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Today, ATM networks are being used to carry bursty data traffic with large and highly
variable transmission rates, and burst sizes ranging from kilobytes to megabytes.
Obtaining good statistical multiplexing performance for this kind of traffic requires much
larger buffers than are needed for more predictable applications or for bursty data
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feasible to provide per VC queueing for over 8,000 simultaneously active virtual circuits
and over one million cells.
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1.    INTRODUCTION

1.1.  Asynchronous Transfer Mode (ATM)

Asynchronous Transfer Mode (ATM) networks are designed for B-ISDN (Broadband

Integrated Service Digital Networks). With ATM, applications with many different data

rates, can be sent “asynchronously” using statistical multiplexing, where the system

bandwidth is shared by active sources. Data for video-on-demand, live television, CD-

quality music and high-speed data transfers, can all be transmitted over the same

network.

ATM networks are “connection-oriented”, meaning that a virtual connection needs to be

established between communicating terminals before transmission can take place.

Connections are distinguished by Virtual Path Identifiers (VPI) and Virtual Circuit

Identifiers (VCI). ATM networks use fixed-length cells containing 5 bytes of header and

48 bytes of payload. There are two types of connections: Virtual Circuit (VC)

connection and Virtual Path (VP) connection. In a virtual circuit connection, cell is

switched based on both the VPI and the VCI. In order to add a new connection, routing

tables in all switches in the path need to be modified. In a virtual path connection, virtual

circuits following the same path are assigned the same VPI. Intermediate switches route

cells using the VPI only. Therefore, new VCs can be established over VP connections

without modifying routing tables in intermediate switches, simplifying the handling of
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those virtual circuits. Figure 1-1 shows an ATM network with several virtual circuit

connections established among end hosts. The circles represent ATM switches.

Connections with the same path are treated as a single virtual path connection illustrated

by shaded area. The VPI and VCI of a connection usually change hop by hop so that

each switch can pick up an unused (VPI, VCI) pair locally to accommodate a new

connection.

The ATM cell formats in both the User-Network Interface (UNI) and the Network-

Network Interface (NNI) are shown in Figure 1-2.   The only difference between these

two formats is that the UNI cell format contains a Generic Flow Control field (GFC).

The VPI field is 8 bits and 12 bits in UNI and NNI formats, respectively. A network can

Figure 1-1  ATM Network
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CLP

VCI
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Figure 1-2  ATM Cell Formats
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support 256 virtual path connections using UNI format. The VCI field is 16 bits in both

formats. Since a virtual circuit connection is determined by both the VPI and the VCI,

the possible number of combinations is quite large: 228 for the NNI case. Switches

generally provide routing table entries for only a small fraction of this number.

The Payload Type (PT) identifies cells as user data or control information. The Cell Loss

Priority (CLP) bit is set for low priority cells. The Header Error Check (HEC)

implements the error-detecting code on the header. The Generic Flow Control (GFC)

field in the UNI format is currently unused. The payload field carries the data and is 48

bytes long.

Because transport layer protocols deal with packets instead of ATM cells, an ATM

adaptation Layer (AAL) is defined to allow users to send packets larger than an ATM

cell. Packets are segmented into ATM cells, transmitted through the network, and

reassembled at the other end. AAL5 uses the U-bit of the PT field to indicate the last cell

of a packet.

1.2.  Switching Systems

1.2.1.  General Concept

ATM switches are used to route cells arriving on their input ports to the desired output

ports. As shown in Figure 1-3, a typical ATM switch consists of three major

components: Input Port Processors, Switching Network and Output Port Processors.

The Input Port Processor contains a Virtual Path/Circuit Translation Table (VXT),

specifying the destination port of connections and the VPI and VCI used by the
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downstream switch. If a cell belongs to a virtual path connection, the VPI alone is used

to select a table entry containing the required outgoing link number and a new VPI. The

VCI is unchanged in this case. If the cell belongs to a virtual circuit connection, the

cell’s VPI and VCI are used to select a table entry containing the required output link

number and new VPI and VCI values.

The Switching Network routes ATM cells to one or possibly several specified output

ports. The switching network is the central part of a switching system. The design issues

include scalability, reliability and cost-effectiveness.

The Output Port Processor receives cells from the switching network and buffers cells

waiting for transmission. Some switch architectures allow the cells to arrive at the OPP

out of order. These switch designs require the Output Port Processor to resequence the

cells before sending them to the external link.

Figure 1-3  ATM Switching System
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1.2.2.  Washington University Gigabit Switch (WUGS)

High speed ATM switching systems are desirable because high speed cores usually have

less fragmention of bandwidth, higher utilization of memories, and less system cost per

port. The Washington University Gigabit Switch (WUGS) [3] has been designed and

implemented to support port speeds up to 2.4 Gb/s. It supports one-to-many, many-to-

many, many-to-one multicast in a particularly cost-effective way. The system can be

configured from 8 ports to 4096 ports and throughput approaching 10 Tb/s.

Figure 1-4 shows the overall organization of the WUGS switching system. It consists of

three main components, each of which is implemented as a single chip. The Input Port

Processors (IPP) receive cells from the incoming links, buffer them while awaiting

transmission through the central switching network and perform the virtual path/circuit

translation required to route cells to their proper outputs. The Output Port Processors

(OPP) resequence cells received from the switching network and transmit them to the

external link. Each OPP is connected to its corresponding IPP, providing the ability to

recycle cells belonging to multicast connections. The central switching network is made

up of Switching Elements (SE) with eight inputs and outputs and a common buffer to

Figure 1-4  WU Gigabit Switch (from [3])
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resolve local contention. The SEs switch cells to the proper outputs or dynamically

distribute cells to provide load balancing.

To provide sufficient bandwidth for 2.4 Gb/s link rates on the external links, the switch

carries ATM cells in a 36 bit wide format with a clock rate of 120 MHz. The switching

network is implemented in four parallel planes, with each plane receiving the same

address information, plus eight bits of data. The cells proceed through the four planes in

parallel, without any explicit coordination, and are reconstructed at the OPP.

The OPP and IPP link interfaces use a subset of the functionality defined in the

Universal Test & Operations PHY Interface for ATM (UTOPIA) 2 standard [1]. The

OPP and IPP link interfaces operate in either 16-bit or 32-bit mode as defined by an

option pin on each IC. The 16-bit mode and 32-bit mode support transmission at rates up

to 1.2 Gb/s and 2.4 Gb/s, respectively.

1.3.  Motivation

When ATM network technology was first developed in the 1980s, its developers

envisioned a comprehensive traffic management methodology, with explicit reservation

of resources, end-to-end pacing of user data streams to conform to resource reservations

and network-level enforcement mechanisms to protect against inadvertent or intentional

violation of resource reservations. In the context of such methodology, efficient

statistical multiplexing performance could be achieved without large amounts of

buffering in the network and with very simple queueing mechanisms.

As ATM was deployed in the 1990s, the original expectations for traffic management

were found to be unrealistic. ATM is now being used largely to support internet data



                                                                                                                                                                             7

traffic which is highly unpredictable and for which the traffic management philosophy of

ATM is difficult to apply. In the current application context, resources are generally not

explicitly reserved, end systems do not pace their transmissions and most network

equipment cannot enforce resource usage limits. In this environment, to obtain good

statistical multiplexing performance and high link utilization, one needs large buffers. In

particular, one needs buffers that are at least comparable, and preferably an order of

magnitude larger than user data bursts, which range in size from kilobytes to megabytes.

Unfortunately, the use of large buffers with simple FIFO queueing disciplines leads to

poor performance for real-time traffic and allows “greedy” applications to appropriate an

unfair portion of network resources. Providing good Quality of Service (QoS) to real-

time applications and fair treatment to bursty data applications requires more

sophisticated queueing and cell scheduling mechanisms.

1.3.1.  Accessing High Speed Switches

Gigabit switches are advantageous in many ways. They can naturally handle high data

rate applications such as multimedia applications. In addition, they can handle lower rate

applications in a very efficient way. The cost of switches are shared by all links, which

reduces the cost per port. High bandwidth switching systems reduce delay in the

interconnection networks. They provide better queueing performance for bursty traffic

and have less fragmentation of bandwidth and memory.

However, since lower speed links are commonly used for applications with lower data

rates, it is important to provide mechanisms to allow access to high speed switches from

lower speed links. One way to do so is to introduce a cell multiplexor before the Input

Port Process (IPP) and a demultiplexor following the Output Port Processor (OPP). The

design of the multiplexor is relatively easy if the total link bandwidth does not exceed
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the bandwidth of the switch. This thesis focuses on the design of the Dynamic Queue

Management chip that functions as the demultiplexor between the Output Port Processor

and the lower speed links.

1.3.2.  Tolerating Data Surges

The demultiplexor can be implemented in a simple way if the outgoing links are rarely

subject to traffic overload. However, since bursty traffic is common to data applications,

the system must have sufficient buffering to accommodate temporary data surges. This is

particularly important for lower speed links such as OC-3, where a single application

may consume a large fraction of the link’s capacity. The Dynamic Queue Management

chip provides an efficient way to manage a large buffer space, so that the buffer size is

limited only by the memory cost.

1.3.3.  Providing Quality-of-Service

In the presence of large buffers, Quality-of-Service (QoS) becomes an important issue in

the design. Real-time applications, such as video and audio require small end-to-end

delay. Cells that arrive late are discarded and no recovery is possible. Real-time traffic is

usually continuous stream and has limited variability. Admission control can be used to

avoid congestion. Non real-time applications, such as data transfer, are usually bursty. It

is less predictable so that congestion can occur routinely. Because of the high peak-to-

average ratio, large buffers are needed to avoid cell loss.

Large buffers and priority treatment imply per VC queueing instead of FIFO queueing.

In systems with FIFO queueing, cells from different VCs enter the same queue. Large

buffers introduce large queueing delays. Most of the delays are caused by “mis-

behaving” VCs that send at a higher rate than they should. In system implementing per
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VC queueing, cells from different VCs enter separate queues. With proper scheduling

mechanisms, queueing delays due to large buffers and “mis-behaving” VCs are

eliminated.

In this thesis, we design a Dynamic Queue Management (DQM) chip that connects to the

output side of a high performance ATM switch, such as the Washington University

Gigabit Switch. It supports separate queues for each application data stream and buffer

sizes that are limited only by the cost of memory. The design can be implemented with a

single application-specific integrated circuit in 0.35 micron CMOS technology together

with SRAM components. The design will support a total output rate of 2.4 Gb/s and can

support either a single OC-48 link, or a combination of lower speed links.

1.4.  Related Work

Several queueing and scheduling schemes have been proposed to support Quality-of-

Services (QOS) in ATM switch designs.

Four scheduling schemes have been compared by Chipalkatti [8]: FIFO, minimum laxity

threshold (MLT), head-of-the-line priority (HOLP) and queue length threshold (QLT).

Cells are served in their arrival order in FIFO scheduling and no QoS is supported. For

MLT, each queue has a timer. When the timer expires, the corresponding queue sends a

service request. QLT scheduling balances the bandwidth utilization by setting thresholds

for each queue. In HOLP scheduling, queues with higher priority are served before those

with lower priority.
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The asynchronous time sharing (ATS) mechanism proposed by Lazar [13] partitions the

network into four separate classes. Each class is serviced some minimum portion of a

larger frame time so that the bandwidth is guaranteed. Unused guaranteed bandwidth of

a given class can be used by the next traffic class.

Hashemi has explored a cell sequencer that inserts new cells into the physical queue

according to its class/group and the state of the logical queues already present [10]. Each

cell is assigned a tag value according to its priority class before entering the sequencer.

The sequencer arranges the cells based on their tag values by sequentially comparing the

tag of the new cell with those already in the physical queue.

Landsberg and Zuhowski have explored generic queue schedulers and have simulated a

wide variety of queue scheduling methods [12]. A queue can actively request service

based on spatial (queue length threshold) or temporal (timer) conditions. The queue

server must solve the multiple request contention using proper scheduling schemes.

Several forms of priority have been defined for the generic queue scheduler.

Continuously gated priority (CGP) is essentially the head-of-line priority (HOLP).

Queue gated priority (QGP) allows the queue currently being serviced to transmit up to

its burst factor (BF) of cells. System gated priority (SGP) buffers all queue service

requests into an arbiter and imposes an ordering on the requests. All the queues are

allowed to transmit up to their burst factor of cells in that order. If the currently served

queue runs out of cells, the next queue can transmit cells for a work conservative (WC)

system and no other queue can transmit cells for a non-work conservative system.

Duan has proposed a 3-Dimensional-Queue (3DQ) that is used in an input-buffered

ATM switch system [9]. The incoming cells are organized into multiple queues

according to virtual connection, priority and destination. The memory pool is shared by

all incoming cells and is grouped into fixed-size cell slots. The free list logic keeps track

of all unused cell slots, assigns an available cell slot to each incoming cell, and collects
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cell slots after each cell has been delivered. 3DQ supports QoS at the per VC level.

Every active VC has only one entry in the corresponding service queue. A non-empty

VC can re-enter the service queue after being served. The scheduler selects the cell

according to the “weight” of elements of a traffic matrix. The idea of combining the per-

VC queueing, priority queueing and N-destination queueing is quite similar to the design

proposed in this paper. But the selection of queue identifiers to build up the linked list

and the scheduling of the outgoing cells are quite different. In addition, the 3DQ does not

provide packet level discarding during overload periods.

The idea of round-robin scheduling is to circularly transmit one cell from each of the

VCs with non-empty queues. Round-robin scheduling evenly distributes all the available

link bandwidth to all active virtual circuits. If some virtual circuits do not need or cannot

use as much as they are allowed, the remaining portion is equally distributed to all other

VCs that can use it. Visiting the VCs in a round-robin fashion and forwarding one cell

from each active VC upon each visit is, in principle, fairer than FIFO scheduling.

However, in some cases, it may be necessary to allocate link bandwidth according to a

set of weights. The Weighted Round-Robin (WRR) scheme proposed by Katevenis [11]

visits the VCs with larger weights more frequently than those with smaller weights.

1.5.  Thesis Overview

Chapter 2 describes the features of the Dynamic Queue Management chip. Chapter 3

gives the architecture of the Dynamic Queue Management chip and a series of

operational examples. Chapter 4 elaborates the detailed design of each functional block,

provides a detailed timing analysis. Chapter 5 describes several advanced algorithms

used in the chip. Chapter 6 gives performance analysis and circuit complexity

estimation. The last chapter summarizes the thesis.
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2.     FEATURES AND PRINCIPLES

The Dynamic Queue Management (DQM) chip allows a single 2.4 Gb/s OC-48 link or a

combination of lower speed links such as 150 Mb/s OC-3, 622 Mb/s OC-12, and 1 Gb/s

G-link to access high speed ATM switches such as the Washington University Gigabit

Switch (WUGS) whose throughput is 2.4 Gb/s per port. The chip is designed to buffer

cells received from the switch and forward them over one of the outgoing links. The

major features of the DQM chip are listed below.

2.1. Dynamic Queue Assignment

The ATM cell format allows for as many as 228 distinct virtual circuit connections on a

single ATM link. Real switches implement only a small fraction of the full spectrum of

possibilities, and often impose limitations on the choices of VPIs and VCIs. Many

switches support only VP or only VC connections and those that only support VC

connections usually restrict the VPI to be zero. In switches that support VC connections

with different VPIs, it is generally necessary to configure the switches to specify which

VCIs may be used with a given VPI.

