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Abstract

A module has been implemented in Field Pro-
grammable Gate Array (FPGA) hardware that is able
to perform regular expression search-and-replace op-
erations on the content of Internet packets at Giga-
bit/second rates. All of the packet processing operations
are performed using reconfigurable hardware within a
single Xilinx Virtex XCV2000E FPGA. A set of lay-
ered protocol wrappers is used to parse the headers
and payloads of packets for Internet protocol data. A
content matching server automatically generates, com-
piles, synthesizes, and programs the module into the
Field-programmable Port Extender (FPX) platform.

1 Introduction

As the speed of networks continues to increase, it
becomes increasingly difficult to monitor content sent
over the Internet with software-based processing tech-
niques. Hardware-based processing is needed to keep
pace with modern high-performance networks. To
achieve high network performance, hardware devices
known as Field Programmable Gate Arrays (FPGAs)
have been used. FPGAs offer a method for implement-
ing functions in hardware in a way that allows the
circuit to be modified. Hardware-based search (FP-
grep) [1] and hardware-based search-and-replace sys-
tems (FPsed) have been developed that can scan and
modify packets as they stream through the network.

FPgrep and FPsed utilize regular expressions (REs)
to specify a set of string patterns that may be searched
for within the payload of a packet as it passes through
a network. The RE patterns can range in complexity
from a simple single character string to a string con-
sisting of multiple wildcards.

By combining the power of REs and the flexibility
of FPGAs on the Field Programmable Port Extender
(FPX) [2, 3], the FPgrep and FPsed packet payload
processors may be used to process packet contents on
high-speed networks.

2 Background

Below is a review of regular expressions along with a
description of some previous related work. This section
includes a short description of the Field Programmable
Port Extender (FPX) implementation platform and the
layered protocol wrappers.

2.1 Regular Expressions

A regular expression (RE) is a pattern that describes
a set of strings. The basic building blocks for these pat-
terns consist of individual characters that match them-
selves such as “a”, “b”, and “c”. Combining characters
with meta-characters (∗, |, ?) allows more complex REs
to be created. If r1 and r2 are REs then r1∗ matches
any string composed of zero or more occurrences of r1;
r1? matches any string composed of zero or one oc-
currences of r1; r1|r2 matches any string composed of
r1 or r2; and r1r2 matches any string composed of r1

concatenated with r2. For instance, “a” is a RE that
denotes the singleton set {“a”}, while “a|b” denotes
the set {“a”,“b”}. The expression “a*” denotes the
infinite set {“”,“a”,“aa”,“aaa”,. . .}.

2.2 Regular Expressions in FPGAs

There has been some previous work in the area of
string matching on FPGAs. Recent work has been
done by Sidhu and Prasanna [4] as well as by Franklin,
Carver, and Hutchings [5]. The work by Sidhu and
Prasanna was primarily concerned with minimizing the



time and space required to construct Nondeterministic
Finite Automata (NFAs). This is because they run
their NFA construction algorithm in hardware as op-
posed to software. Franklin, Carver, and Hutchings
followed with an analysis of this approach for the large
set of expressions found in a Snort database [6].

2.3 Field Programmable Port Extender

The FPX (Figure 1) is a general purpose, repro-
grammable platform that performs data processing in
FPGA hardware [2, 3, 7, 8]. The FPX extends the op-
eration of the Washington University Gigabit Switch
(WUGS) by adding FPGA hardware at the ingress
and egress ports of a high-speed Internet router [9, 10].
Data packets can be actively processed in hardware
by user-defined, reprogrammable modules as they pass
through the device. The hardware-based processing
allows the FPX to achieve multi-gigabit per second
throughput, even when performing processing of packet
payloads.

