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Today, ATM networks are being used to carry bursty data traffic with large and highly
variable transmission rates, and burst sizes ranging from kilobytes to megabytes.
Obtaining good statistical multiplexing performance for this kind of traffic requires much
larger buffers than are needed for more predictable applications or for bursty data
applications with more limited burst transmission rates. Large buffers lead to large
gqueueing delays, making it necessary for switches to implement more sophisticated
gueueing mechanisms in order to deliver acceptable Quality of Service (QoS). Thisthesis
describes a 2.4 Gbh/s ATM gueue management chip that has practicaly unlimited buffer
scaling and also supports dynamic per VC queueing, an efficiently implementable form of
weighted round-robin scheduling, a novel packet-level discarding algorithm and the
ability to support multiple output links. We show that with current technology, it is
feasible to provide per VC gueueing for over 8,000 simultaneously active virtua circuits
and over one million cells.
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1. INTRODUCTION

1.1. Asynchronous Transfer Mode (ATM)

Asynchronous Transfer Mode (ATM) networks are designed for B-ISDN (Broadband
Integrated Service Digital Networks). With ATM, applications with many different data
rates, can be sent “asynchronously” using statistical multiplexing, where the system
bandwidth is shared by active sources. Data for video-on-demand, live television, CD-
quality music and high-speed data transfers, can al be transmitted over the same

network.

ATM networks are “connection-oriented”, meaning that a virtual connection needs to be
established between communicating terminals before transmission can take place.
Connections are distinguished by Virtual Path Identifiers (VPI) and Virtual Circuit
Identifiers (VCI). ATM networks use fixed-length cells containing 5 bytes of header and
48 bytes of payload. There are two types of connections: Virtual Circuit (VC)
connection and Virtual Path (VP) connection. In a virtual circuit connection, cell is
switched based on both the VPI and the VCI. In order to add a new connection, routing
tablesin all switches in the path need to be modified. In avirtual path connection, virtual
circuits following the same path are assigned the same VPI. Intermediate switches route
cells using the VPI only. Therefore, new VCs can be established over VP connections

without modifying routing tables in intermediate switches, simplifying the handling of



those virtual circuits. Figure 1-1 shows an ATM network with severa virtual circuit
connections established among end hosts. The circles represent ATM switches.
Connections with the same path are treated as a single virtual path connection illustrated
by shaded area. The VPI and VCI of a connection usualy change hop by hop so that
each switch can pick up an unused (VPI, VCI) pair locally to accommodate a new

connection.

Figure1-1 ATM Network

The ATM cell formats in both the User-Network Interface (UNI) and the Network-

Network Interface (NNI) are shown in Figure 1-2. The only difference between these

|4— 1 byte —»I |<— 1 byte —>|
GFC | VP .
[ve | L]
vcl vCl
PT [ciA PT |cLA
HEC HEC
Payload Payload
(48 bytes) (48 bytes)
UNI NNI

Figure 1-2 ATM Cell Formats

two formats is that the UNI cell format contains a Generic Flow Control field (GFC).
The VPI field is 8 bits and 12 bits in UNI and NNI formats, respectively. A network can



support 256 virtua path connections using UNI format. The VCI field is 16 bits in both

formats. Since a virtual circuit connection is determined by both the VPI and the VCI,

the possible number of combinations is quite large: 228 for the NNI case. Switches

generally provide routing table entries for only asmall fraction of this number.

The Payload Type (PT) identifies cells as user data or control information. The Cell Loss
Priority (CLP) bit is set for low priority cells. The Header Error Check (HEC)
implements the error-detecting code on the header. The Generic Flow Control (GFC)
field in the UNI format is currently unused. The payload field carries the data and is 48
byteslong.

Because transport layer protocols deal with packets instead of ATM cells, an ATM
adaptation Layer (AAL) is defined to alow users to send packets larger than an ATM
cell. Packets are segmented into ATM cells, transmitted through the network, and
reassembled at the other end. AALS uses the U-bit of the PT field to indicate the last cell
of a packet.

1.2. Switching Systems

1.2.1. General Concept

ATM switches are used to route cells arriving on their input ports to the desired output
ports. As shown in Figurel-3, a typical ATM switch consists of three mgor

components:. Input Port Processors, Switching Network and Output Port Processors.

The Input Port Processor contains a Virtual Path/Circuit Trandation Table (VXT),
specifying the destination port of connections and the VPl and VCI used by the
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Figure 1-3 ATM Switching System

downstream switch. If a cell belongs to a virtual path connection, the VPI aone is used
to select a table entry containing the required outgoing link number and a new VPI. The
VCI is unchanged in this case. If the cell belongs to a virtual circuit connection, the
cell’s VPI and VCI are used to select a table entry containing the required output link
number and new VPI and VCI values.

The Switching Network routes ATM cells to one or possibly severa specified output
ports. The switching network is the central part of a switching system. The design issues
include scalability, reliability and cost-effectiveness.

The Output Port Processor receives cells from the switching network and buffers cells
waiting for transmission. Some switch architectures allow the cells to arrive at the OPP
out of order. These switch designs require the Output Port Processor to resequence the

cells before sending them to the external link.



1.2.2. Washington University Gigabit Switch (WUGYS)

High speed ATM switching systems are desirable because high speed cores usually have
less fragmention of bandwidth, higher utilization of memories, and less system cost per
port. The Washington University Gigabit Switch (WUGS) [3] has been designed and
implemented to support port speeds up to 2.4 Gb/s. It supports one-to-many, many-to-
many, many-to-one multicast in a particularly cost-effective way. The system can be

configured from 8 ports to 4096 ports and throughput approaching 10 Th/s.

Input Port Switching Network Output Port
Processors [ Processors
I
IPP : m
| M -1

Recycling Path

Multicast Cell
Forwarding

I

IPP

Figure 1-4 WU Gigabit Switch (from [3])

Figure 1-4 shows the overall organization of the WUGS switching system. It consists of
three main components, each of which is implemented as a single chip. The Input Port
Processors (IPP) receive cells from the incoming links, buffer them while awaiting
transmission through the central switching network and perform the virtual path/circuit
trandation required to route cells to their proper outputs. The Output Port Processors
(OPP) resequence cells received from the switching network and transmit them to the
external link. Each OPP is connected to its corresponding 1PP, providing the ability to
recycle cells belonging to multicast connections. The central switching network is made

up of Switching Elements (SE) with eight inputs and outputs and a common buffer to



resolve local contention. The SEs switch cells to the proper outputs or dynamically

distribute cells to provide load balancing.

To provide sufficient bandwidth for 2.4 Gb/s link rates on the externa links, the switch
carries ATM cells in a 36 bit wide format with a clock rate of 120 MHz. The switching
network is implemented in four parallel planes, with each plane receiving the same
address information, plus eight bits of data. The cells proceed through the four planesin

parallel, without any explicit coordination, and are reconstructed at the OPP.

The OPP and IPP link interfaces use a subset of the functionality defined in the
Universal Test & Operations PHY Interface for ATM (UTOPIA) 2 standard [1]. The
OPP and IPP link interfaces operate in either 16-bit or 32-bit mode as defined by an
option pin on each IC. The 16-bit mode and 32-bit mode support transmission at rates up
to 1.2 Gb/s and 2.4 Gb/s, respectively.

1.3. Motivation

When ATM network technology was first developed in the 1980s, its developers
envisioned a comprehensive traffic management methodology, with explicit reservation
of resources, end-to-end pacing of user data streams to conform to resource reservations
and network-level enforcement mechanisms to protect against inadvertent or intentional
violation of resource reservations. In the context of such methodology, efficient
statistical multiplexing performance could be achieved without large amounts of

buffering in the network and with very simple queueing mechanisms.

As ATM was deployed in the 1990s, the original expectations for traffic management
were found to be unrealistic. ATM is now being used largely to support internet data



traffic which is highly unpredictable and for which the traffic management philosophy of
ATM is difficult to apply. In the current application context, resources are generally not
explicitly reserved, end systems do not pace their transmissions and most network
equipment cannot enforce resource usage limits. In this environment, to obtain good
statistical multiplexing performance and high link utilization, one needs large buffers. In
particular, one needs buffers that are at least comparable, and preferably an order of
magnitude larger than user data bursts, which range in size from kilobytes to megabytes.
Unfortunately, the use of large buffers with simple FIFO queueing disciplines leads to
poor performance for real-time traffic and allows “greedy” applications to appropriate an
unfair portion of network resources. Providing good Quality of Service (QoS) to real-
time applications and fair treatment to bursty data applications requires more

sophisticated queueing and cell scheduling mechanisms.

1.3.1. Accessing High Speed Switches

Gigabit switches are advantageous in many ways. They can naturally handle high data
rate applications such as multimedia applications. In addition, they can handle lower rate
applications in a very efficient way. The cost of switches are shared by all links, which
reduces the cost per port. High bandwidth switching systems reduce delay in the
interconnection networks. They provide better queueing performance for bursty traffic

and have less fragmentation of bandwidth and memory.

However, since lower speed links are commonly used for applications with lower data
rates, it is important to provide mechanisms to allow access to high speed switches from
lower speed links. One way to do so is to introduce a cell multiplexor before the Input
Port Process (1PP) and a demultiplexor following the Output Port Processor (OPP). The
design of the multiplexor is relatively easy if the total link bandwidth does not exceed



the bandwidth of the switch. This thesis focuses on the design of the Dynamic Queue
Management chip that functions as the demultiplexor between the Output Port Processor

and the lower speed links.

1.3.2. Tolerating Data Surges

The demultiplexor can be implemented in a ssimple way if the outgoing links are rarely
subject to traffic overload. However, since bursty traffic is common to data applications,
the system must have sufficient buffering to accommodate temporary data surges. Thisis
particularly important for lower speed links such as OC-3, where a single application
may consume a large fraction of the link’s capacity. The Dynamic Queue Management
chip provides an efficient way to manage a large buffer space, so that the buffer size is

limited only by the memory cost.

1.3.3. Providing Quality-of-Service

In the presence of large buffers, Quality-of-Service (QoS) becomes an important issue in
the design. Real-time applications, such as video and audio require small end-to-end
delay. Cells that arrive late are discarded and no recovery is possible. Real-time traffic is
usually continuous stream and has limited variability. Admission control can be used to
avoid congestion. Non real-time applications, such as data transfer, are usually bursty. It
is less predictable so that congestion can occur routinely. Because of the high peak-to-

average ratio, large buffers are needed to avoid cell loss.

Large buffers and priority treatment imply per VC queueing instead of FIFO queueing.
In systems with FIFO queueing, cells from different VCs enter the same queue. Large
buffers introduce large queueing delays. Most of the delays are caused by “mis
behaving” VCs that send at a higher rate than they should. In system implementing per



VC queueing, cells from different VCs enter separate queues. With proper scheduling
mechanisms, queueing delays due to large buffers and “mis-behaving” VCs are
eliminated.

In this thesis, we design a Dynamic Queue Management (DQM) chip that connects to the
output side of a high performance ATM switch, such as the Washington University
Gigabit Switch. It supports separate queues for each application data stream and buffer
sizes that are limited only by the cost of memory. The design can be implemented with a
single application-specific integrated circuit in 0.35 micron CMOS technology together
with SRAM components. The design will support a total output rate of 2.4 Gb/s and can

support either asingle OC-48 link, or a combination of lower speed links.

1.4. Related Work

Several queueing and scheduling schemes have been proposed to support Quality-of-
Services (QOS) in ATM switch designs.

Four scheduling schemes have been compared by Chipalkatti [8]: FIFO, minimum laxity
threshold (MLT), head-of-the-line priority (HOLP) and queue length threshold (QLT).
Cells are served in their arrival order in FIFO scheduling and no QoS is supported. For
MLT, each queue has a timer. When the timer expires, the corresponding queue sends a
service request. QLT scheduling balances the bandwidth utilization by setting thresholds
for each queue. In HOLP scheduling, queues with higher priority are served before those

with lower priority.
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The asynchronous time sharing (ATS) mechanism proposed by Lazar [13] partitions the
network into four separate classes. Each class is serviced some minimum portion of a
larger frame time so that the bandwidth is guaranteed. Unused guaranteed bandwidth of

agiven class can be used by the next traffic class.

Hashemi has explored a cell sequencer that inserts new cells into the physical queue
according to its class/group and the state of the logical queues already present [10]. Each
cell is assigned a tag value according to its priority class before entering the sequencer.
The sequencer arranges the cells based on their tag values by sequentially comparing the
tag of the new cell with those already in the physical queue.

Landsberg and Zuhowski have explored generic queue schedulers and have simulated a
wide variety of queue scheduling methods [12]. A queue can actively request service
based on spatial (queue length threshold) or tempora (timer) conditions. The queue
server must solve the multiple request contention using proper scheduling schemes.
Several forms of priority have been defined for the generic queue scheduler.
Continuously gated priority (CGP) is essentialy the head-of-line priority (HOLP).
Queue gated priority (QGP) allows the queue currently being serviced to transmit up to
its burst factor (BF) of cells. System gated priority (SGP) buffers all queue service
requests into an arbiter and imposes an ordering on the requests. All the queues are
allowed to transmit up to their burst factor of cells in that order. If the currently served
gueue runs out of cells, the next queue can transmit cells for a work conservative (WC)

system and no other queue can transmit cells for a non-work conservative system.

Duan has proposed a 3-Dimensional-Queue (3DQ) that is used in an input-buffered
ATM switch system [9]. The incoming cells are organized into multiple queues
according to virtual connection, priority and destination. The memory pool is shared by
all incoming cells and is grouped into fixed-size cell dots. The free list logic keeps track

of al unused cell dlots, assigns an available cell slot to each incoming cell, and collects
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cell dots after each cell has been delivered. 3DQ supports QoS at the per VC level.
Every active VC has only one entry in the corresponding service queue. A non-empty
VC can re-enter the service queue after being served. The scheduler selects the cell
according to the “weight” of elements of a traffic matrix. The idea of combining the per-
VC queueing, priority queueing and N-destination queueing is quite similar to the design
proposed in this paper. But the selection of queue identifiers to build up the linked list
and the scheduling of the outgoing cells are quite different. In addition, the 3DQ does not

provide packet level discarding during overload periods.

The idea of round-robin scheduling is to circularly transmit one cell from each of the
V Cs with non-empty queues. Round-robin scheduling evenly distributes all the available
link bandwidth to all active virtua circuits. If some virtual circuits do not need or cannot
use as much as they are alowed, the remaining portion is equally distributed to all other
VCs that can use it. Visiting the VCs in a round-robin fashion and forwarding one cell
from each active VC upon each visit is, in principle, fairer than FIFO scheduling.
However, in some cases, it may be necessary to allocate link bandwidth according to a
set of weights. The Weighted Round-Robin (WRR) scheme proposed by Katevenis [11]

visits the VCs with larger weights more frequently than those with smaller weights.

1.5. ThessOverview

Chapter 2 describes the features of the Dynamic Queue Management chip. Chapter 3
gives the architecture of the Dynamic Queue Management chip and a series of
operational examples. Chapter 4 elaborates the detailed design of each functional block,
provides a detailed timing analysis. Chapter 5 describes several advanced algorithms
used in the chip. Chapter 6 gives performance analysis and circuit complexity

estimation. The last chapter summarizes the thesis.
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2. FEATURESAND PRINCIPLES

The Dynamic Queue Management (DQM) chip allows a single 2.4 Gb/s OC-48 link or a
combination of lower speed links such as 150 Mb/s OC-3, 622 Mb/s OC-12, and 1 Gh/s
G-link to access high speed ATM switches such as the Washington University Gigabit
Switch (WUGS) whose throughput is 2.4 Gb/s per port. The chip is designed to buffer
cells received from the switch and forward them over one of the outgoing links. The
major features of the DQM chip are listed below.

