
Node Controller Managed Object (NCMO) and
Node Controller Communication Protocol (NCCP)1

Dakang Wu
John D. DeHart

Version 1.0
Applied Research Laboratory

Department of Computer Science
Washington University

St. Louis, Missouri 63130
dw1@arl.wustl.edu

Working Note ARL-96-03
July 3, 1996

Abstract

With the development of ATM technology and increasing deployment of ATM networks, we anticipate a
heterogenous environment for an ATM network. Switches and client stations from different vendors, each
with potentially different control mechanisms, will be used within the same network. This diversity of control
structures introduces great complexity into the development of ATM control software. In this and associated
other documents, we propose a software architecture that manages this heterogenous environment. A key
aspect of the software design is that the hardware details of a switch and its control mechanism is encapsulated
in a low level software module called the Switch Controller (SC). The Node Controller Communication Proto-
col (NCCP) is presented that allows higher layer software modules to communicate with the SC. The NCCP is
general enough to support general multipoint-to-multipoint communications. A general interface to the NCCP,
the Node Controller Managed Object (NCMO) is also presented. The NCMO is an Application Programming
Interface (API) to the NCCP for the higher level software modules. The development of the NCMO and the
NCCP allows the higher layer modules to operate on an abstract switch model and not have to understand the
details of every possible hardware switch that might be present in the network. This partitioning of functional-
ity provides a clean interface between software modules and hence, a viable software architecture for the con-
trol of a heterogenous set of switches.

1.This document was originally part of the GBNSC document, the first draft of which was written by Ken
Cox.

1

1. Introduction

In this document, we present the design and some implementation details for the Node Control Communications
Protocol (NCCP) and the Node Control Managed Object (NCMO). These two object oriented software libraries are
integral parts of our implementation of the Connection Management Software System (CMSS) [7]. They provide the
objects and communications for CMSS.

Section 2 briefly introduces the design of the CMSS. Section 3 describes the abstract switch model that the
NCCP and NCMO support. The NCCP is presented in Section 4 and the NCMO is described in Section 5.

It is highly recommended that the Connection Management Software System (CMSS) Architecture document [7]
be read prior to continuing with this document.

2. The Core CMSS

We anticipate that the heterogeneity of ATM switching network equipment will contribute greatly to the com-
plexity of controlling these networks. As shown in Figure 1, network switching systems will be produced by various
vendors and (although all will presumably conform to the appropriate ATM standards) may differ considerably in
their control requirements and protocols. The same will undoubtedly be true of the client terminals connected to the
network. A third source of network heterogeneity lies in the links connecting the switches and the terminals, which
will vary in bandwidth and the capability to support QOS requirements.

Managing such networks requires to introduce a number of control abstractions which serve to encapsulate and
conceal the differences in equipment. Figure 2 illustrates a number of these abstractions. A node abstracts a set of one
or more interconnected switches, providing a view of the group as a single large switch with a known interface and
capabilities. A control processor (CP) is an abstraction of the control software for a single node; in some cases the
software may actually run on a single machine, while in others it may be distributed. In our control model, this soft-
ware is the Core Connection Management Software System (Core CMSS) [7]. The control software for the nodes
must communicate to set up inter-nodal connections. This communication is in accord with specified, uniform inter-

Figure 1. Heterogeneous ATM Networks.

High-Bandwidth Links
Low-Bandwidth Links
Heterogeneous Switching Systems

Heterogeneous Network Terminals

2

nal protocols (e.g., CMNP[8] in our system). Finally, the terminal-network control interface is encapsulated by
access protocols which specify the manner in which clients request connections through the network. Examples of
such access protocols would be CMAP [6] and Q.93b [1,2,4].

The Core CMSS present at each node is structured in three layers. The Connection Management Layer is actu-
ally distributed across all the nodes of the network, and uses the internal protocols of Figure 2 to set up inter-nodal
connections. At each node, the Connection Management Layer communicates with the Node Management Layer for
that node. The Node Management Layer abstracts the collection of switches in the node so that they “act like” a sin-
gle large switch to the Connection Management Layer, and is responsible for managing intra-nodal connections
within the node. It issues commands to the Switch Management Layer, which handles connections within the individ-
ual switches and conceals hardware dependencies from the other layers.

In the current design, the Core CMSS is realized as a tree of processes (or threads or tasks) as shown in Figure 3.
The top process in the tree is the Connection Manager (CM) for the node. This process communicates with the CMs
of other nodes and with one subsidiary process. For the node shown in the figure, where three switches are grouped
and managed as a single node, the subsidiary process is a Node Controller (NC). This NC in turn communicates with
its subsidiaries; in the example these are one Switch Controller (SC) for each switch. If, as in the example, the switch
hardware is supplied by several different vendors, these SC processes will be from different executable, each tailored
to control the specific hardware. However, the API provided by each SC is identical, and is identical to the NC API.
The GigaBit Network Switch Controller (GBNSC) [10] is one example of an SC.

CMSS processes communicate only along the links of the process tree. For example, in Figure 3 the CM and NC
may communicate and the NC may communicate with each SC. However, the CM does not communicate directly
with the SCs, nor do the SCs communicate with one another — indeed, the encapsulation provided by the CMSS is
such that these processes have no knowledge that the others exist.

This design decision — that the SC and NC have the same API — was originally motivated by the desire to have
a node “look like” a switch to the layers above the node. However, it also has some nice consequences for the setup
and management of the process tree. As shown in the examples of Figure 4, the upper example shows a single switch

Figure 2. Control Abstractions for ATM Networks.

Control Processors

High-Bandwidth Links

Low-Bandwidth Links

Heterogeneous Switching Systems

Heterogeneous Network Terminals

Nodes

Access
Protocols

Internal
Protocols

3

which is to be managed as a node. In this case we can omit the Node Management Layer entirely, and have the CM
communicate directly with the SC for the switch. The lower example shows a node hierarchy, where one of the sub-
sidiary elements of a node is another node. The process tree reflects the nested structure, and because the NC and SC
APIs are identical the upper NC is unaware that one of its subsidiaries is actually a multiple-switch node.

The API used by the NCs and SCs is implemented as a software object called the Node Controller Managed
Object (NCMO). The NCMO encapsulates the interactions between two processes (a parent and a subsidiary) in the
CMSS process tree. When a parent process determines it has a subsidiary, it creates an NCMO object for that subsid-
iary. The creation of this object causes the creation of the subsidiary process and the communications links to that
process. Subsequent interactions with the subsidiary are handled through function calls on the NCMO. These calls
typically cause communication with the subsidiary; the NCMO uses the Node Controller Communications Protocol
(NCCP) (Section 4) for this communication.

