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Abstract

Active networking in environments built to support link rates up to several gigabits
per second poses many challenges. One sucE challenge is that the memory band-
width and individual processing power of the router’s microprocessors IimitrtT\e total
available processing power of a router. In this article we identify and describe three
key components, which promise a high-performance active network solution. This
solution implements the key features typical to active networking, such as automatic
protocol deployment and application specific processing, and it is suitable for a
gigabit environment. First, we describe the hardware of the Active Network Node
[ANN], a scalable high-performance platform based on offthe-shelf CPUs connect
ed to a gigabit ATM switch backplane. Second, we introduce the ANN’s modular,
extensible, and highly efficient operating system {NodeOS). Third, we describe an
execution environment running on top of the NodeOS, which implements a novel

large-scale active networking architecture called Distributed Code Caching.

ctive networks [1] are packet-switched networks
in which packets can contain code fragments that
are executed on the intermediary nodes. The
%, code carried by a packet may extend and modify
the net work infrastructure. The goal of active network
research is to develop mechanisms to increase the flexibility
and customizability of the network and to accelerate the pace
at which network software is deployed. Applications running
on end systems are allowed to inject code into the network to
change the network’s behavior in their favor.

Until recently, active networking research concentrated on
two distinct approaches: “programmable switches” [2, 3] and
“capsules” [4, 5]. These two approaches can be viewed as the
two extremes in terms of how program code is injected into
network nodes. Programmable switches typically upgrade by
implicit injection of code by a network administrator.
Research in the area of programmable switches focuses on
how to upgrade network devices at runtime, on upgrades
introduced by administrators which support end system appli-
cations (e.g., congestion control for real-time data streams),
or on a combination of both. Example applications include
self-learning Web caches, congestion control algorithms,
online auctions, and sensor data mixing. Since the code is
injected out-of-band, programmable switches provide no auto
mated on-the-fly upgrading functionality. Capsules, on the
other hand, are packets carrying small amounts of program
code, which is transported in-band and executed on every
node along a packet’s path. This approach introduces a totally

new paradigm to packet-switched networks. Instead of “pas-
sively” forwarding data packets, routers execute the packet’s
code. The result of that computation determines what hap
pens next to the packet. Applications include simple proof-of-
concept ping applications, network diagnostic tools, active
multicasting, and more. This approach has the potential to
have an enormous impact on the future of networking. How-
ever, in the near future, security constraints will cause severe
performance problems for capsule-based solutions. Capsules
commonly make use of a virtual machine that interprets the
capsule’s code to safely execute it on a node. In order to
ensure security, the virtual machines must restrict the address
space a particular capsule might access, thus restricting the
application of capsules. We expect network links to be 10
Gb/s or faster in the near future. With an optimistic average
packet size of 512 bytes for IP traffic, a router has to process
2.6 million packets/s on every port, which is less than 380
ns/packet. A 300 MHz Pentium™ processor cannot therefore
spend, on average, more than 114 cycles to receive, process,
and forward a packet just to keep up with the link speed.
Even if we assume that a significant fraction of the packets
forwarded do not require active processing and can be han-
dled in hardware, it seems obvious that active network archi-
tectures based on virtual machines are not well suited to a
multigigabit scenario. They may, however, be relevant to net-
work management.

Recently, convergence between the pure “programmable
switch” and pure “capsule” approaches became visible. Most
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of the research groups involved agree that some sort of code
caching makes a lot of sense. The main motivation for this
convergence is the realization that potential capsule code is
more application-specific than user-specific. In the same way,
users usually do not write their own applications, but use off-
the-shelf software. They are not expected to inject their own
programs into the network, but use code from a set of code
modules written by specialists. This allows for various opti-
mizations in the form of caching, as we will see in the related
work section. We will also show how our approach aggressive-
ly builds on this same realization.

Another very important observation is that the deployment
of multimedia data sources and applications (e.g., real-time
audio/video, IP telephony) will produce longer-lived packet
streams (flows!) with more packets per session than is com-
mon in today’s Internet. Especially for these kinds of applica-
tions, active networking offers very promising possibilities:
media gateways, data fusion and merging, and sophisticated
application-specific congestion control. Both our hardware
and software architectures support the notion of flows. In par-
ticular, the locality properties of flows are effectively exploited
to provide for a highly efficient data path.

This article describes the design of a high-performance
active network node (ANN) that supports network traffic at
gigabit rates and provides the required flexibility of active net-
work technology for automatic, rapid protocol deployment
and application-specific data processing and forwarding. In
the next section we look at ongoing research conducted in
other laboratories. We then describe the hardware of our
ANN, and the software platform running on top of that hard-
ware. We show how we integrate our Distributed Code
Caching (DAN) architecture [6] on top of our platform. Final-
ly, we summarize our ideas and take a look at what we plan to
do in the future.

Related Work

Active networking research has been ongoing for several
years. Various research labs have described and implemented
interesting approaches. In this section we give an overview of
some of these efforts.

MIT

Tennenhouse ef al., [1] proposed “capsules,” that is, data-
grams carrying small fragments of code, and an implementa-
tion in the form of an IP option [S]. The TCL language and a
stripped-down TCL interpreter are used to provide safe exe-
cution of the code. Some simple well-known network utilities
(e.g., traceroute) have been implemented using capsules. So
far, this work is mainly focused on a proof of concept for the
capsule idea. To overcome security issues, the capsules in this
approach are interpreted by a virtual machine. This method of
execution introduces performance problems.

Furthermore, this group proposed the ANTS [7] toolkit
(downloadable code available). The main goal of ANTS is to
provide an architecture for dynamic network protocol deploy-
ment. It introduces an optimization to the traditional capsule
model. Instead of carrying code in every packet, packets carry
pointers to code. This code is then loaded the first time it is
needed from the previous hop along a packet’s path. Java is
used as a programming language for active code. This
approach optimizes bandwidth usage with the drawback of a

! Flows are sequences of packets with a common five-tuple of IP header
fields consisting of source address, destination address, source port num-
ber, destination port number, and protocol.

considerable initial delay. Furthermore, the usefulness of
active reliable multicast is shown using the ANTS platform
{8]. Results are measured in [9] and show significant perfor-
mance gains. Reference [9] also proposes various applications
of active network technologies like sensor data mixing and
inspired us to follow a similar approach. Recently, this group
presented PAN [10], an approach similar to ANTS with the
difference that instead of Java, machine code is transported in
packets. This gives better forwarding performance, but securi-
ty and interoperability issues are not addressed. Therefore,
this approach has yet to prove its practical usefulness.