2.1. Dynamic Queue Assignment

The ATM cell format allows for as many as 228 distinct virtual circuit connections on a
single ATM link. Real switches implement only a small fraction of the full spectrum of
possibilities, and often impose limitations on the choices of VPIs and VCls. Many
switches support only VP or only VC connections and those that only support VC
connections usually restrict the VPI to be zero. In switches that support VC connections
with different VPIs, it is generally necessary to configure the switches to specify which
V Cls may be used with agiven VPI.

The DQM implements per VC queueing using dynamic assignment, which allows the
chip to support virtual path and virtual circuit connections with arbitrary choices of VPIs
and VCIs and no explicit configuration of VCI ranges to particular VPIs. It uses set-

associative lookup to assign queues to channels identified by the combination of a VP
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and a VCI. This greatly ssimplifies the use of the chip and enables optimal use of the

chip’s per channel data structures.

VP Queues
> I VP =0
s "I VvPi=1
VPIIVCI=28 VP H
! > —_TI]VPI =255
VC Queues

ueue 384
i 1 1| %Pl/vuszssls‘
ueue
> j‘ VPIVCI=6/9
1]

.
> Queue 1000
Il vrinvci=28

> L \oueue 208
:I:I:I Queue 982
Unused

Figure 2-1 Dynamic Queue Assignment

Figure 2-1 illustrates the dynamic queue assignment mechanism. A static assignment is
used for virtual path (VP) queues, since the number of distinct VPIsisfairly modest, 256
in this particular case. However, the number of distinct VPI/VCI combinations is far
larger than the number of actual virtual circuits that a link will carry and larger than the
number of distinct queues that can be managed economically. To avoid restricting the

choice of VPIsand VClsunduly, VC queues are assigned on adynamic basis.

If an arriving cell belongs to a VP connection, the cell goes directly to the VP queue
specified by its VPI. Otherwise, a set-associative lookup is performed to determine if
there is an existing queue assigned to the same (VPI,VCI) pair as the arriving cell. If
such a queue is found, the cell is appended to that queue. If there are no matching
gueues, an unused VC queue is assigned to that VC connection. The arriving cell is

appended to the newly assigned queue.
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2.2. Efficient Memory M anagement

Since bursty traffic is common in networks, large buffers are needed to accommodate
temporary data surges. Arriving cells are first stored in the cell buffer before being
forwarded to output links. The DQM chip allows all virtual circuit queues to share the
entire cell buffer. The DQM chip is designed so that the cell buffer can be scaled up to

very large sizes without increasing the chip complexity significantly.

The cell buffer is organized in units of cell dots. Queues are stored in the buffer as
linked lists. A Free Sot List is maintained to keep track of all unused cell slotsin the cell
buffer. Both the cell buffer and al information to maintain the cell buffer (that is, all the
links for the linked list queues and the free dlot list) are stored in externa memory. The
only constraint that the DQM chip places on the buffer capacity is through the choice of
pointers. With 20 bit pointers, the chip can support buffer sizes over 50 Mbytes, 24 bit
pointers would allow for up to 800 Mbytes. For all practical purposes, the buffer
capacity is not constrained by the DQM chip.

At gigabit speeds, the bandwidth of the external memory used by the DQM to store cells
IS a precious resource. A certain portion of this bandwidth must be used to manage the
free dot list that is stored in the externa memory, along with the waiting cells. The
DQM chip incorporates an on-chip recycling cache that allows the free slot list to be
maintained using only memory cycles that would otherwise go unused. This cache stores

the location of anumber of available cell dots.

Cell dlots can usually be assigned to arriving cells from the cache and departing cells can
usually return their cell slots to the cache, rather than accessing the off-chip free dot list.
The off-chip list is only accessed to refresh or free up space in the cache. But these
operations only needs to be performed when there is a mismatch in the rate at which

cells arrive and depart. In this case, there are guaranteed to be unused memory cycles
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avalable. Therefore, with the internal recycling cache, the free dot list can be

maintained in external memory with no additional memory bandwidth cost.

2.3. Efficient Weighted Fair Queueing

The DQM chip implements weighted round robin scheduling [11] using a novel
approach we call the Binary Scheduling Wheels (BSW) agorithm [7]. The BSW
algorithm implements multiple priorities at minimal cost, providing a wide range of rate

options.

The BSW algorithm is a per VC based agorithm. Power of 2 weights can be assigned to
individual virtual circuit connections. These weights determine the relative frequency
with which cells are forwarded, allowing link bandwidth to be allocated appropriately
during congestion periods. With 32 distinct weights, the BSW algorithm can assign
bandwidth in amounts ranging from 2.4 Gb/s to less than one bit per second. Unlike
naive implementations of weighted round-robin scheduling, the BSW algorithm
interleaves cells from different channels as much as possible, minimizing the burstiness
of the output data streams. The algorithm can be implemented in a very cost-effective
way, requiring just a small increment in cost over a simple two priority level design. In
order to be able to scale to large number of weights, the BSW algorithm incorporates a
Fast Forward mechanism. It is well-suited to hardware implementation and allows cells

to be scheduled and forwarded in essentially constant time.
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2.4. Packet Level Discarding for Per VC Queues

To preserve packet integrity during overload, ATM switches often use packet level
discard mechanisms such as Early Packet Discard [16][18][4], which were designed for
use with FIFO queues. New algorithms are needed for per VC queueing, to minimize
memory usage and preserve fairness and QoS properties of output scheduling
algorithms. The DQM chip incorporates a new packet level discarding scheme for per
VC gueues, called the Weighted Fair Goodput (WFG) algorithm. The combination of
WFG and BSW alows all virtua circuits to forward cells at reserved rates during
overload periods and ensures that “well-behaved” virtua circuits (those that do not
exceed their alocated rate) do not lose any data, and that data is discarded from
“misbehaving” virtual circuits on a packet-by-packet basis, avoiding wasted link
capacity during overload periods.

2.5. Flexible Link Configuration

The DQM chip implements a credit based link scheduler to allow the output links to be
configured with excess capacity. It is possible to configure external links in such a way
that total link bandwidth is greater than the bandwidth of the DQM chip. In particular,
the DQM chip makes bandwidth that is not needed by one port, available to other ports.
This alows links to send bursty traffic at higher rates if other links are not using their
full bandwidth.



17

3. OVERALL DESIGN

3.1. Overview

To support the required output bandwidth of 2.4 Gb/s, the chip operates with an internal
clock speed of 120 MHz. The internal cell time is the same as that of the OPP, which is
14 clock cycles. The data path between the OPP and the DQM chip is 32 bits. This
allows cells to be received at a rate that is roughly 1.5 times the cell rate of an OC-48
link.

Figure 3-1 shows a block diagram of the DQM chip and its associated memory. The dash
line illustrates the data flow from the switch fabric to the output links. ATM cells are
received on a 32-bit wide interface, similar to the UTOPIA interface used for connecting
ATM devices to SONET transmission circuits [1]. The DQM stores cells in the external

memory and forwards them to one of possibly several output links.

There are nine functional blocks: the Queue Selector, the Queue Manager, the Output
Scheduler, the Free Sot Manager, the Cell Sore, the Free Sot List, the Input Master,
the Output Master, and the Memory Controller. The Queue Selector dynamically assigns
queues to virtual circuits. The Queue Manager maintains a list of all queues, keeping
track of the first and the last cell in each queue. The Output Scheduler schedules the

transmission of cells from various channels and allocates the chip’s output bandwidth
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Figure 3-1 Block Diagram of the Dynamic Queue Management Chip
among different output links. The Cell Sore buffers all incoming cells before

transmission. The Free Sot List stores unused cell slots in the Cell Store and the Free
Sot Manager maintains an on-chip cache and manages the Free Slot List. The Input
Master receives cells from the switch and retrieves control information. The Memory
Controller interfaces to the external memory and handles the necessary format
conversions, needed to map cells into memory. The Output Master forwards cells to the

output links.

3.1.1. Queue Selector (QSEL)

The Queue Selector (QSEL) maps the VPI and VCI fields of incoming cells to
dynamically assigned queue identifiers. It contains a Queue Lookup Table (QLT), which
operates like a Content-Addressable Memory (CAM). Logicaly, one can think of the
QLT as aset of entries, each containing a (VPI,VCI) and a queue identifier. When a cell
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arrives, the VPl and VCI fields of the cell are compared to the stored entries. If a
matching entry is found, the queue identifier in the entry gives the number of the queue
that the cell is to be appended to. If there is no matching entry, a free queue is alocated
and anew entry is created, and initialized with the VPI and VCI of the incoming cell and
the identifier of the queue just allocated.

Figure 3-2 illustrates the Queue Selector data structures. In addition to the QLT, the
Queue Selector contains a Free Queue List and an Address Map. Queues are allocated
from the Free Queue List as needed. When the transmission of a cell by the Queue
Manager causes a queue to become empty, the identifier for that queue is returned to the
Queue Selector, which adds it back into the Free Queue List. The Address Map specifies
the QLT entry where a specified queue identifier is stored. It is used to remove an entry
from the QLT when a queue becomes empty. Specifically, whenever a queue identifier is
returned to the Free Queue List, the Queue Selector uses the queue identifier to select an
entry from the Address Map. The value returned is then used to deallocate the specified
QLT entry.

AddressMap Queue Lookup Table
ch)D ] VP|, VCI Queue 1D
1 i (2,4) 0
(3,8 3
i \>4 !
4 —
5 Free QueuelList
6 0 1 2 3 4 5 6 7
7 L-[-[2]7[s]6]-]-]

Figure 3-2 Queue Selector Data Structures

To obtain the most cost-effective implementation, the QLT is implemented using a Set-
Associative Memory (SAM). SAMs can be implemented with conventional SRAM and
some auxiliary logic, making them a good deal cheaper than CAMs. Given a VPl and a
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VCI, the set-associative memory in the Queue Selector returns a set of entries, any one
of which could be used for storing information relating to that VPI and VCI
combination. A set of entries is selected using a subset of the bits of the VPl and VCI.
Each entry contains a valid bit, a tag and a queue identifier. The tag is formed from the
bits of the VPI and VCI not used to select the set.

When a cell is received by the DQM, its VPI and VCI are passed to the Queue Selector,
which retrieves a set of entries from the set-associative memory. The tag of the incoming
cell is compared to the tag fields of all entries of the set in parallel. If the tag field of
some valid entry in the set matches the tag of the incoming cell, the queue identifier
stored in that entry identifies the queue that the cell should be appended to. If there is no
tag match, it means that no cell belonging to this combination of VPI/VCI is currently
stored in the DQM’s memory, and so an unused queue identifier should be assigned. To
perform this assignment, the Queue Selector picks an unused entry from the set returned
by the set-associative memory and obtains an unused queue identifier from the list of
free queue identifiers that it maintains. It then copies the tag of the cell and the number
of the allocated queue into the selected entry, sets its valid bit and writes it back to the

set associative memory.

When the DQM transmits the last cell from some queue, the number of that queue is
passed to the Queue Selector which returns the queue to its list of available queues and
clears the valid bit in the corresponding entry of the set-associative memory. Thus, both
gueues and entries in the set-associative memory are used only for those connections for
which the DQM is storing cells.

When a cdll is received by the DQM, it is possible that the set-associative lookup will
yield a set of entries, al of which are in use (have the valid bit set) and none of which
have matching tags. In this case, the cell must be discarded. This is referred to as

overflow. We can make overflow less frequent by augmenting the set associative
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memory with a small Content Addressable Memory (CAM). The entire VPI and VCI are
used as the key field for the CAM. In the value field, we store the queue identifier that is
assigned to the virtual circuit. Figure 3-3 shows the set-associative |lookup with CAM.

QID: Queue Identifier

VPl VCl

ﬁ """ TCAMT T

: Index| Tag validTag QID Valid Tag QID : : Key QD Vdid !

: : —S{VALVCI ;
N

munilly
.

'Set-Associative # S v e
Lookwp L
QID

Figure 3-3 Set-Associative Lookup with CAM

When a cell enters the DQM, a CAM lookup is performed in paralel with the set-
associative lookup described earlier. There are several cases that can then arise: If the set
returned by the set-associative memory has a matching entry, it is used as previously
described. If the set has no matching entry, but the CAM contains a matching entry, then
the queue identified in the matching CAM entry is used for the arriving cell. In this case,
if the set returned from the set-associative memory has an unused entry, the information
in the CAM entry is transferred from the CAM entry to the entry in the set-associative
memory, freeing up the CAM entry. If neither the set returned by the set-associative
memory, nor the CAM has a matching entry, then a new queue is allocated. If the set has
one or more free entries, one of them is allocated. Otherwise an entry in the CAM is
allocated.
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3.1.2. QueueManager (QMGR)

The Queue Manager (QMGR) maintains a queue list for every possible virtual path
gueue and virtual circuit queue by keeping pointers to the head and tail of the queues.
The actual queues are organized as linked lists and are stored in the externa memory
(Cell Store). Each cell dot in the Cell Store contains one cell and a pointer to the next
cell in the queue. Figure 3-4 shows the queues maintained by the QMGR for a scaled-

down configuration.

Queue M anager
Queue List
Last First
0| 13/ 12 - |
1| 15/ 1 =N
222 ]
333 pE ]
VC4 4 Dél
5 17| 5 —P&l
6|6 |6 Dél
71717 ]
o8 6 —1—PED
VP9 9
10| 14| 10 =
ETIET) é Cell Store

Figure 3-4 Queues Maintained by the Queue Manager

The gueue identifiers generated by the Queue Selector are used to index the queue list.
Each entry in the queue list contains pointers to the first and last cell of the queue. In
order to simplify the design, the LAST pointer always points to an empty cell ot in the

Cell Store which can accept the next arriving cell.

For an arriving cell, the QMGR informs the Cell Store to store the cell in the cell slot
which the last cell in the queue points to. The QMGR also obtains a free dot from the

Free Slot Manager and updates its queue list. The free slot number is written into the
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Cell Store along with the cell. For an outgoing cell, the QM GR obtains a queue identifier
of the queue to output a cell from the Output Scheduler. The QMGR sends the cell slot
number of the first cell in the queue to the Cell Store. The pointer stored with the
departing cell is used to update the queue list. The cell sot that contains the departing
cell is then returned to the Free Slot Manager. The QMGR notifies the Queue Selector
and the Output Scheduler to remove the queue if the first and last pointers in the queue

both refer to the empty cell ot after modifying the queue list.

3.1.3. Cell Store (CSTR)

The Cell Store (CSTR) stores cells before they are forwarded to the external links. Cells
are organized as linked lists on a per connection basis as shown in Figure 3-4. The
minimum units in the CSTR are caled cell dots and are indexed by slot numbers. Each
cell ot can accommodate one cell and a pointer to build up the linked list. Figure 3-5
illustrates the cell dots in the CSTR, where the letter designates a stored cell and the

number is the pointer to the next cell in the queue.

Cdll Store
0 1 2 3 4 5 6 7 8 9 100 11 12 13 14 15

B,15| - - - Ip20| - - - - | G114 - |A13 |C16

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

E22| - - - F17] .

Figure 3-5 Cell Slotsin the Cell Store

For an arriving cell, the CSTR receives a slot number and a pointer from the Queue
Manager (QMGR). It writes the entire cell and the pointer to the cell slot indicated by the
slot number. For an departing cell, the CSTR receives a slot number from QMGR, and
reads the cell and the pointer out of the cell dlot. It forwards the cell to the Output Master
(OMST), and forwards the pointer to the QM GR.
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3.1.4. Output Scheduler (OSCHL)

The Output Scheduler (OSCHL) determines the order in which different non-empty
gueues are selected for transmission. Because the chip is designed to support multiple
outputs (up to 16 OC-3 interfaces, in some configurations), the Output Scheduler has
separate scheduling data structures for each output. There are two scheduling
mechanisms that the Output Scheduler can choose from. One is two priority round-robin
scheduling. The other is weighted round-robin scheduling. The basic design implements
two priority scheduling scheme. An efficient implementation of weighted round-robin
scheduling is discussed in detail in Chapter 5.