The NCMO provides the user a view of an abstract switch with abstract objects and a set of abstract operations.
The user of NCMO can create abstract objects and perform abstract operations through NCMO. The NCMO, besides
organizing its own objects, will sent the operation request to the subsidiary through the NCCP. The subsidiaries will
implement these abstract operations in real physical environment.

Figure 3. Example CMSS Process Structure.

CM

SC

NC

SC SC

NCCP

NCCPNCCP
NCCP

Figure 4. Additional CMSS Process Structures.

CM

SC

CM

SC

NC

SC SC

NC

NCCP

NCCP

NCCP NCCP

NCCPNCCP

4

3. Abstract Switch Model

Figure 5 shows an abstract switch model presented by the NCMO. This abstract switch is modeled as a black box
with a number of links. An abstract switch has a switch Id given by its CMSS parent. Each link of the switch is iden-
tified by a unique integer identifier. A link may have different capacity in each of its two different directions.

A link has a remote end identifier which indicates what entity is connected to that link. The remote end may be
another switch port or it may be a terminal. Terminals are identified in the figure by T(“name”). If the remote side is
a switch port, it is identified by a tuple (CM address, switch Id, other side local linkIdentifier). Each port also has sev-
eral resource parameters, such as the available bandwidth and VPI and VCI ranges. The remote end information and
resource information could be obtained by the switch controller through a Hello protocol [12] and/or configuration
files.

The switch model provides a same-trunk relationship between the links. Links typically have this relationship if
they are connected to the same remote entity, i.e. the same terminal or the same switch. This relationship is used in
conjunction with the echo parameters of sinks (described below) when setting up connections.

The abstract switch is treated as a large ATM crossbar in which it is possible to route any input data stream (i.e.,
any VP or VC on any of the input links) to any output data stream (any VP or VC on any of the output links).

A set of abstract objects are used within an abstract switch to build, maintain and manipulate connections. A
MultiPoint (MP) is an abstract object that represents a connection. Since a connection can be either Virtual Path (VP)
or Virtual Channel (VC), the multipoint object comes in two varieties, VPMultipoint (VP MP) or VCMultipoint (MP).
An MP has a set of attributes, such as the bandwidth requirement of the connection; the QOS requirement etc. A MP
also maintains a list of sources and sinks. A Source is an abstract object that represents an input of the connection. A
Sink is an abstract object that represents an output of the connection. In the abstract switch model, any data received
on a source will be sent to all the sinks in the MP. The most important attribute of a source or a sink is its VXI (VPI
and/or VCI based on connection type). In the source, the VXI identifies an input channel. In the sink, the VXI identi-
fies an output channel. Source and sink objects, like multipoint objects, can be either Virtual Path or Virtual Channel.
A list of attributes of MP, sources and sinks is given in Table 1.

Given an input link, the CM (or more generally the CMSS parent) may create a VPSource object or a VCSource
object associated with the link. The VPSource represents a source of ATM cells arriving on the link and using VP
routing, while the VCSource represents an ATM cell stream using VC routing. Similarly, the CM can create VPSink
and VCSink objects from output links. The CM may also create VPMultipoint and VCMultipoint objects.

Figure 5. NCMO Switch Model

OL(3)

OL(4)

OL(6)

OL(7)

OL(0)

IL(3)

IL(2)

IL(6)

IL(7)

IL(6)

OL(2)

 IL(“jabba”, 0x13, 6)

T(“128.252.153.6”)

OL(“jabba”, 0x13,6)

OL(“jabba”, 0x12, 1)

 OL(“jabba”, 0x12, 7)

same trunk

T(“ackbar”)T(“128.252.153.56”)

T(“128.252.153.57”)T(“piett”)

 IL(“jabba”, 0x12,1)

 IL(“jabba”, 0x12, 7)

relation
input link
identifiers

output link
identifiers

remote link
identifiers

remote link
identifiers

5

Once the CM has created source, sink, and multipoint objects, it may connect them together. VP objects may
only be connected to other VP objects, and VC objects may only be connected to other VC objects. {I think we
should add a description of how we would terminate a Virtual Path and break out the VCs.} Sources and sinks can
only be connected to multipoints. Figure 6 gives some possible connections that might be constructed for the abstract
switch in Figure 5. The VPI, VCI, and echo parameters of the sources and sinks are shown where appropriate. The
“semantics” of such interconnections are as follows:

• Cells arriving at a source (i.e., on a particular input link with the VPI or VPI/VCI described by the source)
are delivered to all multipoints connected to the source. Each multipoint gets a separate copy of each cell,
and the cells are delivered to the multipoint in the same sequence in which they arrived at the source.

• Cells delivered to a multipoint by the sources are delivered to all sinks connected to the multipoint. Each
sink gets a separate copy of each cell, and all cells from a particular source are delivered to the sink in the
same sequence in which they arrived at the multipoint; however, the interleaving of cells from different
sources may differ at different sinks.

• Cells delivered to a sink by the multipoints connected to the sink are sent out on the sink’s link with the
VPI/VCI associated with the sink. Cells arriving from a particular multipoint are sent out in the same
order in which they arrive at the sink; however, the interleaving of cells from different multipoints may
differ at different sinks. If the sink’s echo parameter is FALSE and the cell originated from a source that is

Table 1: Properties of NCMO Switch-Model Objects

Object Parameter Description Assignment

VPSource VPI VPI of the cell stream CM or subsidiary

VPSink VPI VPI of the cell stream CM or subsidiary

echo Should sink receive cells from
sources on the same trunk

CM (default FALSE)

VCSource VPI VPI of the cell stream CM or subsidiary

VCI VCI of the cell stream CM or subsidiary

VCSink VPI VPI of the cell stream CM or subsidiary

VCI VCI of the cell stream CM or subsidiary

echo Should sink receive cells from
sources on the same trunk

CM (default FALSE)

VPMultipoint Bandwidth Connection’s bandwidth (peak,
average, etc.)

CM (default best-effort)

Priority Connection’s priority CM (default low)

VCMultipoint Bandwidth Connection’s bandwidth (peak,
average, etc.)

