Designing Digital Circuits
a modern approach

Jonathan Turner






Contents

I

1

First Half

Introduction to Designing Digital Circuits

1.1 Getting Started . . . . . . . .. Lo oo
1.2 Gatesand FlipFlops . . . . .. ... ... ... ........
1.3 How are Digital Circuits Designed? . . . . . . ... ... ...
1.4 Programmable Processors . . . .. .. .. .. ... ... ...
1.5 Prototyping Digital Circuits . . . . . . .. .. ... ... ...

First Steps

2.1 A Simple Binary Calculator . . . . ... .. ... ... ....
2.2 Representing Numbers in Digital Circuits . . . . . .. .. ..
2.3 Logic Equations and Circuits . . . . ... ... ... .....

Designing Combinational Circuits With VHDL

3.1 The entity and architecture . . . . . . ... ... .. ... ..
3.2 Signal Assignments . . . . . . ... ...
3.3 Processes and if-then-else . . . . . ... ... ... ...

Computer-Aided Design

4.1 Overview of CAD Design Flow . . . ... ... ... .....
4.2 Starting a New Project . . . . . . .. .. .. ... ...
4.3 Simulating a Circuit Module . . . . . . . ... ... ... ...
4.4 Preparing to Test on a Prototype Board . . . . . . ... ...
4.5 Simulating the Prototype Circuit . . . . . . . . .. ... ...

3

[S)

©

10
12
15

17
17
21
24

33
34
39
43



11

CONTENTS

4.6 Testing the Prototype Circuit . . . . . ... .. .. ... ... 70
More VHDL Language Features 77
5.1 Symbolic constants . . . . . ... ..o 78
5.2 For and case statements . . . . . ... ..o 81
5.3 Synchronous and Asynchronous Assignments . . .. ... .. 86
5.4 Structural VHDL . . . . . . ... ... .. oL 89
Building Blocks of Digital Circuits 93
6.1 Logic Gates as Electronic Components . . . . . . ... .. .. 93
6.2 Storage Elements . . . . . .. ... ... 0oL 98
6.3 Larger Building Blocks . . . . . .. .. ... ... ... ... 100
6.4 Lookup Tables and FPGAs . .. .. ... ... ... ..... 105
Sequential Circuits 109
7.1 A Fair Arbiter Circuit . . . . .. ... ... ... ... .... 110
7.2 Garage Door Opener . . . . . . . . .. ... ... ..... 118
State Machines with Data 127
81 Pulse Counter . . . . . . . .. ... 127
8.2 Debouncer. . . . .. .. .. ... e 134
8.3 Knob Interface . . . .. ... ... 137
8.4 Two Speed Garage Door Opener . . . . . ... ... ..... 141
Second Half 147
Still More VHDL 149
9.1 Making Circuit Specifications More Generic . . . . . . .. .. 149
9.2 Arraysand Records . . . . . ... ... .. ... ... 152
9.3 Using Assertions to Detect Bugs . . . . .. ... ... .. .. 155
9.4 VHDL Variables . . . . ... ... ... ... ......... 156
9.5 Functions and Procedures . . . . . . .. ... ... ... .. 159



CONTENTS

10 Design Studies

10.1 Four-way Max Finder . . . . .. ... ... ....
10.2 Binary Input Module . . . . . . ... ... ... ..
10.3 LCD Display Module . . . . . . .. ... ... ...
10.4 Binary Output Module . . . . . . . . .. ... ...

11 Verifying Circuit Operation

11.1 Assertion Checking in Circuit Specifications
11.2 Testing Combinational Circuits . . . . . .. .. ..
11.3 Testing State Machines . . . . .. ... ... ...
11.4 Testing Larger Circuits . . . . . . . .. ... . ...

12 Continuing Design Studies

12.1 Simple Data Queue . . . . . . . .. ... L.
12.2 Packet FIFO . . .. ... ... ... ... .....
12.3 Priority Queue . . . . . ... ...

13 Small Scale Circuit Optimization

13.1 Algebraic Methods . . . . .. .. ... ... ....
13.2 Algorithmic Methods . . . . . . .. ... ... ...

14 Still More Design Studies

14.1 VGA Display Circuit . . . . . . . . ... ... ...
14.2 Mine Sweeper Game . . . . . . ... ... ... ..

15 Implementing Digital Circuit Elements

15.1 Gates and Transistors . . . . ... ... ... ...
15.2 Delays in Circuits . . . . . . . . .. ... ... ...
15.3 Latches and Flip Flops . . . . . . . ... ... ...

16 Timing Issues in Digital Circuits

16.1 Flip Flop Timing Parameters . . . . ... ... ..
16.2 Metastability and Synchronizers . . . .. ... ..

163
163
168
172
175

179
180
181
187
195

197
197
202
212

219
220
224

235
235
245

265
265
272
275



6 CONTENTS

IIT Third Half

17 Introduction to Programmable Processors
17.1 Overview of the WASHU-2 Processor . . . . . . .. ... ...
17.2 Machine Language Programming . . . . . . . ... ... ...
17.3 Prototyping the WASHU-2 . . . . . .. .. ... ... .....
17.4 Using Subprograms . . . . . . . . . . . .. ...

18 Implementing a Programmable Processor
18.1 Overview of the Implementation . . . .. .. ... ... ...
18.2 Signal Timing . . . . . . . . . ... .. L oo
18.3 VHDL Implementation . . . . . .. .. .. ... ... .....

19 Supporting Components
19.1 Overview of the Complete System . . . . .. ... ... ...
19.2 Implementing the Console . . . . . . .. ... ... .. ...,

20 Memory Components
20.1 SRAM Organization and Operation . . .. ... ... .. ..
20.2 Alternate Memory Organizations . . . . . . ... .. ... ..
20.3 Dynamic RAMs . . . . . . . .. ... ...

21 Improving Processor Performance
21.1 A Brief Look Back at Processor Design . . . . ... ... ..
21.2 Alternate Instruction Set Architectures. . . . . . .. . .. ..
21.3 Implementing the WASHU-16 . . . ... ... ... .. ...

22 Improving Processor Performance Even More
22.1 Cache Basics . . . . . ... ... ... . ... ..
22.2 A Cache for the WASHU-2 . . . . ... ... ... ... ...
22.3 Beyond Direct-Mapped Caches . . . . .. ... ... .....
22.4 Other Ways to Boost Performance . . . . ... .. ... ...

295

297
297
302
309
312

321
321
323
326

337
337
341

353
353
360
362

365
365
367
372

387



CONTENTS 7

23 Making Circuits Faster 399
23.1 Faster Increment Circuits . . . . . . . . . . . . .. ... ... 399
23.2 Faster Adder Circuits . . . . . . . . .. .. ... ... .... 403
23.3 Other Linear Circuits . . . . . . . . . . . . . ... ... ... 405
23.4 Multiplication Circuits . . . . . . . . . .. ... ... ..., 408

24 Producing Better Circuits Using VHDL 413
24.1 Some Motivating Examples . . . . .. ... ... ... .... 414
24.2 Estimating Resource Usage . . . . . . ... .. ... .. ... 418

24.3 Estimating and Reducing Resource Usage . . . . . .. .. .. 421



CONTENTS



Part 1

First Half






Chapter 1

Introduction to Designing
Digital Circuits

1.1 Getting Started

This book is all about the design of digital circuits. So what exactly are digi-
tal circuits and why should we care about them? Let’s start with the second
part of that question. Simply put, digital circuits have become a ubiqui-
tous and indispensable part of modern life. They are in our computers, our
cell phones, our cars, our televisions, our wrist watches. Almost everywhere
you look, you can find digital circuits, and new applications are being de-
veloped all the time. Surprisingly, this is a fairly recent phenomenon. In
1960, digital circuits were just beginning to find commercial application and
very few people would ever encounter one in their daily lives. By the mid
1970s, hand-held calculators were starting to become popular with scientists,
engineers and students, and by the mid 1980s personal computers started to
get widespread use. Since then, the growth in the use of digital circuits has
been explosive, and today it’s hard to imagine living without them.

So how is it that digital circuits have become such a big deal in such
a short time? There are two key inventions that have driven the digital
revolution. The first was the invention of the transistor in the late 1940s,
and the second was the invention of the integrated circuit in the late 1950s.

11



12 Designing Digital Circuits (C) Jonathan Turner

Now, transistors are the essential building block used to construct digital
circuits, and integrated circuit technology is a manufacturing process that
allows many transistors to be fabricated at once and wired together to create
complex circuits. While early integrated circuits contained just a handful of
transistors, advances in the fabrication processes now allow us to produce
circuits with billions of transistors on a silicon chip the size of a fingernail.