In the two priority case, each output has a high priority list and a low priority list.
Queues on these lists contain at least one cell. If a queue becomes empty after
forwarding a cell, it is removed from the list. Output links are served in a round-robin
fashion. The idea of round-robin scheduling is that during each round, everyone is
visited exactly once. Each of the 16 outputs is able to forward one cell every 16 cell
times. When an output is selected, the high priority list on that output is served before
the low priority list. The low priority list can be processed only if the high priority list is
empty. Queues on the lists are also served in a round-robin fashion. In this way, real-

time streams can avoid being delayed by bursty data traffic.

The OSCHL uses the queue identifiers maintained by the Queue Manager to identify
different active queues. Figure 3-6 shows a scaled-down version of the high and low
priority lists that the OSCHL maintains. The queue identifiers of all non-empty queues

are linked together to form circular lists on the priority lists.

The OSCHL sends the queue identifier of the scheduled queue to the Queue Manager
and sends the corresponding output link number to the Output Master. For a new

connection, it inserts a queue identifier in the proper place in its list according to the
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Figure 3-6 High/Low Priority Listsin Output Scheduler

priority bit and the output link number. It removes a queue identifier from the list when

the queue is empty, asinformed by the QM GR.

If weighed round-robin scheduling is used, each queue is assigned a weight from a fixed
set of power of 2 weights. For each output, the OSCHL maintains an array of scheduling
lists, with one list for each weight. Thisisillustrated in Figure 3-7, which shows a scaled-
down version of the OSCHL data structures, configured for four outputs and four

weights. The actual chip supports up to 16 outputs and 32 weights.

The scheduling lists are organized cyclically and are referred to as scheduling wheels.
The weights for the different scheduling wheels determine the relative frequency with
which the queues are scheduled. Queues on the weight O wheel are visited twice as often
as queues on the weight 1 wheel, four times as often as queues on the weight 2 whesl,
and so forth. The scheduling algorithm used by the OSCHL is called the Binary
Scheduling Wheels algorithm and is described in detail in Chapter 5.
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Figure 3-7 Scheduling Wheels in the Output Scheduler

3.1.5. FreeSlot Manager (FSMGR) and Free Slot List (FSLST)

The Free Slot List (FSLST) stores the currently unused slot numbers in the Cell Store.
Because of the size of the FSLST, it is stored in the external memory. The FSLST is

implemented as a circular list with a head pointer and a tail pointer. Figure 3-8 shows a

scaled-down version of the Free Slot List.

Head

FreeSlot List ¢

10 11 12 1314 15

EEEEEEEEEEEERE L

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

[ 10] 24] 21] 25] 2¢] 23] 31] 26 §| [- 1-1-

Tail

Figure 3-8 Free Slot List

The Free Slot Manager (FSMGR) manages the Free Slot List. It keeps an on-chip free

dot cache. The FSMGR assigns an empty cell slot from its cache to an arriving cell.

After a cell departs, the corresponding cell slot is returned to the free slot cache. If there
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are too many free dots in the cache when there is no arriving cell for a long time, the
FSMGR moves free dlots to the Free Slot List using an idle memory write cycle. If there
is no departing cell for a long time, the free slot cache will run short of free slots. The

FSMGR then reads free slots from the Free Slot List using an idle memory read cycle.

3.1.6. Input Master (IMST)

The Input Master (IMST) receives cells from the Output Port Processor (OPP). It
retrieves control information from the cell. The IMST sends the VPI, VCI, type, PT, link
number and priority of the incoming cell to the Queue Selector. It forwards the entire

cell to the Memory Controller.

3.1.7. Output Master (OMST)

The Output Master (OMST) forwards cells to the output links. It receives the departing
cell from the Memory Controller and the output link that the cell is destined for from the
Output Scheduler. The OMST provides separate buffers for each of the chip’s four
UTOPIA interfaces as shown in Figure 3-9.

Output - |- [-]-]-]outputo
Master T T T 1T Jouput
C
St [ T-T-1Joup2
=3 [ - [- -1 ouputs

Figure 3-9 Buffersin the Output Master
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3.1.8. Memory Controller (MCTRL)

The Memory Controller (MCTRL) controls the external memory blocks: Cell Store and
the Free Slot List. It communicates with the Input Master, the Output Master, the Queue
Manager and the Free Slot Manager. The Memory Controller also handles cell format

conversion and memory address trandlation.

3.2. Operational Examples

The following examples illustrate the operation of the major blocks. More examples are

givenin Appendix B.

In order to ssimplify the examples, we assume a 2-bit VPI, a 3-bit VCI, a set-associative
memory with 8 sets and 2 entries each, 32 dots in the Cell Store and 4 output links. We
allow 8 VC connections, 4 VP connections. Cells are denoted as A, B...Z. Each incoming
cell providesits VPI, VCI, type, priority, and the output number. Type can be either VC

connection or VP connection and priority can be high or low.

Table 3-1 shows the incoming cells for a few cell times after the initialization. We will

go over the operations of the first few cell times and leave the rest for Appendix B.

Figure 3-10 gives the overall timing of the cell arrival and departure. "A-1" denotes that
cell A isdestined for output 1. Each cell time is divided into a write cycle followed by a
read cycle. During the write cycle, denoted as “W”, the arriving cell is written into the
Cell Store, while during the read cycle, a cell is read out of the Cell Store. "R1" means
the current read cycleisfor a cell destined for output 1.
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Table 3-1 Arriving Céll Information

ATrirri;’:' C;ﬁ;m VPINCI Type Priority ,\% U1 QueuelD
0 0/2 VC HIGH 1 0
1 B 0/2 VC HIGH 1 0
2 C 2/3 VP LOW 2 10
3 D 3/5 VC LOW 0 1
4 E 0/2 VC HIGH 1 0
5 F 3/5 VC LOW 0 1
6 G 2/5 VP LOW 2 10
7 H 1/6 VC HIGH 1 2
8 - - - - - -
9 I 3/7 VP LOW 2 11
10 - - - - - -
11 - - - - - -

Because all the output links are served in round-robin fashion, each output can only send
one cell per round. For example, Cell A destined for output 1 arrives at Cell Time 0, and
leaves at Cell Time 5 when the read cycle is for output 1. Also, queues on each output
are also served in round-robin fashion with those on the high priority lists served before
those on the low priority lists.The following figures will explain how decisions are made.
If there is no queue on a particular output during its read cycle, the read cycle for that

output is not used.

Figure 3-11 illustrates the states at the end of Cell Time 0. During Cell Time O, cell A
comes in with VPI=0, VCI=2, TYPE=VC, PRI=HIGH, OUT=1. Since it is a VC
connection, a queue identifier is dynamically assigned to it. The Queue Selector uses the
lower 1 bit of the VPI and lower 2 bits of the VCI to form an address (ADDR). A TAG
field is formed by the highest 1 bit of the VPI and highest 1 bit of the VCI. The Queue



30

Cell Tine 0 1 2 3 4 5 6 7 8 9 10-| 1 12 13 14
W.RO W.RIW: R2 W.R3 W, ROW.R1 W' R2|W'R3 W' RO W! RIW;RZ W, R3W: RGW ' R1 WR3

A1 A:arrveri; _E__EL__:__':Adeniarts_il C IE__E__E__;__;____
SR RRT FU L R R RN EE SRy
C-2 ___ Ciarrive%______:!Ccepéar ;————.__._-_.__:__,___
oo || fomve || )] pmang L
E-1 -4——;——;——: Eéa”"% —é——:——é——:——-——h——:——:——-——
Fo Lol |1 Faftrrves:__r____-______ ::Ffepaft‘ |
G-2—-E——E——E——E-——-E——E—‘@'\@é——i——:— 'EGjepia“Si——i——f——
TR N T R N 1% O ) S R I
1

Figure 3-10 Timing of Cell Arrival and Departure
Selector uses the address to retrieve a set of entries from its set-associative memory and

match them against the TAG field. If there is a matched tag, the Queue Selector will
return the queue identifier stored in the matching entry. If not, there is no queue currently
assigned to the connection and the first available queue identifier in the Free Queue List
will be assigned to the connection and stored in the first unused entry of the set, together
with the TAG field. In this case, ADDR=2, TAG=(00),. Because there is no tag match,
the Queue Selector assigns 0 as the queue identifier to it. So the (TAG, QID) pair (00,0)
iswritten to address 2, entry 0. The next available queue identifier in the Free Queue List
is now 1. The Queue Selector forwards the QID=0 to the Queue Manager. The current
output in the Output Scheduler is 0. There is no queue on either the high priority list or
the low priority list, so no cell is scheduled to the Output Buffer. No other changes occur

in this cal time.
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Figure 3-12 shows the status at the end of Cell Time 1. During Cell Time 1, the Queue
Manager uses the QID as the index to get the value in the LAST field, which indicates
the cell slot to store the arriving cell. Since LAST=0, Cell A is written to Slot O in the
Cell Store. The Queue Manager asks for another free slot from the Free Slot List to
update the LAST field. The number of this slot is aso written into the Cell Store with the
cell, as the pointer (PTR) field. At the end of Cell Time 1, LAST=12 and the next
available free dot in the Free Slot List is 13. Since PRI=HIGH and OUT=1, and itisa
new connection, the Output Scheduler adds the queue to the high priority list on output
1. Besides the operations on Cell A, Cell B comes in with VPI=0, VCI=2, TYPE=VC,
PRI=HIGH, OUT=1. The Queue Selector computes the ADDR=2, TAG=(00)2. It checks
the TAG field in its entry and finds a tag match. So it forwards the QID=0 to the Queue
Manager. The current output in the Output Scheduler is 1. Because at the beginning of

the cell time, the output list is empty, no cell output occursin this cell time.

Figure 3-13 shows the status at the end of Cell Time 2. During Cell Time 2, Cell B is
written into the slot 12 in the Cell Store indicated by the LAST field of QID O with the
PTR=13. The LAST field is also updated to 13 and the first element in the Free Slot List
is moved to 14. Cell C comesin with VPI=2, VCI=3, TYPE=VP, PRI=LOW, OUT=2. It
is a VP connection, so the Queue Selector statically assigns QID=VP+8=10 to the

connection. No other changes occur.

Figure 3-14 shows the status at the end of Cell Time 3. During Cell Time 3, since the
LAST field of queue 10 points to cell slot 10, Cell C goesinto slot 10 in the Cell Store.
The LAST field is changed to 14 and the header of the Free Slot List is advanced to
point to 15. Since it is a new connection, queue 10 is added to the low priority list on
output 2 in the Output Scheduler. Cell D comes with VPI=3, VCI=5, TYPE=VC,
PRI=LOW, OUT=0. The index to the Queue Selector is computed as 5 and TAG is

(11),. Thereis no tag match in this case so anew QID=1 isassigned to it.
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During Cell Time 4, as shown in Figure 3-15, Queue 1 is attached to the low priority list
on output 0 in the Output Scheduler. Cell D iswritten into Slot 1 in the Cell Store. Cell E
comes in with VPI=0, VCI=2, TYPE=VC, PRI=HIGH, OUT=L1. It belongs to the same

virtual circuit connection as Cells A and B and is assigned QID O.

Figure 3-16 illustrates the status at the end of Cell Time 5. During Cell Time 5, Cell E
goes to slot 13. Cell F arrives with VPI=3, VCI=5, TYPE=VC, PRI=LOW, OUT=0. The
major difference between this cell time and previous ones is that Queue O is scheduled
by the Output Scheduler to output its cell to output 1. Since the first cell of that queue is
Cell A, Cell Aisread out from the Cell Store and written to the Output Master. Slot O is
returned to the Free Slot List.

The operations in later cell times are similar, so detailed descriptions are omitted.

However, figures for the next 5 steps are included in appendix B.
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4. DETAILED DESIGN

4.1. External Interfaces

4.1.1. Output Port Processor (OPP)

The Output Port Processor (OPP) is part of the Washington University Gigabit Switch
(WUGS). With 32-bit data paths clocked at arate of 120 MHz, the system is fast enough
for external linksup to 2.4 Gb/s.

The Dynamic Queue Management (DQM) Chip receives cells from the OPP in the

format shown in Figure 4-1. The various header fields have the following interpretation.

GFC - Generic Flow Control: This 4-bit field is used for carrying local flow control
information between an end host and the first ATM switching node to which it is directly
connected (it is not carried through end-to-end). This field is ignored in the WUGS

design.

VPI - Virtual Path Identifier: The ATM standard supports two types of connections. In
virtual path connections, the VCI field is preserved end-to-end, and only the VPI field



31 28 20 19 76543210
GFC | VPl | val | pr_| £ word©
HEC | 16 bits, all zeros | 000 | WT |g\|¥ | word 1
word 2
PAYLOAD
word 13

Figure 4-1 Cell Format
contents are used by the network to route cells. On the other hand, in virtual circuit
connections, both the VCI and the VPI fields are used to route cells, and so neither is

preserved end-to-end.

VCI - Virtual Circuit Identifier: As mentioned earlier, the VCI field is used along with
VPI for routing cells in a virtual circuit connection. In virtual path connections, it is
preserved end-to-end, and can therefore be used by end hosts to demultiplex different

cell streams routed on the same virtual path.

CLP - Cdl Loss Priority: This 1-bit field is used to indicate low priority cells. The
source may set this bit to O or 1. If the bit is 1, switches along the connection path know
that the cell is of low priority, and preferentially discard such cells if the network is
encountering congestion. Because the CLP bit can change from cell to cell in the same
virtual circuit, the DQM chip uses the CSfield instead to indicate high/low priority.

PT - Payload Type: This 3-bit field, along with some of the other fieldsin the ATM cell
header, determines the cell type.
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HEC - Header Error Check: The header error check is an 8-bit CRC that is computed
only over the header fields. The CRC computation is based on the polynomial:

8 2
X +X +x+1.

CS - Continuous Stream: Continuous media connections are those in which the data
rate is either constant, or has low variance over time (e.g. compressed video and voice).
Discrete media connections have higher variance in their data rates, and are often
described as “bursty”. The CS bit field has a value of 1 if the connection carries
continuous media traffic, and O if it carries discrete media. Continuous streams gets
priority over discrete streams. The DQM chip use this field to distinguish high/low

priorities.

VPT - Virtual Path Termination: This 1-bit field is 1 if the cell is part of a virtual
circuit connection, O if it is part of a virtual path connection. Virtual path connections
and virtual circuit connections are treated differently in the DQM chip for queue

identifier assignment.

WT - Connection Weight: This field is defined as the connection weight. It is used for

fair queueing.

A5 - AALS5 Connection: This 1-bit field indicates an AAL5 connection if itis 1, and is
used by the DQM chip to implement packet-level discarding.

4.1.2. External Links

The Dynamic Queue Management Chip has a total output bandwidth of 2.4 Gb/s. The
output of the DQM Chip implements four UTOPIA Interfaces (The Universal Test &
Operations PHY Interface for ATM), each of which can support a 600 Mb/s OC-12 link
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or four 150 Mb/s OC-3 links. To support a G-link interface in a nonblocking fashion, a
pair of interfaces is allocated, with one actually used for the G-link, and the other
disabled. To support an OC-48 link in a nonblocking fashion, two interfaces are used and
the other two are disabled.

Figure 4-2 illustrates some of the link configurations that are possible with the DQM
chip. Figure4-2 (a) shows a DQM Chip connecting to 16 OC-3 links. Figure 4-2 (b)
shows a DQM Chip connecting to 4 OC-3 links, 1 OC-12 link and 1 G-link. Figure 4-2

(c) shows the connection to asingle OC-48 link.