CM (default best-effort)

Priority Connection’s priority CM (default low)

6

related to the sink by the same-trunk relationship, the cell is discarded and not sent out on the link.

• The ATM standard is followed for VP connections, in that the VCI field of a cell arriving at a VPSource
and passing through a VPMultipoint and VPSink is not changed by the switch.

• Cells which arrive at the switch but do not correspond to any source are discarded.

Several examples using the connections in Figure 6 may help to illustrate this.

1. A cell arriving on link IL(5) with VPI=6, VCI=X will be transmitted out of the switch on link OL(2)
with VPI=3 and VCI=X, for any X.

2. A cell arriving on link IL(6) with VPI=1, VCI=5 will be transmitted out of the switch on link OL(7)
with VPI=5, VCI=3. It will not be transmitted out of link OL(6) with VPI=9, VCI=3 because the source
IL and sink OL are related by the same-trunk and the sink echo parameter is FALSE.

3. A cell arriving on link IL(6) with VPI=2, VCI = 4 will be transmitted out link OL(7) on VPI=5, VCI=3;
and out OL(0) with VPI=6, VCI=1 via the second VCMultipoint.

4. A cell arriving on link IL(5) with VPI not equal to 6 will be discarded (assuming the connections shown
are the only ones that exist). Likewise, a cell arriving on link IL(6) with VPI/VCI not equal to 1/5 will
be discarded.

4. NCCP

The Node Controller Communications Protocol (NCCP) is a message-based protocol by which two processes in
the Core CMSS tree associated with a node, communicate with one another. Processes outside the CMSS tree may
also need to communicate with the NCs or SCs. For example, for network management purposes it might be useful to
have a tool that allows the network administrators to issue commands directly to an SC, bypassing the CM and NC.
Jammer [3], also developed by ARL, is an example of such a tool. The user of Jammer may interact directly with the
SC to examine or modify any of the switch tables, to set up connections, and to execute test suites that verify switch
functionality. To meet these communication requirements, the NCCP is designed to be composed of a Core NCCP
(C-NCCP) and some Expandable NCCP (E-NCCP). The C-NCCP defines the general NCCP message format, base

Figure 6. NCMO Connections of Sources, Sinks, and Multipoints

VPSource(IL(5), 6)

VCSource(IL(6), 1, 5)

VCSource(IL(2), 3, 8)

VCSource(IL(6), 2, 4)

VPSink(OL(2), 3, T)

VCSink(OL(7), 5, 3, T)

VCSink(OL(6)), 9, 3, F)

VCSink(OL(0)), 6, 1, F)

(sources) (sinks)

VCMultipoint

VCMultipoint

VPMultipoint

-- Multipoint (MP) -- Source -- sink

7

objects that implement NCCP and the basic messages that support the implementation of operations on the abstract
switch. The E-NCCP is the expansion of NCCP that supports the communications for specific SC’s. For example, the
GBNSC E-NCCP supports the communications between Jammer and the GBNSC, which controls a GigaBit Network
switch [9] being built at Washington University. In this document, we only introduce C-NCCP. E-NCCP is specified
in other documents[3, 10].

The setup of the communications links is handled at process creation time and is not a concern of the NCCP. The
NCCP requires lossless, message-based communication in which ordering of messages is maintained. In the current
implementation, PriquePairs [7], which are shared memory based communication objects, are used within the CMSS
tree and BTP [7] is used between Jammer and the SC.

Each NCCP operation has a request phase, in which one process sends a request message to another, and a
response phase, in which the second process replies with zero or more response messages. The number of responses
depends on the operation being performed. We use the term alert to refer to a communication in which no response
messages are sent. Some example uses of the NCCP are:

• To let the parent know the status of a link, a SC (or NC) periodically sends LinkStatus message to its par-
ent. The parent can use this information to update its topology and routing databases. The parent does not
send a response to this request (the LinkStatus message is an alert).

• An NC determines that a subsidiary (which may be an NC or an SC) must create a VP source on a partic-
ular link and bind it to a particular Multipoint. It sends a ReserveMP request which contains the MP iden-
tifier and the VP source information. The subsidiary returns a single response message which indicates
whether the operation succeeded.

NCCP communications are asynchronous. After sending a request, a process can continue with other work while
it is waiting for the response(s) to arrive. If a process sends two or more requests, the responses may arrive in any
order or be arbitrarily interleaved (however, the responses to any one request will still be ordered as required by the
operation).

4.1. Core NCCP

The Core NCCP defines the general format of NCCP messages. A NCCP message is composed of a fixed size
NCCP header and a variable size NCCP body as shown in Figure 7.

The Message Phase field indicates this is a NCCP_Request or a NCCP_Response message. The Message Type

NCCP Header NCCP Body

NCCP Message format

NCCP Header

Message Phase Message Type Rendezvous Marker

Figure 7. NCCP Message and NCCP Header

2 2 28

32

8

identifies the message. In the C-NCCP, five types of messages are defined as listed in Table 2. The Rendezvous

Marker is a rendezvous object [7] which provides a safe mechanism to indicate which object is responsible to process
the response message if any.

4.1.1. NCCP_ChildStatus Message

A NCCP_ChildStatus message is sent by the child process in the CMSS tree to its parent to report the child pro-
cess status.

The Node Id is an unsigned integer that indicates the source of the message. The Node Id is given by the parent
process when it starts the child process. The Child Proc State field takes a value from Table 3.

Table 2: Messages defined in C-NCCP

Message Type
Request

Direction
Response
Needed

Description

NCCP_ChildStatus (1024) C-P No Report the child is up

NCCP_LinkStatus (1025) C-P No Report link Up/Down status

NCCP_ReserveMP (1026) P-C Yes Request to reserve a
Multipoint

NCCP_UpdateHardwareMP (1027) P-C Yes Request to set up hardware
tables

NCCP_RollbackMP (1028) P-C Yes Request to go back to previ-
ous committed state

Table 3: Child Process State

Value Description Value Description

Not_Ready (0) not usable BadConfig(5) wrong config file

NoFork (1) unable to fork child BadHardware(6) hardware problem

ChildDied (2) child process died BadIO(7) I/O err

TimeOut (3) time out MemoryErr(8) memory allocation err

NOConfig (4) no config file Ready (10) Ready to work

Node Id Child Proc State Switch State

Figure 8. NCCP_ChildStatus Message Format

2 2 2

9

The Switch State field takes one of the two values: SwitchStatus_Dead or SwitchStatus_Alive.

