## Design of a Flexible Open Platform for High Performance Active Networks

Sumi Choi, Dan Decasper, John Dehart, Ralph Keller, John Lockwood, *Jonathan Turner*, Tilman Wolf Washington University Applied Research Lab *http://www.arl.wustl.edu/arl/* 



# Motivation

- Technology advances adding new functionality to internet routers.
  - » logic capabilities growing much faster than IO
  - » packet classification, per flow queueing becoming common
  - » single chip packet processing engines with 16 processors now becoming available

#### Application-specific processing in routers could become routine.

- » active networking is one way to exploit trend
- » alternative model
  - -signalling and resource reservation
  - -packet classification and flow-specific routing
- Key challenge is *application software*.
  Need *better experimental platforms* for researchers.



#### Towards an Open Internet Router

#### • Modular components.

- » ability to swap components both hardware and software
  - routing, signalling, management software
  - address lookup and packet classification
  - queueing and packet scheduling
- » open, documented and straightforward interfaces
- Dynamic insertion of application-specific processing.
   » active networking model and others

#### • High performance.

- » gigabit links and scalability to large numbers of ports
- » packet processing rates of at least a million/second per link
- » application-specific processing on large fraction of traffic

» need *credible demonstrations* to influence commercial practice



#### Active Router Hardware













### Principal Data Flows Through PE Kernel



- Std. proc. for "plain" IP packets.
  - » classification & routing, header processing, output queueing
- Active packets move through configured kernel plugins.
   » active function dispatcher passes packets to instances of plugin objects
   » instantiates objects or triggers download of plugin class, as needed
  - » streamlined processing of SAPF packets using pre-established state



### System Level Software Organization



### Physical Configuration





#### Field Programmable Port Extender

퍯 Washington

Stackable port card

can be combined with PE

Programmable hardware

FPGA technology
flexible memory config.
change on-the-fly

Reprogrammable

Application Device (RAD)
fully reprogrammable
four separate memory interfaces

- » memory bw: 2.4GB/s
- Network Interface Device (NID)
  - » relatively static
  - » adapt for different line cards

Jonathan Turner - 9/22/99



- Variety of applications
  - » address lookup & packet class.
  - » per flow queueing
  - » traffic management
  - » hardware plugins

# Conclusions

- High performance active networking need not be an oxymoron.
  - »scalable systems with gigabit links and terabit throughputs are possible with current/near-term technology
  - »on-going technology improvements will make AN economically viable
- Need to focus on active application development.
- Need better abstractions, tools, APIs for developers.
- Effective & open experimental platforms are essential. »provide realistic testbed
  - »provide more convincing demonstrations
  - »enable system researchers and developers to build on each others efforts