BBN

Smart Packets [4] is another capsule approach. The main focus
is on implementation of extended diagnostic functionality in
the network. A new compact programming language called
Sprocket is specified and implemented. Its goal is to produce
code that is compact enough to fit into an Ethernet packet.
Sprocket programs are compiled into “Spanner” code that
represents the assembly language for Smart Packets. Spanner
code is interpreted in a virtual machine on the node receiving
the packet. The programs are authenticated before interpreta-
tion and runtime-limited during execution. With its clear
focus on network management, Smart Packets provide a very
powerful improvement over Simple Network Management
Protocol (SNMP), which is used for management of conven-
tional networks. The group is in the process of deploying
Smart Packets on the CAIRN network.

Ceorgia Tech

Zegura et al. {3, 11, 12] introduced a generic view of net-
work code as a set of functions which are called depending
on identifiers found in data packets. Application-specific
data processing is implemented, as an example, for conges-
tion control for MPEG video streams. The functions
referred to in the data packets are loaded out-of-band into
the network nodes.

This group also showed how self-organizing network caches
could be built using active network technologies. They used
simulations and analytical models to evaluate the performance
gains offered by caching. This work shows that network
caching is an application of active networks worth pursuing.
Our system builds in part on the theoretical background and
terminology introduced in (3], but significantly extends the
system’s capabilities.

University of Pennsylvania

The SwitchWare [13] project uses three important components:
active packets, switchlets, and a secure active router infrastruc-
ture. Active packets are similar to MIT’s capsules. Switchlets
are dynamically loadable programs that provide specific ser-
vices on the network nodes. Active packets are programmed in
a simple language called Programming Language for Active
Networks (PLAN). PLAN programs are strongly typed and
statically type-checked to provide safety before being injected
into the network. Furthermore, PLAN programs are made
secure by restricting their actions (e.g., a PLAN program can-
not manipulate node-resident state). To compensate for these
limitations, plan programs can call switchlets. Switchlet mod-
ules are written in a language (CAML) which supports formal
methodologies to prove security properties of the modules at
compile time, and no interpretation is needed. The code frag-
ments are authenticated by the developer and explicitly (not
on demand) loaded into the switch. At the lowest layer, the
Secure Active Network Environment (SANE) ensures the
integrity of the entire environment. SANE identifies a mini-
mal set of system elements (e.g., a small area of the B1OS) on
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which system integrity depends and builds an integrity chain
with cryptographic hashes on the image of the succeeding
layer in the system before passing control to that image. If an
image is corrupted, it is automatically recovered from an
authenticated copy over the network. Although the project
shows very interesting properties, the main problem with this
architecture seems to be that PLAN programs are not power-
ful enough for many applications. Therefore, switchlets have
to be installed out-of-band to provide “handles” for the
PLAN programs. This makes the system less flexible. Active
Bridging [2] is an application of SwitchWare which shows
reprogramming of a bridge with switchlets.

Another group at the University of Pennsylvania works on
the Programmable Protocol Processing Pipeline (P4, [14])
project. They use reconfigurable field programmable gate
arrays (FPGAS) to implement datagram processing function-
ality (forward error correction in their case) in hardware.
Using this kind of hardware support looks very promising for
the future of active networking. As far as we know, this is the
only group besides us to consider hardware support for active
networking at this point in time.

University of Arizona

Scout [15] is a communication-oriented operating system. The
kernel is a customized composition of low-level communica-
tion primitives that are implemented as modules. Modules
implement independent functionality, such as IP, UDP, or
TCP protocols. Modules can be combined to form paths that
build a logical channel over which 1/O data flows. Joust [16]
runs on top of Scout and consists of an implementation of the
Java virtual machine (VM) including both the runtime system
and a just-in-time compiler. The VM’s application program-
ming interface (API) has been extended to interact closely

with Scout and to allow applications to access low-level
resources. All fixed components are written in C or Java and
compiled to machine code ahead of time. The Joust/Scout
implementation of ANTS performs two to three times faster
than an implementation using Sun’s JDK and an off-the-shelf
operating system like Linux. The Scout/Joust combination
provides the fastest Java environment for active networks doc-
umented thus far. However, it still looks like it is not suited
for high-volume high-bandwidth traffic.

Columbia University

Netscript [17] is middleware for programming functions of
intermediate network nodes. The Netscript programming lan-
guage allows script processing of packet streams with a focus
on routing, packet analyzers, and signaling functions. Netscript
programs are organized as mobile agents that are dispatched
to remote systems and executed under local or remote con-
trol. The goal of Netscript is to simplify the development of
networked systems and to enable their remote programming.
The Netscript project envisions networks that support flexible
programmability and dynamic deployment of software at all
nodes. The Netscript language includes constructs and abstrac-
tions that greatly simplify the design of traffic-handling soft-
ware. These abstractions hide the heterogeneous details of
networked systems. Protocol messages are defined and encod-
ed as high-level Netscript objects. Netscript programs are
message interpreters that operate on streams of messages.
Messages can be encoded either as high-level Netscript
objects or in a format compatible with existing standards.

Implications on Our Work

The use of interpreted capsules has a lot of potential in
areas like network management, where performance is not
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a primary concern. As demonstrated by others, using an
interpretation-based approach delivers far more flexible
mechanisms.for network management than traditional
approaches (e.g., SNMP). Java as the language of choicc
for capsules provides the advantages of having a lot of mar-
ket and research momentum. This leads to a variety of
available execution environments for Java capsules and
increasingly higher quality of these environments. We
therefore decided to support the ANTS execution environ-
ment on our ANN node architecture. However, for applica-
tions requiring a maximal amount of computation
performance, minimal latency, and high bandwidth, our
DAN architecture promises to be better snited. We describe
the ANN’s hardware and software architecture in the next
two sections before we elaborate on the implementation of
DAN on our platform.