4.1.2. NCCP_LinkStatus Message

A child process periodically sends a NCCP_LinkStatus Message to its parent to report the status of a link. Link-
Status message contains all the link information that the higher level should know.

NCMO Id is an unsigned integer which identifies the NCMO object. Local Id is an integer identifying the link for
the abstract switch. Trunk Id is reserved for future use. Type indicates the link is NNI or UNI. InCap and OutCap are
four byte integers to give the capacity of the link. Direction and LinkStatus are SC_LinkDirection type fields defined
in SC_Common.h. SC_LinkDirection can take values listed in Table 4. These two fields together give the link direc-

tion and link status. SM Id identifies which session manager is responsible for the link. The Other End information
element has two formats. If the link is a UNI link, it has a terminal identifier, which could be a machine name, and an
integer link identifier to distinguish multiple links connecting the same terminal. If the link is an NNI link, it contains
the link identifier at the other side that includes the switch controller identifier, link identifier and the Connection
Manager identifier, which could be the remote CP’s machine name.

4.1.3. NCCP_ReserveMP Message

A NCCP_ReserveMP message carries the information to let the child process reserve resources for a multipoint.

Table 4: SC_LinkDirection

Value Description

SC_LinkDirection_NULL (0) No Link available

SC_LinkDirection_ToSwitch (1) Input Link

SC_LinkDirection_FromSwitch (2) Output Link

SC_LinkDirection_Bidirectional (3) Bidirectional

NCMO Id Local Id Trunk Id Type InCap OutCap Direction LinkStatus SM Id OtherEnd

Figure 9. LinkStatus Message Format

22 2 2 4 4 2 2 2

LinkStatus Message

Terminal Id

32

LinkId

2

Other End Information Element for UNI

Switch Id Link Id CM Id

4 2 32

Other End Information Element for NNI

10

It contains the multipoint information and the information of sinks and sources in the multipoint. The message format
is shown in Figure 10.

Multipoint information includes the node identifier (Node Id); a rendezvous marker (MP Marker) which helps to
find the multipoint in the child domain. If the multipoint does not exist yet, this field will be filled with
NULL_Marker. MP Type takes the value of VP_Connection or VC_Connection. Op Code takes a value from Table 5.

Bandwidth is a structure with three 4 byte unsigned integers representing the peak rate, the average rate and the burst
size.

The sink/source information element contains the following fields. A two-byte unsigned integer link id identifies
a link in the abstract switch. Direction is a one-byte unsigned integer taking the value in Table 6. VPI and VCI are
two-byte unsigned integers. Valid Code takes a value defined in Table 7. The Valid code tells the child process that

Table 5: MP or Sink/Source OP Code

NCMO_OPType Description

NCMO_OP_NULL No operation. (There could be operation on sink/
source, but no operation on multipoint)

NCMO_OP_Alloc Allocate a new MP or sink/source

NCMO_OP_Drop Drop an existing MP or sink/source

NCMO_OP_Commit Commit a previous reserved operation

Table 6: Direction Code

Direction Description

SC_LinkDirection_Null (0) Both directions are invalid

SC_LinkDirection_ToSwitch (1) Input link

SC_LinkDirection_FromSwitch (2) Output link

MP Info Reserve Element

NCCP_ReserveMP Message Format

Node Id MP Marker MP Type OP Code Bandwidth

2 28 1 2 12

45

MP Information

Link Id Direction VPI VCI VALID OP Code Status

2 1 2 2 1 1 1

10

Reserve Element

Figure 10. NCCP_ReserveMP Message Format

11

who is responsible to allocate the VXI. The OP Code field takes a value from Table 5. The Status field is only valid in
a response message. It takes the value of either NCMO_SUCCESS or NCMO_FAIL.

4.1.4. NCCP_UpdateHardwareMP Message

An UpdateHardwareMP message tells the child process to set up the hardware tables in physical switches. The
OP Code field always has the value NCMO_Commit. Other fields are the same as in the NCCP_ReserveMP message.

SC_LinkDirection_Bidirectional (3) Bidirectional link

Table 7: Valid Code

Valid Code Description

ALLOCATE_FOR_ME allocate next available VXI

USE_MINE verify the carried VXI

INVALID Do not allocate or verify

LEAVE_IT_ALONE Same as INVALID

Table 6: Direction Code

Direction Description

MP Info Reserve Element

NCCP_UpdateHardwareMP Message Format

Node Id MP Marker MPType Op Code Bandwidth

2 28 1

45

MP Information

Link Id Direction VPI VCI OP Code

2 1 2 2 1

8

UpdateHardware Element

Figure 11. NCCP_UpdateHardwareMP Message Format

1 12

12

4.1.5. NCCP_RollbackMP Message

The higher level process can send a number of reserveMP requests. If one of them fails, it may decide to release

all the resources reserved for the set of operations. In this case, the higher level process can send an
NCCP_RollbackMP request. When an NCCP_RollbackMP request is received, the lower level process should pull
the system back to the previously committed state. There is only one information element in the rollback request, a
multipoint rendezvous marker, which is used to locate the multipoint on which the operation is performed.

4.2. NCCP Objects

The NCCP API is object-based. There are five main types of objects: the global NCCP object, channel address
objects, requester objects, requestee objects, and response objects. The global NCCP object, discussed briefly in Sec-
tion 4.3, is a per-process object contained in the NCCP library that manages NCCP communications for the process.
Channel address objects are used to specify the destination of a message. A requester object represents a request
operation in the process that sends the request message, while a requestee object represents the request operation in
the process that receives the message; both objects represent request messages. A response object represents a
response message.

The Core NCCP (C-NCCP) provides the global NCCP class and base classes for the requester, requestee, and
response objects and the classes that support C-NCCP operations. The developer of an Extended NCCP (E-NCCP)
protocol — for example, the designer of Jammer [3] — is responsible for deriving additional requester, requestee,
and response classes from the base classes. For example, to support PING, the developer might derive
NCCP_RequesterPing, NCCP_RequesteePing, and NCCP_ResponsePing classes. The class hierarchy that results is
shown in Figure 13. This figure also shows that the NCCP requester base class is derived from the REND_base_class
and SCHEDULER_base_class [7].