The current version of the FPX contains two FP-
GAs. One FPGA on the system is called the Re-
programmable Application Device (RAD). It is imple-
mented with a Xilinx Virtex XCV2000E. The second
FPGA is called the Network Interface Device (NID). It
is implemented with a Xilinx Virtex XCV600E. The
FPX also contains two banks of 36-bit wide Zero-
Bus-Turnaround Static RAM (ZBT SRAM) and two
banks of 64-bit PC-100 Synchronous Dynamic RAM
(SDRAM).

Figure 1. FPX platform

2.4 Protocol Wrappers

A set of layered protocol wrappers was implemented
to simplify the processing of Internet Protocol (IP)

packets directly in hardware [11]. They use a layered
design and consist of different processing circuits within
each layer. At the lowest level, the Cell Processor op-
erates on small fixed length cells that flow between net-
work interfaces. At the higher levels, the Frame Pro-
cessor reassembles and processes variable length frames
while the IP Processor processes IP packets. Figure 2
shows the typical layout of a hardware module using
the protocol wrappers.
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Figure 2. FPsed module in protocol wrappers

3 RE Search-and-Replace

The streaming content editor, FPsed, was imple-
mented as a module on the FPX platform. The con-
tent editor has the ability to perform RE search-and-
replace operations on network packets passing through
the module; this is similar to the substitute command
of unix’s stream-editor utility (sed). The scanner uti-
lizes the protocol wrappers to process IP packets and
delineate the header and payload fields.

3.1 RE State Machine Terminology

Before beginning a more in-depth discussion we de-
fine some of the terminology used in this paper to de-
scribe the matching of REs using finite state machines.

Start: The transition of a machine from the idle (ini-
tial) state to a non-idle state.

Accept: The machine has accepted the substring if the
machine has determined that the substring is a member
of the language defined by the RE. Once a machine ac-
cepts a substring it must match on the substring some
time in the future.

Match: The machine has determined the boundaries
of the complete substring.

Running: The machine has started but not yet failed.
The machine may or may not be in an accepting state.

Reset/Fail: The machine was running and a charac-
ter read caused the substring to no longer be a member



of the language defined by the RE. If the substring was
previously accepted then a match was created over a
portion of the substring up to, but not including the
character that caused the machine to reset.

Idle: The machine is not running.

3.2 Searching

The search function, FPgrep, was implemented to
search packet payloads for substrings that belong to
the language defined by the RE. When FPgrep matches
a substring in a packet it transmits information about
the packet to a monitoring host system. The infor-
mation sent for network intrusion detection functions
specifies the content that was found and the sender’s
and receiver’s IP addresses.

The search runs in linear time (proportional to
packet size) O(n) (where n is the number of bytes in a
packet) and in constant space. That is, there is never
a need to examine a character more than once and the
amount of hardware is proportional to the size of the
RE. Approximately one flip-flop is required per char-
acter.

When a RE search is requested, a “.∗” is prepended
to the beginning of the original RE. It is natural to
think about it this way since searching involves find-
ing any number of characters followed by a matching
substring. The prepended “.∗” allows the machine to
recognize a matching substring anywhere in the record
[12].

If the “.∗” is not prepended, then there are situations
in which a substring that should be matched by the
machine is missed. This situation arises if a machine M
enters the running state when it encounters character
ci and then transitions to the failed/reset state when
it encounters ci+n. If the machine simply continues
reading from the next character, ci+n+1, it would not
detect a substring whose first character is in the range
ci+1 to ci+n.

A small example that illustrates this problem. As-
sume we are searching for “ARL”. If both “ARL” and
“.∗ARL” are converted into DFAs, two functionally dif-
ferent machines (DFA1 and DFA2 respectively) are
produced. These DFAs can be seen in Figure 3 and
Figure 4.

