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Abstract— Continuing growth in optical link speeds places in-
creasing demands on the performance of Internet routers, while
deployment of embedded and distributed network services im-
poses new demands for flexibility and programmability. IP ad-
dress lookup has become a significant performance bottleneck for
the highest performance routers. Amid the vast array of aca-
demic and commercial solutions to the problem, few achieve a fa-
vorable balance of performance, efficiency, and cost. New com-
mercial products utilize Content Addressable Memory (CAM) de-
vices to achieve high lookup speeds at an exhorbitantly high hard-
ware cost with limited flexibility. In contrast, this paper describes
an efficient, scalable lookup engine design, able to achieve high-
performance with the use of a small portion of a reconfigurable
logic device and a commodity Random Access Memory (RAM)
device. The Fast Internet Protocol Lookup (FIPL) engine is an
implementation of Eatherton and Dittia’s previously unpublished
Tree Bitmap algorithm [1] targeted to an open-platform research
router. FIPL can be scaled to achieve guaranteed worst-case per-
formance of over 9 million lookups per second with a single SRAM
operating at the fairly modest clock speed of 100 MHz. Experi-
mental evaluation of FIPL throughput, latency, and update perfor-
mance is provided using a sample routing table from Mae West [2].

I. INTRODUCTION

ROUTING of Internet Protocol (IP) packets is the primary
purpose of Internet routers. Simply stated, routing an IP

packet involves forwarding each packet along a multi-hop path
from source to destination. The speed at which forwarding de-
cisions are made at each router or “hop” places a fundamental
limit on the performance of the network. For Internet Proto-
col Version 4 (IPv4), the forwarding decision is based on a
32-bit destination address carried in each packet’s header. A
lookup engine at each port of the router uses a suitable routing
data structure to determine the appropriate outgoing link for the
packet’s destination address.

The use of Classless Inter-Domain Routing (CIDR) compli-
cates the lookup process, requiring a lookup engine to search
variable-length address prefixes in order to find the longest
matching prefix of the destination address and retrieve the cor-
responding forwarding information [3]. As physical link speeds
grow and the number of ports in high-performance routers con-
tinues to increase, there is a growing need for efficient lookup
algorithms and effective implementations of those algorithms.
Next generation routers must be able to support thousands of
optical links each operating at 10 Gb/s (OC-192) or more.
Lookup techniques that can scale efficiently to high speeds and
large lookup table sizes are essential for meeting the growing
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performance demands while maintaining acceptable per-port
costs.

Many techniques are available to perform IP address
lookups. Perhaps the most common approach in high-
performance systems is to use Content Addressable Mem-
ory (CAM) devices and custom Application Specific Integrated
Circuits (ASICs). While this approach can provide excellent
performance, the performance comes at a fairly high price due
to the high cost per bit of CAMs relative to commodity mem-
ory devices. CAM-based lookup tables are expensive to update,
since the insertion of a new routing prefix may require moving
an unbounded number of existing entries. CAM approaches
also offer little or no flexibility for adapting to new addressing
and routing protocols.

The Fast Internet Protocol Lookup (FIPL) technique, de-
veloped at Washington University in Saint Louis, is a high-
performance solution to the lookup problem that implements
Eatherton and Dittia’s previously unpublished Tree Bitmap al-
gorithm [1] using reconfigurable hardware and Random Ac-
cess Memory (RAM). In a Xilinx Virtex 1000E-7 Field Pro-
grammable Gate Array (FPGA) running at 100 MHz and using
a Micron 1 MB Zero Bus Turnaround (ZBT) Synchronous Ran-
dom Access Memory (SRAM), a single FIPL lookup engine
has a guaranteed worst case performance of 1,136,363 lookups
per second. Time-Division Multiplexing (TDM) of eight FIPL
engines over the single 36 bit wide SRAM interface exhausts
the available memory bandwidth and yields a guaranteed worst
case performance of 9,090,909 lookups per second. Still higher
performance is possible with higher memory bandwidths.

Performance evaluations using a snapshot of the Mae-West
routing table resulted in 10,105,148 lookups per second for an
eight FIPL engine configuration. Average memory usage per
entry was 118.8 bits, including a 36-bit next-hop information
field per entry. In addition to space efficiency, the data struc-
ture used by FIPL is straightforward to update, and can support
up to 10,000 updates per second with less than a 9% degrada-
tion in lookup throughput. Targeted to the open-platform re-
search router, implementations utilized standard FPGA design
flows. Ongoing research seeks to exploit new FPGA devices
and more advanced CAD tools in order to double the clock fre-
quency and, therefore, double the lookup performance. Another
research effort leverages the insights and components produced
by the FIPL implementation for an efficient packet classifier for
an open-platform research router [4].