0
1 QC-.
UTOPIA | 16 COC3 ] UTOPIA 16
Interface O g — o3 ] Interface 0
oc3 ]
o UTOPIA 4-7
UTOPIA 5 UTOPIA 16 -
Interface 1 |16 5 R Interface 1 —28 47 > 0Cc-12 Interface 1| »
7 Coc3 1 0OC-48
o3 1
0 DQM

uToPA | 16 03
Interface O el

H

DQM 8 DQM
—ocT ] a1
UTOPIA | 16 9 T uUTOPIA | 16 8-}& UTOPIA ;{ »
Interface 2 ig — T Interface 2 Interface 2
m —oc3 1 G-link
o I—
UTOPIA 13 UTOPIA 12-15 UTOPIA 12-15
Interface3 1 16 J 7L __OC-3 Interfme3.%> Interface 3
I o o s
[ OC3 1]
@ (b) (©)

Figure 4-2 Link Configurations

If links are configured in this way, every 16 cell times, OC-3, OC-12, G-link, and OC-48
links can receive one cell, four cells, eight cells and sixteen cells, respectively. We
introduce the concept of Virtual Port. Each virtual port has a bandwidth of 155Mb/s,
which is the same as the bandwidth of an OC-3 link. Figure 4-2 shows the virtual port
numbers associated with physical links in each of the sample configurations. The G-link
and OC-48 links, in these examples, are associated with the virtual port numbers of the

disabled interfaces, as well as the interface they actually use.
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If virtual ports are serviced in the normal consecutive order, bursts of cells from single
links are created, causing cells to accumulate at link interfaces. However, if we use a
reversed-bit counter, the forwarding of cellsto links will be spread out in time. Table 4-1
shows the values of the regular counter, the reversed-bit counter and corresponding
selected virtual port. The reversed-bit counter can be implemented using a 4-bit regular

counter with reversed bit order.

Table 4-1 Rever sed-bit Counter

Order ggﬂ?}ltzrr Reégrusnetde—rblt Virtual Port
0 0000 0000 0
1 0001 1000 8
2 0010 0100 4
3 0011 1100 12
4 0100 0010 2
5 0101 1010 10
6 0110 0110 6
7 0111 1110 14
8 1000 0001 1
9 1001 1001 9
10 1010 0101 5
11 1011 1101 13
12 1100 0011 3
13 1101 1011 11
14 1110 0111 7
15 1111 1111 15




When a virtual port is selected, the actual external link number can be obtained by
masking the lower bits of the virtual ports, assuming the external link always connects to

the first virtual port. Table 4-2 summarizes the characteristics of different links.

Table4-2 Link Characteristics

Link Type OC-3 0OC-12 G link 0OC-48
Bandwidth 150 Mb/s 600 Mb/s 1.2 Gb/s 2.4 Gb/s
Number of Associated 1 4 8 16
Virtual Ports
Mask 1111 1100 1000 0000

4.2. System Operation

4.2.1. Cell Arrival and Departure

Before we define the major components in the chip, we describe the events involved in

processing of arriving and departing cells.

ARRIVING CELL PROCESSING

Step One: Decide which queue to append the cell to. Queues are assigned on a per
connection basis. The Queue Selector statically assigns queues to virtual path
connections and dynamically assigns queues to virtual circuit connections. When a cell
in avirtual circuit connection arrives and finds no matching queue, the Queue Selector

assigns an unused queue to the connection. Since queues are distinguished by queue



identifiers, determining a queue is the same as producing a queue identifier. The Queue

Selector passes the queue identifier to other logic blocks for further processing.

Step two: Determine the cell dlot that the arriving cell should be placed in. Each
arriving cell is temporarily stored in the external memory (Cell Store) before it is sent to
the output link. Queues in the Cell Store are implemented as linked lists. The Queue
Manager maintains pointers to the first and last slot for each queue. To minimize the
required number of external memory operations, an empty slot is included at the end of

every list. So, the cell slot to store an arriving cell isthe slot at the end of the queue.

Step three: Add a new cell dot to the end of the queue. The Queue Manager requests
afree dot from the Free Slot Manager. The Free Slot Manager returns the first available
dot from the Free Slot List, where all unused slots are stored. The Queue Manager
appends that free dot to the end of the queue.

Step four: Write the arriving cell and the pointer to the empty dot just allocated
into the cell dlot in the Cell Store. The Queue Manager sends the slot number and the
pointer to the Memory Controller. The Input Master passes the entire cell to the Memory
Controller. The Memory Controller generates all the control signals and addresses for a

memory write, and writes the cell and the pointer field into the Cell Store.

Step five: Add the queue to the Output Scheduler if it is a new connection. The
Output Scheduler keeps lists for al active queues. The Queue Manager detects a new
connection by comparing the pointer values for the first and the last cells in the queue.
The Output Scheduler inserts the new queue into the proper place based on the priority

and the output number of the cell.
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DEPARTING CELL PROCESSING

Step One: Deter mine the current output and the queue to forward a cell. The Output
Scheduler selects the current output number using a generalized form of round-robin
scheduling. It maintains a high priority list and alow priority list for each output. Queues
on the lists are served in a round-robin fashion, but the low priority list is served only if

the high priority list for the current output is empty.

Stop two: Determine the cell on the scheduled queue that goes to the link and its
position in the Cell Store. The selected queue always forwards its first cell to the output
link. The slot number of the first cell is stored in the FIRST field of the corresponding
gueue. The Queue Manager uses the queue identifier passed by the Output Scheduler to

obtain the slot number.

Step three: Read the cell out of the Cell Store, place it in the buffer of the Output
Master, and return the dot to the free slot cache. The Queue Manager sends the cell
slot number of the outgoing cell to the Memory Controller. The Memory Controller
generates the address and the control signals for a memory read. The outgoing cell is
read out of the Cell Store and placed in the buffers in the Output Master. The sot
number of the departing cell is returned to the free slot cache in the Free Slot Manager

for future use.

Step four: Determine the pointer field of the departing cell and use it to update the
FIRST field of the queue list in the Queue Manager. After the first cell in the queue
departs, the second cell becomes the first cell. The pointer to the second cell is read out
of the Cell Store with the departing cell. The Cell Store passes the pointer to the Queue
Manager to update the FIRST field.

Step Five: Remove a queue from the Output Scheduler and the Queue Selector if it
is empty. The Queue Manager checks if a queue is empty by comparing the FIRST and
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the LAST field. For an empty queue, the Queue Selector use the Address Map to find the
corresponding entry in the Lookup Table, and sets the valid bit to 0 and the Output

Scheduler removes a queue from its list by redirecting the pointersin its queue list.
Table 4-3 and Table4-4 summarize the events and the components involved in the

arriving and departing cell processing. The labels of the events are used later in the

timing analysis.

Table 4-3 Incoming Cell Processing

Labels Descriptions QSEL QMGR | CSTR | OSCHL | FSMGR | FSLST

1 Determine what queue to| +

append cell to.

2 Determine the cell slot. +

3 If it is a new connection, + +
add the queue to output list.

4 Add a new empty dlot to + + +
the end of the queue.

5 Write PTR field and the +

cell into the cell dlot




Table 4-4 Outgoing Cell Processing

Labels Descriptions QSEL QMGR | CSTR | OSCHL | FSMGR | FSLST
a Determine the next queue +
to send from the current
output.
b Determine the cell dot of +

the next cell to send

c Read the cel from the + + + +
memory, placeit in the out-
put buffer, and return the
dlot to the free dot list.

d Use PTR field of the +
departing cell to update
the FIRST field of the
queue

e If the queue is empty, | + + +
remove it from the priority
list in the Output Sched-
uler. If it is a VC queue,
deallocate the queue and
remove the mapping in the
Queue Selector.

4.2.2. Data Flows

In this section, we use a data flow diagram to illustrate how components work together.

Figure 4-3 shows the data path between the components logically.
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Figure 4-3 Data Flow Diagram

The major data flow is the cell data. Cells received by the IMST are sent to the CSTR
first. Cells stored in the CSTR are then sent to the OMST. The OMST forwards cells to

different output links.

Queue identifiers (QID) are passed back and forth among the QSEL, the QMGR and the
OSCHL for different purposes. To process an arriving cell, the QSEL produces a queue
identifier that identifies the queue for this cell. It passes the queue identifier to the
QMGR. The QMGR uses this queue identifier to find the cell dot in the CSTR for the

incoming cell. If the incoming cell belongs to a new connection, the QMGR also passes
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the queue identifier to the OSCHL so that the OSCHL can add the queue to its
scheduling list. To process a departing cell, the OSCHL informs the QMGR which queue
is to forward a cell by passing the corresponding queue identifier to the QMGR. If the
gueue becomes empty after outputting a cell, the QMGR passes the queue identifier of
the empty queue to both the QSEL and the OSCHL. The QSEL and the QSCHL then

remove the queue from their lists.

Free dots include al the currently unused cell slots in the CSTR. The FSMGR keeps a
local free slot cache. All the remaining free slots are stored in the FSL which is also
managed by the FSMGR. The QMGR obtains and returns a free dot through the
FSMGR. The head and tail pointers passing from the FSMGR to the FSL indicate the
first and the last free dotsin the FSL.

The QMGR informs the CSTR where to store a cell or read a cell from by sending the
slot number (SLOT). The pointer field (PTR) passed by the QMGR is stored in the cell
slot with the cell to build up the linked list. When the cell departs, the pointer field of the
cell slot is passed back to the QM GR to update the queue list.

4.3. Component Definitions

To define the signals between the components, we use the convention that a signal
consists two parts separated by an underscore. The name before the underscore indicates
the signal, and the component name after the underscore indicates where the signal is
generated. For example, VPI_IMST meansthe VPI signal generated in the IMST.

Let NVCI be the number of VC queues supported by the DQM chip. Signal definitions

of all the components arein Appendix A.
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Figure 4-4 Signal Diagram for the Input Master
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The signal diagram for the Input Master (IMST) is shown in Figure4-4. The IMST

receives cells from the OPP in a format shown in Figure 3-1 on page 19. It passes cell

information to the Queue Selector (QSEL) and passes the entire cell unchanged to the

Memory Controller (MCTRL).

Figure 4-5 shows the logic in the IMST. The IMST extracts VPI_IMST, VCI_IMST,
A5 IMST, U_IMST, TYPE IMST, PRI_IMST, WT_IMST and OUT_IMST from the
corresponding fields in the cell and sends them to the QSEL. It copies DATA_OPP to

DATA_IMST and forwardsit to the MCTRL.
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Figure 4-5 Block Diagram of the Input Master

4.3.2. Queue Selector (QSEL)

Figure 4-6 shows the signal diagram of the Queue Selector (QSEL). The QSEL receives
cell information from the Input Master (IMST) and assigns a queue identifier to the cell.
It sends the queue identifier and some cell information to the Queue Manager (QMGR).

The QSEL receives control signals from the QMGR and removes queue mapping as

needed.

Figure 4-7 illustrates the internal logic structures of the QSEL. The QSEL keeps a set-
associative memory (SAM) and a content addressable memory (CAM) for dynamic
gueue assignment. The Free VC Queue List contains all unused queue identifiers. The

Address Map is used to remove empty queues from corresponding entries.
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Figure 4-6 Signal Diagram for the Queue Selector

It TYPE_IMST 1s 0, the incoming cell is from a VP connection. A queue identifier of
value (VPI + NVCI) is statically assigned to the cell.

If TYPE IMST is 1, the incoming cell belongs to a VC connection. Dynamic queue
assignment is used in this case. Dynamic queue assignment is implemented using a SAM
and a CAM. Each entry of a SAM contains a valid bit, atag field and a queue identifier.
The total number of entries in the SAM is determined by the maximum number virtual
circuits supported by the DQM chip and the load factor. Depending on the depth and the
width of the set-associative memory, the address to the SAM (ADDR) is formed from
the lower order bits of the VPI and the VCI. The tag of the cell (TAG) is generated using
the rest of the bits. The CAM contains a few entries, each of which includes a key field,
a queue identifier (QID) field, and avalid bit. The key field stores the VPI and the VCI.
The QID field contains the assigned queue identifier if the valid bit is 1. The choices of
the maximum number of VCs, the load factor, the width of the SAM and the size of the
CAM are discussed in Chapter 6.
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Figure 4-7 Block Diagram of the Queue Selector



55

ADDR is used to retrieve a set of entries from the SAM. The tag fields in all entriesin
the selected set are compared to TAG of the incoming cell in parald. If there is a

matched entry, the queue identifier stored in the entry is assigned to the incoming cell.

When the SAM is doing a lookup, the entire VPl and VCI are compared to the key field
of al entries in the CAM in parallel. If there is a matching entry in the SAM, the queue

identifier is assigned as described above.

If the SAM contains no matching entry, but the CAM has a matching entry, then the
gueue identifier stored in the CAM entry is assigned to the cell. If the corresponding set
in the SAM has an unused entry in this case, the queue identifier in the CAM entry is
copied to the SAM entry and the mapping in the CAM is removed by setting the valid bit
to 0. In order to remove the mapping in the future, the position of the entry in the SAM
(specified by the address to the set and the entry number) is stored in the address map
indexed by the queue identifier.

In all other cases, the first unused queue identifier in the free VC queue list is assigned to
the cell. If the selected set in the SAM has one or more unused entries, the TAG of the
cell and the newly assigned queue identifier are written into the first unoccupied entry in
the set. The valid bit is then set to 1. The address map is modified in the same way as
previously described. Otherwise, an unused entry in the CAM is allocated. The VPI and
the VCI are written into the key field and the newly assigned queue identifier is written

into the QID field. The entry location in the CAM iswritten into the address map.

In al cases, the queue identifier assigned to the incoming cell is sent to the QMGR as
QID_QSEL.

The free VC queue list is implemented as a circular list. All unused queue identifiers are

stored in the list. The size of the free queue list is equa to the maximum number of VC
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gueues supported by the DQM chip. Each entry in the free queue list contains an unused
gueue identifier. The control logic keeps track of the head and the tail of the list. HEAD
points to the first available queue identifier in the list. To simplify the design, TAIL
always points to the first empty entry. After a free queue identifier is read out of the free
queue list, the HEAD pointer is incremented by 1 and will wrap around when it reaches
the physical end of the memory. A queue identifier is returned to the entry specified by
the TAIL pointer. The TAIL pointer is incremented by 1 in this case and will aso wrap
around as needed.

When a VC queue becomes empty, the queue identifier of the empty queue needs to be
returned to the Free VC queue list. The QM GR detects an empty VC gqueue and provides
the queue identifier to the QSEL. The queue identifier is returned to the free VC queue
list. In order to remove the mapping in the SAM or the CAM, the entry in the address
map is used to set the valid bit to 0 in the corresponding entry.

4.3.3. Queue Manager (QMGR)

Figure 4-8 shows the signal diagram of the Queue Manager (QMGR). The QMGR
maintains a Queue List that keeps track of all queues in the Cell Store. The queue list is
indexed by queue identifiers. Each entry of the queue list contains pointers to the cell
dots where the first cell and the last cell of the queue are stored in the Cell Store. The
QMGR specifies the cell dot that an incoming cell is written to and the cell dot that a
departing cell isread from. The block diagram of the QMGR isillustrated in Figure 4-9.

The queue list is stored in the SRAM. Each entry has a FIRST field and a LAST field.
The FIRST field contains the cell slot for the first cell in the queue. The LAST field
contains the cell dot that the last cell in the queue points to.
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Figure 4-8 Signal Diagram for the Queue Manager

The queue identifier of a incoming cell is passed by the QSEL. The QMGR uses the
gueue identifier to retrieve the entry in the queue list. The FIRST field and the LAST
field are compared. If these two fields are equal, the incoming cell belongs to a new
connection. The new queue needs to be added to the priority list in the Output Scheduler
(OSCHL). The QMGR sends the queue identifier, the output number, the priority and the
weight to the OSCHL.
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The LAST field specifies the cell slot to store the incoming cell. In order to build up the
linked list, the QMGR sends a free dlot along with the cell sot to the Memory
Controller. The free slot is written into the Cell Store with the incoming cell. The QMGR
requests another free slot from the Free Slot Manager (FSMGR).