The Active Networking Node Hardware

The current trend in Internet router technology is to imple-
ment an increasingly higher amount of datagram processing
in hardware application-specific integrated circuits (ASICs).
Most modern high-performance IP routers are capable of
forwarding standard datagrams (without special features
like IP options) entirely in hardware. This is required for
large backbone routers to keep up with link speeds. These
routers typically use ASICS on every port, which have high-
bandwidth access to a local table of routes. The central
CPU is only involved in processing of nonstandard data-
grams and to implement control-path functionality such as
routing protocols.

By definition, active networking extends the amount of
processing spent on a single packet; and since the processing
is application-specific for a potentially significant variety of
applications, it cannot be implemented in ASICS. We
believe, however, that with the following set of hardware
design measures we can optimally address the problem.
Active networking router hardware designed for high perfor-
mance requires:

* A high number of processing elements compared to the
number of router ports. A single central CPU attached to a
backplane serving all ports is unable to keep up with link
speed even for a small number of ports and relatively low
bandwidth links (e.g. 10 Mb/s). We use a general-purpose
CPU and an FPGA on every port of a switch backplane. We
call the combination of CPU and FPGA the processing
engine. The CPU takes care of the majority of active func-
tions applied to a packet, while the FPGA implements
functions which are particularly performance-critical in
hardware. Both can be programmed on the fly.
Tight coupling between a processing engine and the network,
as well as between the processing engine and a switch back-
plane. Since the main limiting factors are processing power
and memory bandwidth, one has to make sure that these
valuable resources are used in the most effective fashion.
Two selective measures are applied. First, we benefit from
the fact that most network traffic is flow-oriented. Bursts of
packets share important forwarding properties that are, once
determined, common to all packets of a particular flow.
Thus, the majority of non-active packets allow cut-through
routing directly through the switch backplane without CPU
intervention. Second, by tightly coupling the processing
engine to the link, packets arrive at an ANN with minimal
overhead through zcro-copy direct memory access (DMA).
* Scalable processing power to mcet the demands of active
processing of packets. Computation on active flows must be
cvenly distributed over the processing engines available.

The top-level hardware architecture for the ANN is shown
in Fig. 1. It is derived from our high-performance IP routing
architecture [18], and has been refined and optimized for the
purpose of active networks. The node consists of a set of
active network processing elements (ANPEs, four in Fig. 1)
connected to an asynchronous transfer mode (ATM) switch
fabric [19]. ANNs are interconnected only through ANPEs.
The scalable switch fabric currently supports eight ports with
data rates as high as 2.4 Gb/s on each port. The ANPE com-
prises a general-purpose processor, a large FPGA (100,000
gates), and memory. The ANPEs are connected to the back-
plane via the ATM port interconnect controller (APIC) chip
[20]. Other devices, like workstations and servers, are con-
nected through a line card directly to the switch fabric (not
shown in Fig. 1).

Scalability is guaranteed through:

« The ability to configure any number of ANPEs which can
be added to the ANN

* A scalable switch backplane

* A load-sharing algorithm which dynamically distributes
active flows over the ANPEs by configuring the correspond-
ing APICs (setting/resetting cut-through switching of select-
ed virtual channels, VCs) in order to move active flows
from heavily loaded ANPE:s to less loaded ones

Figure 1 shows an example data flow coming into the ANN
at ANPE A and going out at ANPE D. The active processing
is done in ANPE C since ANPE A is heavily loaded, and the
load-sharing algorithm directed the flow to ANPE C, which
finally directs the flow to the ANN connected to ANPE D
(ANPE A and D switch the flow in hardware without CPU
intervention through the APIC). We are developing an intra-
ANN protocol to communicate the status of processing engine
load between ANPEs on a reserved VC.

ANPE Architecture

The ANPE consists of an APIC ATM host adapter chip, a
Pentium™ CPU, a large FPGA, and up to four gigabytes of
DRAM.

The APIC is an ATM host-network interface device with
two ATM ports and a built-in peripheral component inter-
connect (PCI) bus interface. Each of the ATM ports can be
independently operated at full duplex rates ranging from
155 Mb/s to 1.2 Gb/s. The ATM cell handling is done entire-
ly in hardware and structured so as not to affect the active
networking software subsystem. The APIC further imple-
ments VC switching in hardware and is capable of forward-
ing cells directly without passing them to the processing
engine. This is used to implement the load-sharing algo-
rithm as shown in the previous section. It allows the ANPE
to forward plain (nonactive) IP traffic without touching the
processing engine (also called cut-through forwarding), which
leaves valuable cycles available for active processing. The
APIC provides a powerful host system interface featuring
different modes of scatter-gather DMA to provide true
zero-copy protocol processing. This allows the implementa-
tion of a very high-performance 1/O subsystem that supports
high bandwidth and low latency.

The processing engine consists of an Intel Pentium™ CPU
and a 240-pin FPGA, which can have a very large number of
gates (up to 100,000). The CPU runs our NodeOS, which is
an optimized version of NetBSD derived from our Router
Plugins [21] architecture. We will describe this architecture in
the next section. The FPGA can be programmed by the CPU
on the fly to implement the most performance-critical algo-
rithms in hardware. The APIC can distribute individual flows
to the CPU or the FPGA on a per-VC basis. A packet can
first go to the FPGA and then be cither passed to the CPU

IEEE Network * January/Fchruary 1999

11



r To other ANN

-8 ‘r
-

:l

_I

S

ot CPU

:: FPGA
S s APIC Cache Memory
"

. I |
-.- LR BB NN R N W Y

N Bl

o 4

]

- B

-

:: CPU

-t FPGA
- » APIC Cache Memory
| ]

- 1 I
. Bl I

—

-1

-r

-

]

]

\AA

To switch backplane

ANN Software Infrastructure

To utilize the hardware architecture described in the
previous section in an efficient way, our software archi-
tecture must be optimized to a similar extent for high
performance. The main design goal is to provide a high-
ly efficient data path and a flexible control path. All
high-bandwidth data path components are implemented
in the system’s kernel, whereas all management compo-
nents are implemented in user space. We embedded the
architecture described here into our Router Plugins
research platform. We showed in [21] that a highly mod-
ular router software architecture could be implemented
without any significant performance penalties. The
architecture described here leverages the results from
the Router Plugins work.