II. RELATED WORK

Numerous research and commercial IP lookup techniques ex-
ist [5][6][7][8]. On the commercial front, several companies
have developed high speed lookup techniques using CAMs and
ASICs. Some current products, targeting OC-768 (40 Gb/s) and



quad OC-192 (10 Gb/s) link configurations, claim throughputs
of up to 100 million lookups per second and storage for 100 mil-
lion entries [9]. However, the advertised performance comes at
an extreme cost. 16 ASICs containing embedded CAMs must
be cascaded in order to achieve the advertised throughput and
support the more realistic storage capacity of one million table
entries. Such exorbitant hardware resource requirements make
these solutions prohibitively expensive and preclude System-
On-Chip (SOC) port processors.

The most efficient lookup algorithm known, from a theoreti-
cal perspective is the “binary search over prefix lengths” algo-
rithm described in [10]. The number of steps required by this
algorithm grows logarithmically in the length of the address,
making it particularly attractive for IPv6, where address lengths
increase to 128 bits. However, the algorithm is relatively com-
plex to implement, making it more suitable for software im-
plementation than hardware implementation. It also does not
readily support incremental updates.

The Lulea algorithm is the most similar of published al-
gorithms to the Tree Bitmap algorithm used in our FIPL en-
gine [8]. Like Tree Bitmap, the Lulea algorithm uses a type of
compressed trie to enable high speed lookup, while maintain-
ing the essential simplicity and easy updatability of elementary
binary tries. While similar at a high level, the two algorithms
differ in a variety of specifics, that make Tree Bitmap somewhat
better suited to efficient hardware implementation. A detailed
comparison of the Tree Bitmap algorithm to other published
lookup techniques is provided in [1].

The remaining sections focus on the design and implemen-
tation details of a fast and scalable lookup engine based on
the Tree Bitmap algorithm. The FIPL engine offers an effi-
cient and flexible alternative geared to System-On-Chip (SOC)
router port processor implementations. With tightly bounded
worst-case performance and minimal update overhead, FIPL is
well-suited for use in high-performance programmable routers,
which must be capable of switching even minimum length
packets at wire speeds [11].

III. TREE BITMAP ALGORITHM

Eatherton and Dittia’s Tree Bitmap algorithm is a hardware
based algorithm that employs a multibit trie data structure to
perform IP forwarding lookups with efficient use of mem-
ory [1]. Due to the use of CIDR, a lookup consists of finding
the longest matching prefix stored in the forwarding table for a
given 32-bit IPv4 destination address and retrieving the associ-
ated forwarding information. As shown in Figure 1, the unicast
IP address is compared to the stored prefixes starting with the
most significant bit. In this example, a packet is bound for a
workstation at Washington University in Saint Louis. A linear
search through the table results in three matching prefixes: *,
10*, and 1000000011*. The third prefix is the longest match,
hence its associated forwarding information, denoted by Next
Hop 7 in the example, is retrieved. Using this forwarding in-
formation, the packet is forwarded to the specified next hop by
modifying the packet header.

To efficiently perform this lookup function in hardware, the
Tree Bitmap algorithm starts by storing prefixes in a binary trie
as shown in Figure 2. Shaded nodes denote a stored prefix.
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Fig. 1. IP prefix lookup table of next hops. Next hops for IP packets are found
using the longest matching prefix in the table for the unicast destination address
of the IP packet.

A search is conducted by using the IP address bits to traverse
the trie, starting with the most significant bit of the address.
To speed up this searching process, multiple bits of the des-
tination address are compared simultaneously. In order to do
this, subtrees of the binary trie are combined into single nodes
producing a multibit trie; this reduces the number of memory
accesses needed to perform a lookup. The depth of the subtrees
combined to form a single multibit trie node is called the stride.
An example of a multibit trie using 4-bit strides is shown in
Figure 3. In this case, 4-bit nibbles of the destination address
are used to traverse the multibit trie. Address Nibble(0) of the
address, 10002 in the example, is used for the root node; Ad-
dress Nibble(1) of the address, 00002 in the example, is used
for the next node; etc.