Now there is another big reason that digital circuits have become so
successful, and that brings us to that word “digital”. The defining property
of a digital circuit is that it uses voltages and currents to represent logical
values, commonly denoted as ‘0’ and ‘1’. Now what’s important about this is
that because digital circuits represent logical values, it’s possible to combine
the basic building blocks of a digital circuit using just the rules of logic,
and the rules of logic are a whole lot simpler than the laws of physics that
ultimately determine how circuits behave. This gives digital circuits a kind
of modularity that more general analog circuits lack. It is that modularity
that allows us to create circuits of mind-boggling complexity that do what
we expect them to do, reliably and consistently. Now this is not to say that
we can escape the laws of physics entirely. Physical properties do place some
constraints on how digital circuit components can be combined and the speed
with which they operate. Nonetheless, when designing digital circuits we can
largely ignore the underlying physics and focus most of our attention on how
to combine components in a way that produces a desired logical behavior.

There is still another big reason that digital circuits have become so suc-
cessful and that is the programmable processor, arguably the most important
digital circuit of all. What makes it so important is its remarkable flexibil-
ity, and the key to that flexibility is programmability. While a processor is
just a single circuit, it can be programmed to implement a remakable diver-
sity of functions. This programmability means that one device can do many
different things. So the same processor can be used in a wrist watch or a
calculator, and at different times it can do different things, as the plethora
of cell phone apps amply demonstrates. Perhaps the most amazing thing
about the progammable processor is that it can be a relatively simple cir-
cuit. Programmability does not require a lot of complexity and while modern
processors are pretty complex, we’ll see that most of that complexity is there
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for the sole purpose of improving performance. The essential feature of pro-
grammability does not require it.

As you progress through the book, you will learn about the building
blocks of digital circuits and how they can be put together to build complex
systems. You will learn about how circuits can be constructed efficiently
using the rules of logic, and how modern hardware description languages can
be used to simplify the specification of larger circuits. You will learn how
circuit designs are debugged using a circuit simulator and how programmable
logic devices can be used to implement the circuits you design. You will see
lots of different examples of digital circuits and have the opportunity to
develop your own digital design skills. As you move on to the later chapters,
you will learn how to implement a programmable processor and how it can
be programmed using a simple assembly language. You wil also learn about
the factors that limit processor performance, and how processor designers
overcome these limitations using a variety of different techniques.

1.2 Gates and Flip Flops

Figure 7?7 shows the three fundamental components of a digital circuit, the
AND gate, the OR gate and the inverter. As its name suggests, the output

AND gate OR gate inverter

of an AND gate is the logical AND of its two inputs. That is, if both of the
inputs are ‘1’, the output is ‘1’; otherwise, the output is zero. We use the
symbol ‘-’ to denote the logical AND operation. Similarly, the output of the
OR gate is ‘1’ if either of its inputs is ‘1’; otherwise the output is ‘0. We
use the plus symbol ‘+’ to denote the OR operation. Finally, the output of
the inverter is just the logical complement of its input, and we will use the
prime symbol to denote the logical complement.

Note that the inputs to these devices can change at any time, and as
the inputs change, the outputs change in response. For now, we will view
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gates as idealized devices that respond instantaneously to changes at their
inputs. Later, we’ll see see that real physical gate implementations do require
a small, but non-zero amount of time to respond to input changes. This has
important important practical implications for how we design circuits to
obtain the best possible performance.

The figure below shows another key building block of digital circuits, the
flip flop.

D flip-flop
D—D Q—
clk—>C

store value of D on
rising clock edge

A flip flop is a storage device that holds a single logical value. There
are actually several different types of flip flop, but the most common is the
simple D flip flop shown here. A D flip flop has two inputs, the data input
(labelled ‘D’) and the clock input (labelled ‘>C’). The output (labelled ‘Q’)
is always equal to the value stored in the flip flop. The stored value changes
when the clock input changes from ‘0’ to ‘1’. More precisely, on each rising
clock transition, the value that appears on the D input is stored in the flip
flop. That value will remain unchanged until the next rising clock transition.
In a later chapter, we will see how flip flops can be implemented using gates,
but for now we will simply treat the flip flop as a basic building block.
Remarkably, the three gates and the D flip flop are all one needs to construct
any digital circuit. As we proceed, we’ll see many examples of how they can
be combined to produce a variety of interesting circuits.

1.3 How are Digital Circuits Designed?

Ultimately, a digital circuit is just a collection of gates and flip flops that are
connected together. So, the essence of the design process is to specify exactly
what gates and flip flops should be used and how they should be connected in
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order to produce a circuit that behaves in a desired way. One way to specify
a circuit is using a schematic diagram that shows a collection of components,
that are connected to one other with lines drawn on the page. Designing
digital circuits using hand-drawn diagrams is an entirely reasonable thing
to do for circuits of moderate size, and indeed most digital circuits were
designed in exactly this way until well into the 1980s. As the complexity of
digital systems has increased, computer-aided design tools were developed
to reduce the amount of manual effort required to specify circuits and verify
that they worked correctly.

The first computer-aided design tools simply replaced hand-drawn dia-
grams with diagrams that were drawn using a graphical editor. This did not
greatly simplify the designer’s job, but did make it possible to automate the
later steps in the process required to turn the designer’s logic diagram into a
collection of transistors on an actual integrated circuit device. A bigger step
forward was the introduction of hardware description languages that allowed
circuit designers to specify circuits using a language similar to the high level
programming languages used for computer software. While the net result of
the design process was still a circuit composed of gates and flip flops, the use
of higher level languages allowed designers to focus most of their attention
on the behavior they wanted their circuits to have, and worry less about the
details of how the circuit components are connected to each other.

The other big advance in computer-aided design was the development
of circuit simulators. A simulator is a piece of software that mimics the
behavior of a circuit and provides a visual display to allow a designer to
observe how internal signals change as the circuit operates. Simulators are
powerful tools that allow designers to see the effects of errors in their circuit
designs and track those errors back to their underlying causes. They can be
used to construct comprehensive test suites, known as testbenches, to verify
that circuits operate correctly under a wide range of conditions. Thorough
simulation-based testing of circuits is extremely important, because the costs
of errors in manufactured circuits can be extremely high. One production
run of an integrated circuit can cost millions of dollars and delay the launch
of a new product by many months, so it is important to get it right the first
time. Errors discovered after a product is sold are even more costly, often
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requiring product recalls and rebates to unhappy customers.

1.4 Programmable Processors

As mentioned before, the programmable processor is arguably the most im-
portant digital circuit of all. in a later chapter, we will introduce a basic
programmable processor called the WashU-2. Here we give a brief preview
to whet your appetite for what’s to come. The figure below shows a generic
processor and an attached memory device.

Address 0
ALU 1
< Data > %
regisl'ers enable
read/write
Processor —————— | Memory

The memory can be viewed as a one-dimensional array of storage loca-
tions, each of which is identified by an integer index, called its address. Each
location can store a fixed-length integer (in modern processors, they are typ-
ically 32 or 64 bits). Memory addresses are also fixed-length integers and
the number of memory locations is limited by the number of bits used to
specify an address. There are several signals that connect the processor to
the memory. To retrieve a value stored in the memory, the processor enables
the memory (using the enable signal) holds the read/write signal high and
places the address of the desired memory location on the address lines. The
memory device responds by putting the value stored at that location on the
data lines. To write a value to the memory, the processor enables the mem-
ory, holds the read/write signal low, puts the address of the location to be
written on the address lines and the data value to be written on the data
lines.

The processor includes some internal storage locations called registers.
Some registers have special functions, while others are referred to as general-
purpose registers. These are typically used to hold intermediate data values
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during the course of a longer computation. Modern processors typically
have hundreds of registers, but large register sets are not essential. Indeed
the WashU-2 has just four registers, only one of which can be viewed as
general-purpose. Many processor instructions use a component called the
Arithmetic and Logic Unit (ALU), which implements a variety of common
functions, such as addition, subtraction, logical AND/OR and so forth.