The DQM implements per VC queueing using dynamic assignment, which allows the

chip to support virtual path and virtual circuit connections with arbitrary choices of VPIs

and VCIs and no explicit configuration of VCI ranges to particular VPIs. It uses set-

associative lookup to assign queues to channels identified by the combination of a VPI
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and a VCI. This greatly simplifies the use of the chip and enables optimal use of the

chip’s per channel data structures.

Figure 2-1 illustrates the dynamic queue assignment mechanism. A static assignment is

used for virtual path (VP) queues, since the number of distinct VPIs is fairly modest, 256

in this particular case. However, the number of distinct VPI/VCI combinations is far

larger than the number of actual virtual circuits that a link will carry and larger than the

number of distinct queues that can be managed economically. To avoid restricting the

choice of VPIs and VCIs unduly, VC queues are assigned on a dynamic basis.

If an arriving cell belongs to a VP connection, the cell goes directly to the VP queue

specified by its VPI. Otherwise, a set-associative lookup is performed to determine if

there is an existing queue assigned to the same (VPI,VCI) pair as the arriving cell. If

such a queue is found, the cell is appended to that queue. If there are no matching

queues, an unused VC queue is assigned to that VC connection. The arriving cell is

appended to the newly assigned queue.

VPI = 0
VPI = 1

VPI = 255

VP Queues

Queue 384

Queue 543

Queue 1000

Queue 298

Queue 982

VC Queues
VPI/VCI=3/5

VPI/VCI=6/9

VPI/VCI=2/8

Unused

VPI/VCI=2/8

Scheduler

VP

VC

Figure 2-1  Dynamic Queue Assignment

Static

Dynamic
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2.2. Efficient Memory Management

Since bursty traffic is common in networks, large buffers are needed to accommodate

temporary data surges. Arriving cells are first stored in the cell buffer before being

forwarded to output links. The DQM chip allows all virtual circuit queues to share the

entire cell buffer. The DQM chip is designed so that the cell buffer can be scaled up to

very large sizes without increasing the chip complexity significantly.

The cell buffer is organized in units of cell slots. Queues are stored in the buffer as

linked lists. A Free Slot List is maintained to keep track of all unused cell slots in the cell

buffer. Both the cell buffer and all information to maintain the cell buffer (that is, all the

links for the linked list queues and the free slot list) are stored in external memory. The

only constraint that the DQM chip places on the buffer capacity is through the choice of

pointers. With 20 bit pointers, the chip can support buffer sizes over 50 Mbytes, 24 bit

pointers would allow for up to 800 Mbytes. For all practical purposes, the buffer

capacity is not constrained by the DQM chip.

At gigabit speeds, the bandwidth of the external memory used by the DQM to store cells

is a precious resource. A certain portion of this bandwidth must be used to manage the

free slot list that is stored in the external memory, along with the waiting cells. The

DQM chip incorporates an on-chip recycling cache that allows the free slot list to be

maintained using only memory cycles that would otherwise go unused. This cache stores

the location of a number of available cell slots.

Cell slots can usually be assigned to arriving cells from the cache and departing cells can

usually return their cell slots to the cache, rather than accessing the off-chip free slot list.

The off-chip list is only accessed to refresh or free up space in the cache. But these

operations only needs to be performed when there is a mismatch in the rate at which

cells arrive and depart. In this case, there are guaranteed to be unused memory cycles
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available. Therefore, with the internal recycling cache, the free slot list can be

maintained in external memory with no additional memory bandwidth cost.

2.3. Efficient Weighted Fair Queueing

 The DQM chip implements weighted round robin scheduling [11] using a novel

approach we call the Binary Scheduling Wheels (BSW) algorithm [7]. The BSW

algorithm implements multiple priorities at minimal cost, providing a wide range of rate

options.

The BSW algorithm is a per VC based algorithm. Power of 2 weights can be assigned to

individual virtual circuit connections. These weights determine the relative frequency

with which cells are forwarded, allowing link bandwidth to be allocated appropriately

during congestion periods. With 32 distinct weights, the BSW algorithm can assign

bandwidth in amounts ranging from 2.4 Gb/s to less than one bit per second. Unlike

naive implementations of weighted round-robin scheduling, the BSW algorithm

interleaves cells from different channels as much as possible, minimizing the burstiness

of the output data streams. The algorithm can be implemented in a very cost-effective

way, requiring just a small increment in cost over a simple two priority level design. In

order to be able to scale to large number of weights, the BSW algorithm incorporates a

Fast Forward mechanism. It is well-suited to hardware implementation and allows cells

to be scheduled and forwarded in essentially constant time.
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2.4. Packet Level Discarding for Per VC Queues

To preserve packet integrity during overload, ATM switches often use packet level

discard mechanisms such as Early Packet Discard [16][18][4], which were designed for

use with FIFO queues. New algorithms are needed for per VC queueing, to minimize

memory usage and preserve fairness and QoS properties of output scheduling

algorithms. The DQM chip incorporates a new packet level discarding scheme for per

VC queues, called the Weighted Fair Goodput (WFG) algorithm. The combination of

WFG and BSW allows all virtual circuits to forward cells at reserved rates during

overload periods and ensures that “well-behaved” virtual circuits (those that do not

exceed their allocated rate) do not lose any data, and that data is discarded from

“misbehaving” virtual circuits on a packet-by-packet basis, avoiding wasted link

capacity during overload periods.

2.5. Flexible Link Configuration

The DQM chip implements a credit based link scheduler to allow the output links to be

configured with excess capacity. It is possible to configure external links in such a way

that total link bandwidth is greater than the bandwidth of the DQM chip. In particular,

the DQM chip makes bandwidth that is not needed by one port, available to other ports.

This allows links to send bursty traffic at higher rates if other links are not using their

full bandwidth.
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3.     OVERALL DESIGN

3.1.  Overview

To support the required output bandwidth of 2.4 Gb/s, the chip operates with an internal

clock speed of 120 MHz. The internal cell time is the same as that of the OPP, which is

14 clock cycles. The data path between the OPP and the DQM chip is 32 bits. This

allows cells to be received at a rate that is roughly 1.5 times the cell rate of an OC-48

link.

Figure 3-1 shows a block diagram of the DQM chip and its associated memory. The dash

line illustrates the data flow from the switch fabric to the output links. ATM cells are

received on a 32-bit wide interface, similar to the UTOPIA interface used for connecting

ATM devices to SONET transmission circuits [1]. The DQM stores cells in the external

memory and forwards them to one of possibly several output links.

There are nine functional blocks: the Queue Selector, the Queue Manager, the Output

Scheduler, the Free Slot Manager, the Cell Store, the Free Slot List, the Input Master,

the Output Master, and the Memory Controller. The Queue Selector dynamically assigns

queues to virtual circuits. The Queue Manager maintains a list of all queues, keeping

track of the first and the last cell in each queue. The Output Scheduler schedules the

transmission of cells from various channels and allocates the chip’s output bandwidth
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among different output links. The Cell Store buffers all incoming cells before

transmission. The Free Slot List stores unused cell slots in the Cell Store and the Free

Slot Manager maintains an on-chip cache and manages the Free Slot List. The Input

Master receives cells from the switch and retrieves control information. The Memory

Controller interfaces to the external memory and handles the necessary format

conversions, needed to map cells into memory. The Output Master forwards cells to the

output links.

3.1.1.  Queue Selector (QSEL)

The Queue Selector (QSEL) maps the VPI and VCI fields of incoming cells to

dynamically assigned queue identifiers. It contains a Queue Lookup Table (QLT), which

operates like a Content-Addressable Memory (CAM). Logically, one can think of the

QLT as a set of entries, each containing a (VPI,VCI) and a queue identifier. When a cell

Figure 3-1 Block Diagram of the Dynamic Queue Management Chip
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arrives, the VPI and VCI fields of the cell are compared to the stored entries. If a

matching entry is found, the queue identifier in the entry gives the number of the queue

that the cell is to be appended to. If there is no matching entry, a free queue is allocated

and a new entry is created, and initialized with the VPI and VCI of the incoming cell and

the identifier of the queue just allocated.

Figure 3-2 illustrates the Queue Selector data structures. In addition to the QLT, the

Queue Selector contains a Free Queue List and an Address Map. Queues are allocated

from the Free Queue List as needed. When the transmission of a cell by the Queue

Manager causes a queue to become empty, the identifier for that queue is returned to the

Queue Selector, which adds it back into the Free Queue List. The Address Map specifies

the QLT entry where a specified queue identifier is stored. It is used to remove an entry

from the QLT when a queue becomes empty. Specifically, whenever a queue identifier is

returned to the Free Queue List, the Queue Selector uses the queue identifier to select an

entry from the Address Map. The value returned is then used to deallocate the specified

QLT entry.

To obtain the most cost-effective implementation, the QLT is implemented using a Set-

Associative Memory (SAM). SAMs can be implemented with conventional SRAM and

some auxiliary logic, making them a good deal cheaper than CAMs. Given a VPI and a

Queue Lookup Table

0 1 2 3 4 5 6 7

- - 1 7 5 6 - -

Free Queue List

0

1

2

3

4

Address Map

QID

Figure 3-2  Queue Selector Data Structures
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VCI, the set-associative memory in the Queue Selector returns a set of entries, any one

of which could be used for storing information relating to that VPI and VCI

combination. A set of entries is selected using a subset of the bits of the VPI and VCI.

Each entry contains a valid bit, a tag and a queue identifier. The tag is formed from the

bits of the VPI and VCI not used to select the set.

When a cell is received by the DQM, its VPI and VCI are passed to the Queue Selector,

which retrieves a set of entries from the set-associative memory. The tag of the incoming

cell is compared to the tag fields of all entries of the set in parallel. If the tag field of

some valid entry in the set matches the tag of the incoming cell, the queue identifier

stored in that entry identifies the queue that the cell should be appended to. If there is no

tag match, it means that no cell belonging to this combination of VPI/VCI is currently

stored in the DQM’s memory, and so an unused queue identifier should be assigned. To

perform this assignment, the Queue Selector picks an unused entry from the set returned

by the set-associative memory and obtains an unused queue identifier from the list of

free queue identifiers that it maintains. It then copies the tag of the cell and the number

of the allocated queue into the selected entry, sets its valid bit and writes it back to the

set associative memory.

When the DQM transmits the last cell from some queue, the number of that queue is

passed to the Queue Selector which returns the queue to its list of available queues and

clears the valid bit in the corresponding entry of the set-associative memory. Thus, both

queues and entries in the set-associative memory are used only for those connections for

which the DQM is storing cells.

When a cell is received by the DQM, it is possible that the set-associative lookup will

yield a set of entries, all of which are in use (have the valid bit set) and none of which

have matching tags. In this case, the cell must be discarded. This is referred to as

overflow. We can make overflow less frequent by augmenting the set associative
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memory with a small Content Addressable Memory (CAM). The entire VPI and VCI are

used as the key field for the CAM. In the value field, we store the queue identifier that is

assigned to the virtual circuit. Figure 3-3 shows the set-associative lookup with CAM.

When a cell enters the DQM, a CAM lookup is performed in parallel with the set-

associative lookup described earlier. There are several cases that can then arise: If the set

returned by the set-associative memory has a matching entry, it is used as previously

described. If the set has no matching entry, but the CAM contains a matching entry, then

the queue identified in the matching CAM entry is used for the arriving cell. In this case,

if the set returned from the set-associative memory has an unused entry, the information

in the CAM entry is transferred from the CAM entry to the entry in the set-associative

memory, freeing up the CAM entry. If neither the set returned by the set-associative

memory, nor the CAM has a matching entry, then a new queue is allocated. If the set has

one or more free entries, one of them is allocated. Otherwise an entry in the CAM is

allocated.

Figure 3-3  Set-Associative Lookup with CAM
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3.1.2.  Queue Manager (QMGR)

The Queue Manager (QMGR) maintains a queue list for every possible virtual path

queue and virtual circuit queue by keeping pointers to the head and tail of the queues.

The actual queues are organized as linked lists and are stored in the external memory

(Cell Store). Each cell slot in the Cell Store contains one cell and a pointer to the next

cell in the queue. Figure 3-4 shows the queues maintained by the QMGR for a scaled-

down configuration.

The queue identifiers generated by the Queue Selector are used to index the queue list.

Each entry in the queue list contains pointers to the first and last cell of the queue. In

order to simplify the design, the LAST pointer always points to an empty cell slot in the

Cell Store which can accept the next arriving cell.

For an arriving cell, the QMGR informs the Cell Store to store the cell in the cell slot

which the last cell in the queue points to. The QMGR also obtains a free slot from the

Free Slot Manager and updates its queue list. The free slot number is written into the

Figure 3-4  Queues Maintained by the Queue Manager

Queue Manager

Last First

13

15

2

3

4

17

6

7

8

9

14

11

12

1

2

3

4

5

6

7

8

9

10

11

VC

VP

0

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

15

-

-

-

20

-

-

-

-

14

-

12
13

13
16

14
-

15
-

16
3

20
17

13
-

17
-

Cell Store

Queue List



                                                                                                                                                                             23

Cell Store along with the cell. For an outgoing cell, the QMGR obtains a queue identifier

of the queue to output a cell from the Output Scheduler. The QMGR sends the cell slot

number of the first cell in the queue to the Cell Store. The pointer stored with the

departing cell is used to update the queue list. The cell slot that contains the departing

cell is then returned to the Free Slot Manager. The QMGR notifies the Queue Selector

and the Output Scheduler to remove the queue if the first and last pointers in the queue

both refer to the empty cell slot after modifying the queue list.

3.1.3. Cell Store (CSTR)

The Cell Store (CSTR) stores cells before they are forwarded to the external links. Cells

are organized as linked lists on a per connection basis as shown in Figure 3-4. The

minimum units in the CSTR are called cell slots and are indexed by slot numbers. Each

cell slot can accommodate one cell and a pointer to build up the linked list. Figure 3-5

illustrates the cell slots in the CSTR, where the letter designates a stored cell and the

number is the pointer to the next cell in the queue.

For an arriving cell, the CSTR receives a slot number and a pointer from the Queue

Manager (QMGR). It writes the entire cell and the pointer to the cell slot indicated by the

slot number. For an departing cell, the CSTR receives a slot number from QMGR, and

reads the cell and the pointer out of the cell slot. It forwards the cell to the Output Master

(OMST), and forwards the pointer to the QMGR.

Figure 3-5  Cell Slots in the Cell Store
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3.1.4.  Output Scheduler (OSCHL)

The Output Scheduler (OSCHL) determines the order in which different non-empty

queues are selected for transmission. Because the chip is designed to support multiple

outputs (up to 16 OC-3 interfaces, in some configurations), the Output Scheduler has

separate scheduling data structures for each output. There are two scheduling

mechanisms that the Output Scheduler can choose from. One is two priority round-robin

scheduling. The other is weighted round-robin scheduling. The basic design implements

two priority scheduling scheme. An efficient implementation of weighted round-robin

scheduling is discussed in detail in Chapter 5.

In the two priority case, each output has a high priority list and a low priority list.

Queues on these lists contain at least one cell. If a queue becomes empty after

forwarding a cell, it is removed from the list. Output links are served in a round-robin

fashion. The idea of round-robin scheduling is that during each round, everyone is

visited exactly once. Each of the 16 outputs is able to forward one cell every 16 cell

times. When an output is selected, the high priority list on that output is served before

the low priority list. The low priority list can be processed only if the high priority list is

empty. Queues on the lists are also served in a round-robin fashion. In this way, real-

time streams can avoid being delayed by bursty data traffic.