The Tree Bitmap algorithm codes information associated
with each node of the multibit trie using bitmaps. The Internal
Prefix Bitmap identifies the stored prefixes in the binary sub-
tree of the multi-bit node. The Extending Paths Bitmap iden-
tifies the “exit points” of the multibit node that correspond to
child nodes. Figure 4 shows how the root node of the example
data structure is coded into bitmaps. The 4-bit stride example
is shown as a Tree Bitmap data structure in Figure 5. Note that
a pointer to the head of the array of child nodes and a pointer to
the set of next hop values corresponding to the set of prefixes
in the node are stored along with the bitmaps for each node. By
requiring that all child nodes of a single parent node be stored
contiguously in memory, the address of a child node can be cal-
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Fig. 2. IP lookup table represented as a binary trie. Stored prefixes are denoted
by shaded nodes. Next hops are found by traversing the trie.
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Fig. 3. IP lookup table represented as a multibit trie. A stride, 4-bits, of the
unicast destination address of the IP packet are compared at once, speeding up
the lookup process.

culated using a single Child Node Array Pointer and an index
into that array computed from the extending paths bitmap. The
same technique is used to find the associated next hop informa-
tion for a stored prefix in the node. The Next Hop Table Pointer
points to the beginning of the contiguous set of next hop values
corresponding to the set of stored prefixes in the node. Next
hop information for a specific prefix may be fetched by index-
ing from the pointer location.

The index for the Child Node Array Pointer leverages a con-
venient property of the data structure. Note that the numeric
value of the nibble of the IP address is also the bit position of
the extending path in the Extending Paths Bitmap. For exam-
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Fig. 4. Bitmap coding of a multibit trie node. The internal bitmap represents
the stored prefixes in the node while the extending paths bitmap represents the
child nodes of the current node.

ple, Address Nibble(0) = 10002 = 8. Note that the eighth bit
position, counting from the most significant bit, of the Extend-
ing Paths Bitmap shown in Figure 4 is the extending path bit
corresponding to Address Nibble(0) = 10002. The index of the
child node is computed by counting the number of ones in the
Extending Paths Bitmap to the left of this bit position. In the
example, the index would be three. This operation of comput-
ing the number of ones to the left of a bit position in a bitmap
will be referred to as CountOnes and will be used in later dis-
cussions.

When there are no valid extending paths, Extending Paths
Bitmap is all zeros, the terminal node has been reached and the
Internal Prefix Bitmap of the node is fetched. A logic opera-
tion called Tree Search returns the bit position of the longest
matching prefix in the Internal Prefix Bitmap. CountOnes is
then used to compute an index for the Next Hop Table Pointer,
and the next hop information is fetched. If there are no match-
ing prefixes in the Internal Prefix Bitmap of the terminal node,
then the Internal Prefix Bitmap of the most recently visited node
that contains a matching prefix is fetched. This node is identi-
fied using a data structure optimization called the Prefix Bit.

The Prefix Bit of a node is set if its parent has any stored pre-
fixes along the path to itself. When searching the data structure,
the address of the last node visited is remembered. If the current
node’s Prefix Bit is set, then the address of the last node visited
is stored as the best matching node. Setting of the Prefix Bit in
the example data structure of Figure 3 and Figure 5 is denoted
by a “P”.

IV. HARDWARE DESIGN AND IMPLEMENTATION

Modular design techniques are employed throughout the
FIPL hardware design to provide scalability for various system
configurations. Figure 6 details the components required to im-
plement FIPL in the Port Processor (PP) of a router. Other com-
ponents of the router include the Transmission Interfaces (TI),
Switch Fabric, and Control Processor (CP). Providing the foun-
dation of the FIPL design, the FIPL engine implements a single
instance of a Tree Bitmap search. The FIPL Engine Controller
may be configured to instantiate multiple FIPL engines in order
to scale the lookup throughput with system demands. The FIPL
Wrapper extracts the IP addresses from incoming packets and
writes them to an address FIFO read by the FIPL Engine Con-
troller. Lookup results are written to a FIFO read by the FIPL
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Fig. 6. Block diagram of router with multi-engine FIPL configuration; detail
of FIPL system components in the Port Processor (PP).