The memory is used to store two types of information: instructions and
data. Data refers to values that a program operates on, and the instruc-
tions specify how the data is processed. A typical instruction might add two
numbers together, or transfer a value between the processor and the mem-
ory. The processor repeatedly performs a basic processing cycle in which it
fetches an instruction from memory and then executes that instruction. Of
course each instruction is just a set of bits, but the processor interprets those
bits as an instruction specification. So for example, the first few bits of an
instruction might specify the type of operation to be performed (addition,
subtraction, ...) while the remaining bits specify the location of any data it
requires. This simple repetitive process is at the core of any programmable
processor. Because programs can consist of arbitrary instruction sequences,
processors can implement an endless variety of different functions. The power
of a programmable processor comes from the flexibility that results from this
simple repetitive cycle and the tremendous speed with which the cycle can
be repeated (billions of times per second in modern computers).

The figure below provides a peek into the internal operation of the WashU-
2. Specifically, it shows a waveform display from a simulation of a running
processor.
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Signal names appear in the left part of the window and the main area
shows how the values of different signals changes over time. The first few
signals are the ones connecting the processor and the memory. By observing
these signals, we can see values being transferred between the processor and
specific memory locations. For example, the first time the enable signal
goes high, the hexadecimal value 1000 is read from location 0, while the
third time the enable goes high, the value 0000 is written to location 0011.
The signal labeled state shows what the processor is doing at each point in
time. Note the repeated instruction fetches. Between each pair of fetches an
instruction is executed, although in this waveform display only the first two
or three letters of the instruction name appear. The four processor registers
are the Program Counter (PC), the Instruction Register (IREG), the Indirect
Address Register (IAR) and the Accumulator (AcC). These appear towards
the bottom of the window. When we study the processor in depth, we will
see how the registers are used to implement the Washu-2’s basic fetch-and-
execute cycle.
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1.5 Prototyping Digital Circuits

After a digital circuit is designed, it must be manufactured, usually in the
form of an integrated circuit. The manufacturing process for modern inte-
grated circuits is a complex and sophisticated one, and it can cost millions
of dollars to produce even small quantities of a new circuit. To reduce the
likelihood of errors in a manufactured circuit, designers often prototype their
designs using a special kind of integrated circuit called a Field Programmable
Gate Array (FPGA). An FPGA is a circuit that can be “programmed” to
mimic the behavior of another circuit. Since programming an FPGA incurs
no significant cost, testing a new circuit using an FPGA provides an effective
way of avoiding more costly mistakes at a later point in the design process.
Indeed, in some applications FPGAs are used not just for prototyping, but
in the final manufactured products. While FPGAs cannot match the per-
formance and complexity of custom integrated circuits and are not always
cost-effective in high volume applications, they can be a good solution in
many situations. In this book, we will be use a specific FPGA prototyping
board to show how our designs can be implemented and tested. The following
figure shows a photograph of such a board.
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FPGA

knob and . “ \swﬁches

buttons LCD display and LEDs

Several of the key features of the board are highlighted in the figure. First
notice the LCD display at the bottom. This can be used to display two lines
of 16 characters each. When we use the board to prototype the WashU-2,
we’ll use the display to show values in the processor’s registers and a selected
memory location. The board also includes several switches and buttons that
can be used to interact with whatever circuit is implemented by the board.
When using the board to prototype the WashU-2, we’ll use these to stop
the processor’s execution and then single-step through one instruction at
a time, observing how each instruction changes the values of the registers.
We’ll also use them to examine any memory location and change the value
stored at some location. This provides a crude, but effective way to input
small amounts of data to a running program. The board also has a VGA
connector that can be used to drive an external display. There are also inputs
for a keyboard and mouse.



Chapter 2

First Steps

2.1 A Simple Binary Calculator

Our first digital circuit is a (very) simple binary calculator. You can do three
things with it. You can load an input value and store it in the calculator’s
internal storage register, you can add an input value to the stored value,
and you can clear the stored value. Not very exciting perhaps, but it will
illustrate many of the key features that can be found in more sophisticated
circuits. The following figure is a diagram of the calculator circuit.

1?’ result

D flip-flops

add load clear

This circuit operates on 16 bit values. The label ‘16’ on the heavy lines
connecting many of the circuit components indicates that these lines actually
represents 16 individual signals. So the D-flip flop symbol shown at the
right end of the diagram actually represents 16 flip flops, not just one. A

21
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collection of flip flops like this is commonly referred to as a register. The three
trapezoidal symbols in the figure represent mulitiplexors. They each have a
control input and two data inputs, labeled ‘0’ and ‘1’. When the control
input of a multiplexor is low, the O-input is connected to the output on the
right. When the control input is high, the 1-input is connected to the output.
This allows us to conveniently select one of two different input values. Note
that while the data inputs and outputs in this diagram are 16 bits wide, the
control input is a single signal. This means that each multiplexor symbol
shown in the diagram actually represents 16 multiplexors, all of which are
controlled by the same input signal.

The block labeled adder has two inputs and a single output which is
equal to the sum of the two inputs. Note that both inputs and outputs are
16 bits long, so it’s possible for the sum of the input values to be too large to
represent in 16 bits. In this case, the high-order bit of the sum is simply lost.
This is an example of arithmetic overflow which is an unavoidable property
of binary arithmetic with fixed-size words.

Note that the adder and multiplexor can both be implemented using
nothing but AND gates, OR gates and inverters. While we could show their
detailed implementation here, the diagram illustrates a common practice in
digital circuit diagrams, in which commonly recurring sub-circuits are rep-
resented by labeled blocks. Indeed, the multiplexor is such a commonly
recurring building block that it has its own special symbol. Other compo-
nents are shown like the adder with simply a rectangular block and a label.
Now that we’ve “decoded” the diagram, let’s look at it again to understand
exactly how it works. First, notice the data inputs at the left and the result
output at the right. Next, notice the three control inputs, add, load and
clear. To clear the contents of the register, we raise the clear input high.
This causes the value on the rightmost multiplexor’s 1-input to be connected
to its output. Since the output connects to the D input of the flip flops,
the hexadecimal value 0000 will be loaded into the register on the next ris-
ing clock transition. To load a new value into the calculator, we leave the
clear input low, while holding the load input high. The high on the load
input connects the D, signal to the output of the middle multiplexor, while
the low on the clear input connects the output of the middle multiplexor to
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the output of the rightmost multiplexor. Consequently, the input value will
be loaded into the register on the next rising clock edge. Notice that since
the circuit’s output is simply the output of the register, the newly loaded
value will also appear at the circuit’s output. If this output is connected to
a display circuit, like the one on our FPGA prototype board, we’ll be able
to observe that value. Finally, to add a value to a previously stored value,
we raise the calculator’s add input high, while holding the other two control
inputs low. Since the output of the adder is the sum of the input value and
the stored value, this causes the sum to be loaded into the register on the
next rising clock edge.

Now for a small circuit like this, it’s entirely reasonable to specify the
circuit using a diagram like this, but for larger circuits, we can save a lot
of time and effort by using a hardware description language. In this course,
we’ll use the language VHDL to specify circuits, so let’s take a look at how
we can use VHDL to specify the calculator circuit.

entity calculator is port (
clk: in std_logic;

clear, load, add: in std_logic; -- operation signals
dIn: in std_logic_vector(15 downto 0); -- input data
result: out std_logic_vector(15 downto 0)); -- output

end calculator;

architecture al of calculator is
signal dReg: std_logic_vector(15 downto 0);
begin
process (clk) begin
if rising_edge(clk) then
if clear = ’1’ then
dReg <= x"0000";
elsif load = ’1’ then

dReg <= dIn;
elsif add = ’1’ then
dReg <= dReg + dIn;

end if;
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end if;
end process;
result <= dReg;
end al;

The first six lines of this example form the entity specification for the cir-
cuit. This part just specifies the inputs and outputs to the circuit, specif-
ically their names and their data types. The single bit signals (clk, clear,
load, add) all have type std logic, while the multi-bit signals have type
std_logic_vector. Note that each individual signal in a std_logic_vector
can be identified using an integer index, and the index range is defined by
the phrase “15 downto 0”.

The remainder of the VHDL code is called the architecture. This part
specifies the actual internal circuitry. First notice the signal definition on
the second line of the architecture. This defines a 16 bit internal signal
called dReg. The third line of the architecture is the start of the “body” of
the architecture, and in this case the first thing in the body is the start of
a process block. Within the process block there is an if-elsif block that
specifies the value of the dReg signal under various conditions. The lines
that begin dReg <= .. are signal assignment statements. Notice that all
the code in the process is contained within an initial if-statement that has
the condition rising edge (clk). This specifies that the signal assignements
that occur within the scope of this if-statement are to take effect only when
the clk signal makes a low-to-high transition. In this example, this implies
that the dReg signal must be the output of a register. The last line of the
architecture is a signal assignment that connects the internal signal dReg to
the output signal result. Note that this line is outside of the process. In
general, the body of a VHDL architecture may include stand-alone assign-
ments like this, plus more complex blocks of code that appear inside process
blocks.