Within the active networking community, it is com-
mon to distinguish between the “NodeQS” [22] and
“execution environments” (EEs) for active networking
software architectures. The NodeOS represents the
operating system components implementing services
such as packet scheduling, resource management, and
packet classification, which are independent of a specific
active networking implementation. The NodeOS offers
these services to the EEs running on top of it. An EE
implements active networking protocol-specific process-

B Figure 2. ANPE card.

or forwarded straight through the APIC to the link, depend-
ing on whether there is additional processing required. We
expect this combination of FPGA/CPU/cut-through process-
ing to provide excellent performance for software-based
packet forwarding.

One or multiple ANPEs can be physically placed on one
ANPE card (Fig. 1 shows only one CPU/FPGA/APIC
ANPE card). The main advantage of having multiple
CPU/FPGA/APIC combinations on one card is that the
load-sharing algorithm can save switch backplane band-
width by distributing the active flows to processing engines
on the same ANPE card. Figure 2 shows an ANPE card
with two ANPEs and three flows of data packets traversing
the card. The three flows are drawn as a dotted, a dashed,
and a solid line. The lines show the three different modes
of operation of an ANPE card. The flow shown as a dashed
line is routed through the first APIC into the first process-
ing engine. The processing engine processes the packets
and forwards them to one of the ports of the attached
switch backplane. Note that the second APIC on the ANPE
card routes this flow in cut-through mode. The flow shown
as solid line is an example of a flow that is diverted to the
second processing engine on the same ANPE card. This
happens in case the first processing engine is heavily load-
ed. In this case, the load-sharing algorithm picks the sec-
ond processing engine to process the packets and configures
both APICs appropriately. Finally, the dotted flow is cut-
through routed through both the APICs without any CPU
intervention. This could be either a regular IP flow not
requiring active processing or an active flow that is diverted
to another ANPE card attached to another switch port.
This would happen if both processing engines on the card
are heavily used by active flows and there are other CPUs
on other ANPE cards in the same ANN which are lightly
loaded. Usage of these different modes of operation of the
individual ANPE cards leads to optimal performance and
scalability of the ANN as a whole.

ing. For example, there can be an independent EE for
ANTS, for Smart Packets, or for SwitchWare.

Our software architecture is shown in Fig. 3. It sup-
ports two EEs, namely the ANTS EE and the Distribut-
ed Code Caching for Active Networks (DAN) EE [10]. TP can
be viewed as another EE with the distinguishing property that
the other EEs typically cannot work without IP since they use
it for routing and forwarding.

We target the use of ANTS to network management tasks
and experimental prototyping of network protocols. ANTS is
described in [7). DAN is described in more detail in the next
section. It represents our own active network architecture spe-
cially targeted at high-bandwidth low-latency applications.

Before we give an overview of the individual NodeOS com-
ponents as shown in Fig. 3, we introduce some of the general
concepts of this architecture.

In the context of our architecture, we call code blocks
implementing application-specific network functions active
plugins. Active plugins contain code that is downloaded
and installed on the node. The downloading is triggered by
the occurrence of a reference in a datagram, as shown in
the section on DAN, by a special configuration packet, or
by an administrator. Active plugins can create instances.
The terminology is intentionally derived from object-ori-
ented programming since the semantics are similar.
Instances are flow-specific configurations of active plugins.
The individual properties of instances are EE- and plugin-
specific. For example, an IP instance consists of the code
that forwards the packet and the required information
about the interface on which the packet has to be forward-
ed. However, all instances use the same well-defined API
that embeds them into the system. The API consists of an
entry() and an exit() function, among others. The entry()
function is called to pass a packet to the instance. The
exit() function is called by the instance when it is done
with packet processing.

We make an important distinction between the first few
packets of a flow and subsequent packets. The reception of
the first packets of a flow usually causes the plugins to create
an instance for the new flow. If the packet is passed to multi-
ple instances, these instances are chained together by making
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information to the packet. Note that this
is similar to tag switching. We introduced
the Simple Active Packet Format
(SAPF), which describes the format of
the selector, in [23]. Figure 4 schematically depicts instance
chaining and labeling using a selector. As described below, the
selector dispatcher implements flow lookups based on selec-
tors. The packet scheduler is called last to send the packet off
to the network.

While per-flow instance creation and management intro-
duces a certain amount of overhead, the payoff in the context
of active networks is dramatic for subsequent packets. Other
than the selector, no demultiplexing has to be performed, and
the operations of instances are reduced to only those which
vary from packet to packet of the same flow (e.g., there is no
routing lookup). Note that all flow-specific information has
soft-state characteristics: it is automatically removed when no
packets of a given flow are received for a configurable amount
of time.

For the rest of this section, we give a high-level overview of
the NodeOS building blocks. The DAN EE is discussed later
in this article, the ANTS EE in [7].

NodeOS Components

The kernel consists of the following components (from bot-
tom to top):

W Figure 4. Instance chaining and labeling.

Device Drivers (DD)/layer 2 Processing — The DD are stan-
dard NetBSD device drivers implementing network hardware-
specific send and receive functions. They are modified only in
two ways. First, to allow packet scheduling, they do not imple-
ment packet queues on their own. Second, they pass incoming
packets to the selector dispatcher instead of the IP stack if the
packet contains a selector. If no selector is present, the packet
is first passed to the packet classifier and then to the IP stack.