Wrapper which accordingly modifies the packet header. The
FIPL Wrapper also handles standard IP processing functions
such as checksums and header field updates. Specifics of the
FIPL Wrapper will vary depending upon the type of switching
core and transmission format. An on-chip Control Processor
receives and processes memory update commands on a dedi-
cated control channel. Memory updates are the result of route
add, delete, or modify commands and are sent from the System
Management and Control components. Note that the off-chip
memory is assumed to be a single port device; hence, an SRAM
Interface arbitrates access between the FIPL Engine Controller
and Control Processor.

A. FIPL Engine

Consisting of a few address registers, a simple Finite-State
Machine (FSM), and combinational logic, the FIPL Engine is a
compact, efficient Tree Bitmap search engine. Implementation
of the FIPL Engine requires only 450 lines of VHDL code. A
dataflow diagram of the FIPL Engine is shown in Figure 7. Data
arriving from memory is latched into the DATA IN REG reg-
ister n clock cycles after issuing a memory read. The value of
n is determined by the read latency of the memory device plus
2 clock cycles for latching the address out of and the data into
the implementation device. The next address issued to mem-
ory is latched into the ADDR OUT REG k clock cycles after
data arrives from memory. The value of k is determined by
the speed at which the implementation device can compute the
next hop addr which is the critical path in the logic. Two coun-
ters, mem count and search count, are used to count the number
of clock cycles for memory access and address calculation, re-
spectively. Use of multicycle paths allows the FIPL engine to
scale with implementation device and memory device speeds
by simply changing compare values in the finite-state machine
logic.

In order to generate next hop addr:

• TREE SEARCH generates prefix index which is the bit
position of the best-matching prefix stored in the Internal
Prefixes Bitmap

• PREFIX COUNTONES generates next hop index which
is the number of 1’s to the left of prefix index in the Inter-
nal Prefixes Bitmap

• next hop index is added to the lower four bits of the Next
Hop Table Pointer
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select lines and flip-flop enables implicitly driven by finite-state machine outputs.

• The carryout of the previous addition is used to select
the upper bits of the Next Hop Table Pointer or the pre-
computed value of the upper bits plus 1

The NODE COUNTONES and identical fast addition blocks
generate the child node addr, but require less time as
the TREE SEARCH block is not in the path. The
ADDR OUT MUX selects the next address issued to memory
among the addresses for the next root node’s Extending Paths
Bitmap and Child Node Array Pointer (root node ptr), the next
child node’s Extending Paths Bitmap and Child Node Array
Pointer (child node addr), the current node’s Internal Prefix
Bitmap and Next Hop Table Pointer (curr node prefixes addr),
the forwarding information for the best-matching prefix
(next hop addr), and the best-matching previous node’s In-
ternal Prefix Bitmap and Next Hop Table Pointer (best-
match prefixes addr). Selection is made based upon the current
state.

VALID CHILD examines the Extending Paths Bitmap and
determines if a child node exists for the current node based
on the current nibble of the IP address. The output of
VALID CHILD, prefix index, mem count, and search count
determine state transitions as shown in Figure 8. The current
state and the value of the P BIT determine the register enables

for the BESTMATCH PREFIXES ADDR REG and the BEST-
MATCH STRIDE REG which store the address of the Internal
Prefixes Bitmap and Next Hop Table Pointer of the node con-
taining best-matching prefixes and the associated stride of the
IP address, respectively.

B. FIPL Engine Controller

Leveraging the uniform memory access period of the FIPL
Engine, the FIPL Engine Controller employs a simple Time Di-
vision Multiplexing (TDM) design to scale lookup throughput
in order to meet system demands. The scheme centers around a
timing wheel with a number of slots equal to the FIPL Engine
memory access period. When an address is read from the in-
put FIFO, the next available FIPL Engine is started at the next
available time slot. The next available time slot is determined
by indexing the current slot time by the known startup latency
of a FIPL Engine. For example, assume an access period of 8
clock cycles; hence, the timing wheel has 8 slots numbered 0
through 7. Assume three FIPL Engines are currently perform-
ing lookups occupying slots 1, 3, and 4. Furthermore, assume
that from the time the IP address is issued to the FIPL Engine to
the time the FIPL Engine issues its first memory read is 2 clock
cycles; hence, the startup latency is 2 slots. When a new IP ad-
dress arrives, the next lookup may not be started at slot times
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Fig. 8. FIPL engine finite-state-machine bubble diagram.