The OSCHL uses the queue identifiers maintained by the Queue Manager to identify

different active queues. Figure 3-6 shows a scaled-down version of the high and low

priority lists that the OSCHL maintains. The queue identifiers of all non-empty queues

are linked together to form circular lists on the priority lists.

The OSCHL sends the queue identifier of the scheduled queue to the Queue Manager

and sends the corresponding output link number to the Output Master. For a new

connection, it inserts a queue identifier in the proper place in its list according to the
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priority bit and the output link number. It removes a queue identifier from the list when

the queue is empty, as informed by the QMGR.

If weighed round-robin scheduling is used, each queue is assigned a weight from a fixed

set of power of 2 weights. For each output, the OSCHL maintains an array of scheduling

lists, with one list for each weight. This is illustrated in Figure 3-7, which shows a scaled-

down version of the OSCHL data structures, configured for four outputs and four

weights. The actual chip supports up to 16 outputs and 32 weights.

The scheduling lists are organized cyclically and are referred to as scheduling wheels.

The weights for the different scheduling wheels determine the relative frequency with

which the queues are scheduled. Queues on the weight 0 wheel are visited twice as often

as queues on the weight 1 wheel, four times as often as queues on the weight 2 wheel,

and so forth. The scheduling algorithm used by the OSCHL is called the Binary

Scheduling Wheels algorithm and is described in detail in Chapter 5.

Figure 3-6  High/Low Priority Lists in Output Scheduler

Output Scheduler
High Low

Output 0 Output 0

Output 1

Output 2

Output 3

Output 1

Output 2

Output 3

1

nil

10

nil

nil

0

nil

nil

0
5

Current Output = 1
Scheduled Queue = 5 1

1

10
10

5

0



                                                                                                                                                                             26

3.1.5.  Free Slot Manager (FSMGR) and Free Slot List (FSLST)

The Free Slot List (FSLST) stores the currently unused slot numbers in the Cell Store.

Because of the size of the FSLST, it is stored in the external memory. The FSLST is

implemented as a circular list with a head pointer and a tail pointer. Figure 3-8 shows a

scaled-down version of the Free Slot List.

The Free Slot Manager (FSMGR) manages the Free Slot List. It keeps an on-chip free

slot cache. The FSMGR assigns an empty cell slot from its cache to an arriving cell.

After a cell departs, the corresponding cell slot is returned to the free slot cache. If there
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Figure 3-7  Scheduling Wheels in the Output Scheduler
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are too many free slots in the cache when there is no arriving cell for a long time, the

FSMGR moves free slots to the Free Slot List using an idle memory write cycle. If there

is no departing cell for a long time, the free slot cache will run short of free slots. The

FSMGR then reads free slots from the Free Slot List using an idle memory read cycle.

3.1.6.  Input Master (IMST)

The Input Master (IMST) receives cells from the Output Port Processor (OPP). It

retrieves control information from the cell. The IMST sends the VPI, VCI, type, PT, link

number and priority of the incoming cell to the Queue Selector. It forwards the entire

cell to the Memory Controller.

3.1.7.  Output Master (OMST)

The Output Master (OMST) forwards cells to the output links. It receives the departing

cell from the Memory Controller and the output link that the cell is destined for from the

Output Scheduler. The OMST provides separate buffers for each of the chip’s four

UTOPIA interfaces as shown in Figure 3-9.

----- Output 0

----- Output 1

----- Output 2

----- Output 3

Output
Master

Current
Output
= 3

Figure 3-9  Buffers in the Output Master
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3.1.8.  Memory Controller (MCTRL)

The Memory Controller (MCTRL) controls the external memory blocks: Cell Store and

the Free Slot List. It communicates with the Input Master, the Output Master, the Queue

Manager and the Free Slot Manager. The Memory Controller also handles cell format

conversion and memory address translation.

3.2.  Operational Examples

The following examples illustrate the operation of the major blocks. More examples are

given in Appendix B.

In order to simplify the examples, we assume a 2-bit VPI, a 3-bit VCI, a set-associative

memory with 8 sets and 2 entries each, 32 slots in the Cell Store and 4 output links. We

allow 8 VC connections, 4 VP connections. Cells are denoted as A, B...Z. Each incoming

cell provides its VPI, VCI, type, priority, and the output number. Type can be either VC

connection or VP connection and priority can be high or low.

Table 3-1 shows the incoming cells for a few cell times after the initialization. We will

go over the operations of the first few cell times and leave the rest for Appendix B.

Figure 3-10 gives the overall timing of the cell arrival and departure. "A-1" denotes that

cell A is destined for output 1. Each cell time is divided into a write cycle followed by a

read cycle. During the write cycle, denoted as “W”, the arriving cell is written into the

Cell Store, while during the read cycle, a cell is read out of the Cell Store. "R1" means

the current read cycle is for a cell destined for output 1.
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Because all the output links are served in round-robin fashion, each output can only send

one cell per round. For example, Cell A destined for output 1 arrives at Cell Time 0, and

leaves at Cell Time 5 when the read cycle is for output 1. Also, queues on each output

are also served in round-robin fashion with those on the high priority lists served before

those on the low priority lists.The following figures will explain how decisions are made.

If there is no queue on a particular output during its read cycle, the read cycle for that

output is not used.

Figure 3-11 illustrates the states at the end of Cell Time 0. During Cell Time 0, cell A

comes in with VPI=0, VCI=2, TYPE=VC, PRI=HIGH, OUT=1. Since it is a VC

connection, a queue identifier is dynamically assigned to it. The Queue Selector uses the

lower 1 bit of the VPI and lower 2 bits of the VCI to form an address (ADDR). A TAG

field is formed by the highest 1 bit of the VPI and highest 1 bit of the VCI. The Queue

Table 3-1 Arriving Cell Information

Arrival
Time

Cell
Content

VPI/VCI Type Priority
Output
Number

Queue ID

0 A 0/2 VC HIGH 1 0

1 B 0/2 VC HIGH 1 0

2 C 2/3 VP LOW 2 10

3 D 3/5 VC LOW 0 1

4 E 0/2 VC HIGH 1 0

5 F 3/5 VC LOW 0 1

6 G 2/5 VP LOW 2 10

7 H 1/6 VC HIGH 1 2

8 - - - - - -

9 I 3/7 VP LOW 2 11

10 - - - - - -

11 - - - - - -
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Selector uses the address to retrieve a set of entries from its set-associative memory and

match them against the TAG field. If there is a matched tag, the Queue Selector will

return the queue identifier stored in the matching entry. If not, there is no queue currently

assigned to the connection and the first available queue identifier in the Free Queue List

will be assigned to the connection and stored in the first unused entry of the set, together

with the TAG field. In this case, ADDR=2, TAG=(00)2. Because there is no tag match,

the Queue Selector assigns 0 as the queue identifier to it. So the (TAG, QID) pair (00,0)

is written to address 2, entry 0. The next available queue identifier in the Free Queue List

is now 1. The Queue Selector forwards the QID=0 to the Queue Manager. The current

output in the Output Scheduler is 0. There is no queue on either the high priority list or

the low priority list, so no cell is scheduled to the Output Buffer. No other changes occur

in this cell time.

A arrives

C arrives

D arrives

B arrives

E arrives

F arrives

W R0 W R1 W R2 W R3 W R0
Cell Time        1       2       3       4

A departs

C departs

D departs

H departs

W R1 W R2 W R3 W R0 W R1
      5       6        7       8       9

F departs

W R2 W R3 W R0W R1 WR2
        10-      11      12      13     14

A-1

B-1

C-2

D-0

E-1

F-0

G-2

H-1

G arrives

H arrives

G departs

I-2 I arrives

0

Figure 3-10  Timing of Cell Arrival and Departure
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Figure 3-12 shows the status at the end of Cell Time 1. During Cell Time 1, the Queue

Manager uses the QID as the index to get the value in the LAST field, which indicates

the cell slot to store the arriving cell. Since LAST=0, Cell A is written to Slot 0 in the

Cell Store. The Queue Manager asks for another free slot from the Free Slot List to

update the LAST field. The number of this slot is also written into the Cell Store with the

cell, as the pointer (PTR) field. At the end of Cell Time 1, LAST=12 and the next

available free slot in the Free Slot List is 13. Since PRI=HIGH and OUT=1, and it is a

new connection, the Output Scheduler adds the queue to the high priority list on output

1. Besides the operations on Cell A, Cell B comes in with VPI=0, VCI=2, TYPE=VC,

PRI=HIGH, OUT=1. The Queue Selector computes the ADDR=2, TAG=(00)2. It checks

the TAG field in its entry and finds a tag match. So it forwards the QID=0 to the Queue

Manager. The current output in the Output Scheduler is 1. Because at the beginning of

the cell time, the output list is empty, no cell output occurs in this cell time.

Figure 3-13 shows the status at the end of Cell Time 2. During Cell Time 2, Cell B is

written into the slot 12 in the Cell Store indicated by the LAST field of QID 0 with the

PTR=13. The LAST field is also updated to 13 and the first element in the Free Slot List

is moved to 14. Cell C comes in with VPI=2, VCI=3, TYPE=VP, PRI=LOW, OUT=2. It

is a VP connection, so the Queue Selector statically assigns QID=VP+8=10 to the

connection. No other changes occur.

Figure 3-14 shows the status at the end of Cell Time 3. During Cell Time 3, since the

LAST field of queue 10 points to cell slot 10, Cell C goes into slot 10 in the Cell Store.

The LAST field is changed to 14 and the header of the Free Slot List is advanced to

point to 15. Since it is a new connection, queue 10 is added to the low priority list on

output 2 in the Output Scheduler. Cell D comes with VPI=3, VCI=5, TYPE=VC,

PRI=LOW, OUT=0. The index to the Queue Selector is computed as 5 and TAG is

(11)2. There is no tag match in this case so a new QID=1 is assigned to it.
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Figure 3-13  Status at the End of  Cell Time 2
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Figure 3-14  Status at the End of  Cell Time 3
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Figure 3-15  Status at the End of Cell Time 4
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During Cell Time 4, as shown in Figure 3-15, Queue 1 is attached to the low priority list

on output 0 in the Output Scheduler. Cell D is written into Slot 1 in the Cell Store. Cell E

comes in with VPI=0, VCI=2, TYPE=VC, PRI=HIGH, OUT=1. It belongs to the same

virtual circuit connection as Cells A and B and is assigned QID 0.

Figure 3-16 illustrates the status at the end of Cell Time 5. During Cell Time 5, Cell E

goes to slot 13. Cell F arrives with VPI=3, VCI=5, TYPE=VC, PRI=LOW, OUT=0. The

major difference between this cell time and previous ones is that Queue 0 is scheduled

by the Output Scheduler to output its cell to output 1. Since the first cell of that queue is

Cell A, Cell A is read out from the Cell Store and written to the Output Master. Slot 0 is

returned to the Free Slot List.

The operations in later cell times are similar, so detailed descriptions are omitted.

However, figures for the next 5 steps are included in appendix B.
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Figure 3-16  Status at the End of Cell Time 5
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4.     DETAILED DESIGN

4.1.  External Interfaces

4.1.1.  Output Port Processor (OPP)

The Output Port Processor (OPP) is part of the Washington University Gigabit Switch

(WUGS). With 32-bit data paths clocked at a rate of 120 MHz, the system is fast enough

for external links up to 2.4 Gb/s.

The Dynamic Queue Management (DQM) Chip receives cells from the OPP in the

format shown in Figure 4-1. The various header fields have the following interpretation.

GFC - Generic Flow Control: This 4-bit field is used for carrying local flow control

information between an end host and the first ATM switching node to which it is directly

connected (it is not carried through end-to-end). This field is ignored in the WUGS

design.

VPI - Virtual Path Identifier: The ATM standard supports two types of connections. In

virtual path connections, the VCI field is preserved end-to-end, and only the VPI field
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contents are used by the network to route cells. On the other hand, in virtual circuit

connections, both the VCI and the VPI fields are used to route cells, and so neither is

preserved end-to-end.

VCI - Virtual Circuit Identifier: As mentioned earlier, the VCI field is used along with

VPI for routing cells in a virtual circuit connection. In virtual path connections, it is

preserved end-to-end, and can therefore be used by end hosts to demultiplex different

cell streams routed on the same virtual path.

CLP - Cell Loss Priority: This 1-bit field is used to indicate low priority cells. The

source may set this bit to 0 or 1. If the bit is 1, switches along the connection path know

that the cell is of low priority, and preferentially discard such cells if the network is

encountering congestion. Because the CLP bit can change from cell to cell in the same

virtual circuit, the DQM chip uses the CS field instead to indicate high/low priority.

PT - Payload Type: This 3-bit field, along with some of the other fields in the ATM cell

header, determines the cell type.

word 0

word 1

031

PTVCIVPI

121920

HEC

PAYLOAD

28

GFC
C
L
P

C
S

V
P
T

34567

WT 0  0  016 bits, all zeros

word 2

word 13

Figure 4-1  Cell Format

A
5
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HEC - Header Error Check: The header error check is an 8-bit CRC that is computed

only over the header fields. The CRC computation is based on the polynomial:

.

CS - Continuous Stream: Continuous media connections are those in which the data

rate is either constant, or has low variance over time (e.g. compressed video and voice).

Discrete media connections have higher variance in their data rates, and are often

described as “bursty”. The CS bit field has a value of 1 if the connection carries

continuous media traffic, and 0 if it carries discrete media. Continuous streams gets

priority over discrete streams. The DQM chip use this field to distinguish high/low

priorities.

VPT - Virtual Path Termination: This 1-bit field is 1 if the cell is part of a virtual

circuit connection, 0 if it is part of a virtual path connection. Virtual path connections

and virtual circuit connections are treated differently in the DQM chip for queue

identifier assignment.

WT - Connection Weight: This field is defined as the connection weight. It is used for

fair queueing.

A5 - AAL5 Connection: This 1-bit field indicates an AAL5 connection if it is 1, and is

used by the DQM chip to implement packet-level discarding.

4.1.2.  External Links

The Dynamic Queue Management Chip has a total output bandwidth of 2.4 Gb/s. The

output of the DQM Chip implements four UTOPIA Interfaces (The Universal Test &

Operations PHY Interface for ATM), each of which can support a 600 Mb/s OC-12 link

x
8

x
2

x 1+ + +
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or four 150 Mb/s OC-3 links. To support a G-link interface in a nonblocking fashion, a

pair of interfaces is allocated, with one actually used for the G-link, and the other

disabled. To support an OC-48 link in a nonblocking fashion, two interfaces are used and

the other two are disabled.

Figure 4-2 illustrates some of the link configurations that are possible with the DQM

chip. Figure 4-2 (a) shows a DQM Chip connecting to 16 OC-3 links. Figure 4-2 (b)

shows a DQM Chip connecting to 4 OC-3 links, 1 OC-12 link and 1 G-link. Figure 4-2

(c) shows the connection to a single OC-48 link.

If links are configured in this way, every 16 cell times, OC-3, OC-12, G-link, and OC-48

links can receive one cell, four cells, eight cells and sixteen cells, respectively. We

introduce the concept of Virtual Port. Each virtual port has a bandwidth of 155Mb/s,

which is the same as the bandwidth of an OC-3 link. Figure 4-2 shows the virtual port

numbers associated with physical links in each of the sample configurations. The G-link

and OC-48 links, in these examples, are associated with the virtual port numbers of the

disabled interfaces, as well as the interface they actually use.

