs.

5.1.1 Conditional Testing
Perhaps the most important programming construct provided by Jammer is the conditional if-
else-fi construct. Using this construct, the test engineer can check for failure of a command,
for correct variable value, or for valid input from the user. For instance, to request user input re-
garding which port number to test, the test engineer could write:

int response

response = prompt “Indicate port number to be tested (0-7):”

if($response < 0 || $response > 7)
echo “ERROR: Invalid port choice $response\n”
echo “Port number must be value from 0 to 7\n”

else
test_port($response)

fi

This construct will appear in almost every test script.

5.1.2 Iterative Testing
As described in Section 3.1.10, the iterative control construct provided by Jammer is the while
- done loop. This construct is most useful when it is necessary to test all register or table entries.
This kind of testing would be difficult using interactive control.

For example, to set all entries of the virtual circuit table to zero, the following script excerpt could
be used:
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 18
define port processor and vcxt control variables
int pp
int vcxt_num
pp = 0

#loop through all port processors
while ($pp < 8)

vcxt_num = 0
echo “vcxt_test: Testing VCXT table $pp at all entries.”

#loop through all vcxts
while ($vcxt_num < 1023)

#write zero values to each field
write vcxt $pp $vcxt_num 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

vcxt_num++
done

wait for all outstanding tests to complete
wait

#test for failures
if (failed)
 echo “vcxt_test: write to VCXT index $pp FAILED:”
 clear failed
fi
pp++

done

Of course, this is not the easiest way to zero out all bits in the VCXT table since the same operation
could be accomplished using the clear vcxt command.

5.2. Intermediate Control
The next two sections will cover setting up multipoint connections and inserting data and control
cells into the switch.

5.2.1 Data Cell Testing
One of the most powerful capabilities provided by Jammer is the ability to test not only the content
of the tables and registers of the switch but also the content of the data cells being passed through
the switch. The commands which enable this functionality are the get cells and put cells
commands.

To illustrate the use of the get and put cells commands, the following example shows how
to test cells placed on a certain VPI/VCI channel. In this example, the VPI to be tested is VPI 0,
and the corresponding VCI is VCI 50. These values were chosen arbitrarily to show the usage of
the get and put cells commands in interactive mode.

Before these commands can be used, the maintenance registers and translation tables in the switch
must first be initialized to enable reading and writing of cells to the appropriate VPI/VCI pair.
Next, the get cells command must be issued to instruct the switch controller to retrieve the
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 19
cells. Finally, using the put cells command, the cells are placed in the stream. These com-
mands are shown in the following trace of an interactive Jammer session.

Enter command: write mr 0 2 0 128 32 0 255 1 1 1 1 1048576 0
Enter command: write vpxt 0 0 1 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Enter command: write vcxt 0 50 1 2 1 0 0 0 0 0 0 1 0 0 50 1 0 0 0 0 0
Enter command:
Enter command: get cells 0 50

Number of Cells to expect[1]: 1
Number of seconds to wait for cells to return(0 for MAX)[1]: 0

Now we begin to build the pattern to match
 in the payload field.

If you don’t care what was in the payload field enter 0 for the
 number of times to repeat the pattern:

Number of times to repeat pattern(0 for NO pattern)[1]: 0

Enter command: put cells 0 50

Number of Cells to send[1]: 1

Now we begin to build the pattern to put in
 the payload field.
 If you don’t care what goes in the payload field
 enter 0 for the number of times to repeat the pattern:

Number of times to repeat pattern(0 for NO pattern)[1]: 0

Enter command:
JAMMERLIST: Put Cells Operation Completed Successfully

Enter command:
JAMMERLIST: Get Cells Operation Completed Successfully

In the first three commands of this trace, the write mr serves to set up the software link which
will enable to connection. Next, the write vpxt sets the VPT bit to terminate at VP 0 and the
write vcxt sets cell routing to port 0 on VPI/VCI 0/50. Once the registers and tables have been
initialized, the get and put cells commands are issued. For this example, defaults are accept-
ed at the prompt with no pattern being specified.

With get cells and put cells, failures can take two forms. First, the cells can be lost. If
this is the case the get cells operation will time out and report how many of the expected cells
returned. The second failure mode is if the data in any of the cells was corrupted. Again the get
cells operation will time out and report how many of the expected cells returned, but also the
switch controller will print error messages for cells that returned on the appropriate VPI/VCI but
that did not have the expected payload. This type of information can be very valuable when testing
new hardware that might have data path errors.

5.2.2 Creating Multipoint Connections
One of the unique abilities of the gigabit switch is its facility for cell recycling and replication for
the creation of multipoint connections in an efficient manner. The facilities provided by Jammer
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 20
for constructing multipoint connections are basic abstractions in the form of the build, merge,
receive, recycle, and xmit commands. As noted previously, these commands are built on
the basic table and register manipulation commands, but it is hoped that they will simplify the con-
struction of multipoint connections to simplify switch testing.