The queue identifier of a departing queue is sent by the Output Scheduler (OSCHL). The
QMGR retrieves the corresponding entry in the queue list. The FIRST field contains the
cell slot where the first cell in the queue is stored. The first cell of the queue is read out
from the Cell Store and is sent to the Output Master. The pointer stored with the cell is
sent back to the QMGR to update the FIRST field of the queue list. This pointer is also
compared to the LAST field in the entry. If these two values are equal, the queue is
empty and needs to be removed. The QMGR then informs the QSEL and the OSCHL to
remove the queue from their lists. The cell slot that contains the departing cell becomes
free slot and is sent to the FSMGR.

4.3.4. Output Scheduler (OSCHL)

Figure 4-10 shows the signal diagram of the Output Scheduler (OSCHL). The OSCHL
determines the order of queues to forward cells to output links. Once a queue is selected,
it can forward one cell to the output. The basic design describes the two priority

scheduling.

The OSCHL supports up to 16 output links. It keeps a high priority list and alow priority
list for every output. Priority lists are constructed as circular lists. Once an output is
selected, the high priority list is served before the low priority list. Queues on the priority

list are served in round-robin fashion.
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Figure 4-10 Signal Diagram for the Output Scheduler

Figure 4-11 shows the block diagram of the OSCHL. A queue list is stored in SRAM to
build the priority lists. The number of entries in the queue list is equa to the total
number of connections supported by the DQM chip including the VP connections. The
gueue list is indexed by the queue identifiers. The value in the entry specifies the next
gueue in the circular list. Only active queues with at least one cell are on the circular
lists. The OSCHL also keeps a scheduling list stored in SRAM with 16 entries. Each
entry contains a HIGH pointer to the next queue on the high priority list and a LOW
pointer to the next queue on the low priority list. If there is no queue on the list, the
pointer is set to NIL.

The OSCHL uses a 4 bit reversed-bit counter to determine the order in which the output
links are selected as described in 4.1.2. Once an output is selected, the OSCHL checks
the values in the HIGH field and LOW field in the corresponding entry. If HIGH is not
NIL, the value in the corresponding queue list entry specifies the next queue to forward a
cell. The OSCHL sends the queue identifier of the scheduled queue to the QMGR. If
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HIGH is NIL, but LOW is not NIL, the OSCHL sends the queue identifier indexed by
the LOW field to the QMGR as the next scheduled queue. If LOW is aso NIL, no

gueues are destined for the selected output. The cycle becomes idle and no cdl is

forwarded to the output.
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The OSCHL is responsible for adding new queues to its priority lists and removing
empty queues from its priority lists. To add a new queue to the list, the OSCHL uses the
output number and the priority of the new queue sent by the QMGR to find the proper
list to insert the new queue. The value in the queue list entry indicated by the HIGH/
LOW pointer is copied to the queue list entry indexed by the new queue. The queue
identifier of the new queue is then copied to the queue list entry indexed by the HIGH/
LOW field.

The QMGR determines if a queue becomes empty after forwarding a cell. The OSCHL
needs to remove the empty queue from its list. The OSCHL copies the value in the queue
list entry of the scheduled queue to the entry indexed by the HIGH/LOW field. In this
case, the HIGH/LOW field does not change. Otherwise, the value in the queue list entry
of the scheduled queue is copied to the HIGH/LOW field. As a result, the pointer points

to the next queue in the circular list.

4.3.5. Free Slot Manager (FSM GR)

Figure 4-12 is a signal diagram of the Free Slot Manager (FSMGR). The FSMGR keeps
an internal recycling cache and manages the Free Slot List (FSL) in the externd
memory. Figure4-13 is a block diagram of the FSMGR and its relationship with the
FSL. The FSL stores unused cell slotsin the Cell Store and is organized as acircular list.

When the Queue Manager (QMGR) requests for a free dot, the FSMGR sends a free ot
from its free dot recycling cache. When the QMGR returns a free dot, the FSMGR
places it in its recycling cache. In normal cases, where the input rate matches the output

rate, there is no need to access off-chip Free Slot List. The FSL only needs to be
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Figure 4-12 Signal Diagram for the Free Slot Manager

accessed to read a block of free dots or to return a block of free dots when there is a
mismatch in rates for quite a long time. In this case, there is idle memory cycles

available.

4.3.6. Memory Controller (MCTRL)

The signal diagram for the Memory Controller (MCTRL) is shown in Figure 4-14. The
MCTRL controls the externa memory, generates all control signals and does the proper
format conversion. Figure 4-15 shows the logic diagram of the Memory Controller. The
MCTRL generates al the control signals necessary for the external memory, and does

the proper format conversion.

The MCTRL receives the incoming cell from the Input Master (IMST) on a 32 bit data
path, converts it to a 160 bit data path. It receives the cell dot to store the cell sent by the
Queue Manager (QMGR), and trandlates it to the physica memory address. The
incoming cell is written to the cell dot in the Cell Store (CSTR). The MCTRL also
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receives the cell slot for a departing cell from the QMGR, does the address translation
and reads the cell from the CSTR. The MCTRL sends the pointer field to the QMGR and

the cell to the Output Master (OMST) on a 32 bit data path after format conversion. The
MCTRL receives free dots from the FSMGR, and writes them to the Free Slot List
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(FSL). When free dots are read out from the FSL, the MCTRL converts the format and

sends to the FSM GR.

4.3.7. Output Master (OMST)

Figure 4-16 shows the signal diagram of the Output Master (OMST). The OMST

receives outgoing cells from the Memory Controller, and buffers they before being

forwarded to external links. The logic diagram is shown in Figure 4-17. It implements
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four UTOPIA interfaces. The OMST has four FIFOs in SRAM, one for each UTOPIA
interface. Each FIFO can hold eight cells.
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4.4. Timing Analysis
In this section, we show that all operations can meet timing requirements. Since each
event involves operations of several blocks, these events need to be subdivided into mini-

events in order to develop detailed timing diagrams. Table 4-5 and Table 4-6 list al the

major events and mini-events involved in processing arriving and departing cells.

Table 4-5 Detailed Incoming Cell Processing

Symbol Descriptions QSEL QMGR CSTR OSCHL | FSMGR
1 Determine what queue to +
append cell.
2 Determine the cell slot. +
3 If it isanew connection, add + +

the queue to output list.

31 Detect a new connection +
3.2 Add queue to the priority list. +
4 Add a new empty dlot to the + +
end of the queue.
41 Send an empty slot as PTR to +
CSTR.
4.2 Update Last pointer +
4.3 Send afree dot to QMGR +
5 Write PTR field and the cell +

into the cell slot.

Some of the events depend on the completion of other events. In order to make the
sequencing correct, we use directed graphs to show the dependency among events.
Figure 4-18 and Figure 4-19 are dependency graphs for the incoming and outgoing cell

processing.



Table 4-6 Detailed Outgoing Cell Processing
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Symbol Descriptions QSEL QMGR CSTR | OSCHL | FSMGR
a Determine the next queue to +
send from the current output.
b Determine the cell slot of the +
next cell to send
o Read the cell from the mem- + +
ory, placeit in the output
buffer, and return the slot to
thefreedot list.
cl Read PTR field from memory +
c.2 Read cell from memory +
c.3 | Returnthesdlot of the outgoing +
cell.
c4 Store the returned slot. +
d Use PTR field of the depart- +
ing cell to update the FIRST
field of the queue.
e If the queue is empty, remove + + +
it from the priority list in the
Output Scheduler. If itisaVC
gueue, deallocate the queue
and remove the mapping in
the Queue Selector.
el Detect an empty queue. +
e2 Return the queue to the free +
gueue list, remove the map-
ping.
e3 Remove the queue from the +

output list.
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Figure 4-19 Detailed Dependency Graph for Outgoing Cell Processing

Another constraint that makes timing tight is the on chip memory accesses. Within each
block, memory accesses need to be done sequentially. Table 4-7 shows the events that

involve memory accesses. Figure 4-20 is the detailed timing diagram of the chip.

Table 4-7 EventsInvolving Memory Accesses

Queue Manager 2;4.2;b;d

Queue Selector 1 e
Output Scheduler 32,4 e
Free Slot Manager 4.3, c4
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5. ADVANCED ALGORITHMS

5.1. Binary Scheduling Wheels Algorithm

Two priority levels can be used to distinguish real-time traffic from non-real-time traffic,
and minimize delay for real-time traffic. However, we may require greater flexibility in
allocating bandwidth among virtual circuits. In this case, weighted round-robin
scheduling can be used to allocate bandwidth among virtual circuits. The Binary
Scheduling Wheels (BSW) agorithm used in the DQM implements weighted round-
robin scheduling at minimal cost, providing a wide range of rate options. In addition,
because bursty virtua circuits with high peak-to-average ratio are more likely to cause
congestion in the downstream switches, the BSW algorithm distributes cells from the

same channel evenly, minimizing the burstiness of the output streams.

5.1.1. Binary Scheduling Wheels

The Output Scheduler uses the per VC based Binary Scheduling Wheels algorithm to
implement weighted round-robin scheduling in a very cost efficient way. All virtua
circuits have power of 2 weights and during overload periods, share the link bandwidth
in proportion to their weights. Instead of forwarding as many cells as specified by the
weight once a queue is selected, the BSW algorithm places queues on scheduling wheels

with different weights and alternates among wheels.
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For implementation efficiency, we restrict weights to be powers of 2. Suppose we

w-1

support W different weights: 20, 21, 22, ey 2 . We construct W binary scheduling

wheels, one for each weight factor. Each VC queue is placed on a corresponding
scheduling wheel. The scheduling wheel with weight 20 is visited twice as frequently as
the scheduling wheel with weight 2%, four times as frequently as the one with weight 22,

and so forth. W power of 2 weights can be coded using logW bits.

Weights 2W1 22 21 20

Figure 5-1 Binary Scheduling Wheels

Figure 5-1 shows an example with W binary scheduling wheels. Each little box in the
figure represents a list node containing a queue identifier that identifies a non-empty per
virtual circuit queue. Once a scheduling wheel is selected, all queues on that scheduling

wheel can forward one cell to the outpui.

A W-hbit binary counter can be used to select binary scheduling wheels with W weights.
In a W-bit binary counter, the least significant bit of a binary counter changes twice as
fast as the next lowest order bit, four times as fast as the next bit, and so forth. This

property matches nicely with our scheduling wheel selection procedure.

Suppose the counter vaue is C = ¢,,_,...Cc;C,. When the counter advances, a change

in bit i triggers servicing of the scheduling wheel with weight 2'. We organize the
transmission schedule into a series of passes. At the start of each pass, the counter is
incremented. During the pass, all scheduling wheels corresponding to changing counter

bits are serviced.
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5.1.2. Fast Forward M echanism

The binary counter used in the above implementation is increased by one at the start of a
scheduling pass. However, if all scheduling wheels that are enabled in a given pass are
empty, we must increment the counter again to find a queue from which to send. In the
worst-case it may take many increment steps to find a non-empty queue and during these
steps, link bandwidth may be lost. To avoid this, we introduce a fast forward mechanism

for the counter.

The ideais to increment the counter with a carry-in at the position of the right-most non-
empty scheduling wheel. We keep a mask register to indicate non-empty wheels that
have not been served. We also keep a carry-in register with only one bit set at the
position corresponding to the least significant ‘1’ bit of the mask register. After each
pass, the value the carry-in register is added to the counter. The resulting right-most
changing bit always corresponds to a non-empty scheduling wheel. The fast forward
algorithm is shown below.

Initialy,
PreviousCounter = 0;
CurrentCounter = 0;
Mask: Bitiissetto ‘1’ if scheduling wheel i isnon-empty, ‘O’ if scheduling
wheel i isempty;
L oop:
Carryln = Position of the least significant ‘1’ bit of (Mask);
PreviousCounter = CurrentCounter;
CurrentCounter = CurrentCounter + Carryln;
ChangingBits = PreviousCounter XOR CurrentCounter;
CurrentMask = Mask;
While ((CurrentMask & ChangingBits) != 0)
CurrentWheel = Position of the least significant ‘1’ bit of (CurrentMask
& ChangingBits);
Serve all queuesin the scheduling wheel CurrentWheel;
CurrentMask| CurrentWheel] = 0;
If (scheduling wheel CurrentWheel becomes empty )
Mask[CurrentWheel] = 0;
If (New queue is added to an empty scheduling wheel j)
Mask[j] = 1;
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The following example shows how the algorithm works. Table 5-1 gives the parameter
values of the fast forward counter at the beginning of a pass. Table5-2 shows the

selection process.

Table 5-1 Parameter s of the Fast Forward Counter

Current Previous Changing
Counter Counter Bit Mask Carryln
0100 0011 0111 1011 0001

Table 5-2 Binary Scheduling Wheel Selection Process

Current CurrentMask
Current Mask & CurrentWhed
Counter . .
ChangingBit
0100 1011 0011 0001
0100 1010 0010 0010
0100 1000 0000 -

The value of the mask register Mask is (1011),, which means only Wheel 2 is empty. So
the carry-in register Carryln has the value (0001),. The previous value of the counter is
(0011),. The current value of the counter is equa to the sum of the previous value and
the carry-in value, which is (0100),. The ‘1’ bitsin the register ChangingBit indicate the
changing bits of the counter. CurrentMask is set to the value of Mask initialy.
(CurrentMask & ChangingBit) gives all scheduling wheels to be served in a pass. Since
only one wheel can be visited at a time, CurrentWheel specifies the current scheduling
wheel to be served. When a scheduling wheels is visited, all the queues on that wheel
can send one cell to the outgoing link. After a scheduling whed is served, the
corresponding bit in CurrentMask is then cleared. This process continues until all

selected scheduling wheels have been served once.
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With the fast forward mechanism, the selection time becomes essentially independent of
the total number of weights. While the time to select the least significant ‘1’ bit does
require more than constant time, hardware implementation can easily be made fast
enough that this does not becomes an issue for realistic values of W. Consequently, cells

can be selected and forwarded in essentially constant time.

5.2. Per VC Packet Level Discarding Algorithm

End-to-end transport layer protocols send data in packets. These packets are further
segmented into 48 bytes cells using AALS5 when data is transmitted through ATM
networks. Since end-to-end error checking and retransmission are done on a packet
basis, a single lost ATM cell can cause an entire transport layer packet to be discarded
and retransmitted. Several packet level discard mechanisms have been proposed to
maintain packet integrity. However, these mechanisms are based on FIFO queueing,
where all virtual circuits share the same queue. In order to provide Quality-of-Service
(Q0S), per virtua circuit (VC) queueing is necessary in the presence of large buffers.
New algorithms are needed for per VC queueing, to support QoS. The Weighted Fair
Goodput (WFG) agorithm is designed for use with per VC queueing, and works with the
cell scheduling agorithm to ensure that each VC receives the proper fraction of the

link’ s bandwidth during an overload period.

5.2.1. Existing Packet Level Discard M echanisms

Transport layer protocols guarantee that all transport layer packets are delivered without
error using retransmission. The ATM adaptation layer 5 (AAL5) segments transport

layer packetsinto ATM cells. A single cell lossin a packet will cause the entire packet to



78

be retransmitted. Therefore, if a cell is discarded by the network due to overload,
transmitting the rest of the packet ssimply wastes bandwidth. Therefore, during the
overload period, it is more important to maintain high goodput, where goodput is the

fraction of the link’s capacity that is used to transmit complete packets.