(a) (b) (c)

Figure 4-2  Link Configurations
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If virtual ports are serviced in the normal consecutive order, bursts of cells from single

links are created, causing cells to accumulate at link interfaces. However, if we use a

reversed-bit counter, the forwarding of cells to links will be spread out in time. Table 4-1

shows the values of the regular counter, the reversed-bit counter and corresponding

selected virtual port. The reversed-bit counter can be implemented using a 4-bit regular

counter with reversed bit order.

Table 4-1 Reversed-bit Counter

Order
Regular
Counter

Reversed-bit
Counter

Virtual Port

0 0000 0000 0

1 0001 1000 8

2 0010 0100 4

3 0011 1100 12

4 0100 0010 2

5 0101 1010 10

6 0110 0110 6

7 0111 1110 14

8 1000 0001 1

9 1001 1001 9

10 1010 0101 5

11 1011 1101 13

12 1100 0011 3

13 1101 1011 11

14 1110 0111 7

15 1111 1111 15
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When a virtual port is selected, the actual external link number can be obtained by

masking the lower bits of the virtual ports, assuming the external link always connects to

the first virtual port. Table 4-2 summarizes the characteristics of different links.

4.2.  System Operation

4.2.1.  Cell Arrival and Departure

Before we define the major components in the chip, we describe the events involved in

processing of arriving and departing cells.

ARRIVING CELL PROCESSING

Step One: Decide which queue to append the cell to. Queues are assigned on a per

connection basis. The Queue Selector statically assigns queues to virtual path

connections and dynamically assigns queues to virtual circuit connections. When a cell

in a virtual circuit connection arrives and finds no matching queue, the Queue Selector

assigns an unused queue to the connection. Since queues are distinguished by queue

Table 4-2 Link Characteristics

Link Type OC-3 OC-12 G link OC-48

Bandwidth 150 Mb/s 600 Mb/s 1.2 Gb/s 2.4 Gb/s

Number of Associated
Virtual Ports

1 4 8 16

Mask 1111 1100 1000 0000
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identifiers, determining a queue is the same as producing a queue identifier. The Queue

Selector passes the queue identifier to other logic blocks for further processing.

Step two: Determine the cell slot that the arriving cell should be placed in. Each

arriving cell is temporarily stored in the external memory (Cell Store) before it is sent to

the output link. Queues in the Cell Store are implemented as linked lists. The Queue

Manager maintains pointers to the first and last slot for each queue. To minimize the

required number of external memory operations, an empty slot is included at the end of

every list. So, the cell slot to store an arriving cell is the slot at the end of the queue.

Step three: Add a new cell slot to the end of the queue. The Queue Manager requests

a free slot from the Free Slot Manager. The Free Slot Manager returns the first available

slot from the Free Slot List, where all unused slots are stored. The Queue Manager

appends that free slot to the end of the queue.

Step four: Write the arriving cell and the pointer to the empty slot just allocated

into the cell slot in the Cell Store. The Queue Manager sends the slot number and the

pointer to the Memory Controller. The Input Master passes the entire cell to the Memory

Controller. The Memory Controller generates all the control signals and addresses for a

memory write, and writes the cell and the pointer field into the Cell Store.

Step five: Add the queue to the Output Scheduler if it is a new connection. The

Output Scheduler keeps lists for all active queues. The Queue Manager detects a new

connection by comparing the pointer values for the first and the last cells in the queue.

The Output Scheduler inserts the new queue into the proper place based on the priority

and the output number of the cell.
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DEPARTING CELL PROCESSING

Step One: Determine the current output and the queue to forward a cell. The Output

Scheduler selects the current output number using a generalized form of round-robin

scheduling. It maintains a high priority list and a low priority list for each output. Queues

on the lists are served in a round-robin fashion, but the low priority list is served only if

the high priority list for the current output is empty.

Stop two: Determine the cell on the scheduled queue that goes to the link and its

position in the Cell Store. The selected queue always forwards its first cell to the output

link. The slot number of the first cell is stored in the FIRST field of the corresponding

queue. The Queue Manager uses the queue identifier passed by the Output Scheduler to

obtain the slot number.

Step three: Read the cell out of the Cell Store, place it in the buffer of the Output

Master, and return the slot to the free slot cache. The Queue Manager sends the cell

slot number of the outgoing cell to the Memory Controller. The Memory Controller

generates the address and the control signals for a memory read. The outgoing cell is

read out of the Cell Store and placed in the buffers in the Output Master. The slot

number of the departing cell is returned to the free slot cache in the Free Slot Manager

for future use.

Step four: Determine the pointer field of the departing cell and use it to update the

FIRST field of the queue list in the Queue Manager. After the first cell in the queue

departs, the second cell becomes the first cell. The pointer to the second cell is read out

of the Cell Store with the departing cell. The Cell Store passes the pointer to the Queue

Manager to update the FIRST field.

Step Five: Remove a queue from the Output Scheduler and the Queue Selector if it

is empty. The Queue Manager checks if a queue is empty by comparing the FIRST and
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the LAST field. For an empty queue, the Queue Selector use the Address Map to find the

corresponding entry in the Lookup Table, and sets the valid bit to 0 and the Output

Scheduler removes a queue from its list by redirecting the pointers in its queue list.

Table 4-3 and Table 4-4 summarize the events and the components involved in the

arriving and departing cell processing. The labels of the events are used later in the

timing analysis.

Table 4-3 Incoming Cell Processing

Labels Descriptions QSEL QMGR CSTR OSCHL FSMGR FSLST

1 Determine what queue to
append cell to.

+

2 Determine the cell slot. +

3 If it is a new connection,
add the queue to output list.

+ +

4 Add a new empty slot to
the end of the queue.

+ + +

5 Write PTR field and the
cell into the cell slot

+
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4.2.2.  Data Flows

In this section, we use a data flow diagram to illustrate how components work together.

Figure 4-3 shows the data path between the components logically.

Table 4-4 Outgoing Cell Processing

Labels Descriptions QSEL QMGR CSTR OSCHL FSMGR FSLST

a Determine the next queue
to send from the current
output.

+

b Determine the cell slot of
the next cell to send

+

c Read the cell from the
memory, place it in the out-
put buffer, and return the
slot to the free slot list.

+ + + +

d Use PTR field of the
departing cell to update
the FIRST field of the
queue

+

e If the queue is empty,
remove it from the priority
list in the Output Sched-
uler. If it is a VC queue,
deallocate the queue and
remove the mapping in the
Queue Selector.

+ + +



                                                                                                                                                                             49

The major data flow is the cell data. Cells received by the IMST are sent to the CSTR

first. Cells stored in the CSTR are then sent to the OMST. The OMST forwards cells to

different output links.

Queue identifiers (QID) are passed back and forth among the QSEL, the QMGR and the

OSCHL for different purposes. To process an arriving cell, the QSEL produces a queue

identifier that identifies the queue for this cell. It passes the queue identifier to the

QMGR. The QMGR uses this queue identifier to find the cell slot in the CSTR for the

incoming cell. If the incoming cell belongs to a new connection, the QMGR also passes

Figure 4-3  Data Flow Diagram

Cell Data
V

PI
, V

C
I,

T
Y

PE
, P

R
I

QID, PRI, OUT

QID
QSEL QMGR

IMST CSTR

FSMGR

FSL

OSCHL

OMSTCell Data

SL
O

T,
 P

T
R

 P
T

R

FS
L

O
T

S

 H
E

A
D

,T
A

IL

   
 F

SL
O

T

QID, PRI, OUT

QID

   
O

U
T

Cell Data

Cell Data

Cell Data

Cell Data

Cell Data



                                                                                                                                                                             50

the queue identifier to the OSCHL so that the OSCHL can add the queue to its

scheduling list. To process a departing cell, the OSCHL informs the QMGR which queue

is to forward a cell by passing the corresponding queue identifier to the QMGR. If the

queue becomes empty after outputting a cell, the QMGR passes the queue identifier of

the empty queue to both the QSEL and the OSCHL. The QSEL and the QSCHL then

remove the queue from their lists.

Free slots include all the currently unused cell slots in the CSTR. The FSMGR keeps a

local free slot cache. All the remaining free slots are stored in the FSL which is also

managed by the FSMGR. The QMGR obtains and returns a free slot through the

FSMGR. The head and tail pointers passing from the FSMGR to the FSL indicate the

first and the last free slots in the FSL.

The QMGR informs the CSTR where to store a cell or read a cell from by sending the

slot number (SLOT). The pointer field (PTR) passed by the QMGR is stored in the cell

slot with the cell to build up the linked list. When the cell departs, the pointer field of the

cell slot is passed back to the QMGR to update the queue list.

4.3.  Component Definitions

To define the signals between the components, we use the convention that a signal

consists two parts separated by an underscore. The name before the underscore indicates

the signal, and the component name after the underscore indicates where the signal is

generated. For example, VPI_IMST means the VPI signal generated in the IMST.

Let NVCI be the number of VC queues supported by the DQM chip. Signal definitions

of all the components are in Appendix A.
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4.3.1.  Input Master (IMST)

The signal diagram for the Input Master (IMST) is shown in Figure 4-4. The IMST

receives cells from the OPP in a format shown in Figure 3-1 on page 19. It passes cell

information to the Queue Selector (QSEL) and passes the entire cell unchanged to the

Memory Controller (MCTRL).

Figure 4-5 shows the logic in the IMST. The IMST extracts VPI_IMST, VCI_IMST,

A5_IMST, U_IMST, TYPE_IMST, PRI_IMST, WT_IMST and OUT_IMST from the

corresponding fields in the cell and sends them to the QSEL. It copies DATA_OPP to

DATA_IMST and forwards it to the MCTRL.

Figure 4-4  Signal Diagram for the Input Master
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4.3.2.  Queue Selector (QSEL)

Figure 4-6 shows the signal diagram of the Queue Selector (QSEL). The QSEL receives

cell information from the Input Master (IMST) and assigns a queue identifier to the cell.

It sends the queue identifier and some cell information to the Queue Manager (QMGR).

The QSEL receives control signals from the QMGR and removes queue mapping as

needed.

Figure 4-7 illustrates the internal logic structures of the QSEL. The QSEL keeps a set-

associative memory (SAM) and a content addressable memory (CAM) for dynamic

queue assignment. The Free VC Queue List contains all unused queue identifiers. The

Address Map is used to remove empty queues from corresponding entries.

Figure 4-5  Block Diagram of the Input Master
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If TYPE_IMST is 0, the incoming cell is from a VP connection. A queue identifier of

value (VPI + NVCI) is statically assigned to the cell.

If TYPE_IMST is 1, the incoming cell belongs to a VC connection. Dynamic queue

assignment is used in this case. Dynamic queue assignment is implemented using a SAM

and a CAM. Each entry of a SAM contains a valid bit, a tag field and a queue identifier.

The total number of entries in the SAM is determined by the maximum number virtual

circuits supported by the DQM chip and the load factor. Depending on the depth and the

width of the set-associative memory, the address to the SAM (ADDR) is formed from

the lower order bits of the VPI and the VCI. The tag of the cell (TAG) is generated using

the rest of the bits. The CAM contains a few entries, each of which includes a key field,

a queue identifier (QID) field, and a valid bit. The key field stores the VPI and the VCI.

The QID field contains the assigned queue identifier if the valid bit is 1. The choices of

the maximum number of VCs, the load factor, the width of the SAM and the size of the

CAM are discussed in Chapter 6.

Figure 4-6  Signal Diagram for the Queue Selector
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Figure 4-7  Block Diagram of the Queue Selector
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ADDR is used to retrieve a set of entries from the SAM. The tag fields in all entries in

the selected set are compared to TAG of the incoming cell in parallel. If there is a

matched entry, the queue identifier stored in the entry is assigned to the incoming cell.

When the SAM is doing a lookup, the entire VPI and VCI are compared to the key field

of all entries in the CAM in parallel. If there is a matching entry in the SAM, the queue

identifier is assigned as described above.

If the SAM contains no matching entry, but the CAM has a matching entry, then the

queue identifier stored in the CAM entry is assigned to the cell. If the corresponding set

in the SAM has an unused entry in this case, the queue identifier in the CAM entry is

copied to the SAM entry and the mapping in the CAM is removed by setting the valid bit

to 0. In order to remove the mapping in the future, the position of the entry in the SAM

(specified by the address to the set and the entry number) is stored in the address map

indexed by the queue identifier.

In all other cases, the first unused queue identifier in the free VC queue list is assigned to

the cell. If the selected set in the SAM has one or more unused entries, the TAG of the

cell and the newly assigned queue identifier are written into the first unoccupied entry in

the set. The valid bit is then set to 1. The address map is modified in the same way as

previously described. Otherwise, an unused entry in the CAM is allocated. The VPI and

the VCI are written into the key field and the newly assigned queue identifier is written

into the QID field. The entry location in the CAM is written into the address map.

In all cases, the queue identifier assigned to the incoming cell is sent to the QMGR as

QID_QSEL.

The free VC queue list is implemented as a circular list. All unused queue identifiers are

stored in the list. The size of the free queue list is equal to the maximum number of VC
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queues supported by the DQM chip. Each entry in the free queue list contains an unused

queue identifier. The control logic keeps track of the head and the tail of the list. HEAD

points to the first available queue identifier in the list. To simplify the design, TAIL

always points to the first empty entry. After a free queue identifier is read out of the free

queue list, the HEAD pointer is incremented by 1 and will wrap around when it reaches

the physical end of the memory. A queue identifier is returned to the entry specified by

the TAIL pointer. The TAIL pointer is incremented by 1 in this case and will also wrap

around as needed.

When a VC queue becomes empty, the queue identifier of the empty queue needs to be

returned to the Free VC queue list. The QMGR detects an empty VC queue and provides

the queue identifier to the QSEL. The queue identifier is returned to the free VC queue

list. In order to remove the mapping in the SAM or the CAM, the entry in the address

map is used to set the valid bit to 0 in the corresponding entry.

4.3.3.  Queue Manager (QMGR)

Figure 4-8 shows the signal diagram of the Queue Manager (QMGR). The QMGR

maintains a Queue List that keeps track of all queues in the Cell Store. The queue list is

indexed by queue identifiers. Each entry of the queue list contains pointers to the cell

slots where the first cell and the last cell of the queue are stored in the Cell Store. The

QMGR specifies the cell slot that an incoming cell is written to and the cell slot that a

departing cell is read from. The block diagram of the QMGR is illustrated in Figure 4-9.

The queue list is stored in the SRAM. Each entry has a FIRST field and a LAST field.

The FIRST field contains the cell slot for the first cell in the queue. The LAST field

contains the cell slot that the last cell in the queue points to.
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The queue identifier of a incoming cell is passed by the QSEL. The QMGR uses the

queue identifier to retrieve the entry in the queue list. The FIRST field and the LAST

field are compared. If these two fields are equal, the incoming cell belongs to a new

connection. The new queue needs to be added to the priority list in the Output Scheduler

(OSCHL). The QMGR sends the queue identifier, the output number, the priority and the

weight to the OSCHL.

Figure 4-8  Signal Diagram for the Queue Manager
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Figure 4-9  Block Diagram of the Queue Manager
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The LAST field specifies the cell slot to store the incoming cell. In order to build up the

linked list, the QMGR sends a free slot along with the cell slot to the Memory

Controller. The free slot is written into the Cell Store with the incoming cell. The QMGR

requests another free slot from the Free Slot Manager (FSMGR).