4.3. NCCP_GlobalClass and the NCCP_Global Object

The NCCP_GlobalClass is the “engine” of NCCP and manages communications for the protocol. The class con-
tains a single static instance of the class, the NCCP_Global object. A program using NCCP should use only this

Figure 12. NCCP_RollbackMP Message Format

MP Rendezvous Marker

28

Figure 13. NCCP Class Hierarchy.

NCCP_RequesterPing NCCP_RequesteePing NCCP_ResponsePing

NCCP_ResponseBaseNCCP_RequesteeBaseNCCP_RequesterBase

REND_base_class SCHEDULER_base_class

13

object in its interactions.

The NCCP_Global object API provides four types of operation:

1. Channel registration. The setBTPAgent() function is used to register the BTPWrapper, the object which
is to be used for BTP communications. The addPriquePair() function is used to register a PriquePair.
The NCCP may have only one BTPWrapper, but may have several PriquePairs. It is not possible to
unregister a PriquePair after it has been registered. It is possible to change the BTPWrapper or unregis-
ter it (by registering a NULL pointer), but the utility of this is questionable.

2. Scheduler registration. The setScheduler() function is used to register a Scheduler_class object [7] with
NCCP. This object is then used by NCCP to cause time-outs on requester objects. It is not necessary to
register a scheduler with NCCP; however, if a scheduler is not registered it is not possible to schedule
time-outs on requester objects.

3. Message sending. The send() function takes as arguments an NCCP_ChannelAddress (see Section 4.4)
and a ByteBuffer containing a message. The function transmits the message over the selected channel.
This is a private function which is available only through the send() functions of message base classes.

4. Protocol engine. The touch() function examines each of the registered communications channels to
determine if a message is available. If a message is available, it is read and processed. Note that when
each of the communications channels is examined, if no message is available on any of the channels, the
context switcher will be called [7]. The touch() function also calls the scheduler, if one has been regis-
tered, thereby causing time-outs on request objects or other scheduled time-outs.

The typical use of NCCP is thus relatively simple. The process first opens the communications channels that will be
used (in the case of the GBNSC, this is the PriquePair to its CMSS parent and a BTPWrapper for accessing the ATM
card and Jammer) and registers them with the NCCP_Global object. A scheduler is then created and registered. In the
main loop (or equivalent construct) of the process, the touch() function is called to process any messages that have
arrived and check for time-outs. When the process wishes to initiate an NCCP operation, it creates a requester object
of the appropriate derived type and calls that object’s send() function to cause a message to be transmitted. Responses
are handled in a similar way; a response object is created and its send() function is called.

4.4. NCCP_ChannelAddress

The NCCP_ChannelAddress class is used to represent the destination of an NCCP message. Objects of this type
represent either a particular PriquePair or a BTP address. A PriquePair uniquely specifies the destination process
since each PriquePair connects to only one other process. A BTP address is used by NCCP to communicate over the
registered BTPWrapper, with the address uniquely specifying the destination process.

An object of this type must be supplied to the constructor of the NCCP_RequestBase class; in other words, when
a process using NCCP wants to make a request, it must specify the process to which the request is to be sent. The
object is copied into the requester object and is used by that object’s send() function to transmit the request to the tar-
get process. When a request message is received, a requestee object is generated which contains the source of the
message. This source is then passed on to each response object that is created for the requestee object, and is then
used by the response object’s send() function to transmit the response message back to the source of the original
request.

4.5. NCCP_RequesterBase and Requester Objects

A requester object represents an operation request in the process that originated the operation. When a process
determines that it must perform an operation, it creates a requester object of the appropriate type and sets the parame-
ters of the object. It then calls the object’s send() function, which causes a message to be sent to another process. The
process may also schedule a time-out for the requester object. The process can then do other work, being sure to call
the NCCP_Global object’s touch() function. As responses to the operation arrive, they are rendezvoused with the

14

requester object and processed by that object. The object may also time-out, if the response(s) fail to arrive within the
scheduled time limit. The object may be deleted at any time; the rendezvous mechanism will take care of discarding
any responses that arrive after that time.

The base class for requester objects contains three data members. The operation type is an unsigned integer
which distinguishes among all the various operation types in NCCP. The class also contains an
NCCP_ChannelAddress, which, as described above, indicates the destination of the request. Finally, the class con-
tains a Register_List_class pointer which is used in scheduling.

The base class constructor must be provided the operation type and the destination address. These are stored in
the object, and the other base class data is initialized. The derived class constructor may then set the values of any
additional class members. The virtual destructor does not need to do anything special.

As indicated in Figure 13, the NCCP_RequesterBase is derived from two other classes, the REND_base_class
and the Scheduler_base_class. The REND_base_class provides a rendezvous mechanism which is used to direct
incoming responses to the appropriate requester object. The deriver of a requester class is responsible for defining a
virtual REQ_rendezvous() function which takes a void pointer argument. This function will be called when a response
arrives. The function argument is a pointer to a ByteBuffer containing the response message.

The Scheduler_base_class handles time-outs on requester objects. The deriver of a requester class must define a
virtual timed_out() function taking no arguments. This function will be called when the requester object times out.
All timed_out() functions should call the baseTimeout() function of the requester base class. This function “cleans
up” after the time-out so that the destruction of the requester object is performed correctly.

Support for time-outs is provided through two base class functions. The scheduleTimeout() function takes two
arguments representing seconds and microseconds (the latter is, by default, 0) and, using the scheduler registered
with the NCCP_Global object, sets up a time-out after the indicated interval. The cancelTimeout() function cancels
any previously-scheduled time-out.

The base class send() function is used to transmit the request. The function makes use of the virtual store() func-
tion, which places the contents of the request into a ByteBuffer. If an operation does not have any data that must be
transmitted (for example, a PING would probably not need to pass any data to the other process), this function need
not be defined. However, if the operation needs to pass data (for example, a ReserveMP), a store() function for the
requester object must be defined. The first thing that the store() function should do is to call the base class store-
Header() function, which places a message phase (a constant, in this case representing a request message), the opera-
tion type, and the requester object’s rendezvous marker into the ByteBuffer. The store() function may then add other
data to the ByteBuffer. The routine should add no more than 950 bytes of additional data, a limit related to the maxi-
mum message size in PRIQUE and BTP communications. {Why does this limit exist?}

4.6. NCCP_RequesteeBase and Requestee Objects

A requestee object represents an operation in the process that received the request message. When a request mes-
sage is received during a call to the NCCP_Global object’s touch() function, it is passed to a function baseHandle()
which consists primarily of a large switch statement. This function examines the message to determine the operation
type and creates a requestee object of the appropriate type. The handle() function of that object is then called. This
function does whatever is necessary to process the operation, as defined by the deriver of the class.