If the input to the machines is “A1R2A3R4L5”, then
DFA1 will recognize that “A1” followed by “R2” is part
of the language. When “A3” is input, the machine fails
and thus transitions to the idle state. It is clear that
machine will not find the substring “A3R4L5”, since
when the next character “R4” is input into DFA1 it
remains in the idle state. On the other hand DFA2

does operate correctly and finds the substring.
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Figure 4. DFA2 for “.∗ARL” does accept

3.3 Search and Replace

The FPsed module performs both replacement and
global replacement operations on packet payloads. The
task of string replacement of a RE is not as straight-
forward or efficient as searching. String replacement
requires that the machine do more than simply deter-
mine the presence of matching substrings in a record.
The machine must also determine the position of the
first and last character of all complete substrings that
are matched by the machine. It is this requirement that
causes the task of RE search-and-replace to be more
complicated and less efficient than a simple search.

Searching for the complete substring is logical when
the goal is to replace that substring. Consider the task
of replacing every occurrence of a certain hexadecimal
string associated with a computer virus “37F43(B +
|7∗)” with the text “Virus Pattern Detected”. For the
input string “3172F34435B6B7B8”, the substring could
be replaced from the point where the machine starts
running, “31”, to the point where the substring is ac-
cepted “B6”. But this would allow a portion of the
virus to remain in the content stream. In most situ-
ations, it is preferable to replace only complete sub-
strings.

To search for complete substrings a “.*” can no
longer be prepended to a RE before it is converted to a
FSM. This is because prepending “.*” would make it
difficult to determine the first character of the matched
substring. We do not believe that there is a general,
easily automatable, method for determining the posi-
tion of the first character in a matching substring when
a “.*” is prepended. For instance, to replace all occur-
rences of “ARL”, a state machine like Figure 5 would



be generated after prepending a “.*”.
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Figure 5. DFA for “.*ARL”

If the string “A1A2A3A4R5L6X7” is input to the
machine it would begin running when it encounters
“A1” and matches when “X7” is read. This would have
the effect of replacing “A1A2A3A4R5L6” when the in-
tention is to replace “A4R5L6”. One could counter
that this would not be a problem if the machine sim-
ply kept a count of how many characters were read
after entering state 2, resetting the count every time it
entered state 2. For this particular example that would
be true, but there are examples that do not have such
a simple and formulaic solution.

A slightly more complicated example is “.*AR*L”,
seen in Figure 6. Once again there is a solution to the
problem, but this time it is more complicated. In this
situation, the machine would again have to keep track
of the number of characters read after entering state 2.
However, this time the machine should only reset its
count if the input causing the transition to state 2 is
not an “R”.

An even more complicated example is the machine
for “.*A(AR)*L” in Figure 7. It is left to the reader to
see that the machine becomes quite complex.
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Figure 6. DFA for “.*AR*L”

It is therefore difficult to devise a general method
for determining the start of the string. One can always
find a more complicated RE that would require the
addition of more rules to the method.

It has been shown that prepending a “.*” to REs
that are to be replaced is clearly not a viable solution
as it was with searching. In the previous section it was
shown that if a “.*” is not prepended, the searching
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Figure 7. DFA for “.*A(AR)*L”

functionality will not have the correct semantics if each
character is read only once. Because of this, FPsed
must employ a different technique for dealing with the
problem of finding all complete substrings that match
a particular RE. A solution to this problem is to use a
brute force method of searching.

3.3.1 Brute Force Method

A brute force technique checks all characters of the
input to determine if they could be the beginning of a
substring that matches the RE.

The worst case running time occurs when every in-
put character is a possible starting position, and all
but the last character of the input matches the RE.
For example, if the machine is searching for “A*B” and
the input is “A0A1 . . . An−1”. The machine must make
O(nm) comparisons, where n is the string length and
m is the pattern length, to determine that the pattern
does not occur in the record.

The worst case condition is unlikely to appear when
searching for English language expressions, but it is
less rare when searching binary text. Davies and Bow-
sher [13] examined the efficiency of the backtracking
technique when searching strings from the English lan-
guage and binary strings. Their experiments involved
keeping track of the number of references to an input
string divided by the number of characters occurring
before the matched substring (the index position of
the pattern minus one) thus obtaining the number of
inspected characters in the text string per character
passed. The results of their experiments showed that
when searching English text, the backtracking method
referenced the text string 1 to 1.1 times per charac-
ter passed. When searching binary text for an expres-
sion of length six or greater, approximately 2 characters



were inspected for every character passed.