The queue identifier of a departing queue is sent by the Output Scheduler (OSCHL). The

QMGR retrieves the corresponding entry in the queue list. The FIRST field contains the

cell slot where the first cell in the queue is stored. The first cell of the queue is read out

from the Cell Store and is sent to the Output Master. The pointer stored with the cell is

sent back to the QMGR to update the FIRST field of the queue list. This pointer is also

compared to the LAST field in the entry. If these two values are equal, the queue is

empty and needs to be removed. The QMGR then informs the QSEL and the OSCHL to

remove the queue from their lists. The cell slot that contains the departing cell becomes

free slot and is sent to the FSMGR.

4.3.4.  Output Scheduler (OSCHL)

Figure 4-10 shows the signal diagram of the Output Scheduler (OSCHL). The OSCHL

determines the order of queues to forward cells to output links. Once a queue is selected,

it can forward one cell to the output. The basic design describes the two priority

scheduling.

The OSCHL supports up to 16 output links. It keeps a high priority list and a low priority

list for every output. Priority lists are constructed as circular lists. Once an output is

selected, the high priority list is served before the low priority list. Queues on the priority

list are served in round-robin fashion.



                                                                                                                                                                             60

Figure 4-11 shows the block diagram of the OSCHL. A queue list is stored in SRAM to

build the priority lists. The number of entries in the queue list is equal to the total

number of connections supported by the DQM chip including the VP connections. The

queue list is indexed by the queue identifiers. The value in the entry specifies the next

queue in the circular list. Only active queues with at least one cell are on the circular

lists. The OSCHL also keeps a scheduling list stored in SRAM with 16 entries. Each

entry contains a HIGH pointer to the next queue on the high priority list and a LOW

pointer to the next queue on the low priority list. If there is no queue on the list, the

pointer is set to NIL.

The OSCHL uses a 4 bit reversed-bit counter to determine the order in which the output

links are selected as described in 4.1.2. Once an output is selected, the OSCHL checks

the values in the HIGH field and LOW field in the corresponding entry. If HIGH is not

NIL, the value in the corresponding queue list entry specifies the next queue to forward a

cell. The OSCHL sends the queue identifier of the scheduled queue to the QMGR. If

Figure 4-10  Signal Diagram for the Output Scheduler
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HIGH is NIL, but LOW is not NIL, the OSCHL sends the queue identifier indexed by

the LOW field to the QMGR as the next scheduled queue. If LOW is also NIL, no

queues are destined for the selected output. The cycle becomes idle and no cell is

forwarded to the output.

Figure 4-11  Block Diagram of the Output Scheduler
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The OSCHL is responsible for adding new queues to its priority lists and removing

empty queues from its priority lists. To add a new queue to the list, the OSCHL uses the

output number and the priority of the new queue sent by the QMGR to find the proper

list to insert the new queue. The value in the queue list entry indicated by the HIGH/

LOW pointer is copied to the queue list entry indexed by the new queue. The queue

identifier of the new queue is then copied to the queue list entry indexed by the HIGH/

LOW field.

The QMGR determines if a queue becomes empty after forwarding a cell. The OSCHL

needs to remove the empty queue from its list. The OSCHL copies the value in the queue

list entry of the scheduled queue to the entry indexed by the HIGH/LOW field. In this

case, the HIGH/LOW field does not change. Otherwise, the value in the queue list entry

of the scheduled queue is copied to the HIGH/LOW field. As a result, the pointer points

to the next queue in the circular list.

4.3.5.  Free Slot Manager (FSMGR)

Figure 4-12 is a signal diagram of the Free Slot Manager (FSMGR). The FSMGR keeps

an internal recycling cache and manages the Free Slot List (FSL) in the external

memory. Figure 4-13 is a block diagram of the FSMGR and its relationship with the

FSL. The FSL stores unused cell slots in the Cell Store and is organized as a circular list.

When the Queue Manager (QMGR) requests for a free slot, the FSMGR sends a free slot

from its free slot recycling cache. When the QMGR returns a free slot, the FSMGR

places it in its recycling cache. In normal cases, where the input rate matches the output

rate, there is no need to access off-chip Free Slot List. The FSL only needs to be
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accessed to read a block of free slots or to return a block of free slots when there is a

mismatch in rates for quite a long time. In this case, there is idle memory cycles

available.

4.3.6. Memory Controller (MCTRL)

The signal diagram for the Memory Controller (MCTRL) is shown in Figure 4-14. The

MCTRL controls the external memory, generates all control signals and does the proper

format conversion. Figure 4-15 shows the logic diagram of the Memory Controller. The

MCTRL generates all the control signals necessary for the external memory, and does

the proper format conversion.

The MCTRL receives the incoming cell from the Input Master (IMST) on a 32 bit data

path, converts it to a 160 bit data path. It receives the cell slot to store the cell sent by the

Queue Manager (QMGR), and translates it to the physical memory address. The

incoming cell is written to the cell slot in the Cell Store (CSTR). The MCTRL also

Figure 4-12  Signal Diagram for the Free Slot Manager
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receives the cell slot for a departing cell from the QMGR, does the address translation

and reads the cell from the CSTR. The MCTRL sends the pointer field to the QMGR and

the cell to the Output Master (OMST) on a 32 bit data path after format conversion. The

MCTRL receives free slots from the FSMGR, and writes them to the Free Slot List

Figure 4-13  Block Diagram of the Free Slot Manager
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(FSL). When free slots are read out from the FSL, the MCTRL converts the format and

sends to the FSMGR.

4.3.7.  Output Master (OMST)

Figure 4-16 shows the signal diagram of the Output Master (OMST). The OMST

receives outgoing cells from the Memory Controller, and buffers they before being

forwarded to external links. The logic diagram is shown in Figure 4-17. It implements

Figure 4-14  Signal Diagram for the Memory Controller
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Figure 4-15  Block Diagram of the Memory Controller
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four UTOPIA interfaces. The OMST has four FIFOs in SRAM, one for each UTOPIA

interface. Each FIFO can hold eight cells.

Figure 4-16  Signal Diagram for the Output Master
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Figure 4-17  Block Diagram of Output Master
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4.4. Timing Analysis

In this section, we show that all operations can meet timing requirements. Since each

event involves operations of several blocks, these events need to be subdivided into mini-

events in order to develop detailed timing diagrams. Table 4-5 and Table 4-6 list all the

major events and mini-events involved in processing arriving and departing cells.

Some of the events depend on the completion of other events. In order to make the

sequencing correct, we use directed graphs to show the dependency among events.

Figure 4-18 and Figure 4-19 are dependency graphs for the incoming and outgoing cell

processing.

Table 4-5 Detailed Incoming Cell Processing

Symbol Descriptions QSEL QMGR CSTR OSCHL FSMGR

1 Determine what queue to
append cell.

+

2 Determine the cell slot. +

3 If it is a new connection, add
the queue to output list.

+ +

3.1 Detect a new connection +

3.2 Add queue to the priority list. +

4 Add a new empty slot to the
end of the queue.

+ +

4.1 Send an empty slot as PTR to
CSTR.

+

4.2 Update Last pointer +

4.3 Send a free slot to QMGR +

5 Write PTR field and the cell
into the cell slot.

+
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Table 4-6 Detailed Outgoing Cell Processing

Symbol Descriptions QSEL QMGR CSTR OSCHL FSMGR

a Determine the next queue to
send from the current output.

+

b Determine the cell slot of the
next cell to send

+

c Read the cell from the mem-
ory, place it in the output

buffer, and return the slot to
the free slot list.

+ +

c.1 Read PTR field from memory +

c.2 Read cell from memory +

c.3 Return the slot of the outgoing
cell.

+

c.4 Store the returned slot. +

d  Use PTR field of the depart-
ing cell to update the FIRST

field of the queue.

+

e If the queue is empty, remove
it from the priority list in the

Output Scheduler. If it is a VC
queue, deallocate the queue
and remove the mapping in

the Queue Selector.

+ + +

e.1 Detect an empty queue. +

e.2 Return the queue to the free
queue list, remove the map-

ping.

+

e.3 Remove the queue from the
output list.

+
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Another constraint that makes timing tight is the on chip memory accesses. Within each

block, memory accesses need to be done sequentially. Table 4-7 shows the events that

involve memory accesses. Figure 4-20 is the detailed timing diagram of the chip.

Figure 4-18  Detailed Dependency Graph for Incoming Cell Processing
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Figure 4-19  Detailed Dependency Graph for Outgoing Cell Processing
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Table 4-7 Events Involving Memory Accesses

Queue Manager 2; 4.2; b; d

Queue Selector 1; e

Output Scheduler 3.2; a; e

Free Slot Manager 4.3; c.4
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Figure 4-20  Detailed Timing Diagram
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5.    ADVANCED ALGORITHMS

5.1.  Binary Scheduling Wheels Algorithm

Two priority levels can be used to distinguish real-time traffic from non-real-time traffic,

and minimize delay for real-time traffic. However, we may require greater flexibility in

allocating bandwidth among virtual circuits. In this case, weighted round-robin

scheduling can be used to allocate bandwidth among virtual circuits. The Binary

Scheduling Wheels (BSW) algorithm used in the DQM implements weighted round-

robin scheduling at minimal cost, providing a wide range of rate options. In addition,

because bursty virtual circuits with high peak-to-average ratio are more likely to cause

congestion in the downstream switches, the BSW algorithm distributes cells from the

same channel evenly, minimizing the burstiness of the output streams.

5.1.1. Binary Scheduling Wheels

 The Output Scheduler uses the per VC based Binary Scheduling Wheels algorithm to

implement weighted round-robin scheduling in a very cost efficient way. All virtual

circuits have power of 2 weights and during overload periods, share the link bandwidth

in proportion to their weights. Instead of forwarding as many cells as specified by the

weight once a queue is selected, the BSW algorithm places queues on scheduling wheels

with different weights and alternates among wheels.
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For implementation efficiency, we restrict weights to be powers of 2. Suppose we

support W different weights: . We construct W binary scheduling

wheels, one for each weight factor. Each VC queue is placed on a corresponding

scheduling wheel. The scheduling wheel with weight 20 is visited twice as frequently as

the scheduling wheel with weight 21, four times as frequently as the one with weight 22,

and so forth. W power of 2 weights can be coded using  bits.

Figure 5-1 shows an example with W binary scheduling wheels. Each little box in the

figure represents a list node containing a queue identifier that identifies a non-empty per

virtual circuit queue. Once a scheduling wheel is selected, all queues on that scheduling

wheel can forward one cell to the output.

A W-bit binary counter can be used to select binary scheduling wheels with W weights.

In a W-bit binary counter, the least significant bit of a binary counter changes twice as

fast as the next lowest order bit, four times as fast as the next bit, and so forth. This

property matches nicely with our scheduling wheel selection procedure.

Suppose the counter value is . When the counter advances, a change

in bit i triggers servicing of the scheduling wheel with weight 2i. We organize the

transmission schedule into a series of passes. At the start of each pass, the counter is

incremented. During the pass, all scheduling wheels corresponding to changing counter

bits are serviced.

2
0

2
1

2
2 … 2

W 1–, , , ,

Wlog

Weights 2W-1 22 21 20

Figure 5-1  Binary Scheduling Wheels

C cW 1– …c1c0=
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5.1.2. Fast Forward Mechanism

The binary counter used in the above implementation is increased by one at the start of a

scheduling pass. However, if all scheduling wheels that are enabled in a given pass are

empty, we must increment the counter again to find a queue from which to send. In the

worst-case it may take many increment steps to find a non-empty queue and during these

steps, link bandwidth may be lost. To avoid this, we introduce a fast forward mechanism

for the counter.

The idea is to increment the counter with a carry-in at the position of the right-most non-

empty scheduling wheel. We keep a mask register to indicate non-empty wheels that

have not been served. We also keep a carry-in register with only one bit set at the

position corresponding to the least significant ‘1’ bit of the mask register. After each

pass, the value the carry-in register is added to the counter. The resulting right-most

changing bit always corresponds to a non-empty scheduling wheel. The fast forward

algorithm is shown below.

Initially,
PreviousCounter = 0;
CurrentCounter = 0;
Mask: Bit i is set to ‘1’ if scheduling wheel i is non-empty, ‘0’ if scheduling

wheel i is empty;
Loop:

CarryIn = Position of the least significant ‘1’ bit of (Mask);
PreviousCounter = CurrentCounter;
CurrentCounter = CurrentCounter + CarryIn;
ChangingBits = PreviousCounter XOR CurrentCounter;
CurrentMask = Mask;
While ((CurrentMask & ChangingBits) != 0)

CurrentWheel = Position of the least significant ‘1’ bit of (CurrentMask
& ChangingBits);

Serve all queues in the scheduling wheel CurrentWheel;
CurrentMask[CurrentWheel] = 0;
If (scheduling wheel CurrentWheel becomes empty )

Mask[CurrentWheel] = 0;
If (New queue is added to an empty scheduling wheel j)

Mask[j] = 1;
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The following example shows how the algorithm works. Table 5-1 gives the parameter

values of the fast forward counter at the beginning of a pass. Table 5-2 shows the

selection process.

The value of the mask register Mask is (1011)2, which means only Wheel 2 is empty. So

the carry-in register CarryIn has the value (0001)2. The previous value of the counter is

(0011)2. The current value of the counter is equal to the sum of the previous value and

the carry-in value, which is (0100)2. The ‘1’ bits in the register ChangingBit indicate the

changing bits of the counter. CurrentMask is set to the value of Mask initially.

(CurrentMask & ChangingBit) gives all scheduling wheels to be served in a pass. Since

only one wheel can be visited at a time, CurrentWheel specifies the current scheduling

wheel to be served. When a scheduling wheels is visited, all the queues on that wheel

can send one cell to the outgoing link. After a scheduling wheel is served, the

corresponding bit in CurrentMask is then cleared. This process continues until all

selected scheduling wheels have been served once.

Table 5-1 Parameters of the Fast Forward Counter

Current
Counter

Previous
Counter

Changing
Bit

Mask CarryIn

0100 0011 0111 1011 0001

Table 5-2 Binary Scheduling Wheel Selection Process

Current
Counter

Current Mask
CurrentMask

&
ChangingBit

CurrentWheel

0100 1011 0011 0001

0100 1010 0010 0010

0100 1000 0000 -
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With the fast forward mechanism, the selection time becomes essentially independent of

the total number of weights. While the time to select the least significant ‘1’ bit does

require more than constant time, hardware implementation can easily be made fast

enough that this does not becomes an issue for realistic values of W. Consequently, cells

can be selected and forwarded in essentially constant time.

5.2.  Per VC Packet Level Discarding Algorithm

End-to-end transport layer protocols send data in packets. These packets are further

segmented into 48 bytes cells using AAL5 when data is transmitted through ATM

networks. Since end-to-end error checking and retransmission are done on a packet

basis, a single lost ATM cell can cause an entire transport layer packet to be discarded

and retransmitted. Several packet level discard mechanisms have been proposed to

maintain packet integrity. However, these mechanisms are based on FIFO queueing,

where all virtual circuits share the same queue. In order to provide Quality-of-Service

(QoS), per virtual circuit (VC) queueing is necessary in the presence of large buffers.

New algorithms are needed for per VC queueing, to support QoS. The Weighted Fair

Goodput (WFG) algorithm is designed for use with per VC queueing, and works with the

cell scheduling algorithm to ensure that each VC receives the proper fraction of the

link’s bandwidth during an overload period.