Packet Classifier (PC) — All packets not carrying a selector are
passed to the packet classifier. We implemented a highly efficient
packet classifier based on a directed acyclic graph (DAG) in the
context of the Router Plugins platform. The packet is classified
on a five-tuple of IP header fields and the interface on which it is
received. The five-tuple consists of a pair of IP addresses, port
numbers, and the protocol used. The PC allocates a flow record
for every packet of a new flow. It tags all incoming packets with a
flow index (FIX), which is carried in the packet’s MBUF? and

2 The MBUF is a data structure that is used 1o store packets and packet-
related information efficiently in BSD-derived operating system kernels.
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points to the packet’s flow record. Plugins can access the flow
record through the FIX. It stores all flow-related information.

Selector Dispatcher (SD] — The SD scans a data packet for
its SAPF selector. Using the selector, it hashes into a table
to find the flow’s FIX. The same hash table stores the out-
going selector, which will replace the incoming selector in
the packet before it is sent to the downstream node. Fur-
thermore, it stores a pointer to the first instance in the
flow’s instance chain, as previously described and shown in
Fig. 4. To negotiate new selector values, the selector dis-
patcher offers an API to send and receive messages from
neighbor nodes.

Packet Scheduler [PS) — The PS in use is a modified version
of a Deficit Round Robin (DRR [24]) scheduler which allows
bandwidth reservations using filters in addition to fair queu-
ing. Besides DRR, we plan to use a port of CMU’s Hierarchi-
cal Fair Service Curves (HFSC, [25]) scheduler which
represents the state of the art in flow-based packet scheduling,
providing hierarchical scheduling and decoupling of band-
width and delay. Both schedulers can be programmed through
the PS API, thus allowing plugins as well as the administrator
to reserve resources.

Resource Controller (RC] — The RC keeps track of the CPU
cycles and memory consumed by active plugin instances. The
RC is responsible for fair CPU time sharing between different
instances. Since NetBSD is not a real-time operating system
and does not have a preemptive or multithreaded kernel, we
implement this by keeping track of the consumed CPU cycles
on a per-flow basis. Incoming packets are enqueued in an
input queue associated with the flow. Input queues are served
in a round-robin fashion. On reception of a packet, the system
goes through the following steps:

* Get packet from network card

* Find corresponding flow (call SD or PC)

* Enqueue packet in flow’s input queue

* Pick packet to process from the set of all input queues

* Timestamp selected packet with CPU TCS3

* Continue processing with that packet

* Before enqueuing the packet on the output queue, read

TCS again and add difference to flow total
* Enqueue packet in output queue

The RC implements the selection of the queue. We will
investigate different schemes to pick the right packet. Besides
per-flow CPU distribution, we will measure what fraction of
the total time the system spends processing packets. This will
give us an idea of how heavily our system is loaded at any
given time. All RCs in an ANN periodically exchange this
quantity with each other on a reserved VC to serve as input
parameters for the load-sharing algorithm.

The second quantity worth observing is the active plugin’s
memory consumption. The plugin must be restricted to an
upper limit of memory usage by policy or depending on the
current average utilization of the networking subsystem. We
modify the kernel’s memory management to keep track of
memory usage on a per-instance basis and possibly deny addi-
tional memory to greedy instances. An important resource
management issue has to do with the ANN running out of
resources such as CPU or memory capacity. Besides imple-
menting the load-sharing algorithm, we explore both policies
and mechanisms which can do:

3 The Pentium TCS register is a 64-bit register which is incremented by one
on every clock cycle.

* Effective “admission control” to ensure sufficient resources
for admitted active connections

* Cache management for active plugins to decide which active
plugins to replace to create room for the active plugins
fetched on demand to be used immediately

Plugin Control Unit (PCUJ — The PCU manages plugins, and is
responsible for forwarding control path messages (e.g., for
instance creation and registration messages) to individual plugins
from other kernel components, as well as from user space pro-
grams using ANN library calls (we provide the ANN library
with our system). Plugins register themselves with a callback
function and an identifier (plugin code) when they get loaded
into the kernel. All plugins must reply to a defined set of con-
trol messages (e.g., messages to create and free instances).

Plugin Manager (PM) — The PM is a user-space utility for
configuring the system. It is a simple application that takes
arguments from the command line and translates them into
calls to the user-space library. This library implements the
function calls needed to configure all kernel-level compo-
nents. In most cases, the plugin manager is invoked from a
configuration script during system initialization, but it can also
be used to manually issue commands to various plugins. This
is especially useful to test new active plugins.

The design of this software architecture is clearly driven by
the goal of allowing efficient implementations of EEs and
active plugins. While we favor our DAN architecture with this
design, we make all components accessible to other EEs
through a well-documented API.

The Distributed Code Caching Approach fo
Active Networking

Distributed Code Caching for Active Networks (DAN) was
described in [6]. Since [6] was published, the architecture has
matured significantly. We review the important ideas here,
give an update reflecting the latest developments, and elabo-
rate on how DAN is embedded into the NodeOS described in
the previous section.

Before we present our approach, we review the basic
requirement for active networking. It is to allow users and
applications to control networking nodes, and how their pack-
cts are processed and forwarded. This necessitates computing
and programmability at each network node. However, this
requirement should not considerably degrade the perfor-
mance of an EE through excessively complex and inefficient
security mechanisms. In other words, per-packet processing
should not require a long and inefficient software path. Thus,
the fundamental challenge that high-performance active net-
working poses can be summarized as follows:

Allow relocating part of the processing from the end systems
into the network; however, minimize the amount of processing
on a single node and make the processing as efficient as possible
while keeping the flexibility and customizability that the active
networking paradigm introduces.

We believe that our architecture, which we call “Distribut-
ed Code Caching,” does just that.

Distributed Code Caching

To overcome the performance-related problems that will exist,
at least in the near term, for capsules, we think that a combi-
nation of the programmable switch and capsulc approaches is
very appealing. We replace the capsules’ program code by a
reference to an active plugin stored on a code server. On a
reference to an unknown code segment in a router or an end
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system, the code is automatically downloaded from a code
server. It is important to note that the code fragment or
plugin is dynamically linked and executes like native code
on the router/node, and thus runs as fast as any other
code. The security issues are addressed by usage of well-
known cryptography techniques (as explained later in this
section); thus, our scheme does not require slow virtual
machines. This introduces some restrictions regarding the
authorship and source of active network code for the ben-
efit of security and performance, but we believe this to be
an appropriate compromise. To explain our idea, we first
analyze the layout of data packets and network nodes
common in today’s networks.