Take a few minutes to carefully compare the VHDL code with the circuit
diagram discussed earlier. Make sure you understand how each element of
the diagram is reflected in the VHDL. In particular, look closely at the if-elsif
block and its correspondence to the sequence of multiplexors.

The figure below shows the waveform display from a simulation of the
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calculator circuit.
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Observe how the output responds to the various control signals and how
the output changes only on the rising edge of the clock signal.

2.2 Representing Numbers in Digital Circuits

As we have seen in the calculator, digital circuits represent numeric values
using collections of binary signals. With 16 individual signals, we can repre-
sent binary numbers from 0 up to 2'6 — 1. Just as a quick reminder, numbers
are defined in binary notation in much the same way as in decimal notation.
For example, the binary notation 110.01 means

I1x2241x2'4+0x2°+0x2 4+1x22=44+2404+0+1/4=6.25

While binary values are convenient for circuits, they are a bit awkward for
people. When dealing with binary numbers it’s usually more convenient to
represent them in hexadecimal notation or base 16. Hexadecimal is essen-
tially just a short-hand notation in which groups of 4 bits are represented by
one of 16 characters, as shown in the table below.
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binary | hex character || binary | hex character
0000 0 1000 8
0001 1 1001 9
0010 2 1010 a
0011 3 1011 b
0100 4 1100 c
0101 5 1101 d
0110 6 1110 e
0111 7 1111 f

So the binary value 1101 0110 0010 is written as d62 in hex, and the hex
value ab5 is equivalent to the binary value 1010 1011 0101.

Earlier we mentioned the issue of arithmetic overflow, which can occur
when adding two binary values together. This happens because finite circuits
cannot implement arbitrary precision arithmetic. Instead, they implement a
special kind of arithmetic called modular arithmetic, which is defined over a
bounded set of values. To understand how this works, it helps to consider a
small example. The left side of the figure below shows the 16 four bit binary
values arranged in a circular fashion.

The central disk shows the decimal equivalents of these binary values,
and we’ll refer to this diagram as the binary number clock since it kind of
resembles an analog clock face. Addition in this binary arithmetic system
can be defined as counting our way around the binary number clock. So
for example, if we want to add 3 to 6, we start at 0110 on the clock face



2. First Steps 27

and count three positions (in the clockwise direction), which brings us to
1001, which of course corresponds to 9. If we add 3 to 15, the addition is
defined in exactly the same way, except that in this case, the result we get
is 2, not 18. In a 4 bit modular arithmetic system this is the right result,
but of course it does not correspond to what we normally expect. Since the
expected answer cannot be represented in our 4 bit number system, this can’t
really be helped, but it is something that we need to be aware of. Notice
that these arithmetic “errors” occur anytime an additon (or subtraction)
operation crosses the boundary between 15 and 0.

Now circuits that actually implement arithmetic on binary numbers do
not do it by counting around the binary clock face. This is merely a way for
us to think about the essential meaning of the arithmetic operations. The
circuits that add and subtract binary values are actually based on the same
method we all learned in elementary school for doing integer arithmetic. We
will defer discussion of exactly how this is done until later in the course.

What about negative numbers? It turns out that there are several differ-
ent ways that negative numbers can be represented in binary notation, but
the one that has become most widely used is called 2s-complement. How
ever negative numbers are represented, it’s necessary to divide the available
bit patterns roughly in half, using some bit patterns for positive numbers
and some for negative numbers. The right-hand side of the figure above il-
lustrates a four bit 2s-complement system. Notice that inside the left-half of
the “clock-face”, we’ve replaced the positive integers 8 through 15, with the
negative integers —8 through —1. Observe that the negative numbers start
just to the left of 0 on the clock face and proceed in a counter-clockwise fash-
ion. Continuing with the the clock analogy, we can view —1 as representing
one minute before the hour, —2 as two minutes before the hour, and so forth.

So how can we do arithmetic in this 2s-complement system? The answer
to this is “exactly like we did before.” If we want to add 3 to —5, we start
at 1011 and count three steps in a clockwise direction. This brings us to
1110, or —2. To add 3 to —1, we start at 1111 and count three steps around,
coming to 0010, or 2. Notice that this last example is the one that gave
us an error when we were doing an ordinary “unsigned” addition. Here,
it produces the correct result. It’s still possible to get arithmetic errors in
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a 2s-complement system, but in this case the errors occur when we cross
the boundary between the positive and negative numbers at the bottom of
the clock face. One reason that the 2s-complement system has become the
standard way to represent negative numbers is that the same circuits used
for unsigned arithmetic, can also be used for signed arithmetic. The only
difference in doing arithmetic in these two systems, is deciding when an
arithmetic error has occurred.

Before we leave the subject of 2s-complement, notice that all the nega-
tive numbers start with ‘1’ while the non-negative numbers start with ‘0’.
Because of this, the first bit of a 2s-complement number is referred to as the
sign-bit. When doing signed arithmetic, there is one extra operation that
is needed, the negation operation. So, how do we find the negative equiva-
lent of a 2s-complement value? Well one way to do this is to subtract from
0. So for example, we can determine the bit pattern that corresponds to
—3 by starting at 0000 on the clock face, and counting three positions in a
counter-clockwise direction. It turns out that there is a more direct method
for negating a 2s-complement value. We start by finding the rightmost 1 bit,
then we flip all the bits to its left. So for example, the negative equivalent
of 0001 is 1111 (notice that the negation procedure works in both direc-
tions). Similarly, the negative equivalent of 1010 is 0110 (be sure to check
this against the clock face).

2.3 Logic Equations and Circuits

As we noted earlier, the defining property of digital circuits is that they
represent information in terms of Os and 1s. We typically interpret these
as Boolean logic values, with 0 denoting false and 1 denoting true. We can
then write equations involving involving Boolean variables and use these
equations to define circuits. The fundamental operations in Boolean logic
are AND, OR and NOT. We will generally write these operations using -
for AND, + for OR and ’ for NOT. So for example, the logical expression
A - (B + (") is true whenever A = 1 and either B = 1 or C = 0. We
will often omit the - when this can be done with no loss of clarity. So for
example, we might write AB'(C + D) in place of A- B’ - (C + D). We'll
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also use operator precedence to reduce the need for parentheses. Specifically,
the NOT operation has the highest precedence followed by AND, then OR.
It’s worth noting in passing that there are several alternative notations that
are commonly used for writing Boolean logic equations. If you happen to
encounter one of these alternate notations in another setting, don’t let it
confuse you. The logical operations are the same, it’s only the notation
that’s different.

Logic expressions can be used to define digital circuits. So for example,
the expression A + B - C’ corresponds to the circuit shown below. Notice

A ,
B A+BC

C

that the variables in the logic expression correspond to the circuit’s inputs,
while the expression itself corresponds to the circuit’s output. Also note how
each logical operation in the expression corresponds to a gate in the circuit.
Given any similar circuit, there is a straightforward procedure to determine
the corresponding logic expression. We start by labeling the inputs with
distinct symbols, then repeat the following step until the output of the circuit
is labeled.

Select a gate with an unlabeled output, but with all inputs labeled. For
an inverter with input label L, the output label is (L)’. For an AND
gate with input labels L; and Lo, the output label is (L) (Lz2). For an
OR gate with input labels L; and Lo, the output label is (L1) + (L2).
Optionally, remove any redundant parentheses.

Here’s another simple circuit that has been labeled using this procedure.

A— AB
B AB+C’
C_ C/




30 Designing Digital Circuits (C) Jonathan Turner

There is a similar procedure that can be used to derive a circuit from a
logic equation. Start by adding parentheses to the expression in a way that
is consistent with the original operation ordering, but can be interpreted
unambiguously without relying on the precedence rules. Then, create a cir-
cuit that contains just an unconnected output wire that is labeled with the
fully-parenthesized expression, and repeat the following step.

In the circuit constructed so far, select a labeled signal that is not yet
connected to any gate output, where the label contains at least one
logical operation. If the label takes the form X’, add an inverter to
the circuit with its input labeled by X. If the expression takes the
form Xi - X3, add an AND gate with inputs labeled X; and Xs. If the
expression takes the form X7 + X, add an OR gate with inputs labeled
X1 and Xs. Finally, connect the output of the new gate to the selected
signal.