7, 1, or 2 because the first memory read would be issued at slot
time 1, 3, or 4, respectively which would interfere with ongoing
lookups. Assume the current slot time is 3; therefore, the next
FIPL engine is started and slot 5 is marked as occupied.

As previously mentioned, input IP addresses and output for-
warding information are passed between the FIPL Engine Con-
troller and the FIPL Wrapper via FIFO interfaces. This design
simplifies the design of the FIPL Wrapper by placing the burden
of in-order delivery of results on the FIPL Engine Controller.
While individual input and output FIFOs could be used for each
engine to prevent head-of-the-line blocking, network designers
will usually choose to configure the FIPL Engine Controller as-
suming worst-case lookups. Also, the performance numbers re-
ported in a subsequent section show that average lookup latency
per FIPL Engine increases by less than 6% for an 8-engine con-
figuration; therefore, lookup engine “dead-time” is negligible.

C. Implementation Platform

FIPL is implemented on open-platform research systems de-
signed and built at Washington University in Saint Louis [12].
The WUGS 20, an 8-port ATM switch providing 20 Gb/s of
aggregate throughput, provides a high-performance switching
fabric [13]. This switching core is based upon a multi-stage
Benes topology, supports up to 2.4 Gb/s link rates, and scales
up to 4096 ports for an aggregate throughput of 9.8 Tb/s [14].
Each port of the WUGS 20 can be fitted with a Field Pro-
grammable Port Extender (FPX), a port card of the same form
factor as the WUGS transmission interface cards [15]. Each
FPX contains two FPGAs, one acting as the Network Interface
Device (NID) and the other as the Reprogrammable Applica-
tion Device (RAD). The RAD FPGA has access to two 1MB
Zero Bus Turnaround (ZBT) SRAMs and two 64MB SDRAM

modules providing a flexible platform for implementing high-
performance networking applications [16].

To allow for packet reassembly and other processing func-
tions requiring memory resources, the FIPL has access to one of
the 8 Mbit ZBT (Zero Bus Turnaround) SRAMs which require
18-bit addresses and provide a 36-bit data path with a 2-clock
cycle latency. Since this memory is ”off-chip” both the address
and data lines must be latched at the pads of the FPGA, provid-
ing for a total latency to memory of n = 4 clock cycles. Utilizing
a 4-bit stride the Extending Paths Bitmap is 16-bits long, occu-
pying less than a half-word of memory. The remaining 20-bits
of the word are used for the Prefix Bit and Child Node Array
Pointer; hence, only one memory access is required per node
when searching for the terminal node. Likewise, the Internal
Prefix Bitmap and Next Hop Table Pointer may be stored in a
single 36-bit word; hence, a single node of the Tree Bitmap
requires two words of memory space. 131,072 nodes may be
stored in one of the 8Mbit SRAMs providing a maximum of
1,966,080 stored routes. Note that the memory usage per route
entry is dependent upon the distribution of prefixes in the data
structure. Memory usage for the experimental data structure is
reported in the Performance section.

In this configuration, the pathological lookup requires 11
memory accesses: 8 memory accesses to reach the terminal
node, 1 memory access to search the sub-tree of the terminal
node, 1 memory access to search the sub-tree of the most re-
cent node containing a match, and 1 memory access to fetch
the forwarding information associated with the best-matching
prefix. Since the FPGAs and SRAMs run on a synchronous
100MHz clock, all single cycle calculations must be completed
in less than 10ns. The critical path in the FIPL design, re-
solving the next hop addr, requires more than 20 ns when tar-
geted to the RAD FPGA of the FPX, a Xilinx XCV1000E-7;
hence, k is set to 3. This provides a total memory access period
of 80 ns and requires 8 FIPL engines in order to fully utilize
the available memory bandwidth. Theoretical worst-case per-
formance, all lookups requiring 11 memory accesses, ranges
from 1,136,363 lookups per second for a single FIPL engine
to 9,090,909 lookups per second for eight FIPL engines in this
implementation environment.