5.2.1. Existing Packet Level Discard Mechanisms

Transport layer protocols guarantee that all transport layer packets are delivered without

error using retransmission. The ATM adaptation layer 5 (AAL5) segments transport

layer packets into ATM cells. A single cell loss in a packet will cause the entire packet to
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be retransmitted. Therefore, if a cell is discarded by the network due to overload,

transmitting the rest of the packet simply wastes bandwidth. Therefore, during the

overload period, it is more important to maintain high goodput, where goodput is the

fraction of the link’s capacity that is used to transmit complete packets.

Packet Tail Discarding discards the rest of the packet if one cell in the packet is

discarded [16]. This prevents the link bandwidth from being further wasted transmitting

fragments of packets. However, since the first part of the packet will be discarded by the

end-point eventually, the goodput can drop to zero when the link is really congested.

Early Packet Discarding (EPD) [16] can achieve 100% goodput if the link buffer is

sufficiently large. The idea of Early Packet Discarding is to make a decision to propagate

a packet or not at the packet boundary. Each virtual circuit has two states: active and

inactive. Packets of an active virtual circuit are propagated, while packets of an inactive

virtual circuit are dropped. A virtual circuit only changes states at packet boundaries

based on the global buffer level. If the buffer does not overflow or become empty during

an overload period, all the link bandwidth is used to propagate complete packets.

Early Packet Discard with Hysteresis (EPDH) [18] checks the rising and falling of the

buffer level as well as the threshold when it comes to a packet boundary. This improves

the performance of early packet discard when buffer space is limited.

Fairness is another issue that needs to be considered during the overload. Fair EPD with

Hysteresis (FEPDH) [18] takes fairness into consideration. FEPDH uses two thresholds.

At the packet boundary, it uses a similar algorithm to EPDH but also checks the fair

share of the link if the buffer level is between the two threshold levels. This modification

achieves some degree of fairness by keeping track of the number of cells that have been

placed in the buffer. However, the hysteresis mechanism prevents the fairness heuristic

from providing any real guarantee of fair treatment, since virtual circuits may miss the
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chance to change states if packet boundaries fall into the wrong part of the buffer

occupancy curve.

5.2.2. Weighted Fair Goodput Algorithm

The above packet level discarding algorithms are based on FIFO queueing. In FIFO

queueing, large buffers help avoid data loss during short overloads. However, when a

link is overloaded for a long time, the combination of large buffers and FIFO queueing

can lead to poor performance. Once the buffer fills, the cell loss rate is just a function of

the input load. Cells in the buffer encounter large delays and it takes a long time for a

large buffer to recover from overload. Therefore, systems that use FIFO queueing try to

minimize buffer size.

In a system based on per VC queueing, large buffers do not impose large delays for VCs

using only their allocated share of the link bandwidth. The system can have large buffers

without causing well-behaved virtual circuits to have longer delays when the buffer is

full. This makes the use of large buffers more attractive and allows the system to

accommodate larger temporary data surges without loss.

However, ensuring that each VC receives its allocated bandwidth becomes important in

order to provide QoS support. Existing algorithms cannot ensure this. The WFG

algorithm can be used in conjunction with weighted scheduling schemes such as the

Binary Scheduling Wheels algorithm to guarantee QoS. During an overload period, all

virtual circuits forward cells according to their weight factors. The packet level discard

mechanism keeps two states for each virtual circuit: active and inactive, and changes the

states of virtual circuits at packet boundaries. The algorithm seeks to ensure that QoS

requirements are satisfied by making virtual circuits inactive only when there are still

enough cell’s in a virtual circuit’s queue to last until the start of the next packet. As a
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result, all virtual circuits are forwarded at their reserved rates and fairness is achieved.

The Weighted Fair Goodput algorithm is shown below.

At a packet boundary for virtual circuit V, the WFG does the following:

If the current global buffer level is above bh, V is active and its queue length is

more than q0, make V inactive.

If the current buffer level is above bh, V is inactive and its queue length is less

than q0, make V active.

If the current buffer level is below bh, and V is inactive, make V active.

In all other cases do not change the state of V.

where bh is the threshold to avoid buffer overflow, and q0 is the minimum queue length

to guarantee no VC queue becomes empty before it is turned on again. The derivation of

the lower bound for q0 and minimum buffer size is shown below.

Let q0 be the lower bound on the queue length that guarantees no VC queue becomes

empty during inactive state. Let n be total number of VCs. Let  be the fraction of VCs

that send data at rates higher than their reserved rates. Let  be the input rate of those

mis-behaving VCs. Let w be the reserved bandwidth of the mis-behaving VCs. Let l be

the packet length.

Suppose the queue length of a VC is just below q0 at the packet boundary and the VC is

turned off. Figure 5-3 shows the changing queue length. The queue of the inactive VC

drains at a slope of w. The maximum time to reach the next packet boundary is .

δ

λ

l λ⁄
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Therefore, in order to guarantee that no VC becomes empty before the next packet

boundary, we must have . Because  by definition, we can satisfy this

property in general by making . If the value of  is known, a smaller value for

can be used, but typically this parameter is not available.

The minimum buffer size is derived below. In the worst case, a virtual circuit comes to

its packet boundary when its queue length is just below q0. Therefore, the virtual circuit

will be in the active state. Figure 5-3 shows the change of the queue length in this case.

The queue length increases at the rate of d, where . Since the time to reach the

next packet boundary is , the total excursion above b0 is .

Assume that . The queue length increases at most

. Thus, total buffer size to avoid buffer overflow is

. If we have a buffer size of  above the threshold, we can avoid buffer overflow

entirely.

q0
w
λ
----l≥ w λ≤

q0 l≥ λ q0

Figure 5-2  Change of Queue Length When Inactive
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With a minimum buffer size derived above, all virtual circuits can be forwarded at their

reserved rate during overload periods and 100% goodput can be achieved. The other

interesting property of the WFG algorithm is that “well-behaved” virtual circuits sending

at their allocated rates do not have any cell loss during the overload period. Because they

are less likely to accumulate cells in the buffer (in the presence of appropriate queue

scheduling methods), “well-behaved” virtual circuits are unlikely to be turned off during

the overload period and never need packet retransmission. Virtual circuits sending at

rates higher than their allocated shares are turned off during overloads. This causes

packet loss, triggering end-to-end flow control mechanisms in transport protocols.

The hardware cost to implement the WFG algorithm is analyzed below. We need a

queue length counter for each virtual circuit. For a buffer that can accommodate 1

million cells, a 20-bit counter is needed for each VC. The maximum transport layer

packet length is limited by the Maximum Transfer Unit (MTU). In practice, the MTU is

generally a few thousand bytes. Since an ATM cell has a payload of 48 bytes, a transport

layer packet is usually segmented into 20 to 100 ATM cells.

5.3.  Configuring Links with Excess Capacity

In the standard configuration, total external link bandwidth is equal to or less than the

bandwidth of the Dynamic Queue Management Chip. In this case, scheduling techniques

described in chapter 4 can be used. In particular, we need not make bandwidth that is not

needed by one port, available to other ports.

However, it is possible to configure external links in such a way that the total link

bandwidth is more than the bandwidth of the chip. In this case, if a selected port does not

have cells destined for it, its cell cycles should be available to other links that have cells
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to send. Each virtual port can forward a cell every 16 cell times, and has bandwidth

equivalent to 150 Mb/s. In an over configured case, we associate fewer virtual ports with

each physical link. For example, instead of associating four virtual ports with an OC-12

link, we may associate just one virtual port with it. In this case, if all links are busy, the

OC-12 link is only guaranteed to receive 150 Mb/s bandwidth. If enough of the links are

idle, however, it is possible to allow the OC-12 link to use the full 600 Mb/s bandwidth.

This takes advantage of the fact that not all links will use their full link capacity all the

time, especially when traffic is bursty. Therefore, this configuration model allows links

to send bursty traffic at higher rates if other links are not using their full bandwidth.

The output scheduling becomes more challenging in this case. First, when a selected link

has no cell destined for it, the cell cycle should be made available to other links. Second,

basic bandwidth allocations need to be guaranteed. Suppose a link is associated with d

virtual ports, it should be able to use at least 150d Mb/s. Third, external links should

never be allocated more bandwidth than they can use. Finally, the bandwidth not used to

satisfy the basic bandwidth allocation of a link should be distributed in proportion to the

number of virtual ports associated with the link. For example, if there is extra bandwidth

available, an OC-12 link associated with two virtual ports should receive more

bandwidth than the one associated with one virtual port.

A credit based scheduling scheme is proposed here. Basic credit and extra credit are

used to handle the basic service and the distribution of unused bandwidth respectively.

Basic credit is equal to the actual number of virtual ports that a link is associated with.

Extra credit is defined as the number of additional cells a link may send every 16 cell

time if there is excess bandwidth available. Extra credits are computed by subtracting the

basic credits from the number of virtual ports listed in Table 4-2 on page 45. A credit

table can be set up based on the link configurations. Table 5-3 shows how to set up the

credit table for the configuration in Figure 5-4.
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As shown in the figure, each OC-3 and OC-12 link is associated with one virtual port.

The OC-48 link is associated with 8 virtual ports. Based this configuration, each OC-3

link has one basic credit and zero extra credits. Each OC-12 link has one basic credit and

3 extra credits. The OC-48 link has eight basic credits and eight extra credits.

This credit table is reloaded every 16 cell times. Whenever a cell leaves based on basic

credits, basic credits are decremented by 1. If there are no cells in the queue for a given

link, the basic credits are also decremented by 1. Meanwhile, a link with extra credits

can be scheduled to receive a cell. The extra credits for that particular link are

decremented by 1 after receiving a cell.

Since the sum of the basic credits is no more than 16, all basic services can be satisfied.

In addition, since the sum of the basic credits and extra credits of a particular link is

equal to the maximum number of cells the link can receive without exceeding the link

capacity, the link would never receive more cells than it can handle. In order to distribute

unused bandwidth among competing links in proportion to their basic credits, the credit

table needs to be modified as shown in Table 5-4.

Figure 5-4  Example: Link Capacity Exceeding the DQM Bandwidth
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We use virtual ports to determine which link can receive a cell. A mask of four bits are

used to convert the virtual port to the real link number. In the example above, if the port

is any value between (1000)2 and (1111)2, the OC-48 link on output 8 can receive a cell.

In the modified table, the basic credit is always 1 for each schedule number so that it

need not be stored in memory. Extra credit is distributed among the virtual ports

associated with the link. A non-empty bit indicates that there are cells currently destined

for the link. When a virtual port is selected, one cell is allowed to forward to the link

associated with it. In this way, the OC-48 link has eight chances to win an extra cycle as

Table 5-3  Credit Table

 Link Number Link Type Basic Credits Extra Credits

0 OC-3 1 0

1 OC-3 1 0

2 OC-3 1 0

3 OC-3 1 0

4 OC-12 1 3

5 OC-12 1 3

6 OC-12 1 3

7 OC-12 1 3

8 OC-48 8 8

9 - 0 0

10 - 0 0

11 - 0 0

12 - 0 0

13 - 0 0

14 - 0 0

15 - 0 0
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opposed to one chance for an OC-12 link every 16 cell times. Therefore, the extra

bandwidth can be distributed in proportion to the basic credits.

To select links without creating burstiness, a reverse order bit selection can be used for

basic service scheduling. A token passing protocol can be used to elect a virtual port

with non-zero credit and non-empty bit set. In this implementation, only one credit

counter per virtual port is needed. The initial value is the sum of the basic credit and the

extra credit. Figure 5-5 and Figure 5-6 shows the token passing circuitry.

Table 5-4 Modified Credit Table

Virtual Port Mask
Actual Link

Number
Link Type Basic Credits Extra Credits Non-Empty

0000 1111 0 OC-3 1 0 1

0001 1111 1 OC-3 1 0 1

0010 1111 2 OC-3 1 0 1

0011 1111 3 OC-3 1 0 1

0100 1111 4 OC-12 1 3 1

0101 1111 5 OC-12 1 3 1

0110 1111 6 OC-12 1 3 1

0111 1111 7 OC-12 1 3 1

1000 1000 8 OC-48 1 1 1

1001 1000 8 - 1 1 1

1010 1000 8 - 1 1 1

1011 1000 8 - 1 1 1

1100 1000 8 - 1 1 1

1101 1000 8 - 1 1 1

1110 1000 8 - 1 1 1

1111 1000 8 - 1 1 1
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.

Block i represents virtual port i. Blocks are connected as a ring in reversed-bit order.

Only one virtual port can hold a token. The vitual port that has the token can forward a

cell to the external link and decrement the credit counter by 1. It releases the token in the

next cell time. When a token passes a virtual port that has extra credit and a cell to send,

the virtual port can catch the token. If a token circulates and no virtual ports want it, the

token needs to be held by the sender. The credit table is reloaded every 16 cell times. ME

is enabled when a virtual port has credit and has cells to send. In order to initialize the

table, sixteen bits are needed to specify the link configuration. The decoding can be done

on chip and the table values can be computed based on the criteria described above.

Figure 5-5  Token Passing Circuitry
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6.     DESIGN ANALYSIS

6.1. Performance Analysis

6.1.1. Overflow Probability

The DQM chip uses Dynamic Queue Assignment to allocate per VC queues without

imposing restrictions on the choice of VPIs and VCIs. Dynamic Queue Assignment is

implemented using set-associative memory (SAM) and content addressable memory

(CAM). It is possible that too many virtual circuits are mapped to the same set in the

SAM and have to spill over to the CAM. If the CAM is also full, the arriving cell on a

new connection is discarded. This is referred as overflow. We need to understand how

the configuration of the SAM and CAM affects the probability of cell loss due to

overflows.

Let n be the number of queues supported by the DQM. Let  be the ratio of n to the

number of storage locations in the SAM. This quantity bounds the fraction of the SAM

entries that can be in use at one time, and is called the load factor. Let s be the number of

entries in each set of the SAM, let  be the number of sets in the SAM and let c be

the number of entries in the overflow CAM.

β

r
n
βs
-----=
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We define the overflow probability to be the probability that when a cell A arrives on a

“new connection” (one for which no queue is currently allocated), there is no available

entry in either the SAM or the CAM.

To calculate the probability of overflow, we must make some assumption about the

number and distribution of “in-use” entries in the set-associative memory and the CAM,

at the time cell A arrives. We will assume that the “in-use” entries are randomly

distributed in the following way. Let the set-associative memory and the CAM be empty

initially. Now suppose that n cells arrive on n different virtual circuits. Assume that each

of the arriving cells is equally likely to be mapped to any of the sets in the set-associative

memory and that all arrivals are independent. Now, define xi to be the number of virtual

circuits (out of the original n) that are mapped to set i in the set associative memory but

spill over into the CAM.

and for ,

Let y be the total number of virtual circuits that spill over from their sets in the set-

associative memory to the CAM. Clearly . We can get a conservative

upper bound on y by treating the xi as independent random variables. In particular, if we

let z be the random variable whose distribution is obtained by taking the convolution of

the distributions for , then .
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Figure 6-1 shows how z varies with s and the load factor . The plot includes curves

showing the mean value of z and the mean plus five standard deviations. These were

calculated numerically using the probability distribution of xi to obtain its mean and

standard deviation, then multiplying these by r and  to obtain the mean and standard

deviation of z. These curves allow us to determine the values of c, s and  that will lead

to good performance. For example, we can see that if we want to operate with a load

factor of 0.8, then with a set size of s, we need a CAM size of at least 25 and more

realistically, about 75 to keep overflows acceptably rare. If we want to operate with a

higher load factor, we must increase s, c or both. With a lower load factor, we can reduce

s and c, at the cost of more memory.