So for example, we can construct a circuit for the expression A+ B(C + D)
by first adding parentheses, giving A + (B(C + (D'))), then applying the
above procedure. This yields the circuit shown below.

A A+(B(C+(D"))
_[>0C;§>£ B(C+(D")
b= X5=—"c+(D’)

Again, notice how each logical operation in the original expression cor-
responds to a gate in the resulting circuit. This equivalence between logic
expressions and circuits allows us to use the rules of Boolean algebra to create
simpler circuits. Let’s look at how this works with an example. The circuit
shown below corresponds to the logical expression X'YZ + X'YZ' + X Z.

Before continuing let’s pause for a moment to note that this circuit di-
agram contains several gates with more than two inputs. For now, we will
view gates like this as just a convenient short-hand for an equivalent set of
2-input gates. In general, an AND or OR gate with k inputs can always be
replaced by a circuit consisting of £k — 1 2-input gates. Two input gates are
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>
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often referred to as simple gates. If we made that substitution here, we would
get a circuit with nine simple gates.

We can simplify the original expression by factoring out a common sub-
expression from the first two terms.

X
Y
V4

XYZ+XYZ +XZ=XY(Z+2Z)+XZ

This expression corresponds to the circuit shown below. We can continue to

X
Y

Z_

simplify by noting that (Z + Z’) = 1, since either Z or Z’ must be true.
XY(Z+Z)V+XZ=X'Y +XZ

This gives us the following circuit that has just four simple gates, as opposed
to the nine we started with.

X
Y_
Z—

The rules of Boolean algegra are similar to, but not quite the same as the
rules of the familiar algebra used to represent numerical quantities. There is a
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collection of basic identities that can be used to simplify Boolean expression.
Two of the simplest are these.

X+X' =1 and X -X'=0
The AND and OR operations are both associative.
X+Y+2)=X+4+4Y)+Z and X(YZ)=(XY)Z
Boolean algebra has two distributive laws,
XY+2)=XY+XZ and X+ Y2)=X+Y)(X+2)

This second one seems a little strange, but there is an easy way to verify
that it is true using truth tables. For example, here is a truth table for the
lefthand side of the second distributive law.

X|Y|z|YZz|X+(¥2)
0ojolo0]| o 0
olol1] o 0
ol1lo| o 0
0111 1 1
1100} 0 1
1lo|1] o 1
110 o 1
111 1 1

Note that the three variables are shown on the left side of the truth table,
and we list all possible combinations of values. The first column on the right
side shows the values for the expression Y Z, where the entry in each row is
determined by the variable values in that row. The last column shows the
values of the overall expression. Next, let’s construct a truth table for the
righthand side of the second distributive law.
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X|Y|Z|X4Y | X+2Z]|(X+Y)(X+2)
0olo]of o 0 0
001 0 1 0
010 1 0 0
011 1 1 1
11010 1 1 1
1101 1 1 1
1 110 1 1 1
1 1|1 1 1 1

Observe that the last column in this truth table has exactly the same values
as the last column of the first truth table, so we can conclude that even
though it looks a little strange, that second distributive law is in fact true.
Note that we can always use truth tables to verify any Boolean equation.
This is possible because the number of distinct combinations of input values
is always finite. In general, for an equation with k£ input variables, the truth
table will have 2¥ rows so the construction of the truth table may not be
practical for larger values of k, but for expressions with just a few variables,
verification by truth table is a reasonable way to check the correctness of an
equation we might not be sure of.
These next two identities are known as DeMorgan’s laws.

(X+Y)=XY' and (XY)=X+Y'

Expressions with lots of NOT operations can be hard to understand. Using
DeMorgan’s laws, we can rewrite the expressions so that all of the comple-
ment operators apply only to input variables. Here are two more handy
identities.

X+XY=X and X+XY=X+Y

We can prove the first one using the first distributive law.
X+XY =X 1+4XY=X(1+Y)=X
We can prove the second using the second distributive law.

X+XY=(X+XNX+Y)=1(X+Y)=X+Y
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Of course all of these identities can be applied to sub-expressions. So for
example, the first of DeMorgan’s laws yields this.

(A+ B)+C'D) = (A+ B)(C'DY

With two more applications of DeMorgan’s laws we get the expression on
the right below.
(A+ B)(C'D) = A'B'(C+ D)

Here’s an example of applying the identities to simplify a larger expression.

ABD' +C'D")+(B+C'+D) = AB+C")D' + B'CD’
(A(B+C')+ B C)D’

= (AB'O)+B'C)D
(A+ B'C)D’

The circuits that are defined using logic equations belong to a sub-class
of digital circuits called combinational circuits. A combinatational circuit is
one in which the circuit outputs can be written as functions of the circuit
inputs. Notice that this property generally does not hold for circuits that
contain flip flops (like the calculator). In circuits with flip flops, the outputs
usually depend not only on the current inputs, but also on the values stored
in the flip flops. Can we tell if a circuit is combinational or not just by looking
at it? Generally the answer is yes. A circuit that contains flip flops or other
explicit storage elements is almost always not combinational. However, one
can also construct circuits that are not combinational without using explicit
storage elements. An example is shown below.

A——
B

If we start with A = B = 0 and then make A = 1, the output of the
circuit will be 0. On the other hand, if we start with A = B = 1, then make
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B =0, the output will be 1. (Take a minute to convince yourself that these
statements are true.) So, in both cases, we end up with A =1 and B = 0,
but the output has different values. This means that the output is not a
simple function of the circuit inputs, hence it is not combinational. The
feedback path that passes through the leftmost OR gate and the two AND
gates is responsible for this behavior. In general, a feedback path in a circuit
is a path from the output of some gate G that passes through a sequence
of other gates to return to some input of G. Circuits that contain feedback
paths are generally not combinational (although there are some exceptions).
Indeed, storage elements like flip flops use feedback in order to implement
data storage.

Now most circuits we encounter in practice do contain storage elements,
hence they are not combinational. On the other hand, if you take out the
storage elements, what’s left behind is generally a collection of combinational
circuits. When we design circuits we’re mostly specifying these combinational
circuits that link the storage elements to each other and to the inputs and
outputs of the overall circuit. For that reason, we’ll devote a lot of our time
to understanding how to design combinational circuits.
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Chapter 3

Designing Combinational
Circuits With VHDL

Hardware description languages like VHDL, allow one to specify digital cir-
cuits at a higher level of abstraction than the level of gates and individual
signals. This allows designers to be more productive and to design more
complex systems than would be practical using lower-level design methods.
There is a natural analogy between hardware description languages and or-
dinary programing languages. In both cases, high level specifications are
translated into lower level representations. In the case of a programming
language, that lower level representation is a sequence of machine instruc-
tions. In the case of hardware description languages, it is a circuit consisting
of gates and flip flops, connected by wires. In the case of hardware descrip-
tion languages, this translation process is called circuit synthesis, and the
progams that do the translation are called synthesizers.

While hardware description languages share some features with program-
ming languages, there are some important differences as well. In a program-
ming language, the language statements translate to machine instructions
that are executed one after another, and which modify values stored in a
computer’s memory. Circuit specifications using hardware description lan-
guages define circuits and the behavior of these circuits is fundamentally
different from the behavior of sequential programs. In a circuit, there is

37
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no underlying memory that holds the values of program variables. Instead,
there are signals that correspond to wires in the circuit. Signal values can
change in a much more dynamic fashion than variables in a program. In par-
ticular, they generally do not change sequentially. Many signals in a circuit
may change values at the same time, and this inherent parallelism in circuits
can make it more difficult to understand the behavior of a circuit than that
of a sequential program. As we proceed with our discussion of VHDL, we’ll
emphasize how VHDL language statements are translated into circuits. Even
though these statements look similar to statements in ordinary programming
languages, it’s important not to let our experience with sequential program-
ming cloud our understanding of what the VHDL statements mean. Whenever
you're reading or writing VHDL code, keep the correspondence between the
VHDL and the cicuit clearly in mind. This will help you develop a better
understanding of the language and will enable you to more quickly master
the art of circuit design using VHDL.