As the WUGS 20 supports a maximum line speed of 2.4
Gb/s, a 4-engine configuration is used in the Washington Uni-
versity system. Due to the ATM switching core, the FIPL
Wrapper supports AAL5 encapsulation of IP packets inside of
ATM cells [17]. Relative to the Xilinx Virtex 1000E FPGA
used in the FPX, each FIPL Engine utilizes less than 1% of
the available logic resources. Configured with 4 FIPL Engines,
FIPL Engine Controller utilizes approximately 6% of the logic
resources while the FIPL Wrapper utilizes another 2% of the
logic resources and 12.5% of the on-chip memory resources.
This results in an 8% total logic resource consumption by FIPL.
The SRAM Interface and Control Processor which parses con-
trol cells and executes memory commands for route updates
utilize another 8% of the available logic resources and 2% of
the on-chip memory resources. Therefore, all input IP forward-
ing functions occupy 16% of the logic resources leaving the re-
maining 84% of the device available for other packet processing
functionality.



V. SYSTEM MANAGEMENT AND CONTROL COMPONENTS

System management and control of FIPL in the Washington
University system is performed by several distributed compo-
nents. All components were developed to facilitate further re-
search using the open-platform system.

A. NCHARGE

NCHARGE is the software component that controls repro-
grammable hardware on a switch. Figure 9 shows the role of
NCHARGE in conjunction with multiple FPX devices within a
switch. The software provides connectivity between each FPX
and multiple remote software processes via TCP sockets that
listen on a well-defined port. Through this port, other software
components are able to communicate to the FPX using its spec-
ified API. Because each FPX is controlled by an independent
NCHARGE software process, distributed management of en-
tire systems can be performed by collecting data from multiple
NCHARGE elements. [18].
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Fig. 9. Detail of the hardware and software components that comprise the FPX
system. Each FPX is controlled by an NCHARGE software process. The con-
tents of the memories on the FPX modules can be modified by remote processes
via the software API to NCHARGE.

B. FIPL Memory Manager

The FIPL Memory Manager is a stand alone C++ application
that accepts commands to add, delete, and update routing en-
tries for a hardware-based Internet router. The program main-
tains the previously discussed Tree Bitmap data structure in a
shared memory between hardware and software . When a user
enters route updates, the FIPL Memory Manager Software re-
turns the corresponding memory updates needed to perform that
operation in the FPX hardware.

Command options:
[A]dd
[D]elete
[C]hange

[P]rint
[M]emoryDump
[Q]uit

Enter command (h for help): A
You entered add

Enter prefix x.x.x.x/s
(x = 0-255, s is significant bits 0-32) :
192.128.1.1/8

Enter Next Hop value: 4
******
Memory Update Commands:

w36 0 4 2 000000000 100000006
w36 0 2 2 200000004 000000000
w36 0 0 2 000200002 000000000

In the example shown here a single add route command re-
quires three 36-bit memory write commands, each consisting
of 2 consecutive locations in memory at addresses 4, 2, and 0,
respectively.

C. Sockets Interfaces

In order to access the FIPL Memory Manager as a daemon
process, support software needs to be in place to handle stan-
dard input and output. Socket software was developed to han-
dle incoming route updates to pass along to the FIPL Memory
Manager. A socket interface was also developed to send the re-
sulting output of a memory update to the NCHARGE software.
These software processes handling input and output are called
Write Fip and Read Fip, respectively. Write Fip is constantly
listening on a well known port for incoming route update com-
mands. Once a connection is established the update command
is sent as an ASCII character string to Write Fip. This soft-
ware prints the string as standard output which is redirected to
the standard input of FIPL Memory Manager. The memory up-
date commands needed by NCHARGE software to perform the
route update are issued at the output of FIPL Memory Manager.
Read Fip receives these commands as standard input and sends
all of the memory updates associated with one route update over
a TCP socket to the NCHARGE software.

D. Remote User Interface

The current interface for performing route updates is via a
web page that provides a simple interface for user interaction.
The user is able to submit single route updates or a batch job of
multiple routes in a file. Another option available to users is the
ability to define unique control cells. This is done through the
use of software modules that are loaded into the NCHARGE
system.

In the current FIPL Module, a web page has been designed to
provide a simple interface for issuing FIPL control commands,
such as changing the Root Node Pointer. The web page also
provides access to a vast database of sample route table entries
taken from the Internet Performance Measurement and Analy-
sis project’s website [2]. This website provides daily snapshots
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Fig. 11. FPX Web Interface for FIPL route updates.

of Internet backbone routing tables including traditional Class
A, B, and C addresses. Selecting the download option from the
FIPL web page executes a Perl script to fetch the router snap-
shots from the database. The Perl script then parses the files and
generates an output file that is readable by the Fast IP Lookup
Memory Manager.