The overflow probability is no more than
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By the central limit theorem, we can estimate z using a normal distribution. Let  and

denote the mean and standard deviation of xi. For any positive number ,

Figure 6-2 plots the value of this last quantity, as a function of load factor, for several

different choices of s and c. With a set size and CAM size of 32, the estimated overflow

probability is less than one in a million when the number of storage locations in the

SAM is (1/0.65)n. If both are increased to 64, a load factor of nearly 0.8 yields the same

overflow probability. For , a load factor of 0.8 implies 10,240 SAM entries.

With , this implies .
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6.1.2. Overbooking of Queue Data Structures

Because the DQM assigns queues to virtual circuits dynamically, it is possible to support

a larger number of virtual circuits than could be supported if queues were statically

bound to specific virtual circuit identifiers. That is, we can overbook the DQM’s data

structures, taking a risk that on occasion we will not have an available queue to handle

an arriving cell, forcing the cell to be discarded. In order to exploit the potential for

overbooking, it is important to understand how many virtual circuits can be supported

with a given number of queues. Here, we make some basic observations, leaving a

detailed analysis of overbooking to a future study.

Note first that if a DQM supports n queues, there will always be an available queue if the

number of queued cells is . For non-bursty traffic, the queue length rarely exceeds

even 100 cells for traffic loads of 95% or less. Thus, for , the probability is

exceedingly small that an arriving cell will not find an available queue, even if the

number of virtual circuits using the link is over one million.

For bursty traffic, it is also possible to overbook the queues extensively. Suppose we

have m identical independent on-off bursty sources with  and an average time of T

between the start of successive bursts (from any single source). If the input traffic

(averaged over periods longer than T) is less than the link rate, then the average rate from

each individual source is the link rate divided by m, which is small if n is reasonably

large. Typical virtual circuits have peak rates of perhaps 20 times the average rate. For

, this results in virtual circuit peak rates that are less than 0.25% of the link

rate. For such traffic, the queue rarely accumulates a significant backlog of cells, so

again, an arriving cell will generally find an available queue.

Suppose however, that we have sources with peak rates that are much larger than their

average rates. In particular, assume that bursts arrive independently and instantaneously,

n≤

n 8192=

m n>

n 8192=
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with an exponentially distributed time between bursts from any specific source. Also,

assume that burst lengths are exponentially distributed and that each burst is assigned a

separate queue (even two bursts coming from the same source), and that all non-empty

queues are drained at a rate that is inversely proportional to the number of non-empty

queues (modeling a round-robin queue scheduler). This queueing system can be modeled

by a birth-and-death process, in which the state index corresponds to the number of non-

empty queues. If we let the number of sources go to infinity, while keeping the time

between successive burst arrivals constant, this birth-and-death process becomes

identical to that for the M/M/1 queue. This implies (among other things) that the

probability that there are more than j non-empty queues is , where  is the

normalized traffic intensity for the queueing system. For , this probability is

less than 10-6 for all . These results show that the DQM queues can be

overbooked by a large factor, if n is sufficiently large. With smaller n, the potential for

overbooking is reduced somewhat, but even with as few as 1024, we are unlikely to run

out of queues under any realistic traffic conditions.

6.2. Cost Estimation

6.2.1. On-Chip Memory

The complexity of the chip is mainly driven by the on-chip memory. Let n be the number

of queues supported by the DQM. Let B be the number of cell slots in the Cell Store. Let

 be the load factor in the SAM. Let W be the number of weighted levels. Let m be the

number of outputs. The memory requirements are estimated below.

ρj 1+ ρ

ρ 0.95=

j 268>

β
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Queue Selector

The memory required for the Queue Selector is  as

shown in Figure 6-3. The calculation includes the SAM, the Free Queue List and the

Address Map. For , a load factor of 0.8 gives a memory requirement of about

60 Kbytes, while a load factor of 0.5 gives a memory requirement of 80 Kbytes. Note

that the load factor affects only the SAM, but not the Free Queue List or the Address

Map. When the load factor is 0.5, the memory required for the SAM is 1/3 of the total.

Figure 6-4 shows the memory area estimation for a 0.35 micron CMOS process.

Combining the results in Figure 6-3 and Figure 6-4, with 1024 queues and a load factor

of 0.8, the chip area consumed by dynamic queue assignment is less than . For

8192 queues, the area is approximately , or less than 20% of the area of a

 chip. The analysis indicates that the number of queues could be increased to

16K without consuming an excessive fraction of the chip area. 64K queues can be

supported in a 0.18 micron process.

2n nlog( ) β⁄ n nlog n n β⁄( )log+ +

n 8192=
M

em
or

y 
Si

ze
 (

K
B

yt
e)

Figure 6-3  Memory Size for the Queue Selector
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Queue Manager

The Queue Manager maintains a queue list of n entries. Virtual path queues are ignored

here. Each entry contains two pointers to the cell buffer in the external memory. The

memory size is . Figure 6-5 shows the memory required for the Queue Manager.

Because the memory size does not increase significantly, a cell buffer of one million

cells (corresponding to 20 bits in address) is a reasonable choice for the DQM chip.
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Output Scheduler

The Output Scheduler implements either two priority scheduling or weighted round-

robin scheduling using Binary Scheduling Wheels (BSW) algorithm. Since two priority

scheduling has the same structure as BSW with , we only calculate the memory

required by the BSW algorithm. Figure 6-6 shows the structures in the Output Scheduler

that implement the BSW algorithm.

At each output, we construct W scheduling wheels. We need a queue list with n entries to

represent the queues in scheduling wheels. Since a virtual circuit has only one

destination, a queue can only be placed on one of the scheduling wheels. Therefore, the

queue list can be shared by all output wheels. The actual scheduling wheels are

constructed by linking corresponding entries in the queue list. An additional bit is added

to entries in the queue list to distinguish the first queue in a wheel. To access the

scheduling wheels, a wheel table is used to store the pointers to the scheduling wheels.

The memory requirement for the BSW for m outputs is .

Figure 6-7 shows the memory size for various parameters with . Note that only

the wheel table depends on the number of weights. The increment in memory size to

implement 64 weights over a simple two priority design is less than 2 KBytes. 32 distinct

power of 2 weights are sufficient to specify bandwidths ranging from 2.4 Gb/s to less

than one bit per second. Even with 8192 virtual circuits in the system, the total memory

W 2=

1+lognbits

m entries

0 1Wheel

n entries

1+logn bits

Queue

List

Figure 6-6  Structures in the Output Scheduler
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requirement for the scheduler is less than 15 KBytes. Therefore, the BSW algorithm

implements the weighted round-robin scheduling in a very efficient way.

Because a VC queue only belongs to one scheduling wheel, adding and removing a

queue from a scheduling wheel can be done in constant time. This is the major reason for

restricting weights to be powers of 2. The algorithm can be extended to more general

weights by allowing each queue to appear in multiple wheels. If a queue can appear in j

wheels, the ratio between successive weights is , but both the scheduling time and

the size of the queue list increase by a factor of j.

Free Slot Manager

The Free Slot Manager maintains a on-chip free slot cache. Assume that the cell buffer

can store a maximum of one million cells. A free slot cache with 64 entries is 0.2 Kbyes.

Output Master

The Output Master has four FIFO queues, each of which can contain 8 cells. The

memory size is 2.2 KBytes.
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Total Memory and Area Estimates

Memory and area estimates for the entire chip is listed in Table 6-1. The parameters are

, , , , and . Area is estimated using typical

data for  3 metal layer CMOS process.

6.2.2.  External Memory

The Cell Store and the Free Slot List are stored in the external memory. The Dynamic

Queue Management Chip supports up to 220 cell slots. The maximum size of the Cell

Store is 60 MBytes. The Free Slot List stores all the pointers to the Cell Store. If the

maximum size of Cell Store is supported, the size of the Free Slot List is

MBytes. Therefore, the maximum memory size of the system is 62.5 MBytes. This gives

n 8192= β 0.8= W 32= B 2
20

= m 16=

0.35 µm

Table 6-1 On-Chip Memory Estimates

Block
Name

Size
(KB)

Size
(%)

Area
(KB)

Area
(%)

Queue
Selector

60 KB 52% 17 mm2 51%

Queue
Manager

40 KB 34% 11 mm2 33%

Output
Scheduler

14 KB 12% 4 mm2 12%

Free Slot
Manager

0.2 KB 0.1% 0.18 mm2 0.1%

Output
Master

1.8 KB 2% 1.32 mm2 4%

Total 116 KB 100%  33.5 mm2 100%

20 220× 2.5=
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the potential for growth as the price of memory drops, making very large buffers

affordable. In the short term, smaller buffers (1 - 4 MBytes) are more realistic, given

current static RAM costs of $75 -100 per MByte.

Within each cell time of 116 ns, a cell is written into the Cell Store, and a cell is read out

of the Cell Store. An entire read cycle or write cycle is at most 58 ns. We also need to

limit the data path because of the limitation of the pin count. Therefore, SRAM is a

proper choice at the current time.

The data path to the external memory is 160 bits wide. Since the size of a cell is 448 bits,

and the pointer field stored with the cell is 20 bits, three memory accesses are needed to

write a cell to the Cell Store or to read a cell from the Cell Store. In other words, during

every cell time, there are three memory reads and three memory writes.

The suggested memory module is Micron’s 128K x 32 SYNCBURST SRAM with 11 ns

cycle time. Each cell time contains 7 memory cycles. Three cycles are used for writing a

cell; one cycle is for switching from write to read, with another three cycles for reading a

cell.

Since the internal free slot cache is used to manage the free slots, the Free Slot List only

needs to be accessed when there is no cell arriving or leaving for a long time. A write

cycle can be used to access the Free Slot List in the first case and a read cycle can be

used in the second case. As a result, the Free Slot List is accessed when there is an idle

read or write cycle. Therefore, there is no extra cost to maintain the Free Slot List.

Table 6-2 summarizes the requirements of the external memory.
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6.2.3. Gate Estimation

In order to estimate the total chip area, we need to estimate the number of equivalent

gates in the chip. We count the number of flip-flops and multiply it by two in order to

include the gates in the control logic. The area estimates are based on a typical 0.35

CMOS process with three metal layers. Table 6-3 shows the gate and area estimation.

1 flip-flop with reset = 5 nand gates = 91

Circuit area after routing = 5 * (Area of all gates)

Table 6-2 External Memory Estimates

Data Path 160 bits

Maximum Memory Size Supported 62.5 MBytes

Suggested Memory Size 4 MBytes

Memory Operations per Cell Time 3 reads, 3 writes

Suggested Memory Module Micron 128K*32 SRAM

Cycle Time 11 ns

Total Number of Chips 10

µm

um2
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6.2.4. Pin Count

 The total pin count of the chip shown in Table 6-4.

The chip needs a package of 400 pins. If we want to reduce the pin count, a faster

external SRAM can be used. This is achievable with the price drop on fast components.

Table 6-3 Gate Estimates

Component
Number

of
Flip-Flops

Equivalent
Gates

Area Before
 Routing

Area After
Routing

Percentage
of Area

Input
 Master

100 500 0.0455 mm2 0.223 mm2 4.1%

Memory
Controller

1200 6000 0.545 mm2 2.725 mm2 49.9%

Output
Master

300 1500 0.137 mm2 0.685 mm2 12.5%

Queue
Selector

300 1500 0.137 mm2 0.685 mm2 12.5%

Queue
Manager

250 750 0.068 mm2 0.340 mm2 6.2%

Output
Scheduler

 100 500 0.046 mm2 0.230 mm2 4.2%

Free Slot
Manager

150 750 0.068 mm2 0.340 mm2 6.2%

Total 2400 12000 1.092 mm2 5.460 mm2 100%
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6.2.5. Total Chip Area and Physical Packaging

The total area of the chip is . Therefore, the estimated size of the

DQM chip is less than 7 mm x 7 mm. The chip can use a 411-pin ceramic PGA package

with dimension of 2 inch by 2 inch.

The Micron 128Kx32 SRAM is available in either a 100-pin TQFP (Thin Quad Flat

Package) or a 119-Bump BGA (Ball Grid Array). The dimension for the BGA package is

0.89 inch by 0.57 inch (including mold protrusion).

The DQM chip with a 4 MByte external memory configuration indicates a 10 inch2

space on a PC board.

Table 6-4 Pin Counts

Name Pin Counts

Data Pins 256

Control Pins 100

Vcc 22

GND 22

Total 400

33.5 5.5+ 39 mm
2

=
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7.     CONCLUSIONS

The goal of this thesis is to explore critical issues in providing Quality-of-Service in

ATM networks and give a detailed design of a Dynamic Queue Management chip that

can help provide effective QoS.

The research contributions of the thesis are listed below:

- Dynamic Queue Assignment

The chip implements per VC queueing using dynamic queue assignment, which avoids

restricting the choice of VPIs and VCIs unduly. Dynamic queue assignment makes the

cost of the system proportional to the number of VPI/VCIs actually used, rather than the

maximum possible number that could be used.

- Unlimited Buffer Scaling

The DQM chip is designed in such a way that the cell buffer can be scaled up without

increasing the chip complexity significantly. Both the cell buffer and the information to

maintain the cell buffer (including the free slot list) are stored in the external memory.

The only effect of increasing the buffer size is that the number of bits to address the cell

buffer will increase. So the chip needs to maintain a few more bits for each queue if the

buffer size increases.

- Internal Free Slot Caching

The internal free slot recycling mechanism used in the DQM chip allows the free slot list

to be in the external memory without increasing the memory bandwidth requirements.

Without this mechanism, the bandwidth of the external memory would need to be high

enough to handle both the free slot list and the cell buffer without suspending an output

cycle. However, with the internal free slot recycling, the on-chip manager only needs to
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access the free slot list when there is no cell coming in for a long time or there is no cell

going out for a long time. In either case, there is an idle write cycle or an idle read cycle

for the cell buffer. The free slot list in the external memory can be accessed using these

idle memory cycles. Therefore, the memory bandwidth only needs to be sufficient for the

cell buffer, which makes the timing a lot easier.

- Cost Efficient Fair Queueing

Multiple binary priority classes can be supported using the Binary Scheduling Wheels

algorithm. This algorithm allows priorities to be specified as a power of 2. VC queues

with binary weights are placed on one of the scheduling wheels. Unlike simple weighted

round-robin, the Binary Scheduling Wheels spread out the traffic destined for the same

output in order to prevent congestion at the link interface. A fast forward counter with

the ability to skip empty scheduling wheels makes the algorithm scalable. The

implementation of the Binary Scheduling Wheels algorithm requires only a small

increment in the hardware cost.

- Flexible Output Link Configuration

The DQM chip allows up to 16 external links of various rates to share one output port of

the WUGS operating at 2.4 Gb/s. The external links can be configured as any

combination of OC-3, OC-12, G-link and OC-48 links. The idea of virtual ports has been

introduced to define various configurations. One physical link is normally associated

with one or several consecutive virtual ports. In order to avoid cell accumulations in the

link interface, a bit reversal mapping is used to distribute the selection of virtual ports.

The DQM chip allows the external links to be over configured, where the total

bandwidth of the external links exceeds the bandwidth of an output port of the WUGS.