- - S 7 ;1

Active
plugins

Code
server -
Video
@ @ data
® ;
Client ANN Video
server

Each network node typically supports a particular set of

® ®

functions that may be applied to data packets. One or

more unique identifiers in the packet’s header identify

these functions. When a packet is processed, the refer-

enced functions are applied to the data of the packet. The
packet’s data can be viewed as the input parameter to a func-
tion. An Ethernet packet, for example, contains a unique
identifier for the upper-layer protocol (0x0800 for IPV4,
0x08dd for IPV6). By demultiplexing an incoming packet on
this value, the kernel decides to which function or set of func-
tions the packet gets passed next. Packets consist of a finite
sequence of such identifiers for functions and input parame-
ters. The functions are normally daisy-chained in the sense
that one function calls the next according to the order of the
identifiers in the data packet. The first function is determined
by the hardware (the interface on which the packet is
received) and the last function or set of functions is imple-
mented in the application consuming the packet. Each of the
functions may also decide not to call the next function for sev-
eral reasons (e.g., forwarding the packet to the next hop and
thereby skipping over the higher-layer data or detection of
errors). Depending on the type of node and the packet’s con-
tent, only a subset of these functions may be called. It is possi-
ble to think of these function identifiers in data packets as

“pointers” to code fragments. In today’s systems, the code

that implements these functions must be available on the

node processing the packet. In our system, the node contacts

a “code server” for the necessary code in case the node does

not already have the required code locally. In contrast to data

servers, which provide a client with “passive” data, code
servers provide active plugins stored in a database of code
fragments. A code server is a well-known node in the network
that provides a library of possibly unrelated functions for dif-
ferent types of operating systems from various developers.

Figure 5 shows an example of a client downloading real-
time video through an active network node (ANN) which
involves several steps:

* The ANN receives the connection setup request and for-
wards it to the video sever.

* The video server replies with a packet referencing a func-
tion for congestion control of the video stream.

* The ANN does not have the code referenced in its local
cache and therefore contacts a code server for the plugin.

* The ANN receives the active plugin, dynamically links it in
its networking subsystem, possibly applies the data to the
congestion control function, and forwards the packet to the
client. Once the plugin is downloaded, it is stored locally on
the ANN, removing the need to download the same active
plugin in the future.

Distributed code caching features the following important
properties.

Active Plugins in Object Code — 1t is important to note that
the active plugins offered by the code server are programmed

B Figure 5. ANN downloading an active plugin.

in a higher-level language such as C and compiled into object
code for the ANN platform. Once the node loads the func-
tions, they are in no way different than the ones compiled into
the network subsystem at build time. For example, the func-
tions have as much control over the network subsystem’s data
structures as any other function in the same context, and they
are executed as fast as any other code.

Security Addressed by Use of Well-Known Cryptography Tech-
niques — All active plugins stored on code servers are digital-
ly signed by their developers. Code servers are well-known
network nodes that authenticate the active plugin when send-
ing them to ANNs. ANNs load only authenticated, digitally
signed active plugins and have the capability to check the plu-
gin’s sources and developer before installing and running the
plugin locally. The security problem is reduced to the imple-
mentation of a simple policy rule on the node which lets it
choose the right code server and a database of public keys to
check the developer's signature and the code server’s authen-
tication.

Minimization of Code Download Time — Downloading of
active plugins from code servers to ANNs happens infrequent-
ly, since this is necessary only on the first occurrence of a new
function identifier. Still, some attention has to be paid to min-
imization of the download delay. Download time can be mini-
mized by the following three architectural considerations:

* Probe packet: By using one or multiple probe packet(s)
sent from the server to the client before sending data pack-
ets. The probe packet triggers the downloading of active
plugins in parallel on all routers along the packet’s path.
The total end-to-end code download delay can be reduced
approximately to the time a single ANN requires for the
download.

* Optimal code server arrangement: Code servers should be
as “close” as possible to the ANN. They can be put into a
hierarchy similar to DNS servers where the root code
servers get their active plugins from the programmers of
the plugins.

* Minimizing the distance between the ANN and the code
server: The ANN can reach the code server in different
ways. One or multiple unicast addresses of code servers
can be configured on the ANN (again similar to DNS).
The responsibility for finding a suitable code server is up
to the administrator selecting the unicast address. Anoth-
er possibility is the usage of anycast or multicast address-
es, which would delegate the responsibility for finding the
best code server to the anycast or multicast routing. Last,
the data server itself could maintain a database of active
plugins, and the ANN could query the data server for the
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enable both mechanisms that implement these
policies to be configured.

Integration with Existing Network Protocols — Our
active networking support can be provided in
existing protocols by introducing new function
identifiers at different layers. We will briefly look
into three possibilities:

R P':Qi't‘e' : i * Data link layer: Using ATM as a link layer, an
eques Plugin i Poli Securi application of function identifiers could be to
Database oli ecurity ) %
Controller Gateway use them in the link layer control (LLC) SNAP
Controller field

A L

Active Plugin Loader

» Network layer: IP options, which are defined for
both IPv4 and IPv6, might be the most common
way to introduce new function identifiers ([3]
and {5] also describe a way to use IP option

User space

Kernel

fields for AN). Options are commonly used to
specify unusual datagram processing (e.g., source
routing). Whereas option usage in IPv4 is very
limited because the total option length is 40

Active Function Dispatcher

bytes, IPv6 introduces a very flexible option con-
cept by allowing very long and unlimited num-
bers of options wrapped into either hop-by-hop

or destination option extension headers. Using

B Figure 6. DAN EE.

plugin. This solution has the advantage that no particular
configuration information for code servers must be present
on the node, and there is no need for a particular active
plugin distribution infrastructure. It seems very natural that
the organization providing a data server makes sure that
not only end systems (e.g., by offering a plugin for a Web
browser) but also all nodes along the data packet’s path are
able to process the data offered in the best possible way.
One disadvantage of this solution is that it allows only one
level of authentication (the developer’s digital signature).
Also, code plugins may come from “nonoptimal” sources in
respect to bandwidth and delay since all routers along the
packet’s path might access the same data server instead of
possibly utilizing parallel active plugin downloading through
a hierarchical infrastructure.