E. Command Flow

The overall flow of data with FIPL and NCHARGE is shown
in Figure 10. Suppose a user wishes to add a route to the
database. The user first submits either a single command or sub-
mits a file containing multiple route updates. Data submitted
from the web page, Figure 11, is passed to the Web Server as a
form. Local scripts process the form and generate an Add Route
command that the software understands. These commands are
ASCII strings in the form “Add route A1.A2.A3.A4/netmask
nexthop”. The script then sets up a TCP Socket and transmits
each command to the Write Fip software process. As men-
tioned before Write fip listens on a TCP port and relays mes-
sages to standard output in order to communicate with the FIPL
Memory Manager. FIPL Memory Manager takes the standard
input and processes the route command in order to generate
memory updates for an FPX board. Each memory update is
then passed as standard output to the Read Fip process.

After this process collects memory updates it establishes a
TCP connection with NCHARGE to transmit the commands.
Read Fip is able to detect individual route commands and is-
sues the set of memory updates associated with each. This pre-
vents Read Fip from creating a socket for every memory up-
date. From here memory updates are sent to NCHARGE soft-
ware process to be packed into control cells to send to the FPX.
NCHARGE packs as many memory commands as it can fit into
a 53 byte ATM cell while preserving order between commands.
NCHARGE sends these control cells using a stop-and-wait pro-
tocol to ensure correctness, then issues a response message to
the user.

VI. PERFORMANCE

While the worst-case performance of FIPL is deterministic,
an evaluation environment was developed in order to bench-
mark average FIPL performance on actual router databases. As
shown in Figure 12, the evaluation environment includes a mod-
ified FIPL Engine Controller, 8 FIPL Engines, and a FIPL Eval-
uation Wrapper. The FIPL Evaluation Wrapper includes an
IP Address Generator which uses 16 of the available on-chip
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Fig. 12. Block diagram of FIPL evaluation environment.

BlockRAMs in the Xilinx Virtex 1000E to implement storage
for 2048 IPv4 destination addresses. The IP Address Generator
interfaces to the FIPL Engine controller like a FIFO. When a
test run is initiated, an empty flag is driven to FALSE until all
2048 addresses are read.

Control cells sent to the FIPL Evaluation Wrapper initiate
test runs of 2048 lookups and specify how many FIPL Engines
should be used during the test run. The FIPL Engine Controller
contains a latency timer for each FIPL Engine and a throughput
timer that measures the time required to complete the test run.
Latency timer values are written to a FIFO upon completion
of each lookup. The FIPL Evaluation Wrapper packs latency
timer values into control cells which are sent back to the system
control software where the contents are dumped to a file. The
throughput timer value is included in the final control cell.

Using a portion of the Mae-West snapshot from July 12,
2001, a Tree Bitmap data structure consisting of 16,564 routes
was loaded into the off-chip SRAM. The Tree Bitmap data
structure, including a one word next-hop value per entry, occu-
pied 55,158 words of memory. This is an average of 3.3 words
or 118.8 bits per entry given the 36-bit wide ZBT SRAM.

The on-chip memory read by the IP Address Generator was
initialized with 2048 destination addresses randomly selected
from the route table snapshot. Test runs were initiated using
configurations of 1 through 8 engines. Figure 13 shows the re-
sults of test runs without intervening update traffic. Plots of the
theoretical performance for all worst-case lookups is shown for
reference. Figure 14 shows the results of test runs with var-
ious intervening update frequency. An update consisted of a
route addition requiring 12 memory writes packed into 3 con-
trol cells.

With no intervening update traffic, lookup throughput ranged
from 1,526,404 lookups per second for a single FIPL engine to
10,105,148 lookups per second for 8 FIPL engines. Average
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Fig. 13. FIPL performance: measurements used a sample database from Mae
West on July 12, 2001 consisting of 16,564 routes. Input test vectors consisted
of random selections of 2048 IPv4 destination addresses.

lookup latency ranged from 624 ns for a single FIPL engine to
660 ns for 8 FIPL engines. This is less than a 6% increase in av-
erage lookup latency over the range of FIPL Engine Controller
configurations.