3.1 The entity and architecture

Let’s start by discussing the high level structure of a VHDL circuit specifica-
tion. A VHDL spec consists of a collection of circuit modules, each of which
is defined by a block of code called the entity declaration and another called
the architecture. The entity declaration specifies the inputs and outputs
to a circuit module, specifically the signal names and their types. Single
bit signals typically have type std_logic while multi-bit signals have type
std_logic_vector. An example of an entity declaration is shown below.

entity bcdIncrement is
port (
a3, a2, al, a0: in std_logic;
x3, x2, x1, x0: out std_logic;
carry: std_logic);
end bcdIncrement;

The declaration starts with the entity keyword and the name of the module,
which in this case is bcdIncrement. The declaration ends with the keyword
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end followed by the name of the module. The bulk of the entity declaration is
the port list which starts with the keyword port, followed by a parenthesized
list of port declarations. The declarations for inputs (or outputs) that have
identical types may be combined, as shown here. Alternatively, they can be
shown separately. Note that in the port list, there is no final semicolon before
the closing parenthesis. In this context, the semicolon is used to separate
the items in the port list.

Before turning to the architecture for this circuit module, let’s talk about
what the circuit is supposed to do. This circuit is a BCD incrementer. So
what does that mean? Well, BCD stands for binay coded decimal, which is
a way to represent decimal numbers using binary signals. Essentially, each
decimal digit is represented by a group of four bits that has the same value (in
binary) as that digit. So for example, the digit 5 would be represented by the
binary value 0101 and the decimal value 539 would be represented by the 12
bits 0101 0011 1001. BCD is an alternative to representing numbers directly
in binary, and there are some applications where it is more convenient than
using the standard binary representation. Now a BCD incrementer adds 1 to
a BCD value. In this case, the incrementer adds 1 to a single BCD digit and
produces the appropriate sum plus a carry signal, if the addition produces a
value larger than “1001”. The circuit’s operation can be specified precisely
using the truth-table shown below.

asagaiag | carry T3TeT1To
0000 0 0001
0001 0 0010
0010 0 0011
0011 0 0100
0100 0 0101
0101 0 0110
0110 0 0111
0111 0 1000
1000 0 1001
1001 1 1010
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Notice that the truth table is incomplete. That is, it does not include a
row for all 16 possible input values. That’s because six of the 16 input
combinations are not “legal” in this context, and hence we don’t really care
what output is produced for those input combinations. We can often take
advantage of such don’t care conditions to obtain simpler circuits than we
would if we specified a specific value in advance.

We can use the truth table to derive logic equations for each of the four
output signals. Let’s start with the easiest one, the carry signal. This output
is high when the input is “1001”, but we can take advantage of the don’t
care condition to get the simpler equation.

carry = asag

Next, let’s turn to the signal zg. Notice that the values of x( are always just
the complement of the values of ag, hence we can write the logic equation

:1:0:(16

for this output. Next, notice that the output x; is high whenever the inputs
a1 and ag are not equal to each other. Otherwise, x1 is low. This gives us
the equation

T = a1a6 + a'lao =a1 D ag

The symbol & denotes the exclusive or operator. In general, y ® z = 1
whenever y = 1 or z = 1, but not both. We can also think of the exclusive-or
operator as denoting “not equal”, since it is true whenenver y # z. Turning
to the next output signal, note that xo = 1 when ao = 0 and a; = ag = 1
or when ao = 1 and a; and ag are not both equal to 1. This gives us the
equation

T = abarag + az(arag)’ = az & (a1ap)

Finally x3 = 1 whenever a3 = 1 or when as = a3 = ag = 1. This gives us
T3 = a3 + asa1ag

We note that the expression ajag appears twice in these equations.
Here is a VHDL architecture based on these equations.
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architecture al of bcdIncrement is
signal z: std_logic;
begin
carry = a3 and a0;
z <= al and a0;
x0 <= not a0;
x1 <= al xor a0;
X2 <= a2 xor z;
x3 <= a3 or (a2 and z);
end al;

A few comments about the format of the architecture. First, note that it
starts with the keyword architecture followed by the name of the architec-
ture, the keyword of followed by the entity name and the keyword is. It may
seem redundant to have a separate name for the architecture, but VHDL is
defined to allow multiple distinct architectures that share the same interface.
While this is a useful feature, we will not use it in this book. Consequently,
in all of our examples, the architecture name is just an arbitrary label (such
as the al used here), and has no real significance.

The next thing in the architecture is a list of signal declarations (in the
example, there’s just a single declaration). Later we’ll see that this list may
also include type declarations, as well as function and procedure definitions.
The body of the architecture starts with the begin keyword. In this case, the
body consists of a set of signal assignments, where each assignment defines
the values of one signal. Note the use of the symbol <= to denote signal
assignment. This symbol is also used to denote “less-than-or-equal” in other
contexts, but here it is being used to mean signal assignment. The right side
of the signal assignments uses the keywords and, or, xor and not to denote
the corresponding logical operations.

It’s important to keep in mind that signal assignments are not like as-
signments in ordinary programming languages. In an ordinary programming
language, an assignment means, “ evaluate the expression on the right and
copy its value into the memory location that corresponds to the variable
name on the left.” VHDL signal assignments are really just like logic equa-
tions specifying the values of the signals, and they effectively define circuits.
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In this case, the circuit would look something like this.

33 = D_,_‘):>_X3

al
ao

The symbol that looks like an OR gate with the extra curve along the left
edge is an exclusive-or gate. This arises often enough in real circuits that it
has its own symbol.

Because of the nature of VHDL signal assignments, the order in which
these assignments are written does not really affect the meaning of code.
In the bcdIncrement example, we could have written the assignment for z
after all the other assignments, and the specified circuit would be exactly the
same. Of course, in an ordinary programming language this would not make
sense, since in that case, the assignments to x3 and x2 would both contain
references to an undefined variable.

Before leaving this example, it’s worth noting that while our VHDL ar-
chitecture for the bcdIncrement circuit does what it’s supposed to do, the
process of coming up with the design was a bit tedious. It turns out, there
is a much easier way to specify this circuit, which is shown in the alternate
version below.

entity bcdIncrement is
port (
a: in std_logic_vector(3 downto 0);
x: out std_logic_vector(3 downto 0);
carry: out std_logic);
end bcdIncrement;
architecture al of bcdIncrement is
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begin
carry <= a(3) and a(1l);
x <= a + "0001";

end al;

In this case, we’ve changed the interface to use signal vectors, instead of
individual one bit signals. This allows us to specify the x output using
a single vector signal assignment that uses the addition operator. This is
much more direct than the original. In general, when using VHDL, it makes
sense to take advantage of the higher level of abstraction that the language
makes possible. It generally saves time and makes it less likely that we’ll
make a mistake in our specification.

3.2 Signal Assignments

The signal assignment is the fundamental building block of a VHDL specifica-
tion. The simplest signal assignments have a single bit signal on the left and
a logic expression on the right, constructed using the standard logic opera-
tions. We have also seen examples of signal assignments using logic vectors.
It’s worth taking a few moments to look at these more closely. Suppose we
have three signals, declared as follows.

signal A: std_logic_vector(3 downto 0);
signal B: std_logic_vector(4 downto 1);
signal C: std_logic_vector(0 to 3);

These are all four bit signals, but note that the index ranges are all different.
The index ranges affect the way signal assignments are interpreted. Consider
the following signal assignments.

A <= "1100"; B <= A; C <= A;
The first assignment is equivalent ot

A(3) <= “1°; A(2) <= “17; A(1) <= ‘0’; A(0) <= ‘07;
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That is the order in which the bits on the right are assigned to the different
bits of A is determined by the order in which the bits appear in the index
range of A. We could make this explicit by writing

A(3 downto 0) <= "1100";
We could also make the other assignments more explicit by writing

B(4 downto 1) <= A(3 downto 0);
C(0 to 3) <= A(3 downto 0);

Note how the value of A(3) is assigned to B(4) and so forth. Similarly, note
that A(3) is assigned to C(0) since the index range for C is the reverse of
the index range for A. In general, for any multi-bit signal, we can think of
the bits as having a specific left-to-right ordering and this determines the
order which bits are assigned. Note that explicit index ranges can be used
to specify a subset of bits. For example, we could write

B(4 downto 3) <= A(1 downto 0);
B(2 downto 1) <= A(3 downto 2);

An alternate way to write this uses the signal concatenation operator denoted
by ‘&’.
B <= A(1 downto 0) & A(3 downto 2);

In this assignment, the right-hand side is a four bit signal obtained by con-
catentating a pair of two bit signals.

There is still another way to specify logic vectors in expressions. Consider
this assignment.

A<= (3 =70, 2 =0, others => ’17);

This specifies a bit vector in which the bits with indices 3 and 2 are both
set to 0, while all other bits in the vector are set to 1. A common idiom in
VHDL is an assignment of this form.