Policies — We support policies for at least two important sys-
tem properties: acceptance of specified active plugins and
plugin caching behavior.

* Acceptance policies: Policies regarding acceptance of active
plugins on nodes are desirable. Even if plugin sources and
the plugins themselves are authenticated, network adminis-
trators may wish to restrict the set of developers from
which they accept active plugins or exclude certain specific
active plugins because of undesired behavior.

* Caching policies: Developers are able to set timeouts for
active plugins. When a timeout is reached for a plugin on
an ANN, the ANN would delete it and refetch it on the
next reference in a data packet. This mechanism can be
used to deploy prototype versions of new network protocol
implementations. Timeouts can be set to infinity for nonex-
piring plugins. In addition to these developer-specified
timeouts, the administrator of an ANN can set timeouts for
an individual plugin, for sets of plugins, or for all plugins in
the ANN. These timeouts force a periodic refetch of speci-
fied plugins independent of a developer’s settings. Such a
refetch can be set to happen out-of-band to provide the
node with the most recent plugin version independent of
references in data packets.

IPv6 options has the further advantage that the

system can benefit from the option type seman-

tics, which specifies the node’s behavior in case
it does not recognize the option type (skipping over the
option/discarding the packet/sending ICMP message to the
source).

For function identifiers in IP options in the context of connec-
tion-oriented protocols like TCP, active plugin download
can take place on connection setup. When the data server
replies with a SYN back to the client requesting the con-
nection, it may include a packet containing the probe func-
tion identifier and optional configuration information, and
force the nodes along the path to fetch the active plugins.
In BSD 4.4, the retransmission delay for the client initiating
the SYN is approximately 6 s before the next SYN is sent
out, and the client waits 76 s before considering the request
failed. Thus, on-demand loading of the corresponding code
should be possible with out the need for changing the end
node’s TCP.

» Transport layer: For functions to be executed on end sys-
tems only, function identifiers can occur in addition to or
instead of the usual transport layer function identifier for
TCP/UDP.

We described the most important properties of distribut-
ed code caching in this section. The usage of caching tech-
niques and active plugins in machine code promises to
deliver a significant performance improvement over tradi-
tional interpretation-based capsules. Next, we describe the
implementation of our DAN EE on top of the ANN
NodeOS described earlier.

The DAN Execution Environment

The DAN EE is shown in Fig. 6. It consists of the active func-
tion dispatcher (AFD) in the kernel and the DAN plugin
management (DPMgmt) in user space. The DPMgmt consists
of the active plugin loader, policy controller, security gateway,
plugin database controller, and plugin requester. Next follows
a description of the individual components.

Active Function Dispatcher (AFD] — The AFD scans a data
packet for function identifiers and passes the packet to the
corresponding active plugins. Although, as shown in the pre-
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vious section, it is possible to integrate DAN function identi-
fiers at various places in datagrams, in its current implemen-
tation the AFD looks for DAN function identifiers only in
IPv6 hop-by-hop options. We embed DAN function identi-
fiers in ANEP [26] packets. ANEP is a packet header defined
by the Active Networks Working Group to precede EE-spe-
cific packet headers. The IPv6 option processing code passes
the packet to the AFD when it finds DAN function identi-
fiers following an ANEP header. While scanning the packet,
the AFD calls the functions referenced until they have all
been called or one of them has dropped the packet. The
AFD keeps track of all known function identifiers and a
pointer to their corresponding instances on a per-flow basis.
As the instances are called, the AFD chains them together as
shown earlier. Note, however, that the AFD calls the
instances individually. The chaining has no effect on the
AFD. It is only considered if the packet contains a selector.
In that case, it is passed directly to the first instance of the
chain without going through the AFD.

In case of a previously unknown function identifier, the
AFD contacts the active plugin loader (APL, described next)
in order to request the corresponding active plugin. It tem-
porarily suspends packet processing for the packet causing the
call, enqueues the packet in a dedicated queue, and proceeds
with the next packet received. The AFD maintains its own
queue of active packets with previously unknown function
identifiers. On a call from the APL, the AFD resumes pro-
cessing of the enqueued packet by calling the newly installed
active plugin.

Active Plugin loader (APl] — This component interfaces
with the networking subsystem in the kernel through a ded-
icated socket interface similar to the way routed does in
BSD UNIX. On the occurrence of an identifier for a previ-
ously unknown active plugin, the AFD requests the corre-
sponding active plugin from the APL. The APL talks first
to the PC to find out whether the request for the plugin is
permitted. If the PC positively acknowledges the request,
the APL requests the plugin from the plugin database con-
troller, which maintains the database of local active plugins.
If the plugin is locally available, it is immediately loaded
into the networking subsystem through the plugin control
unit. If not, the APL contacts the plugin requester to send
out a request to a code server. On reception of the plugin
from a code server, the APL passes it to the security gate-
way for origin and signature control. If the active plugin’s
signature is valid and its origin proven, it gets passed down
to the plugin control unit for integration into the network-
ing subsystem. Previously suspended packet processing then
resumes. Finally, the plugin is passed to the plugin database
controller, which includes it in its local database of active
plugins.

Policy Controller {PC) — The PC maintains policy rules set up
by the node’s administrator. As previously described, we imple-
ment both acceptance policies as well as caching policies for
active plugins.