Packet Tail Discarding discards the rest of the packet if one cell in the packet is
discarded [16]. This prevents the link bandwidth from being further wasted transmitting
fragments of packets. However, since the first part of the packet will be discarded by the
end-point eventually, the goodput can drop to zero when the link isreally congested.

Early Packet Discarding (EPD) [16] can achieve 100% goodput if the link buffer is
sufficiently large. The idea of Early Packet Discarding is to make a decision to propagate
a packet or not at the packet boundary. Each virtua circuit has two states: active and
inactive. Packets of an active virtua circuit are propagated, while packets of an inactive
virtual circuit are dropped. A virtual circuit only changes states at packet boundaries
based on the global buffer level. If the buffer does not overflow or become empty during
an overload period, al the link bandwidth is used to propagate compl ete packets.

Early Packet Discard with Hysteresis (EPDH) [18] checks the rising and falling of the
buffer level as well as the threshold when it comes to a packet boundary. This improves

the performance of early packet discard when buffer spaceis limited.

Fairness is another issue that needs to be considered during the overload. Fair EPD with
Hysteresis (FEPDH) [18] takes fairness into consideration. FEPDH uses two thresholds.
At the packet boundary, it uses a similar algorithm to EPDH but aso checks the fair
share of the link if the buffer level is between the two threshold levels. This modification
achieves some degree of fairness by keeping track of the number of cells that have been
placed in the buffer. However, the hysteresis mechanism prevents the fairness heuristic

from providing any real guarantee of fair treatment, since virtual circuits may miss the
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chance to change states if packet boundaries fall into the wrong part of the buffer

OCCupancy curve.

5.2.2. Weighted Fair Goodput Algorithm

The above packet level discarding algorithms are based on FIFO queueing. In FIFO
gueueing, large buffers help avoid data loss during short overloads. However, when a
link is overloaded for a long time, the combination of large buffers and FIFO queueing
can lead to poor performance. Once the buffer fills, the cell loss rate is just a function of
the input load. Cells in the buffer encounter large delays and it takes a long time for a
large buffer to recover from overload. Therefore, systems that use FIFO queueing try to

minimize buffer size.

In a system based on per VC queueing, large buffers do not impose large delays for VCs
using only their allocated share of the link bandwidth. The system can have large buffers
without causing well-behaved virtual circuits to have longer delays when the buffer is
full. This makes the use of large buffers more attractive and allows the system to

accommodate larger temporary data surges without loss.

However, ensuring that each VC receives its allocated bandwidth becomes important in
order to provide QoS support. Existing agorithms cannot ensure this. The WFG
algorithm can be used in conjunction with weighted scheduling schemes such as the
Binary Scheduling Whesls algorithm to guarantee QoS. During an overload period, all
virtual circuits forward cells according to their weight factors. The packet level discard
mechanism keeps two states for each virtual circuit: active and inactive, and changes the
states of virtual circuits at packet boundaries. The algorithm seeks to ensure that QoS
requirements are satisfied by making virtual circuits inactive only when there are till

enough cell’s in a virtual circuit’s queue to last until the start of the next packet. As a
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result, al virtual circuits are forwarded at their reserved rates and fairness is achieved.
The Weighted Fair Goodput algorithm is shown below.

At a packet boundary for virtual circuit V, the WFG does the following:

If the current global buffer level is above by, V is active and its queue length is

more than gp, make V inactive.

If the current buffer level is above by, V isinactive and its queue length is less

than gg, make V active.

If the current buffer level isbelow by, and V isinactive, make V active.

In al other cases do not change the state of V.

where by, is the threshold to avoid buffer overflow, and qg is the minimum queue length

to guarantee no VC queue becomes empty before it is turned on again. The derivation of

the lower bound for gg and minimum buffer size is shown below.

Let gg be the lower bound on the queue length that guarantees no VC queue becomes
empty during inactive state. Let n be total number of VCs. Let & be the fraction of VCs

that send data at rates higher than their reserved rates. Let A be the input rate of those
mis-behaving VCs. Let w be the reserved bandwidth of the mis-behaving VCs. Let | be
the packet length.

Suppose the queue length of a VC is just below qg at the packet boundary and the VC is
turned off. Figure 5-3 shows the changing queue length. The queue of the inactive VC

drains at a slope of w. The maximum time to reach the next packet boundary is |/ A.
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Therefore, in order to guarantee that no VC becomes empty before the next packet

boundary, we must have qoz\/XVI. Because w< A by definition, we can satisfy this

property in general by making g, = 1. If the value of A is known, asmaller vaue for g,

can be used, but typically this parameter is not available.

To

Figure 5-2 Change of Queue Length When Inactive

The minimum buffer size is derived below. In the worst case, a virtual circuit comes to

its packet boundary when its queue length is just below qg. Therefore, the virtual circuit
will be in the active state. Figure 5-3 shows the change of the queue length in this case.

The queue length increases at the rate of d, where d = A —w. Since the time to reach the

next packet boundary is |/ A, thetotal excursion above by is % (A—=w) .

Figure 5-3 Change of Queue Length When Active

Assume  that dp = \%VI. The queue length  increases a  most
I _w W, _ . : .
qO+X()\—w) = XI +I_XI_ |. Thus, total buffer size to avoid buffer overflow is

onl . If we have a buffer size of dnl above the threshold, we can avoid buffer overflow

entirely.
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With a minimum buffer size derived above, al virtual circuits can be forwarded at their
reserved rate during overload periods and 100% goodput can be achieved. The other
interesting property of the WFG algorithm is that “well-behaved” virtua circuits sending
at their allocated rates do not have any cell loss during the overload period. Because they
are less likely to accumulate cells in the buffer (in the presence of appropriate queue
scheduling methods), “well-behaved” virtual circuits are unlikely to be turned off during
the overload period and never need packet retransmission. Virtual circuits sending at
rates higher than their allocated shares are turned off during overloads. This causes

packet |oss, triggering end-to-end flow control mechanisms in transport protocols.

The hardware cost to implement the WFG algorithm is analyzed below. We need a
gueue length counter for each virtua circuit. For a buffer that can accommodate 1
million cells, a 20-bit counter is needed for each VC. The maximum transport layer
packet length is limited by the Maximum Transfer Unit (MTU). In practice, the MTU is
generally afew thousand bytes. Since an ATM cell has a payload of 48 bytes, a transport
layer packet is usually segmented into 20 to 100 ATM cells.

5.3. Configuring Linkswith Excess Capacity

In the standard configuration, total external link bandwidth is equal to or less than the
bandwidth of the Dynamic Queue Management Chip. In this case, scheduling techniques
described in chapter 4 can be used. In particular, we need not make bandwidth that is not
needed by one port, available to other ports.

However, it is possible to configure externa links in such a way that the total link
bandwidth is more than the bandwidth of the chip. In this case, if a selected port does not
have cells destined for it, its cell cycles should be available to other links that have cells
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to send. Each virtual port can forward a cell every 16 cell times, and has bandwidth
equivalent to 150 Mb/s. In an over configured case, we associate fewer virtual ports with
each physical link. For example, instead of associating four virtual ports with an OC-12
link, we may associate just one virtual port with it. In this case, if al links are busy, the
OC-12 link is only guaranteed to receive 150 Mb/s bandwidth. If enough of the links are
idle, however, it is possible to allow the OC-12 link to use the full 600 Mb/s bandwidth.
This takes advantage of the fact that not all links will use their full link capacity al the
time, especially when traffic is bursty. Therefore, this configuration model allows links
to send bursty traffic at higher ratesif other links are not using their full bandwidth.

The output scheduling becomes more challenging in this case. First, when a selected link
has no cell destined for it, the cell cycle should be made available to other links. Second,
basic bandwidth allocations need to be guaranteed. Suppose a link is associated with d
virtual ports, it should be able to use at least 150d Mb/s. Third, external links should
never be allocated more bandwidth than they can use. Finaly, the bandwidth not used to
satisfy the basic bandwidth allocation of a link should be distributed in proportion to the
number of virtual ports associated with the link. For example, if there is extra bandwidth
available, an OC-12 link associated with two virtual ports should receive more

bandwidth than the one associated with one virtual port.

A credit based scheduling scheme is proposed here. Basic credit and extra credit are
used to handle the basic service and the distribution of unused bandwidth respectively.
Basic credit is equal to the actual number of virtual ports that a link is associated with.
Extra credit is defined as the number of additional cells a link may send every 16 cell
time if there is excess bandwidth available. Extra credits are computed by subtracting the
basic credits from the number of virtual ports listed in Table4-2 on page 45. A credit
table can be set up based on the link configurations. Table 5-3 shows how to set up the
credit table for the configuration in Figure 5-4.
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Figure 5-4 Example: Link Capacity Exceeding the DQM Bandwidth
As shown in the figure, each OC-3 and OC-12 link Is associated with one virtual port.
The OC-48 link is associated with 8 virtual ports. Based this configuration, each OC-3
link has one basic credit and zero extra credits. Each OC-12 link has one basic credit and

3 extracredits. The OC-48 link has eight basic credits and eight extra credits.

This credit table is reloaded every 16 cell times. Whenever a cell leaves based on basic
credits, basic credits are decremented by 1. If there are no cells in the queue for a given
link, the basic credits are also decremented by 1. Meanwhile, a link with extra credits
can be scheduled to receive a cell. The extra credits for that particular link are

decremented by 1 after receiving acell.

Since the sum of the basic credits is no more than 16, all basic services can be satisfied.
In addition, since the sum of the basic credits and extra credits of a particular link is
equal to the maximum number of cells the link can receive without exceeding the link
capacity, the link would never receive more cells than it can handle. In order to distribute
unused bandwidth among competing links in proportion to their basic credits, the credit
table needs to be modified as shown in Table 5-4.
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Table5-3 Credit Table

Link Number Link Type Basic Credits | ExtraCredits
0 OC-3 1 0
1 OC-3 1 0
2 OC-3 1 0
3 OC-3 1 0
4 OC-12 1 3
5 OC-12 1 3
6 OC-12 1 3
7 OC-12 1 3
8 OC-48 8 8
9 - 0 0

10 - 0 0
11 - 0 0
12 - 0 0
13 - 0 0
14 - 0 0
15 - 0 0

We use virtual ports to determine which link can receive a cell. A mask of four bits are
used to convert the virtual port to the real link number. In the example above, if the port
is any value between (1000), and (1111),, the OC-48 link on output 8 can receive a cell.
In the modified table, the basic credit is always 1 for each schedule number so that it
need not be stored in memory. Extra credit is distributed among the virtual ports
associated with the link. A non-empty bit indicates that there are cells currently destined
for the link. When a virtual port is selected, one cell is allowed to forward to the link

associated with it. In this way, the OC-48 link has eight chances to win an extra cycle as
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opposed to one chance for an OC-12 link every 16 cell times. Therefore, the extra
bandwidth can be distributed in proportion to the basic credits.

Table 5-4 M odified Credit Table
Virtual Port Mask Adual Link Link Type BasicCredits | ExtraCredits |  Non-Empty
0000 1111 0 0OC-3 1 0 1
0001 1111 1 OC-3 1 0 1
0010 1111 2 OC-3 1 0 1
0011 1111 3 OC-3 1 0 1
0100 1111 4 0OC-12 1 3 1
0101 1111 5 0OC-12 1 3 1
0110 1111 6 0OC-12 1 3 1
0111 1111 7 0OC-12 1 3 1
1000 1000 8 0OC-48 1 1 1
1001 1000 8 - 1 1 1
1010 1000 8 - 1 1 1
1011 1000 8 - 1 1 1
1100 1000 8 - 1 1 1
1101 1000 8 - 1 1 1
1110 1000 8 - 1 1 1
1111 1000 8 - 1 1 1

To select links without creating burstiness, a reverse order bit selection can be used for
basic service scheduling. A token passing protocol can be used to elect a virtua port
with non-zero credit and non-empty bit set. In this implementation, only one credit
counter per virtual port is needed. The initial value is the sum of the basic credit and the

extracredit. Figure 5-5 and Figure 5-6 shows the token passing circuitry.
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Figure 5-6 Internal Logic of Token Passing Circuit

Block i represents virtual port i. Blocks are connected as a ring in reversed-bit order.
Only one virtual port can hold a token. The vitual port that has the token can forward a
cell to the external link and decrement the credit counter by 1. It releases the token in the
next cell time. When a token passes a virtual port that has extra credit and a cell to send,
the virtual port can catch the token. If a token circulates and no virtual ports want it, the
token needs to be held by the sender. The credit table is reloaded every 16 cell times. ME
is enabled when a virtual port has credit and has cells to send. In order to initialize the
table, sixteen bits are needed to specify the link configuration. The decoding can be done

on chip and the table values can be computed based on the criteria described above.
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6. DESIGN ANALYS3S

6.1. Performance Analysis

6.1.1. Overflow Probability

The DQM chip uses Dynamic Queue Assignment to allocate per VC queues without
imposing restrictions on the choice of VPIs and VCls. Dynamic Queue Assignment is
implemented using set-associative memory (SAM) and content addressable memory
(CAM). It is possible that too many virtual circuits are mapped to the same set in the
SAM and have to spill over to the CAM. If the CAM is aso full, the arriving cell on a
new connection is discarded. This is referred as overflow. We need to understand how
the configuration of the SAM and CAM affects the probability of cell loss due to

overflows.

Let n be the number of queues supported by the DQM. Let 3 be the ratio of n to the
number of storage locations in the SAM. This quantity bounds the fraction of the SAM

entries that can be in use at onetime, and is called the load factor. Let s be the number of

entries in each set of the SAM, let r = Bﬂs be the number of setsin the SAM and let ¢ be

the number of entriesin the overflow CAM.



89

We define the overflow probability to be the probability that when a cell A arrives on a
“new connection” (one for which no queue is currently allocated), there is no available
entry in either the SAM or the CAM.

To calculate the probability of overflow, we must make some assumption about the
number and distribution of “in-use” entries in the set-associative memory and the CAM,
at the time cell A arrives. We will assume that the “in-use” entries are randomly
distributed in the following way. Let the set-associative memory and the CAM be empty
initially. Now suppose that n cells arrive on n different virtual circuits. Assume that each
of the arriving cellsis equaly likely to be mapped to any of the setsin the set-associative

memory and that all arrivals are independent. Now, define x; to be the number of virtual

circuits (out of the origina n) that are mapped to set i in the set associative memory but

spill over into the CAM.

(S i n—i

A O 10 10(n=1)

Prix=0 = > g0 [HFD Egl‘;m
i=0

andfor 1<sh<n-s,

W _On@Omsth 1o —(s+h)
Prig=h =glatdgn -

Let y be the total number of virtual circuits that spill over from their sets in the set-

associative memory to the CAM. Clearly y = x; + ... +X_. We can get a conservative

upper bound on y by treating the x; as independent random variables. In particular, if we
let z be the random variable whose distribution is obtained by taking the convolution of

thedistributionsfor x;, ..., X, then Pr{z=¢ =Pr{y=¢g .
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Figure 6-1 Recommended CAM Size

Figure 6-1 shows how z varies with s and the load factor 3. The plot includes curves
showing the mean value of z and the mean plus five standard deviations. These were

calculated numerically using the probability distribution of x to obtain its mean and

standard deviation, then multiplying these by r and ./r to obtain the mean and standard

deviation of z. These curves allow us to determine the values of ¢, sand (3 that will lead
to good performance. For example, we can see that if we want to operate with a load
factor of 0.8, then with a set size of s, we need a CAM size of at least 25 and more
realistically, about 75 to keep overflows acceptably rare. If we want to operate with a
higher load factor, we must increase s, ¢ or both. With alower load factor, we can reduce

sand c, at the cost of more memory.