A <= (others => ’07);
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This specifies that all bits of A should be set to 0, but it has the advantage
that it does not depend on the length of A. Note that the index range for the
signal on the right side of this assignment is inferred from the index range of
the signal on the left.

In addition to ordinary signal assignments, VHDL includes a conditional
signal assignment that often allows us to express the value of a signal in a
simpler way than we could otherwise. Here’s an example.

¢ <= x when a /= b else
y when a = ’1’ else
z,;

Here, the when-clauses specify a condition under which the specified value is
assigned to the signal on the left. The symbol ‘/=*is the VHDL symbol for
“not-equal.” This signal assignment can be implemented by the circuit shown
below. It’s worth noting that a conditional signal assignment can always

be replaced by an ordinary signal assignment. In this case, an equivalent
assignment is

c <= ((a /= b) and x) or
(a2 and not (a /= b) and y) or
(not a and not (a /= b) and z);

The first version is certainly easier to understand, but it’s worth keeping in
mind that any circuit that we can define using conditional signal assignments
can also be defined using ordinary assignments.



46 Designing Digital Circuits (C) Jonathan Turner

The general form of the conditional signal assignment appears below.

x <= value_1 when condition_1 else
value_2 when condition_2 else

value_n;

The signal on the left and the values on the right may be signal vectors, but
they must all have the same number of bits. The conditions may include
expressions defined on signal vectors, but they must evaluate to a single bit
value. The circuit that implements the general form of the conditional signal
assignment is shown below.

value_1
value 2 b b X
value_n-1—y1° .-
value_n —|0 condition_1
condition_2
condition_n-1

There is still another type of signal assignment in VHDL, called the se-
lected signal assignment. Here’s an example.

with x select
c <= a when b"00",
b when b"01" | b"10",
a+b when others;

Here, the signal x is used to select one of several alternatives. If x=b"00" the
value of a is assigned to c. If x=b"01" or x=b"10" the value of b is assigned
to c. Otherwise, the sum a+b is assigned to c. A circuit that implements
this selected signal assignment appears below.
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b 1
pu
a+b —3
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X

The trapezoidal symbol is a 4-input multiplexor. This is similar to the
2-input multiplexor we’ve already seen. It has a two bit control input and
the numerical value of the control input selects one of the data inputs and
connects it to the output. In general, a multiplexor with k£ control inputs
can be used to select from among 2 inputs. Note that the selected signal
assignment is essentially a special case of the conditional signal assignment,
but the circuit using a single multiplexor is usually faster than the circuit
typically used for the conditional signal assignment.

Before leaving the topic of signal assignments we note that the conditional
signal assignment and selected signal assignment may only be used outside
of a process. Within a process there are other language features that provide
the same functionality.

3.3 Processes and if-then-else

So far in this section, we have limited ourselves to VHDL architectures that
contain only assignments. The language includes other language constructs
such as the if-then-else statement. However, these statements can only be
used within a process. Here is an example of a VHDL module that implements
a simple combinational circuit using a process.

entity foo is port(

p, q: in std_logic;

X, y: out std_logic_vector(3 downto 0));
end foo;
architecture bar of foo is begin

process (p, q) begin
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if p /= q then
x <= "0010"; y <= "1100";
elsif p = ’1’ then
x <= "1101"; y <= p & q & "O1";
else
x <= "0100"; y <= "10" & q & p;
end if;
end process;
end bar;

A process generally contains several signal assignments, and we can view the
signals that appear on the left of these assignments as outputs of the process,
since the process determines their values. In this example, signals x and y
are both process outputs. Now an architecture may include more than one
process, but it usually doesn’t make sense for a given signal to be controlled
by more than one process, since the circuits defined by the different processes
could end up producing conflicting values for the same signal. For that rea-
son, we’ll generally require that each signal in an architecture be controlled
by at most one process. Now architectures may also include signal assign-
ments that fall outside of any process. Each such assignment is considered
to be just a simple form of process. So if a signal is controlled by one such
assignment, it may not be controlled by another, or by any explicitly-defined
process.

To understand how a process defines a circuit, it helps to know that each
of the outputs of a process can be viewed independently of the other outputs.
So for example, we could re-write the body of the process in the example as
follows.
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if p /= q then x <= "0010";

elsif p ’1’ then x <= "1101";
else x <= "0100";
end if;

if p /= q then y <= "1100";

elsif p = ’1’ then y <= p & q & "O1";
else y <= "10" & q & p;

end if;

The two if-then-else statements are completely independent of one another
and could appear in either order without affecting the meaning of the circuit
as a whole. This is an example of the separation principle, which states that a
process can always be re-written to completely separate the code that defines
different output signals. Now an if-then-else that involves only assignments
to one signal can be easily re-written as a conditional signal assignment, and
so we can view such a statement as defining a circuit of the form that was
described earlier for the conditional signal assignment. We can also view a
general if-then-else that contains assignments to several different signals as
just a collection of conditional signal assignments, one for each signal. Now,
a circuit synthesizer will not typically implement such an if-then-else using
completely separate sub-circuits. It can typically produce a more efficient
circuit by taking advantage of the fact that the same conditions are used in
the definition of different signals. Still, the behavior of the circuit must be
consistent with the behavior that would be obtained by synthesizing separate
circuits for each signal, and that can be helpful when trying to understand
the circuit specified by a VHDL process.

The separation principle can help us understand some otherwise confusing
situations. Consider the process shown below.

process (x) begin
X <= ‘0%; y <=x; x <= ‘17
end process

What value is assigned to signal y? Well, if we apply our knowledge of ordi-
nary programming languages, we might say that y=0, but that interpretation
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is based on a sequential execution model in which assignment statements are
executed one after another, with values stored in memory locations. Of
course circuits don’t work like that. The first assignment to x specifies that
it is “wired” to a constant 0 value, while the second specifies that it is wired
to a constant 1. Since these are contradictory, VHDL ignores the first and
uses the second as the specification for x. Since y is defined in terms of x,
it will also have the value 1. Now, if we apply the separation principle to
this and just view the assignments to x by themselves, this seems reasonably
intuitive. It’s only when we insert the assignment to y in between the other
two that the situation gets murky.

Now you might object that no one would really write a process like the
one above, but similar situations can arise in less obvious ways in larger
processes. Here is an example that illustrates this.

process (p, q) begin
1fq <= "0100" then p <= ‘0’; end if;
Ui
1fq >= "0100" then p <= ‘1’; end if;

end process

Here the ellipses are meant to refer to additional, unspecified code. In this
example, the value defined for x is usually clear, but what about when
g="0100". Once again, we might expect x to be 0, but as in the earlier
example, it would actually equal 1. Because the two if-statements have over-
lapping conditions, the VHDL synthesizer will use the value specified by the
second if-statement when q="0100".

Now, let’s go back to the example from the start of this section. The
process in this example defines a combinational circuit. What makes the
circuit combinational is that for each of the two output signals, we have
specified a value for that signal under every possible input condition. The
assignments within the scope of the final else ensure that this is true. What
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would happen if we did not include the final else? This would leave the
values of x and y undefined whenever p=q=0. The language is defined to
interpret this as meaning that the values of x and y should not change in
that case, but this means that the circuit must be able to retain their old
values whenever p=q=0. Here is a circuit that might be synthesized if the

final else were omitted.
\\0010" 1
\\1101" 0 ) D Q A
\\110011 1 ﬁ
p & q &“Ol”:E) D Q y

p JL\

q—q

The rectangular symbols in this figure denote D-latches. A latch is a
storage device that is similar to a flip flop. Indeed later in the course, we will
see that latches can be used to implement flip flops. When the C input of
a D-latch is high, its D input is connected directly to its output . In this
case, we say the latch is transparent since values on the input appear directly
at the output. When the C' input drops low, the latch retains its last value.
That is, the output no longer follows the input, it just continues to hold the
last value it had. In this circuit, the latches are transparent whenever either
p or q is high, but when they both drop low, the latch retains its old value
implying that signals  and y do not change at that point.