This takes the advantage of the fact that not all links are busy at the same time and

allows bursty traffic to be sent at a higher rate using statistical multiplexing among

external links. An over configured link may use its full bandwidth if enough other links

do not use their basic bandwidth. A novel credit-based scheduling mechanism and a
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token passing arbitration circuit are used to select virtual ports. The algorithm ensures

the basic bandwidth that an external link subscribes to. An over configured link may use

extra bandwidth made available to it, but can never be allocated more bandwidth than it

can use.

- Per VC based Packet Level Discarding

Because the transport layer protocol transmits packets, a single cell lost in the ATM

layer will cause the entire transport layer packet to be retransmitted. Therefore, it is very

important to maintain high goodput during the overload period. A lot of packet level

discarding mechanisms have been discussed in the context of FIFO queueing. However,

no work has been shown for the systems that support per VC queueing, especially when

fairness needs to be considered. The major difference between these two systems is that

larger buffers do not impose large delay penalties in the per VC queueing systems during

overload periods. The major concern in a per VC queueing system is how to preserve

fairness as well as the packet integrity during the overload period. This thesis shows how

to solve this problem using the Weighted Fair Goodput (WFG) algorithm designed

especially for systems that use per VC queueing. All virtual circuits can forward cells at

their reserved rates during the overload period using WFG.

There are several questions that need to be further explored.

First, simulations and detailed analysis on the Weighted Fair Goodput algorithm will

help us learn more about the packet level discarding with per VC queueing. We are

seeking a better algorithm with reduced buffer requirements and fair share of buffer

space during overload period.

Second, the multiple priority classes with binary weights can be extended to arbitrary

weights using almost the same structure as the Binary Scheduling Wheels. This is done

by placing a VC queue with arbitrary weights on several binary scheduling wheels
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instead of one. This extension uses the fact that an arbitrary number can be decomposed

as the sum of power of 2 terms. One thing that is not clear here, is how to add and

remove queues to/from multiple scheduling wheels in an efficient way.

Third, we need to understand more about overbooking per channel data structures in

order to take advantage of dynamic queue assignment. A detailed analysis on overload

probability and a simulation will be helpful.
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APPENDIX A. SIGNAL DEFINITIONS

1. INPUT MASTER (IMST)

SIGNALS FROM OPP

DATA_OPP - Cell data received from OPP.

SIGNALS TO QSEL

VPI_IMST - This signal is the virtual path identifier of the incoming cell. The IMST
copies it from the VPI field of the cell format.

VCI_IMST - This signal is the virtual circuit identifier of the incoming cell. The IMST
copies it from the VCI field of the cell format.

TYPE_IMST - This 1 bit signal is copied from the VPT field of the cell. This signal is 1
if the cell belongs to a virtual circuit connection, 0 if the cell belongs to a virtual path
connection.

PRI_IMST - This 1 bit signal is 1 for high priority and 0 for low priority. The IMST
copies it from the CS field of the incoming cell.

WT_IMST - This signal is copied from the lower 2 bits of WT field.

A5_IMST - This 1 bit signal is copied from the A5 field.

U_IMST - This 1 bit signal is copied from the u-bit in the PT field.
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SIGNALS TO MCTRL

DATA_IMST - This 32 bit signal carries the cell data passed to the MCTRL.

2. Queue Selector (QSEL)

SIGNALS FROM IMST

VPI_IMST - This signal is the virtual path identifier sent from the IMST. The virtual
path identifier (VPI) field is part of the cell format. The IMST obtains the VPI from the
incoming cell and sends it to the QSEL.

VCI_IMST - This signal is the virtual circuit identifier sent from the IMST. The virtual
circuit identifier field is also obtained from the incoming cell by the IMST.

TYPE_IMST - This 1 bit signal indicates if the incoming cell belongs to a virtual path
connection or a virtual circuit connection. This bit is copied from the VPT field of the
cell by the IMST. This signal is 1 if the cell belongs to a virtual circuit connection, 0 if
the cell belongs to a virtual path connection.

PRI_IMST - This 1 bit signal indicates the priority of the incoming cell. If the cell is of
high priority, this bit is 1. Otherwise, the bit is 0. The IMST copies the PRI signal from
the CS field of the incoming cell.

WT_IMST - This signal indicates the weight of the cell. It is passed to WT_QSEL
without modification.

A5_IMST - This bit indicates the cell belongs to an AAL5 packet.

U_IMST - This bit indicates the last cell in an AAL5 packet. It is used for packet level
discarding.

SIGNALS FROM QMGR

DEL_QMGR - This signal is set to 1 if the queue is empty and needs to be removed
from the QSEL. The Queue Manager sets this signal if the FIRST field and LAST field
equal after a cell departs.
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DELQID_QMGR - This signal carries the queue identifier of the queue to be removed.
If the queue is empty, the QMGR sends the DELQID to the QSEL.

SIGNALS TO QMGR

 PRI_QSEL - This 1 bit signal is copied by the QSEL from the PRI_IMST. The QSEL
does not use the PRI internally.

TYPE_QSEL - This signal is copied from the TYPE_IMST to indicate a VP or VC
connection.

OUT_QSEL - This 4 bit signal carries the output number the incoming cell is destined
for. The QSEL generates this signal using high order four bits of VPI.

WT_QSEL - This signal is copied from WT_IMST.

QID_QSEL - This signal provides the queue identifier of the incoming cell.

A5_QSEL - This signal is copied from A5_IMST.

U_QSEL - This signal is copied from U_IMST.

3. QUEUE MANAGER (QMGR)

SIGNALS TO QSEL

DEL_QMGR - This signal is set to 1 if the queue is empty and needs to be removed
from the QSEL. The Queue Manager sets this signal if the FIRST field and LAST field
of the queue that outputs a cell equal.

DELQID_QMGR - This signal carries the queue identifier of the queue to be removed.
If the queue is empty, the QMGR sends the DELQID with the DEL signal to the QSEL.
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SIGNALS FROM QSEL

PRI_QSEL - This 1 bit signal is copied to the NEWPRI_QMGR and passed to the
OSCHL if the cell belongs to a new connection. The QMGR does not use the PRI
internally.

OUT_QSEL - This 4 bit signal is copied to the NEWOUT_QMGR and passed to the
QSCHL for a new connection.

WT_QSEL - This signal is copied to WT_QMGR.

QID_QSEL - This signal provides the queue identifier of the incoming cell. The Queue
Manager uses it as an index to its queue list to get the value of the FIRST field
corresponding to the slot in which the incoming cell is to be stored. The QMGR also
copies this signal to the NEWQID_QMGR if it is a new connection. The QSEL passes
NEWVC_QSEL to indicate a new VC connection. However, for a VP connection, the
QMGR needs to compare the FIRST and LAST fields to detect a new connection.

SIGNALS TO FSMGR

RTNSLT_QMGR - This signal carries the free slot to be returned to the FSMGR. The
QMGR returns a slot when the cell in that slot departs.

RTNEN_QMGR - This signal is set to 1 if the QMGR returns a free slot.

RQS_QMGR - This signal is set to 1 if the QMGR requests a free slot from the
FSMGR. The QMGR sends a request when it assigns a slot to a incoming cell.

SIGNALS FROM FSMGR

FSLT_FSMGR - This signal carries a free slot to the QMGR.

FSLTEN_FSMGR - This signal is 1 if the FSLT_FSMGR is valid.
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SIGNALS TO OSCHL

NEW_QMGR - This signal is set to 1 if the incoming cell belongs to a new connection.
If FIRST and LAST fields of the queue that an incoming cell is appended to are equal, it
is considered as a new connection.

NEWQID_QMGR - This signal provides the queue identifier of a new queue to be
added to the priority lists in the QSCHL. It is copied from the QID_QSEL for a new
connection. It is valid only if the NEW_QMGR is 1.

NEWOUT_QMGR - This 4 bit signal indicates the output number of a new connection.
It is copied from OUT_QSEL and is only valid when NEW_QMGR is 1.

NEWPRI_QMGR - This 1 bit signal specifies the priority of a connection. It is copied
from PRI_QSEL for a new connection.

NEWWT_QMGR - This signal is copied from WT_QSEL for a new connection.

EMP_QMGR - This signal is set to 1 if a queue is empty and needs to be removed from
the priority list in the OSCHL. It always has the same value as DEL_QMGR.

SIGNALS FROM OSCHL

NXTQID_OSCHL - This signal provides the queue identifier of the queue to send a cell
from.

NXTEN_OSCHL - This signal indicates that the NXTQID_OSCHL is valid.

SIGNALS TO MCTRL

RSLT_QMGR - This signal provides the slot number of the cell being read in the
CSTR. It is obtained from the FIRST field indexed by the queue identifier sent from the
QSEL.

RSLTEN_QMGR - This signal indicates that the slot number for the departing cell is
valid.

WSLT_QMGR - This signal provides the slot number for the incoming cell to write to.
It is obtained from the LAST field indexed by the queue identifier sent from the OSCHL.
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WSLTEN_QMGR- This signal is 1 when the WSLT_QMGR is valid.

NXTPTR_QMGR - This signal carries the pointer field to be written into the CSTR.
The QMGR always keeps a free slot as the pointer field of the next arriving cell. The
pointer is also used to update the LAST field. After assigning the free slot to the cell, the
QMGR send a request (RQS_QMGR) to the FSMGR for another free slot.

SIGNALS FROM MCTRL

PTR_MCTRL - This signal provides the pointer field of the departing cell. It is used to
update the FIRST field of queue from which the cell departs.

PTREN_MCTRL - This signal is 1 if the PTR_MCTRL is valid.

4. OUTPUT SCHEDULER (OSCHL)

SIGNALS FROM QMGR

NEW_QMGR - This signal is 1 for a new connection. The OSCHL needs to put the new
queue on its priority list.

NEWQID_QMGR - This signal provides the queue identifier of a new queue to be
added to the priority lists in the QSCHL. It is valid only if the NEW_QMGR is 1.

NEWOUT_QMGR - This 4 bit signal indicates the output number of a new connection.
The OSCHL put the queue on the circular list of this particular output. It is only valid
when NEW_QMGR is 1.

NEWPRI_QMGR - This 1 bit signal specifies the priority of a new queue. The OSCHL
places the queue on the high priority list if NEWPRI is 1, and places it on the low
priority list otherwise.

NEWWT_QMGR - This signal is the weight of a connection.

EMP_QMGR - This signal indicates that the queue that the OSCHL scheduled has
becomes empty after sending a cell and needs to be removed from the priority list.
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SIGNALS TO QMGR

NXTQID_OSCHL - This signal provides the queue identifier of the queue that is
selected to forward a cell to the output link.

NXTEN_OSCHL - This signal is set to 1 if the NXTQID_OSCHL is valid.

SIGNALS TO OMST

NXTOUT_OSCHL - This 4 bit signal provides the output number that the departing
cell is destined for.

OUTEN_OSCHL - This bit is set to 1 if the NXTOUT_OSCHL is valid and a cell is
departing.

5. FREE SLOT MANAGER (FSMGR)

SIGNALS FROM QMGR

RTNSLT_QMGR - This signal carries the free slot to be returned. The FSMGR
recycles free slots internally. The returned slot is placed in its internal slot cache.

RTNEN_QMGR - This signal is 1 if the RTNSLT_QMGR is valid.

RQS_QMGR - This signal is 1 if the QMGR requests another free slot.

SIGNALS TO QMGR

FSLT_FSMGR - This signal carries a free slot to the QMGR. The FSMGR sends a free
slot to the QMGR when it receives the RQS_QMGR.

FSLTEN_FSMGR - This signal is set to 1 if the FSLT_FSMGR is valid.
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SIGNALS TO MCTRL

HEAD_FSMGR - This signal provides the address of the first free slot in the FSL.

HDEN_FSMGR - This signal indicates that the HEAD_FSMGR is valid. Another set of
free slots need to be read out of the FSL.

TAIL_FSMGR - This signal provides the address in the FSL to return a set of free slots.

TLEN_FSMGR - This signal is set to 1 when a set of free slots are returned to the FSL.
The TAIL_FSMGR and the WSLTS_FSMGR are valid only if TLEN_FSMGR is 1.

WFSLTS_FSMGR - This signal carries a set of free slots to be returned to the FSL. It is
valid when the TLEN_FSMGR is set to 1.

SIGNALS FROM MCTRL

RFSLTS_MCTRL - This signal carries a set of free slots read out of the FSL. The
FSMGR needs puts them into the slot cache.

RFSLTSEN_MCTRL - This signal is 1 if the RFSLTS_MCTRL is valid.

6. Memory Controller (MCTRL)

SIGNALS FROM QMGR

RSLT_QMGR - This signal provides the slot number of the departing cell in the CSTR.
The MCTRL internally converts it to the external memory address.

RSLTEN_QMGR - This signal indicates that the RSLT_QMGR is valid. The MCTRL
starts a read cycle if the signal is 1.

WSLT_QMGR - This signal provides the slot number for the incoming cell to write to.
The MCTRL converts it to the external memory address internally.

WSLTEN_QMGR- This signal is 1 when the WSLT_QMGR is valid.
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NXTPTR_QMGR - This signal carries the pointer field to be written into the CSTR.
The MCTRL buffers the data and writes it to the CSTR with the cell.

SIGNALS TO QMGR

PTR_MCTRL - This signal provides the pointer field of the departing cell. The
MCTRL buffers the data read out from the CSTR first, then sends it to the QMGR.

PTREN_MCTRL - This signal is set to 1 if the PTR_MCTRL is valid.

SIGNALS FROM FSMGR

HEAD_FSMGR - This signal provides the address of the first free slot in the FSL.The
MCTRL converts it to the external memory address.

HDEN_FSMGR - This signal indicates that the HEAD_FSMGR is valid. The MCTRL
accepts the HEAD_FSMGR and schedules a memory read from the FSL.

TAIL_FSMGR - This signal provides the address in the FSL to return a set of free slots.
The MCTRL converts it to the external memory address.

TLEN_FSMGR - This signal is 1 when the TAIL_FSMGR and the WFSLTS_FSMGR
are valid. The MCTR schedules a memory write to the FSL.

WFSLTS_FSMGR - This signal carries a set of free slots to be returned to the FSL. The
MCTRL accepts it the TAILEN_FSMGR is set to 1.

SIGNALS TO FSMGR

RFSLTS_MCTRL - This signal carries a set of free slot read out of the FSL. The
MCTRL buffers the data internally and sends it to the FSMGR.

RFSLTSEN_MCTRL - This signal is set to 1 if the RFSLTS_MCTRL is valid.
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SIGNALS TO OMST

DATA_MCTRL - This 32 bit signal are the cell data from the CSTR. The MCTRL does
the parallel to serial conversion internally.

7. OUTPUT MASTER (OMST)

SIGNALS FROM MEMORY CONTROLLER

DATA_MCTRL - This 32 bit signal are the departing cell data from the CSTR.

SIGNALS TO NETWORK INTERFACE

TXPRTY - The transmit parity signal indicates the parity of the TDATA.

TDATA - The transmit cell data bus carries the ATM cell. TDATA[15] is the MST,
TDATA[0] is the LSB of the 16 bit data path.

TWREN - The channel active low transmit write enable inputs is used to initiate writes
to the channel transmit FIFO.

TSOC - Start of cell signal.

TCA - Transmit cell available signal indicates when space for a cell is available in the
channel transmit FIFO.



                                                                                                                                                                             117

APPENDIX B. OPERATIONAL SCENARIOS

The following diagrams show the status at the end of Cell Time 6 to Cell Time 11 in the

operational examples in chapter 3.
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