The overflow probability is no more than

Pr{x>0,z>¢

Pr{x >0 Pr{z>c|x >0
Pr{z>g Pr{x >0|z>¢
smingPr{xi>O} ,Pr{z>c}5
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By the central limit theorem, we can estimate z using a normal distribution. Let 4 and o

denote the mean and standard deviation of x;. For any positive number v,

Pr{z>rp_+y|:b'/\/|_'} :LJ' e—y2/2dx
Y

2TE
1 [é—y2/2

<_
Y./2mt

Figure 6-2 plots the value of this last quantity, as a function of load factor, for severa
different choices of s and c. With a set size and CAM size of 32, the estimated overflow
probability is less than one in a million when the number of storage locations in the
SAM is (2/0.65)n. If both are increased to 64, aload factor of nearly 0.8 yields the same
overflow probability. For n=8192 , a load factor of 0.8 implies 10,240 SAM entries.

With s=64 , thisimplies r =160 .
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Figure 6-2 Overflow Probability
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6.1.2. Overbooking of Queue Data Structures

Because the DQM assigns queues to virtual circuits dynamically, it is possible to support
a larger number of virtua circuits than could be supported if queues were statically
bound to specific virtual circuit identifiers. That is, we can overbook the DQM’s data
structures, taking a risk that on occasion we will not have an available queue to handle
an arriving cell, forcing the cell to be discarded. In order to exploit the potential for
overbooking, it is important to understand how many virtual circuits can be supported
with a given number of queues. Here, we make some basic observations, leaving a

detailed analysis of overbooking to a future study.

Note first that if aDQM supports n queues, there will always be an available queue if the
number of queued cells is < n. For non-bursty traffic, the queue length rarely exceeds

even 100 cells for traffic loads of 95% or less. Thus, for n=8192 , the probability is
exceedingly small that an arriving cell will not find an available queue, even if the

number of virtual circuits using the link is over one million.

For bursty traffic, it is also possible to overbook the queues extensively. Suppose we
have midentical independent on-off bursty sources with m>n and an average time of T
between the start of successive bursts (from any single source). If the input traffic
(averaged over periods longer than T) is less than the link rate, then the average rate from
each individual source is the link rate divided by m, which is small if n is reasonably
large. Typical virtual circuits have peak rates of perhaps 20 times the average rate. For
n=28192 , this results in virtual circuit peak rates that are less than 0.25% of the link
rate. For such traffic, the queue rarely accumulates a significant backlog of cells, so

again, an arriving cell will generally find an available queue.

Suppose however, that we have sources with peak rates that are much larger than their

average rates. In particular, assume that bursts arrive independently and instantaneously,
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with an exponentialy distributed time between bursts from any specific source. Also,
assume that burst lengths are exponentialy distributed and that each burst is assigned a
separate queue (even two bursts coming from the same source), and that all non-empty
gueues are drained at a rate that is inversely proportiona to the number of non-empty
gueues (modeling a round-robin queue scheduler). This queueing system can be modeled
by a birth-and-death process, in which the state index corresponds to the number of non-
empty queues. If we let the number of sources go to infinity, while keeping the time
between successive burst arrivals constant, this birth-and-death process becomes
identical to that for the M/M/1 queue. This implies (among other things) that the
j+1

probability that there are more than j non-empty queues is p , Where p is the

normalized traffic intensity for the queueing system. For p = 0.95, this probability is
less than 10 for all ] >268. These results show that the DQM queues can be
overbooked by a large factor, if n is sufficiently large. With smaller n, the potential for

overbooking is reduced somewhat, but even with as few as 1024, we are unlikely to run

out of queues under any realistic traffic conditions.

6.2. Cost Estimation

6.2.1. On-Chip Memory

The complexity of the chip is mainly driven by the on-chip memory. Let n be the number
of queues supported by the DQM. Let B be the number of cell dotsin the Cell Store. Let

B be the load factor in the SAM. Let W be the number of weighted levels. Let m be the

number of outputs. The memory requirements are estimated below.
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Queue Selector

The memory required for the Queue Selector is (2nlogn) /3 + nlogn + nlog (n/B) as
shown in Figure 6-3. The calculation includes the SAM, the Free Queue List and the
Address Map. For n=8192 , aload factor of 0.8 gives a memory requirement of about
60 Kbytes, while a load factor of 0.5 gives a memory requirement of 80 Kbytes. Note
that the load factor affects only the SAM, but not the Free Queue List or the Address
Map. When the load factor is 0.5, the memory required for the SAM is 1/3 of thetotal.
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Figure 6-3 Memory Size for the Queue Selector

Figure 6-4 shows the memory area estimation for a 0.35 micron CMOS process.

Combining the results in Figure 6-3 and Figure 6-4, with 1024 queues and a load factor

of 0.8, the chip area consumed by dynamic gueue assignment is less than 2 mm?. For
8192 queues, the area is approximately 17 mm?, or less than 20% of the area of a

100 mm? chip. The analysis indicates that the number of queues could be increased to
16K without consuming an excessive fraction of the chip area. 64K queues can be

supported in a 0.18 micron process.
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The Queue Manager maintains a queue list of n entries. Virtual path queues are ignored

here. Each entry contains
memory sizeis 2nlogB. F

Because the memory size

two pointers to the cell buffer in the external memory. The
igure 6-5 shows the memory required for the Queue Manager.

does not increase significantly, a cell buffer of one million

cells (corresponding to 20 bitsin address) is a reasonable choice for the DQM chip.
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Figure 6-5 Memory Size for the Queue Manager
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Output Scheduler

The Output Scheduler implements either two priority scheduling or weighted round-
robin scheduling using Binary Scheduling Wheels (BSW) agorithm. Since two priority
scheduling has the same structure as BSW with W= 2, we only calculate the memory
required by the BSW algorithm. Figure 6-6 shows the structures in the Output Scheduler
that implement the BSW a gorithm.

Whed Table
Whee W1 1 0 T
T Queue
m entries List |nentries
1+lognbits 1+lognbits l

1+logn bits
Figure 6-6 Structuresin the Output Scheduler

At each output, we construct W scheduling wheels. We need a queue list with n entries to
represent the queues in scheduling wheels. Since a virtua circuit has only one
destination, a queue can only be placed on one of the scheduling wheels. Therefore, the
gueue list can be shared by al output wheels. The actual scheduling wheels are
constructed by linking corresponding entries in the queue list. An additional bit is added
to entries in the queue list to distinguish the first queue in a wheel. To access the

scheduling wheels, a wheel table is used to store the pointers to the scheduling wheels.
The memory requirement for the BSW for moutputsis (n+ mw) (1+[logn]) .

Figure 6-7 shows the memory size for various parameters with m = 16. Note that only
the wheel table depends on the number of weights. The increment in memory size to
implement 64 weights over a simple two priority design is less than 2 KBytes. 32 distinct
power of 2 weights are sufficient to specify bandwidths ranging from 2.4 Gb/s to less

than one bit per second. Even with 8192 virtual circuits in the system, the total memory
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requirement for the scheduler is less than 15 KBytes. Therefore, the BSW algorithm

implements the weighted round-robin scheduling in avery efficient way.
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Figure 6-7 Memory Required for Cell Scheduling

Because a VC queue only belongs to one scheduling wheel, adding and removing a
gueue from a scheduling wheel can be done in constant time. Thisis the magjor reason for
restricting weights to be powers of 2. The algorithm can be extended to more general
weights by allowing each queue to appear in multiple wheels. If a queue can appear in |
j
wheels, the ratio between successive weights is JL , but both the scheduling time and
2-1

the size of the queue list increase by afactor of j.

Free Slot Manager

The Free Slot Manager maintains a on-chip free slot cache. Assume that the cell buffer

can store amaximum of one million cells. A free dot cache with 64 entriesis 0.2 Kbyes.

Output Master

The Output Master has four FIFO queues, each of which can contain 8 cells. The

memory sizeis 2.2 KBytes.



98

Total Memory and Area Estimates

Memory and area estimates for the entire chip is listed in Table 6-1. The parameters are

n=8192, 3 =08 W= 32 B=2° andm = 16. Areais estimated using typical
datafor 0.35 pm 3 metal layer CMOS process.

Table 6-1 On-Chip Memory Estimates

Block Size Size Area Area

Name (KB) (%) (KB) (%)
Queue 60 KB 52% 17 mm2 51%
Selector

Queue 40 KB 34% 11 mm2 33%
Manager

Output 14 KB 12% 4 mm2 12%
Scheduler
Free Slot 0.2KB 0.1% 0.18 mm?2 0.1%
Manager

Output 1.8KB 2% 1.32 mm?2 4%
Master

Total 116 KB 100% 33.5 mm2 100%

6.2.2. External Memory

The Cell Store and the Free Slot List are stored in the external memory. The Dynamic

Queue Management Chip supports up to 220 cell slots. The maximum size of the Cell
Store is 60 MBytes. The Free Slot List stores all the pointers to the Cell Store. If the
maximum size of Cell Store is supported, the size of the Free Slot Listis 20 x 220 = 25

MBytes. Therefore, the maximum memory size of the system is 62.5 MBytes. This gives
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the potential for growth as the price of memory drops, making very large buffers
affordable. In the short term, smaller buffers (1 - 4 MBytes) are more realistic, given
current static RAM costs of $75 -100 per MByte.

Within each cell time of 116 ns, a cell is written into the Cell Store, and a cell is read out
of the Cell Store. An entire read cycle or write cycle is at most 58 ns. We aso need to
limit the data path because of the limitation of the pin count. Therefore, SRAM is a

proper choice at the current time.

The data path to the external memory is 160 bits wide. Since the size of a cell is 448 bhits,
and the pointer field stored with the cell is 20 bits, three memory accesses are needed to
write a cell to the Cell Store or to read a cell from the Cell Store. In other words, during

every cell time, there are three memory reads and three memory writes.

The suggested memory module is Micron’s 128K x 32 SYNCBURST SRAM with 11 ns
cycle time. Each cell time contains 7 memory cycles. Three cycles are used for writing a
cell; one cycle is for switching from write to read, with another three cycles for reading a
cell.

Since the internal free ot cache is used to manage the free slots, the Free Slot List only
needs to be accessed when there is no cell arriving or leaving for a long time. A write
cycle can be used to access the Free Slot List in the first case and a read cycle can be
used in the second case. As a result, the Free Slot List is accessed when there is an idle
read or write cycle. Therefore, there is no extra cost to maintain the Free Slot List.

Table 6-2 summarizes the requirements of the external memory.
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Table 6-2 External Memory Estimates

Data Path 160 bits
Maximum Memory Size Supported 62.5 MBytes
Suggested Memory Size 4 MBytes
Memory Operations per Cell Time 3 reads, 3 writes
Suggested Memory Module Micron 128K*32 SRAM
Cycle Time 11ns
Total Number of Chips 10

6.2.3. Gate Estimation

In order to estimate the total chip area, we need to estimate the number of equivalent

gates in the chip. We count the number of flip-flops and multiply it by two in order to
include the gates in the control logic. The area estimates are based on atypical 0.35 um
CMOS process with three metal layers. Table 6-3 shows the gate and area estimation.

1 flip-flop with reset = 5 nand gates = 91um?

Circuit area after routing=5* (Areaof al gates)
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Number Equivalent | AreaBefore | AreaAfter | Percentage
Component of ) .
. Gates Routing Routing of Area
Flip-Flops
Input 100 500 0.0455 mn? | 0.223 mn? 4.1%
Master
Memory 1200 6000 0545 mm?2 | 2.725 mnm? 49.9%
Controller
Output 300 1500 0137 mm2 | 0.685 mm? 12.5%
Master
Queue 300 1500 0137 mm2 | 0.685 mm? 12.5%
Selector
Queue 250 750 0.068 mm? | 0.340 mm? 6.2%
Manager
Output 100 500 0.046 mm? | 0.230 mm? 4.2%
Scheduler
Free Slot 150 750 0.068mm2 | 0.340 mm?2 6.2%
Manager
Total 2400 12000 1.092 mm2 | 5.460 mm2 100%

6.2.4. Pin Count

The total pin count of the chip shown in Table 6-4.

The chip needs a package of 400 pins. If we want to reduce the pin count, a faster

external SRAM can be used. Thisis achievable with the price drop on fast components.



Table 6-4 Pin Counts

Name Pin Counts
Data Pins 256
Control Pins 100
Vce 22
GND 22
Total 400

6.2.5. Total Chip Area and Physical Packaging
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The total area of the chip is 33.5+5.5 = 39 mm’. Therefore, the estimated size of the

DQM chipislessthan 7 mm x 7 mm. The chip can use a 411-pin ceramic PGA package

with dimension of 2 inch by 2 inch.

The Micron 128Kx32 SRAM is available in either a 100-pin TQFP (Thin Quad Flat
Package) or a 119-Bump BGA (Ball Grid Array). The dimension for the BGA packageis

0.89 inch by 0.57 inch (including mold protrusion).

The DQM chip with a 4 MByte externa memory configuration indicates a 10 inch?

space on a PC board.
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/. CONCLUSIONS

The goal of this thesis is to explore critical issues in providing Quality-of-Service in
ATM networks and give a detailed design of a Dynamic Queue Management chip that
can help provide effective QoS.

The research contributions of the thesis are listed bel ow:

- Dynamic Queue Assignment

The chip implements per VC queueing using dynamic queue assignment, which avoids
restricting the choice of VPIs and VCls unduly. Dynamic queue assignment makes the
cost of the system proportional to the number of VPI/VCls actually used, rather than the

maximum possible number that could be used.

- Unlimited Buffer Scaling

The DQM chip is designed in such a way that the cell buffer can be scaled up without
increasing the chip complexity significantly. Both the cell buffer and the information to
maintain the cell buffer (including the free dlot list) are stored in the externa memory.
The only effect of increasing the buffer size is that the number of bits to address the cell
buffer will increase. So the chip needs to maintain a few more bits for each queue if the

buffer size increases.

- Internal Free Slot Caching

The internal free slot recycling mechanism used in the DQM chip allows the free slot list
to be in the external memory without increasing the memory bandwidth requirements.
Without this mechanism, the bandwidth of the external memory would need to be high
enough to handle both the free dot list and the cell buffer without suspending an output

cycle. However, with the internal free slot recycling, the on-chip manager only needs to
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access the free dot list when there is no cell coming in for along time or there is no cell
going out for along time. In either case, there is an idle write cycle or an idle read cycle
for the cell buffer. The free dlot list in the external memory can be accessed using these
idle memory cycles. Therefore, the memory bandwidth only needs to be sufficient for the

cell buffer, which makesthe timing alot easier.

- Cost Efficient Fair Queueing

Multiple binary priority classes can be supported using the Binary Scheduling Wheels
algorithm. This algorithm allows priorities to be specified as a power of 2. VC queues
with binary weights are placed on one of the scheduling wheels. Unlike simple weighted
round-robin, the Binary Scheduling Wheels spread out the traffic destined for the same
output in order to prevent congestion at the link interface. A fast forward counter with
the ability to skip empty scheduling wheels makes the algorithm scalable. The
implementation of the Binary Scheduling Wheels algorithm requires only a small

increment in the hardware cost.

- Flexible Output Link Configuration

The DQM chip allows up to 16 external links of various rates to share one output port of
the WUGS operating a 2.4 Gb/s. The externa links can be configured as any
combination of OC-3, OC-12, G-link and OC-48 links. The idea of virtual ports has been
introduced to define various configurations. One physical link is normally associated
with one or several consecutive virtual ports. In order to avoid cell accumulations in the
link interface, a bit reversal mapping is used to distribute the selection of virtua ports.
The DQM chip alows the externa links to be over configured, where the total
bandwidth of the external links exceeds the bandwidth of an output port of the WUGS.
This takes the advantage of the fact that not al links are busy at the same time and
allows bursty traffic to be sent at a higher rate using statistical multiplexing among
external links. An over configured link may use its full bandwidth if enough other links

do not use their basic bandwidth. A novel credit-based scheduling mechanism and a
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token passing arbitration circuit are used to select virtual ports. The algorithm ensures
the basic bandwidth that an external link subscribes to. An over configured link may use
extra bandwidth made available to it, but can never be allocated more bandwidth than it

can use.