4 Hardware Design and Operation

The FPsed hardware module has been implemented
to perform a brute force method for search-and-replace.
The hardware consists of several components, all of
which are controlled by the logic controller. A block
diagram for the module can be seen in Figure 8.
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Figure 8. FPsed search-and-replace module

4.1 Logic Controller

The logic controller is the most complex entity in
the design. It controls parallel, dual-ported memory
buffers, the regular expression machine, the replace-
ment buffer and the word builder using control sig-
nals that it generates. Like the FPgrep controller, the
FPsed logic controller has three main phases that op-
erate in parallel: (1) Receiving Packets, (2) Processing
Packets, and (3) Outputting Packets.

Receiving Packets: As packets come into the mod-
ule from the protocol wrappers, they are first written
into the two parallel 36-bit wide dual-port memory
buffers. The lower 32 bits written into the memory
buffers are the incoming data. The upper four bits are
used to store the four control signals from the proto-
col wrappers (start of frame, start of IP headers, start
of IP payload, and end of frame). The write-side ad-
dress lines are shared by the two memory buffers, as is
the write-enable signal. This ensures that the contents
of the two buffers are identical. The address lines are
controlled by a simple counter. Each time a new word
is written to memory, the counter is incremented to
address the next location.

Processing Packets: The bytes that are input to
the RE state machine come from the read side of one
of the dual-port memories. Only the payload data are
sent through the RE state machine for processing. To
address the memory, a counter is used to step through
the memory one byte at a time. The bytes are sent to
the RE state machine and processed. Control signals
from the RE state machine tell the controller which
address to read next using the following rules:

1. If no control signals are returning from the RE state
machine (i.e. not running), the controller increments
the byte address by one.

2. If while running the controller receives an accepting
signal from the RE state machine, it stores the address
of the byte that created the match and to increments
the byte address by one.

3. If the controller receives a resetting signal from the RE
state machine, one of two things can happen:

(a) If while running, the controller did not receive an
accepting signal, it backs up the byte address and
begins processing data immediately proceeding
the byte that previously started the machine.

(b) If an accepting signal was received (a match was
found), it backs up the byte address and begins
processing data immediately proceeding the byte
that caused the machine to match. Also, to re-
member where the match has occurred, the start-
ing byte address and the ending byte address of
the string are stored in two fifos (the start fifo
and the end fifo).

When the end of a packet is reached, the controller
sends a reset signal to the RE state machine to reset
it.

Outputting Packets: The output process examines
bytes from the read port of the second dual-port mem-
ory. It can only output data that are completely done
being processed by the RE state machine (none of the
RE state machine pointers reference the data). As the
output process steps through the available bytes, it
checks the previously mentioned start fifo and does the
following:

1. If the current output address is not stored in the
start fifo, then the byte is sent to the word builder
and the byte address is incremented by one.

2. If the current output address is stored in the start fifo,
then the following occurs:

(a) The byte is not sent to the word builder. Instead
a signal is sent to the replacement buffer to begin
outputting a replacement.

(b) The byte address for the output process is as-
signed the value stored in the end fifo.
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Figure 9. Example of FPsed used to strip HTML tags from a packet payload

(c) The output process waits for a done signal from
the replacement buffer before processing addi-
tional bytes.

Finally, as data are read from the memory and out-
put, the four control bits are used to assert the appro-
priate signals back to the protocol wrappers.