To fully illustrate the usage of these commands, two multipoint connections will be described. The
first is the same example shown in Section 3.2 of the System Architecture Document [3]. This ex-
ample provides insights into the basics of multipoint connection construction. The second example
is slightly more complex to illustrate a multipoint connection with multiple transmitters and mul-
tiple receivers.

The form of the multipoint connection of the first example can be viewed as a binary connection
tree whose root is the transmitter and whose leaves are the receivers. This view is shown in Fig.
5.2.2.1 below.

In the above view, node a is the transmitter node, nodes x and y are recycling nodes, and the re-
maining nodes are receiver nodes. As in the example above, the multicast architecture above seeks
to maintain a configuration where every internal node has two children to maintain switching effi-
ciency. Because of this, the number of recycling nodes in a multicast connection will be two less
than the number of receivers in the connection.

To create this connection as a continuous stream virtual circuit connection, the series of commands
will take the following form:

build VCXT mpt 1 4 1 (1)
xmit 1 0 40 1 (2)
recycle l 2 0 40 (3)
receive r 3 0 40 0 (4)
receive ll 5 0 40 0 (5)
recycle lr 4 0 40 (6)
receive lrl 7 0 40 0 (7)
receive lrr 6 0 40 0 (8)

The first line serves to initiate the construction of the multipoint connection. It will have a single
transmitter and four receivers. Data will be broadcast as a continuous stream. The transmitter is
attached to port 1 and transmits on VPI/VCI 0/40. Upstream discard is allowed and the cell loss

l l

l

r r

r

a

d

c

b

y

x

e

Figure 5.2.2.1: Simple Multipoint Connection Tree
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 21
priority bit is not set. The two recycling ports are ports 2 and 5. The lr_string argument for each of
the recycling and receiving ports indicates how they are placed in the tree. For example, in line 8
it can be seen that node d is reachable by following the lrr path shown by the dashed line in Fig.
5.2.2.1.

In the above code sample, note that the tree is represented in a depth-first manner. The order of the
statements which make up a multipoint connection call is not dictated by Jammer. The only re-
quirement is that the build command must precede the other commands. Beyond that, any order is
permitted so long as the entire connection is specified. Once Jammer receives information on all
transmitters, recyclers, and receivers in the connection it issues the appropriate write commands
to instruct the switch to construct the indicated connection.

To illustrate the use of multiple transmitters in a connection, consider the tree shown in Fig. 5.2.2.2
below.

For this example, the same basic settings like VPI/VCI, cell loss priority, and so forth will be main-
tained from the previous example in order to concentrate on the new issues introduced. In this ex-
ample, nodes a-c are transmitter nodes, d is a merge node, nodes e-g are recycling nodes, and nodes
h-l are receiver nodes. Again, note that the number of receiver nodes is two greater than the number
of recycling nodes. Also, regardless of the total number of transmitters greater than one, there will
only be one merge node in the tree.

To build this multipoint tree, the code fragment is:

build VCXT mpt 3 5 1 (1)
xmit 1 0 40 1 (2)
xmit 3 0 40 1 (3)
xmit 5 0 40 1 (4)
merge 4 0 40 (5)
recycle l 0 0 40 (6)
recycle r 2 0 40 (7)

c

b

a

d

j

i

h

f

e

g

k

l

r

l

r

r

r

l

l

l

Figure 5.2.2.2: Multipoint Connection with Multiple Transmitters
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 22
recycle ll 1 0 40 (8)
receive lr 3 0 40 0 (9)
receive rl 4 0 40 0 (10)
receive rr 6 0 40 0 (11)
receive lll 5 0 40 0 (12)
receive llr 7 0 40 0 (13)

As can be seen, there is little difference functionally between this code segment and that of the pre-
vious example. The addition of more transmitters and a merge node only adds one level to the
height of the tree. The merge command itself is relatively simple requiring only the specification
of the merge port and the VPI/VCI pair.

6. Conclusion
Jammer is a powerful, flexible tool for exhaustively testing Washington University’s prototype
ATM switches. By allowing the test engineer read and write access to each bit in the tables and
registers as well as the data and control cells of the switch, Jammer provides complete control of
all switch functions. Jammer’s batch and interactive modes offer maximum flexibility in designing
thorough test schemes to verify proper functionality of the switch. Together, these qualities make
Jammer an indispensable tool in the verification of the design and operation of the prototype
switches.
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 23
7. References

[1] Turner, J.S., “Fast Packet Switching System,” U.S. Patent 4 494 230 , Jan-
uary 15, 1985.

[2] Turner, J.S., “Design of a Broadcast Packet Switching Network,” in IEEE
Transactions on Communications, 36 (6): 734-743, June 1988.