The base class for requestee objects contains three data members. The operation type is a small integer, as used
in the corresponding requester class. The class also contains an NCCP_ChannelAddress, which indicates the source
of the request and the destination of responses. Finally, the class contains a REND_Marker_class object which is
obtained from the requester base class. This is used in constructing response objects, so the response can rendezvous
with the requester object.

The derived constructor should take (at least) two arguments, the source address and a ByteBuffer containing the
message. The constructor should call the base class constructor with the source address as an argument, then use the

15

retrieve() function to read the message from the ByteBuffer. The derived constructor may then set the values of any
additional class members. The virtual destructor does not need to do anything special.

Each requestee class contains a virtual void retrieve() function, which takes the contents of the request from a
ByteBuffer. This function should reverse the action of the corresponding requester class store() function. If an opera-
tion does not have any data that must be transmitted in the request message, the retrieve() function need not be
defined. However, if the operation needs to transmit data, a retrieve() function for the requestee object must be
defined. The first thing that the retrieve() function should do is to call the base class retrieveHeader() function, which
extracts the message type (request), operation type, and rendezvous marker from the ByteBuffer.

The derived requestee class should define a virtual handle() function. This function is called by the baseHandle()
function after the requestee object is created. It does whatever processing is necessary for the operation. If the func-
tion returns TRUE, the requestee object will be deleted by the baseHandle() function. This would be used if the pro-
cess can immediately respond to the request. If it returns FALSE, the requestee object will not be deleted. This would
be used if the process wants to keep the requestee object (e.g., on a list) and process it later.

4.7. NCCP_ResponseBase and Response Objects

A response object represents a response message. The same object type is used in both the requester process and
the requestee process; however, the objects are only generated in the requestee process. When the requestee process
determines that it should send a response to a particular requester object, it creates a response object of the appropri-
ate type and sets the parameters of the object from the requestee object. These parameters include the message desti-
nation and rendezvous marker. It then calls the response object’s send() function, which causes a message to be sent
to another process, and deletes the object. The message is received by the other process in a call to the NCCP_Global
object’s touch() function. The rendezvous marker is extracted from the message and used to rendezvous with the orig-
inal object. A pointer to a ByteBuffer containing the response is passed via the rendezvous.

The base class for response objects contains four data members. The operation type is a small integer and is the
same as the operation type for the requester and requestee objects. The NCCP_ChannelAddress indicates the destina-
tion of the response. The REND_Marker_class object is used for rendezvous. Finally, the class contains a Boolean
end-of-message marker which may be used by the derived classes when the response to a request must be broken up
into several messages.

Response classes should have two constructors. The first constructor, used on the requester side, should take as
its argument a ByteBuffer reference and should first call the retrieve() function with the same argument. This function
initializes the response object from the message contained in the ByteBuffer. The second constructor, used on the
requestee side, should take as one of its arguments a requestee object reference and invoke the base class constructor
with the same argument, cast to a reference to a requestee base class. The base class constructor will initialize the
operation type, channel address, rendezvous marker, and end-of-message marker, after which the derived class con-
structor can initialize any additional data as desired. Figure 13 in Section 5.7 gives an example of the two construc-
tors. The virtual destructor does not need to do anything special.

The derived response class should define virtual store() and retrieve() functions to place the contents of the
object into, or take them out of, a ByteBuffer. The two functions should reverse one another’s actions. If the response
does not contain any data, these functions may be omitted. If they are defined, the first thing that the store() function
should do is to call the base class storeHeader() function; and similarly the first thing that the retrieve() function
should do is to call the base class retrieveHeader() function.

5. The NCMO

The NCMO (Node Controller Managed Object) represents the interface between a CMSS parent and a child pro-
cess. Each parent process in the CMSS has an NCMO object for each of its children, as shown in Figure 14. The
NCMO provides an API which allows creation of the child process and provides connection-oriented operations on
an abstract switch.

16

The operations on an NCMO are transmitted from the parent to the child process through NCCP messages. The
child process translates the abstract operations into more concrete operations, as appropriate to the particular process.
For example, if the child is an NC, it will translate the NCMO operations into operations on its own NCMO objects;
if the child is a GBNSC, it may translate the NCMO operations into control cell sequences which construct and mod-
ify cell recycling distribution trees; and if the child is some other type of SC, it will translate the NCMO operations
into whatever actions are appropriate to implement the commands.

The remainder of this section first presents the processing that is performed when an NCMO object is initialized.
Then we introduce NCMO objects followed by the discussion of using the NCMO’s reserve/commit/update protocol.
The final portion of this section presents some aspects of the implementation of the NCMO.

5.1. NCMO Initialization

The initialize() function for an NCMO object currently takes eleven arguments:

1. An integer pair of (Node Id, Nod Id mask) which uniquely identifies the child within the node domain.
As described in Section 2, the node construction can be nested. A parent node is responsible for assign-
ing a unique node id for each of its children. This local node id are appended to the parent node id to
form a hierarchical node id. The node id mask indicates the number of significant bits in the node id.

2. An NCMO Id, which is an integer chosen by the parent process. This integer is not processed by the
child in any way, but is included in the NCCP messages from the child so the NCCP requester or
requestee objects can determine which NCMO object is affected by the message. The user of the
NCMO must provide a function mapIdentifierToNCMO() which takes an identifying integer and returns
a pointer to the appropriate NCMO object.

3. A string containing the name of the configuration file that the child process is to use.

4. A pointer to a Signal Handler object [7]. This will be used in creating the PriquePair communications
channel.

5. A pointer to a Context Switcher object [7], also used in creating the PriquePair.

6. A rendezvous marker object indicating whom to report to when link states change.

7. A pointer to a Scheduler object [7] which is to be used for time-outs during the process creation. This
argument defaults to a NULL pointer, indicating that no time-outs will occur.

8. An integer value indicating the time in seconds that the process will wait for the child to initialize itself.

CM

Figure 14. NCMOs in the CMSS Tree.

NCMO

NC

NCMONCMO NCMO

SC SC SC

NCCP

NCCPNCCPNCCP

17

The default value is 30.