4.2 Generating the Hardware

The system was designed to be easily reconfigurable
when new search terms were desired. To accomplish
this, a complete design flow from specification to hard-
ware bitstream was implemented. The design flow be-
gins with an input specification in common RE syntax.
The specification contains a list of REs and their corre-
sponding replacement strings. The syntax and a couple
examples can be seen below:

syntax:
s/expression/replacementstring/

Example of stripping out HTML tags:
s/ < [∧>]∗ > //

Example of a profanity blocker:
s/(P |p)rofa(N |n)ity/ ∗ ∗ ∗ ∗ ∗ ∗ ∗ /

Each RE in the specification is parsed and sent

through JLex [14] to get a representation of the DFA
required to match the RE. The JLex representation
is subsequently processed and converted into a VHDL
representation. Next, a top-level entity is generated to
connect the DFAs with the static components of the
circuit. Finally, the design flow proceeds to synthesize,
place and route, and program the FPGA.

5 Results

Several versions of the content editor were synthe-
sized with the protocol wrappers into the RAD of the
FPX. One module was designed to replace computer
viruses as they traversed across a streaming UDP-
based Internet connection. Another module was de-
veloped to remove profanity from packet payloads and
were tested in the lab using a UDP-based chat client.
A third module was developed to remove HTML tags
from text. An example of the transformation per-
formed by the HTML filter is shown in Figure 9.

The following sections describe the device utiliza-
tion and estimated throughput of the content-editing
modules on a Xilinix Virtex XCV2000E-8 part.
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Figure 10. Comparison of hardware and software throughput

5.1 Device Utilization

The utilization of FPGA resources for two different
modules is shown in Tables 1 and 2. Table 1 shows
the device utilization for a module containing only the
infrastructure and the protocol wrappers. These values
represent the overhead of the packet processing done
by the protocol wrappers. Table 2 details the device
utilization for a single content editor with the protocol
wrappers and all the necessary infrastructure.

Table 1. Device utilization for infrastructure
and protocol wrappers

XCV2000E Utilization
Resources Utilization Percentage
Logic Slices 2399 out of 19200 12%
Flip Flops 2870 out of 38400 7%

Block RAMs 19 out of 160 11%
External IOBs 142 out of 512 27%

Table 2. Device utilization for FPsed module
with single content editor

XCV2000E Utilization
Resources Utilization Percentage
Logic Slices 2922 out of 19200 15%
Flip Flops 3223 out of 38400 8%

Block RAMs 21 out of 160 13%
External IOBs 142 out of 512 27%

5.2 Throughput

A single content-editing RE module for the HTML
filter was synthesized for the Virtex XCV2000E-8

FPGA that implements the RAD on the FPX plat-
form. The FPGA was placed and routed using the
Xilinx backend tools to run at 64 MHz. This provides
a throughput of 64 MHz * 8 bits/byte = 512 Mbps.

An experiment was run to mimic FPsed’s function-
ality with software running on four different computers.
One computer, a dual Intel Pentium 3 operating at 1
GHz running a Linux 2.2 kernel, achieved 13.7 Mbps
when the sed program (version 3.02) read data from
disk. To ensure that disk I/O was not a bottleneck,
the same program was run completely from memory
and achieved 32.72 Mbps. This is approximately 16x
slower than the FPsed hardware. Another computer,
an Alpha 21364 operating at 667 MHz running Linux
kernel 2.4, was able to search and replace data at 36
Mbps when the input was read from disk, and 50.4
Mbps when the input was run completely from mem-
ory. The fastest computers were 10x slower than the
hardware. Throughput results for all four computers
are shown in Figure 10.

Further increase in the throughput on the FPX plat-
form was achieved by instantiating multiple content ed-
itors in parallel and dispatching incoming packets to an
available editor. With 4 parallel editors, the through-
put can increase four-fold to 2.048 Gbps. This gives
the hardware a 40x advantage over software.

6 Conclusion

This paper has described an implementation of a
streaming content search-and-replace module for an In-
ternet firewall. The module is capable searching packet
payloads and actively replacing the content. The con-
tent editor was implemented on the FPX platform and
tested using a UDP-based chat client over the Inter-
net. The hardware solution was found to be about 64
times faster than similar software solutions when using
parallel content editors.
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