[3] Turner, J.S., ARL Staff, ANG Staff, “A Gigabit Local ATM Testbed for
Multimedia Applications,” ARL Working Note-94-11, January 1995.

[4] DeHart, John D., “Washington University GigaBit Network Software In-
stallation and Startup,” ARL Working Note 96-02.

[5] DeHart, John D., “Connection Management Software System (CMSS)
Architecture,” ARL Working Note 95-03, July 1996.

[6] Wu, Dakang, DeHart, John D., Cox, Ken C., “GBNSC: The GigaBit Net-
work Switch Controller,” ARL Working Note 94-12, July 1996.

[7] Wu, Dakang, DeHart, John D., “Node Controller Managed Object (NC-
MO) and Node Controller Communication Protocol (NCCP),” ARL
Working Note 96-03, July 1996.
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

Jammer Language Description

W
WASHI

Page 24
Appendix A: Jammer Grammar

Please see the current source code for information on the grammar of the Jammer language.
ashington
NGTON•UNIVERSITY•IN•ST•LOUIS

Applied Research Laboratory

	1. Introduction
	2. Context
	Jammer: The Side Door
	Figure 2.1: Jammer, Switch Controller, and Switch Communication
	3. Language Overview
	3.1. Program Constructs
	3.1.1 A Basic Script

	include print_to_screen.js
	PrintToScreen()
	3.1.2 Comments
	3.1.3 Variable Declarations

	int variable
	int var_array[size]
	3.1.4 Variable Evaluation

	$node
	$node_array[2]
	3.1.5 Assignment Operators

	node = 10
	node = $variable
	3.1.6 Mathematical Operations

	node = $node + 10
	node--
	3.1.7 Negation Operator

	!($result)
	3.1.8 Comparison Operators

	$node <= 10
	$node <= $variable
	3.1.9 Conditional Constructs
	3.1.10 Iterative Constructs
	3.1.11 Creating Large Scripts

	include filename
	3.2. Session Constructs
	3.2.1 set switch switch_id host port
	3.2.2 ! system_command

	! ls
	! “ls *.js”
	3.2.3 cd path
	3.2.4 CTRL-C
	3.2.5 date
	3.2.6 echo
	3.2.7 help
	3.2.8 pause and upause
	3.2.9 ping arg

	ping entity
	3.2.10 prompt “string”
	3.2.11 quit
	3.2.12 reset entity
	3.2.13 shutdown switch_address
	3.2.14 set print volume
	3.2.15 status
	3.2.16 wait and waiting
	3.2.17 clear failed
	3.3. Test Constructs
	3.3.1 clear

	clear mr [switch] port_proc [field]
	clear vcxt [switch] port_proc vci
	clear vpxt [switch] port_proc vpi
	clear vxt [switch] port_proc [all]
	3.3.2 read

	read sel_var [switch] port_proc field
	3.3.3 test

	test sel_var [switch] port_proc field
	3.3.4 write
	3.3.5 get cells

	get cells vpi vci cell_count timeout repeat_count offset arg_list
	3.3.6 put cells

	put cells vpi vci cell_count offset repeat arg_list
	3.3.7 build

	build vxt mpt num_tx num_rx cs
	3.3.8 merge

	merge port vpi vci
	3.3.9 receive

	receive lr_string port vpi vci ud
	receive l 5 0 40 1
	receive rl 6 0 40 1
	receive rr 2 0 40 1
	3.3.10 recycle

	recycle r 5 0 40
	3.3.11 xmit

	xmit port vpi vci clp
	4. Running Jammer

	Jammer switch_address SC_host SC_port [include_file]
	include filename
	5. Testing
	5.1. Script Basics
	5.1.1 Conditional Testing
	5.1.2 Iterative Testing

	5.2. Intermediate Control
	5.2.1 Data Cell Testing
	5.2.2 Creating Multipoint Connections

	Figure 5.2.2.1: Simple Multipoint Connection Tree
	Figure 5.2.2.2: Multipoint Connection with Multiple Transmitters
	6. Conclusion
	7. References
	[1] Turner, J.S., “Fast Packet Switching System,” U.S. Patent 4 494 230 , January 15, 1985.
	[2] Turner, J.S., “Design of a Broadcast Packet Switching Network,” in IEEE Transactions on Commu...
	[3] Turner, J.S., ARL Staff, ANG Staff, “A Gigabit Local ATM Testbed for Multimedia Applications,...
	[4] DeHart, John D., “Washington University GigaBit Network Software Installation and Startup,” A...
	[5] DeHart, John D., “Connection Management Software System (CMSS) Architecture,” ARL Working Not...
	[6] Wu, Dakang, DeHart, John D., Cox, Ken C., “GBNSC: The GigaBit Network Switch Controller,” ARL...
	[7] Wu, Dakang, DeHart, John D., “Node Controller Managed Object (NCMO) and Node Controller Commu...

	Appendix A: Jammer Grammar