Note that update frequencies up to 1,000 updates per sec-
ond have little to no effect on lookup throughput performance.
An update frequency of 10,000 updates per second exhibited
a maximum performance degradation of 9%. Using the near
maximum update frequency supported by the Control Proces-
sor of 100,000 updates per second, lookup throughput perfor-
mance is degraded by a maximum of 62%. Note that this is a
highly unrealistic situation, as update frequencies rarely exceed
1,000 updates per second.

VII. ONGOING RESEARCH

Two ongoing research efforts seek to leverage the compo-
nents and insights gained from implementing Fast IP Lookup
(FIPL) on the open research platforms developed at Washington
University. The first effort works to increase the performance
of FIPL given architectural and device optimizations. Coupled

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8
# of FIPL engines

M
ill

io
ns

 o
f 

lo
ok

up
s 

pe
r 

se
co

nd

1,000 updates per second
10,000 updates per second
100,000 updates per second
No updates

Fig. 14. FIPL performance under update load: measurements used a sample
database from Mae West on July 12, 2001 consisting of 16,564 routes. Input test
vectors consisted of random selections of 2048 IPv4 destination addresses. A
single update consisted of a route addition requiring 12 memory writes packed
into 3 control cells.

with advances in FPGA device technology, implementation op-
timizations of critical paths in the FIPL engine circuit hold
promise of doubling the system clock frequency to 200 MHz
in order to take full advantage of the memory bandwidth of-
fered by the ZBT SRAMs. Doubling of the clock frequency
directly translates to a doubling of the lookup performance to
a guaranteed worst case throughput of over 18 million lookups
per second.

The CountOnes operation can be accelerated by replacing the
current multi-level logic implementation with a table lookup
tailored to the specific resources available on the FPGA. The
Virtex FPGA provides columns of dual-ported 4096 bit Block-
RAMs, which can be configured to various sizes. Two Block-
RAMs in a 2048 x 2 organization, whose contents are initial-
ized by the FPGA’s configuration bitstream, can be combined
to act as a dual-ported 2048 x 4 Read Only Memory (ROM). In
addition, the BlockRAMs feature a registered output with syn-
chronous reset which facilitates pipelining. A single ROM can
perform the CountOnes table lookup on the lower 8 bits and



upper 8 bits of a 16-bit bitmap simultaneously, since each ad-
dress port has 11 bits (8 bits for the bitmap value and 3 bits for
selecting the number of bit positions to be counted). The lower
and upper count values must then be added to the base pointer,
either the Next Hop Table Pointer or the Child Array Pointer, to
determine the address of the next memory location to be read.
A single level of logic is required at the ROM address inputs to
force all 8 lower bits to be counted for 4-bit stride values of 8
or more. The output register resets are used to force all outputs
to zero when the stride value is zero and the upper count value
to zero when the stride value is 8 or less.

Experiments with this FPGA-specific implementation of the
Countones operation have shown that, with appropriate pipelin-
ing at the BlockRAM address inputs as well as the output addi-
tions, operation in excess of 100 MHz with no multicycle paths
is feasible. This means that two engines built in this fashion
could fully utilize the available bandwidth of a ZBT SRAM
running at 200 MHz.

The second ongoing research effort seeks to leverage the per-
formance and efficiency of FIPL for high-performance packet
classification. Longest-prefix match is one of the fundemental
search operations required to perform packet classification on
multiple fields. Current research in the Multi-Service Router
(MSR) project at Washington University in Saint Louis utilizes
many of the insights and components gained from the FIPL im-
plementation in the design and implementation of the packet
classifier of an open-platform research router [4].

VIII. CONCLUSIONS

As optical link speeds continue to increase demands for per-
formance and embedded network services impose flexibility de-
mands, Internet routers must become more efficient and pro-
grammable. IP address lookup is one of the primary func-
tions of the router and often is a significant performance bottle-
neck. Fast Internet Protocol Lookup (FIPL) utilizes Eatherton
and Dittia’s Tree Bitmap algorithm, reconfigurable hardware,
and Random Access Memory (RAM) to implement a scalable,
high-performance IP lookup engine capable of at least 9 mil-
lion lookups per second. Utilizing only a fraction of a recon-
figurable logic device and a single RAM device, FIPL offers
an attractive alternative to expensive commercial solutions em-
ploying multiple Content Addressable Memory (CAM) devices
and Application Specific Integrated Circuits (ASICs). By pro-
viding high-performance at low per-port costs, FIPL is a prime
candidate for System-On-Chip (SOC) solutions for next gener-
ation programmable router port processors.
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