- Per VC based Packet L evel Discarding

Because the transport layer protocol transmits packets, a single cell lost in the ATM
layer will cause the entire transport layer packet to be retransmitted. Therefore, it is very
important to maintain high goodput during the overload period. A lot of packet level
discarding mechanisms have been discussed in the context of FIFO queueing. However,
no work has been shown for the systems that support per VC queueing, especially when
fairness needs to be considered. The major difference between these two systems is that
larger buffers do not impose large delay penaltiesin the per VC queueing systems during
overload periods. The major concern in a per VC gueueing system is how to preserve
fairness as well as the packet integrity during the overload period. This thesis shows how
to solve this problem using the Weighted Fair Goodput (WFG) algorithm designed
especialy for systems that use per VC queueing. All virtual circuits can forward cells at
their reserved rates during the overload period using WFG.

There are several questions that need to be further explored.

First, simulations and detailed analysis on the Weighted Fair Goodput algorithm will
help us learn more about the packet level discarding with per VC queueing. We are
seeking a better algorithm with reduced buffer requirements and fair share of buffer

space during overload period.

Second, the multiple priority classes with binary weights can be extended to arbitrary
weights using almost the same structure as the Binary Scheduling Wheels. This is done
by placing a VC queue with arbitrary weights on several binary scheduling wheels
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instead of one. This extension uses the fact that an arbitrary number can be decomposed
as the sum of power of 2 terms. One thing that is not clear here, is how to add and

remove queues to/from multiple scheduling wheels in an efficient way.

Third, we need to understand more about overbooking per channel data structures in
order to take advantage of dynamic queue assignment. A detailed analysis on overload

probability and a simulation will be helpful.
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APPENDIX A. SIGNAL DEFINITIONS

1. INPUT MASTER (IMST)

SIGNALS FROM OPP

DATA_OPP - Céll datareceived from OPP.

SIGNALSTO QSEL

VPI_IMST - This signal is the virtua path identifier of the incoming cell. The IMST
copiesit from the VP! field of the cell format.

VCI_IMST - Thissigna is the virtua circuit identifier of the incoming cell. The IMST
copiesit from the VCI field of the cell format.

TYPE_IMST - This 1 bit signal is copied from the VPT field of the cell. Thissignal is 1
if the cell belongs to a virtual circuit connection, O if the cell belongs to a virtual path
connection.

PRI_IMST - This 1 bit signal is 1 for high priority and O for low priority. The IMST
copiesit from the CSfield of the incoming cell.

WT_IMST - Thissignal is copied from the lower 2 bits of WT field.
A5 IMST - This 1 bit signal is copied from the A5 field.

U _IMST - This1 bit signal is copied from the u-bit in the PT field.
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SIGNALSTO MCTRL

DATA_IMST - This 32 bit signal carries the cell data passed to the MCTRL.

2. Queue Selector (QSEL)

SIGNALSFROM IMST

VPI_IMST - This signal is the virtual path identifier sent from the IMST. The virtual
path identifier (VPI) field is part of the cell format. The IMST obtains the VPI from the
incoming cell and sends it to the QSEL .

VCI_IMST - Thissignal is the virtual circuit identifier sent from the IMST. The virtual
circuit identifier field is also obtained from the incoming cell by the IMST.

TYPE_IMST - This 1 bit signal indicates if the incoming cell belongs to a virtual path
connection or a virtual circuit connection. This bit is copied from the VPT field of the
cell by the IMST. This signal is 1 if the cell belongs to a virtual circuit connection, O if
the cell belongsto avirtual path connection.

PRI_IMST - This 1 bit signal indicates the priority of the incoming cell. If the cell is of
high priority, this bit is 1. Otherwise, the bit is 0. The IMST copies the PRI signal from
the CSfield of theincoming cell.

WT _IMST - This signa indicates the weight of the cell. It is passed to WT_QSEL
without modification.

A5 IMST - Thisbit indicates the cell belongsto an AALS packet.

U_IMST - This bit indicates the last cell in an AALS packet. It is used for packet level
discarding.

SIGNALSFROM QMGR

DEL_QMGR - This signal is set to 1 if the queue is empty and needs to be removed
from the QSEL. The Queue Manager sets this signa if the FIRST field and LAST field
equal after acell departs.
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DELQID_QMGR - This signal carries the queue identifier of the queue to be removed.
If the queue is empty, the QM GR sends the DELQID to the QSEL.

SIGNALSTO OMGR

PRI_QSEL - This 1 bit signal is copied by the QSEL from the PRI_IMST. The QSEL
does not use the PRI internally.

TYPE_QSEL - This signd is copied from the TYPE_IMST to indicate a VP or VC
connection.

OUT_QSEL - This 4 bit signa carries the output number the incoming cell is destined
for. The QSEL generates this signal using high order four bits of VPI.

WT_QSEL - Thissignal is copied from WT_IMST.
QID_QSEL - Thissigna provides the queue identifier of the incoming cell.
A5 QSEL - Thissignal is copied from A5 IMST.

U_QSEL - Thissignal iscopied fromU_IMST.

3. QUEUE MANAGER (QMGR)

SIGNALSTO QSEL

DEL_QMGR - This signal is set to 1 if the queue is empty and needs to be removed
from the QSEL. The Queue Manager sets this signal if the FIRST field and LAST field
of the queue that outputs a cell equal.

DELQID_QMGR - This signal carries the queue identifier of the queue to be removed.
If the queue is empty, the QM GR sends the DEL QID with the DEL signal to the QSEL.
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SIGNALS FROM QSEL

PRI_QSEL - This 1 bit signa is copied to the NEWPRI_QMGR and passed to the
OSCHL if the cell belongs to a new connection. The QMGR does not use the PRI
internaly.

OUT_QSEL - This 4 bit signal is copied to the NEWOUT_QMGR and passed to the
QSCHL for a new connection.

WT_QSEL - Thissignal iscopied to WT_QMGR.

QID_QSEL - This signa provides the queue identifier of the incoming cell. The Queue
Manager uses it as an index to its queue list to get the value of the FIRST field
corresponding to the slot in which the incoming cell is to be stored. The QMGR also
copies this signal to the NEWQID_QMGR if it is a new connection. The QSEL passes
NEWVC_QSEL to indicate a new VC connection. However, for a VP connection, the
QMGR needs to compare the FIRST and LAST fields to detect a new connection.

SIGNALSTO FSMGR

RTNSLT_QMGR - This signal carries the free slot to be returned to the FSMGR. The
QMGR returns a slot when the cell in that slot departs.

RTNEN_QMGR - Thissignal isset to 1 if the QMGR returns afree slot.

RQS QMGR - This signal is set to 1 if the QMGR requests a free dot from the
FSMGR. The QMGR sends a request when it assigns a slot to aincoming cell.

SIGNALSFROM FSMGR

FSLT FSMGR - Thissignal carries afree dot to the QM GR.

FSLTEN_FSMGR - Thissignal is1if the FSLT_FSMGR isvalid.
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SIGNALSTO OSCHL

NEW_QMGR - Thissignal is set to 1 if the incoming cell belongs to a new connection.
If FIRST and LAST fields of the queue that an incoming cell is appended to are equal, it
is considered as a new connection.

NEWQID_QMGR - This signal provides the queue identifier of a new queue to be
added to the priority lists in the QSCHL. It is copied from the QID_QSEL for a new
connection. Itisvalid only if the NEW_QMGRis 1.

NEWOUT_QMGR - This 4 bit signal indicates the output number of a new connection.
Itiscopied from OUT_QSEL and isonly valid when NEW_QMGR is 1.

NEWPRI_QMGR - This 1 bit signal specifies the priority of a connection. It is copied
from PRI_QSEL for a new connection.

NEWWT_QMGR - Thissignal is copied from WT_QSEL for a new connection.

EMP_OQMGR - Thissignal isset to 1 if aqueue is empty and needs to be removed from
the priority list in the OSCHL. It always has the same value as DEL_QMGR.

SIGNALS FROM OSCHL

NXTQID_OSCHL - Thissignal provides the queue identifier of the queue to send a cell
from.

NXTEN_OSCHL - Thissignal indicates that the NXTQID_OSCHL isvalid.

SIGNALSTO MCTRL

RSLT_QMGR - This signal provides the slot number of the cell being read in the
CSTR. It is obtained from the FIRST field indexed by the queue identifier sent from the
QSEL.

RSLTEN_QMGR - This signal indicates that the slot number for the departing cell is
valid.

WSLT_QMGR - Thissigna provides the slot number for the incoming cell to write to.
It is obtained from the LAST field indexed by the queue identifier sent from the OSCHL.
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WSLTEN_QMGR- Thissignal is1 whenthe WSLT_QMGR isvalid.

NXTPTR_QMGR - This signal carries the pointer field to be written into the CSTR.
The QMGR aways keeps a free dot as the pointer field of the next arriving cell. The
pointer is also used to update the LAST field. After assigning the free slot to the cell, the
QMGR send arequest (RQS_QMGR) to the FSMGR for another free slot.

SIGNALSFROM MCTRL

PTR_MCTRL - Thissigna provides the pointer field of the departing cell. It is used to
update the FIRST field of queue from which the cell departs.

PTREN_MCTRL - Thissigna is1if the PTR_MCTRL isvalid.

4. OUTPUT SCHEDULER (OSCHL)

SIGNALSFROM QMGR

NEW_QMGR - Thissignal is 1 for a new connection. The OSCHL needs to put the new
gueue on its priority list.

NEWQID_QMGR - This signal provides the queue identifier of a new queue to be
added to the priority listsin the QSCHL. It isvalid only if the NEW_QMGR is 1.

NEWOUT_QMGR - This 4 bit signal indicates the output number of a new connection.
The OSCHL put the queue on the circular list of this particular output. It is only valid
when NEW_QMGR s 1.

NEWPRI_QMGR - This 1 bit signal specifies the priority of a new queue. The OSCHL
places the queue on the high priority list if NEWPRI is 1, and places it on the low
priority list otherwise.

NEWWT_QMGR - Thissignal isthe weight of a connection.

EMP_QMGR - This signal indicates that the queue that the OSCHL scheduled has
becomes empty after sending a cell and needs to be removed from the priority list.



113

SIGNALSTO OMGR

NXTQID _OSCHL - This signal provides the queue identifier of the queue that is
selected to forward a cell to the output link.

NXTEN_OSCHL - Thissignal isset to 1 if the NXTQID_OSCHL isvalid.

SIGNALSTO OMST

NXTOUT_OSCHL - This 4 hit signal provides the output number that the departing
cell isdestined for.

OUTEN_OSCHL - This bit is set to 1 if the NXTOUT_OSCHL is valid and a cell is
departing.

5.FREE SLOT MANAGER (FSMGR)

SIGNALSFROM QMGR

RTNSLT_QMGR - This signal carries the free dot to be returned. The FSMGR
recyclesfree dotsinternally. Thereturned sot is placed in itsinternal slot cache.

RTNEN_QMGR - Thissignal is1if the RTNSLT_QMGR isvalid.

RQS QMGR - Thissignal is 1 if the QM GR requests another free slot.

SIGNALSTO OMGR

FSLT FSMGR - Thissignal carries a free dot to the QMGR. The FSMGR sends a free
slot to the QM GR when it receives the RQS_QMGR.

FSLTEN_FSMGR - Thissignal issetto 1 if the FSLT_FSMGR isvalid.
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SIGNALSTO MCTRL

HEAD _FSMGR - Thissignal provides the address of thefirst free lot in the FSL.

HDEN_FSMGR - This signal indicates that the HEAD_FSMGR is valid. Another set of
free slots need to be read out of the FSL.

TAIL_FSMGR - Thissignal provides the addressin the FSL to return a set of free slots.

TLEN_FSMGR - Thissignal is set to 1 when a set of free slots are returned to the FSL.
The TAIL_FSMGR andthe WSLTS FSMGR arevalid only if TLEN_FSMGR is 1.

WFSLTS FSMGR - Thissignal carries a set of free dotsto be returned to the FSL. It is
vaidwhenthe TLEN _FSMGR isset to 1.

SIGNALSFROM MCTRL

RFSLTS MCTRL - This signal carries a set of free slots read out of the FSL. The
FSMGR needs puts them into the slot cache.

RFSLTSEN_MCTRL - Thissigna is1if the RFSLTS MCTRL isvalid.

6. Memory Controller (MCTRL)

SIGNALS FROM OMGR

RSLT_QMGR - This signa provides the slot number of the departing cell in the CSTR.
The MCTRL internally convertsit to the external memory address.

RSLTEN_QMGR - This signa indicates that the RSLT_QMGR is valid. The MCTRL
starts aread cycleif the signal is 1.

WSLT_QMGR - This signa provides the slot number for the incoming cell to write to.
The MCTRL convertsit to the external memory address internally.

WSLTEN_QMGR- Thissignal is1 whenthe WSLT _QMGR isvalid.
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NXTPTR_QMGR - This signal carries the pointer field to be written into the CSTR.
The MCTRL buffers the data and writes it to the CSTR with the cell.

SIGNALSTO QOMGR

PTR_MCTRL - This signal provides the pointer field of the departing cell. The
MCTRL buffers the data read out from the CSTR first, then sends it to the QM GR.

PTREN_MCTRL - Thissignal isset to 1if the PTR_MCTRL isvalid.

SIGNALSFROM FSMGR

HEAD _FSMGR - This signal provides the address of the first free dot in the FSL.The
MCTRL convertsit to the external memory address.

HDEN_FSMGR - This signal indicates that the HEAD_FSMGR is valid. The MCTRL
accepts the HEAD_FSMGR and schedules a memory read from the FSL.

TAIL_FSMGR - This signal provides the address in the FSL to return a set of free dots.
The MCTRL convertsit to the external memory address.

TLEN_FSMGR - This signal is 1 when the TAIL_FSMGR and the WFSLTS FSMGR
arevalid. The MCTR schedules a memory write to the FSL.

WFSLTS FSMGR - Thissignal carries a set of free slots to be returned to the FSL. The
MCTRL acceptsit the TAILEN_FSMGR isset to 1.

SIGNALSTO FSMGR

RFSLTS MCTRL - This signal carries a set of free slot read out of the FSL. The
MCTRL buffers the datainternally and sendsit to the FSMGR.

RFSLTSEN_MCTRL - Thissignal issetto 1if theRFSLTS MCTRL isvalid.
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SIGNALSTO OMST

DATA_MCTRL - This 32 bit signal are the cell datafrom the CSTR. The MCTRL does
the parallel to serial conversion internally.

7.OUTPUT MASTER (OMST)

SIGNALSFROM MEMORY CONTROLLER

DATA_MCTRL - This 32 bit signal are the departing cell data from the CSTR.

SIGNALSTO NETWORK INTERFACE

TXPRTY - Thetransmit parity signal indicates the parity of the TDATA.

TDATA - The transmit cell data bus carries the ATM cell. TDATA[15] is the MST,
TDATA[O] isthe LSB of the 16 bit data path.

TWREN - The channel active low transmit write enable inputs is used to initiate writes
to the channel transmit FIFO.

TSOC - Start of cell signal.

TCA - Transmit cell available signal indicates when space for a cell is available in the
channel transmit FIFO.
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APPENDIX B. OPERATIONAL SCENARIOS

The following diagrams show the status at the end of Cell Time 6 to Cell Time 11 in the

operational examplesin chapter 3.
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