9. An integer simulation slot number, used to contact the network or network simulator. This value
defaults to 0 (the “real” network).

10. An integer debug level which will be used to determine how much debug information to be printed. The
default value is 0 (no printing).

The initialize() function first creates a new PriquePair object using the signal handler and context switcher pro-
vided. The parent process registers the PriquePair object with the NCCP global object. A child process is started. If a
scheduler object was provided, the parent process schedules a time-out. The parent process then enters a loop in
which it touches the NCCP global object until the child process responds with a ChildStatus message, the child pro-
cess dies (a SIGCHLD signal is caught), or a time-out occurs. The parent initialize() function then returns. The caller
may inspect the child status at that time to see if the child is ready or if its initialization failed.

The initialization function in the forked child process creates a command line for the subsidiary:

<executable> nodeId nodeIdMask ncmoNumber configFile priqueId1 priqueId2 simSlot debugLevel

where the executable is the program to run, childId, childIdMask, ncmoNumber, configFile, simSlot, and debu-
gLevel arguments are the ones passed to the initialize() function and priqueId1 and priqueId2 are the shared-memory
identifiers for the PriquePair communications channel. The subsidiary process initialize itself withe the configuration
file provided. At the end of its initialization, it sends an NCCP ChildStatus message to report its state.

5.1.1. NCMO Manager Library

The NCMO Manager library provides a convenient means to manage NCMO objects, particularly for a Node
Controller process which have many such objects. The library provides a static instance of an NCMO manager
object. Internally, the manager maintains a table of NCMO objects which are identified by index (starting with 0).
The signal handler, context switcher, scheduler, default time-out, simulation slot, and debug level parameters of an
NCMO object are also contained in the manager; the same values are used for all the NCMO objects. The user of the
manager object must first define the number of NCMO objects that are to be used and provide the signal handler, con-
text switcher, and other global parameters.

The process may separately initialize each of the NCMO objects by providing the index, the configuration file,
and (optionally) a time-out value to override the default value. Deleting the NCMO manager object causes the dele-
tion and shutdown of all the subsidiary processes. The NCMO manager object provides a boolean baseHandle() func-
tion which takes an NCCP operation type, NCCP channel address, and ByteBuffer. If the message in the ByteBuffer
corresponds to one of the NCMO messages, the function will process it (create the requestee object and call its han-
dle() function) and return TRUE. Otherwise it will return FALSE. This function can be used in the default case of the
NCCP requestee base class baseHandle() function which the programmer must supply.

The NCMO manager library supplies the mapIdentifierToNCMO() function that is required by the NCCP opera-
tions. This function may also be used by the process to obtain a pointer to the NCMO object, which may be used to
access all the operations on the NCMO.

18

5.2. NCMO Objects

Table 15 shows all the NCMO objects and their inheritance relationship.

5.2.1. NCMO_Object

An NCMO object holds pointers to some commonly accessible objects such as context-switcher, scheduler. It is
responsible for generating MultiPoint (MP) objects as required. After the creation of MPs, the responsibility to main-
tain these MPs is left to the user who requested the creation of the MPs. An NCMO object maintains a list of
NCMO_Link objects. All the information for a link comes from the NCCP_LinkStatus message and is set by a dis-
closeLink() member function.

5.2.2. NCMO_Link

An NCMO_Link object keeps all the attributes of a link and the link status. An NCMO_Link object is responsi-
ble for generating the NCMO_Source and NCMO_Sink objects. After creation, it is the user’s responsibility to main-
tain these objects. In the current implementation, the NCMO_Link object does not check the resources or QOS when
it is called to generate a sink or source. Part of the resource allocation and QOS checking could be built into the mem-
ber function of this object.

5.2.3. NCMO_Multipoint

An NCMO_Multipoint object represents a multipoint-to-multipoint connection. Some important fields of an
NCMO_Multipoint are listed in Table 8. Table 9 lists the public functions of an NCMO_Multipoint.

Table 8: Attributes of a NCMO_Multipoint

Field Name Description

type VP or VC

state and prevState Keep the current connection state.

bandwidth Resource requirement for the connection

source and sink list lists of NCMO_Sources and Sinks

upMarker rendezvous object to report to higher level

selfMarker this MP’s rendezvous marker passed to the child

NCMO_Objects

NCMO_Multipoint

NCMO_SourceSinkBase

NCMO_Source NCMO_Sink

NCMO_Link

Figure 15. NCMO Objects

19

5.2.4. NCMO Sink and Source

An NCMO_Sink or an NCMO_Source is derived from NCMO_SourceSinkBase. An NCMO_SourceSinkBase
object represents an input or output port for a connection. A NCMO_SourceSinkBase object maintains the following
attributes. An NCMO_Sink or an NCMO_Source does not have extra attributes. It just implements the virtual func-

downMarker The rendezvous marker for the MP in child

Table 9: Public Functions of NCMO_Multipoint

Function Name Description

reserve() reserve resources for the MP

updateHardware() send message to subsidiary to set up switch tables

rollback() bring the MP back to previously committed state

connectSource(
NCMO_SourceSinkBase*)

add a source into its source list

connectSink(
NCMO_SourceSinkBase*)

add a sink into its sink list

disconnectSource(
NCMO_SourceSinkBase*)

remove a source from its source list

disconnectSink(
NCMO_SourceSinkBase*)

remove a sink from its sink list

REQ_rendezvous(void*) process response operation

Table 10: Sink and Source Attributes

Field Name Description

state and prevState Keep state and for rollback

linkId Indicating on which link

vpi, vci the VPI, VCI value

mp a pointer to the multipoint

Table 8: Attributes of a NCMO_Multipoint

Field Name Description

20

tions defined in NCMO_SourceSinkBase. Following are the most important member functions.

5.3. NCMO Reserve/Commit/Update Protocol

The discussion in the previous section may have given the impression that manipulating the NCMO objects (cre-
ating sources/sinks/multipoints and connecting them together) immediately causes changes in the switch hardware so
that the connections are physically realized. This is emphatically not the case. To build a connection structure, the
CM (or CMSS parent) must perform three distinct steps in order to affect the hardware and realize a connection:

1. Reserve - guarantees that the requested resources are available. The reserve operation may fail due to
unavailable resources. The NCMO guarantees that once objects have been reserved, the remaining two
steps can be performed (i.e., the switch tables can be updated to realize the connections) without failure.