Security Gateway (SG) — The SG is responsible for check-
ing the integrity and origin of active plugins. Which security
checks are required is determined by the configuration of
the ANN in question. The SG maintains a database of public
keys. We implement full RSA public-key encryption using
the RSAREF [27] library as a basis. This library provides
both MD5 one-way hashing as well as RSA public key
encryption. MDS5 one-way hashing will be used to generate a
plugin-specific hash key that is then digitally signed with

RSA using the developer’s private key. The code server
transmits the active plugin together with the signed hash to
the ANN. On reception of the plugin, the ANN calculates
the plugin’s MDS5 hash, decrypts the received hash with the
developer’s public key, and compares both hashes. If they
match, the plugin is assumed to be valid. Security extensions
{28} to the Domain Name System (DNS) provide support for
a general public key distribution service which we use to dis-
tribute the developer’s and code server’s public keys. The
stored keys enable ANNs to learn the authenticating keys of
code servers in addition to those for which they are initially
configured. Keys associated with the code server’s and devel-
oper site’s DNS names can be retrieved to support our sys-
tem. An ANN can learn the public key of a code server or a
developer by either reading it from the DNS or having it
statically configured. To reliably learn the public key by
reading it from the DNS, the key itself must be signed with a
key the ANN trusts. The ANN must be initially configured
with at least the public key of one code server and develop-
er. This is typically the network subsystem developer’s key.
From there, the node can securely read the public keys of
other code servers and developers. As an alternative to the
DNS security scheme, we will use IP security [29], which is
mandatory for IPv6 implementations, for code server authen-
tication. This allows simple and streamlined security for
ANNs, which do not check developer signatures but depend
on code server authentication only.

Plugin Database Controller [PDC) — The PDC efficiently
administers the local database of active plugins. Plugins
are indexed by developer codes and function identifiers for
fast access. If the ANN offers code server service to other
ANNSs, the database may contain active plugins for foreign
hardware and software architectures. The active plugins
are stored together with the developer’s digital signature
and the originating code server authentication. Typically,
the plugins are stored on nonvolatile storage, like disks or
flash RAM. This is not required for regular ANNs since
they can refetch active plugins from code servers on sys-
tem startup, thus saving the download time during packet
processing. Plugins come with an expiration date that can
be set to infinite. Administrators are able to set a global
expiration time for unused plugins independent of plugin-
specific settings. On expiration of a code plugin, the PDC
deletes it from its nonvolatile storage and reloads it on
request.

Plugin Requester [PR} — The PR is responsible for requesting
active plugins from code servers and replying to such requests.
The request is either unicast, multicast, or anycast, depending
on the local configuration as described using a lightweight
non-connection-oriented protocol (e.g., UDP/IP) to ensure
stable operation under heavy load. Since we use a datagram-
oriented protocol instead of a connection-oriented one, loss of
either the active plugin request or the reply (the active plugin
itself) may occur. In this case, the packet causing the request
is dropped by the networking subsystem with a possible error
message sent to the source. The download of the active plugin
is reinitiated the next time the same function reference occurs
in a packet.

The Code Server

Code servers feature a database of active plugins for possibly
different operating systems and hardware architectures. They
get their plugins either manually by configuration through a
system administrator or automatically from an upper-level
code server in the code server hierarchy.
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Code servers are network nodes running a version of the
DPMgmt. We are carefully separating ANN NodeOS-depen-
dent layers (e.g., the part that communicates with the AFD)
from the rest of the DPMgmt to be able to port the DPMgmt
to a wide range of platforms. Since most of today’s router
hardware lacks large mass storage, end systems similar to
database servers are better suited to be configured as code
servers. We are exploring the usability of publicly available
relational and object-oriented database technologies to effi-
ciently store active plugins.

Plugin Packages

The code for active plugins is stored on code servers and in
the local active plugin database on the individual ANNs
together with additional data. The code for multiple active
functions can be wrapped together into one active plugin
package. A download of such a package would install multi-
ple active functions on the ANN. This is useful for strongly
correlated active functions such as the four options for
IPv6 mobility support [30]. On occurrence of a function
identifier in a data packet, not only is the referenced active
function implementation downloaded and installed, but
also one or more others, since they will very likely be refer-
enced in the future. This mechanism requires only one
download cycle and one application of related functions
such as security checks for the whole package. A package
contains at least:
* The code for one or more active functions
* The developer’s digital signature
* The code server’s authentication information
* Configuration information for the ANN which will be passed
to the plugin after installation and a set of rules regarding
storage of the plugin package, like its expiration date

Conclusions and Future Work

We elaborate on three key factors critical to pave the way for
active networking in a gigabit environment. First, we elaborate
on a gigabit hardware platform that allows high-performance
active networking in a scalable fashion combining off-the-shelf
and customized hardware components. Second, we described
our NodeOS supporting both the active network paradigm as
well as the hardware in a highly optimized way. Third, we
reviewed a new active networking execution environment
called Distributed Code Caching which we believe to be espe-
cially well suited to our high-performance hardware and soft-
ware environment.

We are currently in the process of implementing the system
described here and expect to have a prototype up and running
by the time this article is published. As a next step, we will
start working on a variety of applications.

One of the most promising applications of our environ-
ment is automatic protocol deployment. We plan to show
automatic upgrading of IPv4 nodes to IPv6 nodes as well as
on-the-fly revision of IPv6 implementations. Without active
networking, it is extremely hard (if not impossible) to change
a protocol once it is deployed. What is needed is a fully auto-
mated way to deploy and revise new protocols. This would
allow for incremental refinement of specifications and imple-
mentations based on real-world experience, which has not
been possible so far. Consider, for example, IPv6 options: in
IPv6, only a very small set of IP options is specified in the
base specification [31]. These options are mainly used to pad
data packets to certain sizes in order to align them at word
boundaries; however, the protocol supports new options in a
modular way. An arbitrary number of 1Pv6 options can follow
the IPv6 header in the form of hop-by-hop or destination

options. It is expected that these new options are “hard-
wired” into an IPv6 implementation. To support new options
such an implementation would require recompiling, which is
difficult and time-consuming to do in an operational network.
With the system described here, a new active plugin for an
IPv6 option is downloaded on demand from a code server the
first time the new option is referenced, and the active plugin
is stored for later use in the local cache. We will show this
feature for options required for IPv6 mobility support and
possibly others.

Other applications planned for implementation on the plat-
form include application-specific reliable multicast, congestion
control for real-time audio/video, media gateways, and sensor
data mixing.
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