2. Commit - indicates which objects and connections should be realized.

3. Update - changes the hardware tables so the connections represented by committed objects are realized.

There are thus four classes of NCMO functions: the object manipulation (creation, parameter-setting, and con-
nection) functions; the reserve functions; the commit functions; and the update functions. The object manipulation
and commit functions are synchronous, in that when the function returns the operation is complete. These synchro-
nous functions are entirely local to the NCMO, with no communication with any subsidiary process.

The reserve and update functions are asynchronous, in that the function initiates the operation and returns, and
the operation completes some time later. The asynchronous functions send messages to the subsidiary processes using
NCCP. The operation is completed when the NCCP response(s) are received. The asynchronous functions are passed

Table 11: Public functions of Sink and Source

Function Name Description

alloc(VPI, VCI, ValidCode) synchronously set parameters.

drop() set state and add to MP’s reserve list

commit() set state and add to MP’s commit list

rollback() return to previously committed state

packReserveMessage(list) add this element info into the list

packUpdateMessage(list) add this element info into the list

unpackReserveMessage(
NCCP_ResponseStatus,
NCCP_ReserveElement*)

set state based on the values in the reserveElement.

unpackUpdateMessage(
NCCP_ResponseStatus,
NCCP_UpdateHardwareElement*)

set state based on the values in the
updateHardwareElement

connectMP(NCMO_Multipoint*) add itself into MP’s source (sink) list

disconnectMP() remove itself from the MP’s source (sink) list.

21

a rendezvous marker object when they are called. The NCCP operation, when it receives the last response message,
will use this rendezvous marker to communicate the results of the operation to the initiating entity.

Figure 16 shows sample code for an operation that creates a VC connection between two terminals connected to
a particular node. The code first creates source, sink, and multipoint objects, sets their parameters (the VPI and VCI
are set in the object-creation calls), and connects them. All of these function calls are synchronous and merely create
data structures in the NCMO object.

The NCMO then reserves the multipoint. This function creates an NCCP requester object representing an opera-
tion which reserves the resources used by the multipoint and by all the sources and sinks connected to the multipoint
(it is also possible to separately reserve the sources and sinks) and sends the request to its subsidiary. (Probably what
is needed here is for the multipoint object to be updated to agree with the state of the connected sinks and sources and
then to have that state passed down in the NCCP request.This is the first indication to the subsidiary that there are
sources and sinks so the information in the request will have to be sufficient to create the necessary objects in the sub-
sidiary.) When the function returns, the CM can go on to do other processing while it waits for the asynchronous
operation to complete. However, it must touch the NCCP global object periodically, to cause processing of the NCCP
responses. This break in the sequence is marked by the first wavy line in the figure. At some later point, the NCCP
operation will complete and a rendezvous will occur at the requester. The rendezvous will pass information about the
operation — minimally, whether or not it succeeded. If it succeeded, the CM can continue with the code shown below
the first wavy line.

The next step is to commit the source and sink. These are synchronous functions and only modify the data struc-
tures in the NCMO object (marking the objects as committed).

The final operation is to call the updateHardware() function of the multipoint. (The suffix -Hardware is used to
emphasize that this operation, and this operation only, modifies the physical switches.) This function first marks the
multipoint object as committed (if it was not already committed) — but it does not commit any of the sources and
sinks connected to the multipoint. It then creates an NCCP_UpdateHardwareMP requester object for the operation
that commits and updates all the changes to the multipoint and to the sources and sinks connected to the multipoint
and sends the request. When the function returns, the CM may do other processing. When the NCCP operation com-
pletes, a rendezvous occurs at the requester. Assuming all the switches are still running, the updateHardware opera-
tion should always succeeds (the reserve guarantees this) so the rendezvous serves mostly to indicate that the
operation has completed.

mp = ncmo->newVPMP(&myMarker);
mp->setBandwidth(...);

vcSink = ncmoLink->getSink(VC_Connection, 3,0, USE_MINE);
vcSource = ncmoLink->getSource(VC_Connection, 0,0, ALLOCATE_FOR_ME);

vcSink->connectToMP(mp); vcSource->connectToMP(mp);
vcSink->reserve(); vcSource->reserve();
mp->reserve();

vcSource->commit();
vcSink->commit();

mp->updateHardware();

Figure 16. Sample Code

22

6. Conclusion

We have described in some detail the design and implementation of the Node Control Communications Protocol
(NCCP) and the Node Control Managed Object API. These two software libraries allow for the development of Con-
nection Management functionality on an abstract switch model, thus facilitating the implementation of Connection
Management across a network comprised of heterogenous switches.

23

References
[1] ANSI T1S1 Technical Sub-Committee. Broadband Aspects of ISDN Baseline Document. T1S1.5/90-001, June

1990.

[2] ATM Forum, “The ATM Forum Technical Committee User-Network Interface (UNI) Specification Version 3.1”,
The ATM Forum 1994.

[3] O.M. Beal, “Jammer Language Description: A Script Language for GigaBit Switch Testing,” Washington Uni-
versity, Applied Research Laboratory Working Note ARL-96-01, March 1996.

[4] CCITT. Recommendations Drafted by Working Party XVIII/8 (General B-ISDN Aspects) to be Approved in
1992, Study Group XVIII—Report R 34, December 1991.

[5] CCITT Recommendation Q.931 (I.451), ISDN User-Network Interface Layer 3 Specification, Geneva, 1985.

[6] K. Cox and J. DeHart. “Connection Management Access Protocol (CMAP) Specification,” Washington Univer-
sity, Department of Computer Science Technical Report WUCS-94-21, Version 3.0, July 1994.

[7] J. DeHart, “Connection Management Software System (CMSS) Architecture,” Washington Univer-
sity, Applied Research Laboratory Working Note ARL-95-03, June 1996.

[8] J. DeHart and D. Wu, “Connection Management Network Protocol (CMNP) Specification,” Washington Univer-
sity, Applied Research Laboratory Working Note ARL-94-14, Version 1.0 DRAFT, September 1994.

[9] J.S. Turner, “A Gigabit Local ATM Testbed for Multimedia Application.” Washington University, Applied Re-
search Laboratory Technical Report ARL-94-11 Version 3.1, January 1996.

[10] D. Wu, K. Cox, and J. DeHart, “GBNSC: The GigaBit Network Switch Controller,” Washington University, Ap-
plied Research Laboratory Working Note ARL-94-12, Version 1.2, June 1996.