Now there are times when we may want to use latches to store values in
a circuit. However, it’s very common for designers (especially beginners) to
accidentally specify latches in circuits that are supposed to be combinational.
This can happen whenever the VHDL code fails to specify values for a signal
under all possible input conditions. Such errors can be difficult to track down,
because they cause circuits to behave in ways that are very different from
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what a designer might expect. Fortunately, there is an easy way to avoid
such inferred latches, and that is to always start a combinational process
by assigning default values to all output signals of the process. Here is
an alternate version of our example process that uses default values, while
omitting the final else.

entity foo is port(
P, q: in std_logic;
X, y: out std_logic_vector(3 downto 0));
end foo;
architecture bar of foo is begin
process (p, q) begin
x <= "0100"; y <= "10" & q & p;
if p /= q then
x <= "0010"; y <= "1100";
elsif p = ’1’ then
x <= "1101"; y <= p & q & "0O1";
end if;
end process;
end bar;

Like the original process, this one ensures that the output signals are al-
ways defined, since any input condition left “uncovered” by the if-then-else
statement is automatically covered by the default assignments. Hence, the
resulting circuit is guaranteed to be combinational. Now in this case, there
is no compelling reason to prefer the second version over the first. How-
ever we’ll find that in larger, more complicated processes, it can be easy to
accidentally leave some signal only partly specified. The use of default as-
signments gives us an easy way to avoid such situations, so it’s a good idea
to make it a habit to include them in your circuit specs.

Before we conclude our discussion of processes, note that the first line of a
process includes a list of signals, known as the sensitivity list. In the example
given earlier, the sensitivity list includes the signals p and q. The sensitivity
list is a somewhat confusing feature of the language. It is essentially used
to notify a circuit simulator that it should pay attention to changes in the
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values of the listed signals. More precisely, the simulator should re-evaluate
the outputs of the process anytime one of the listed signals changes. When
a process is being used to define a combinational circuit, any of the input
signals to the process should be included in the sensitivity list, since a change
in any input signal can affect the output signals. (A signal is considered an
input to the process if it appears within any expression in the process body.
In the example, p and q are both inputs to the process.)

The sensitivity list does not affect the circuit defined by a VHDL spec,
just which signals a circuit simulator responds to. This is unfortunate, since
accidental omission of a signal from the sensitivity list can lead to simulated
results that do not correspond to the behavior of the circuit defined by the
VHDL. Some synthesizers detect such omitted signals and issue warnings
about them, but it is ultimately up to the designer to make sure that all
required signals appear in the sensitvity list. Failure to do so can lead to
frustrating debugging sessions, as one struggles to understand why a specified
circuit does not have the expected behavior when it is simulated.

You might wonder why processes are required to include a sensitivity list
in the first place. To understand this, you need to know that VHDL was origi-
nally designed as a language to model circuit behavior rather than to specify
actual hardware. Consequently, it’s possible to write VHDL code that can
be simulated, but cannot be synthesized. In the case of processes containing
non-synthesizable code, it can be difficult for a simulator to determine which
signals have the potential to affect the behavior of a process, so it is left to
the designer to specify these signals explicitly.



o4

Designing Digital Circuits (C)

Jonathan Turner



Chapter 4

Computer-Aided Design

In this chapter, we’ll discuss how modern computer-aided design tools can be
used in the design of digital circuits. We’ll use a particular set of CAD tools
to make the discussion concrete, but other tool sets provide similar features
and capabilities. The specific CAD tools used here are the ISE design tools
provided by Xilinx. Xilinx is a company that makes Field Programmable
Gate Arrays and they also provide CAD tools to make it easier for their
customers to use their products. While Xilinx charges a fee for their more
advanced tools, the core tool set is available as a free download (the ISE
webpack).

4.1 Overview of CAD Design Flow

The process of designing a circuit using modern CAD tools can be a bit
overwhelming at first. A typical set of CAD tools includes lots of different
elements which generate a bewildering collection of auxiliary files that are
used to store information about the design. In this course, we will keep
things relatively simple and focus on just the most essential elements of the
process. The diagram in Figure 4.1 provides an overview of a simplified CAD
design flow.

At the top of the diagram are the VHDL source files that we will use to
specify the digital system we are designing. Usually a design is broken up

95
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Figure 4.1: Basic cAD Design Flow

into multiple files, typically with a single entity-architecture pair in each file.

The synthesis tool translates VHDL source files into an intermediate form,
often referred to as a netlist. In the process, it checks that the source files are
syntactically correct and generates error messages whenever it finds errors
in the source that must be corrected.

The netlist can be used as input to a functional simulation tool. This
allows us to verify the logical behavior of our circuit without concerning our-
selves with timing or performance issues. Before we can simulate our circuit,
we must also provide some test inputs that will put the circuit through its
paces and allow us to demonstrate that it operates correctly. We will use a
VHDL testbench for this purpose. A testbench is just a VHDL source file that,
rather than specifying a circuit, defines a sequence of signal values that can
be used to test a circuit.

Much of the time spent on a design is devoted to functional simulation.
A new circuit design rarely works the first time we attempt to simulate it.
By studying the simulation output, we’ll find places where the circuit does
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not behave as expected. The simulator allows us to observe internal signals
within our circuit, and by paying close attention to the relevant signals, we
can usually work out exactly where in the source code, a problem originates.
This allows us to then determine how the source code needs to change in
order to make the circuit behave in the way we intended.

Once a circuit simulates correctly, we can take the next step in the design
process, which involves testing the circuit on an actual prototype board. The
implementation tool converts the netlist into a lower level representation that
is appropriate to the specific programmable logic device we are using for our
prototype. The resulting bitfile can then be used to configure the actual
device. If we’ve done a thorough job of simulating the circuit, this part of the
process can be quick and easy. It’s also very satisfying to see the prototype
circuit operating correctly on a real circuit board. However, if we have not
done a thorough job of simulating the circuit, we're likely to find that the
prototype circuit does not behave as expected. When this happens, the right
thing to do is go back to the functional simulation to figure out what the
problem is. It’s rarely possible to debug a protoype circuit by experimenting
with the actual circuit, because the only things you can observe are the
outputs that are available on the prototype board. Because the simulator
allows you to see the internal signals as well, it is a much more powerful tool
for identifying and fixing mistakes. Don’t waste time attempting to debug
the physical circuit. If you discover a problem at that phase of the design
process, go back to the functional simulation to determine what you did
wrong.

The diagram in Figure 4.1 also has two blocks labeled timing analysis
and timing simulation. In this course, we won’t be addressing these aspects
of the design flow in any detail, but it is worth mentioning them briefly.
When a circuit is mapped onto a specific physical device, the performance
of the circuit is affected by many different things, including the locations
of various circuit elements within the device, and the lengths of the wires
connecting those elements. A timing simulation takes all of these factors
into account, in order to produce a more realistic simulation of the circuit’s
behavior. Such a simulation allows us to observe details that cannot be
seen using a functional simulation. We can use this information to identify
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possible timing problems that might prevent a circuit from working properly
in a real application context.

Often, we don’t require detailed timing information about our circuit, but
we do want to know if the circuit will be able to operate at some target clock
frequency. The implementation tool used to produce the bit file actually
takes the target clock frequency into account when it makes decisions about
how to map circuit elements to specific locations within the device. It will
try different options, and analyze their timing characteristics in an effort
to find a specific mapping that allows the circuit to operate at the target
clock frequency. If the implementation tool is unable to find a mapping
that achieves the desired clock frequency, the timing analysis information is
reported back to the designer. Changes to the source code may be needed
to achieve the desired level of performance.

4.2 Starting a New Project

The Xilinx CAD tool set includes an integrated design environment called
the Project Navigator. This tool helps organize all the source files needed to
define a circuit and the numerous auxiliary files created by various suppport-
ing tools. The main organizational unit in Project Navigator is a project,
and all the files associated with a project are placed within a common file
system folder. To start Project Navigator on a Windows computer, go to the
Start Menu, select All Programs, then Xilinx, then ISE Design Tools, then
Project Navigator. Your installation may place the tools in a different place
in the menu system. If so, you can always search for Project Navigator in
the search box of the Start Menu. Once you have started Project Navigator,
you should see a window that looks something like this.
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To start a new project, select “New Project” from the File menu. This
should bring up the following dialog box.
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r -
=)

& New Project Wizard

Create New Project
Specify project location and type.
Enter a name, locations, and comment for the project
Name: binaryCalculator]|
Location: C:\Users\jst\Documents\vhdIProjects\20 14\binaryCalculator

Working Directory: | C:\Users\jst\Documents\vhdlProjects\2014\binaryCalculator

6

Description:

Select the type of top-evel source for the project

Top-evel source type:

HDL [+]

[ Next H Cancel ]

Type in a name for your project and a location in the file system where
you want your project files to be stored. For the purposes of illustration,
we’ll define a project that implements the binary calculator introduced in
Chapter 2. Note that some of the CAD tools cannot handle file system paths
that include spaces, so it is best to store your files in a location that is
“space-free”. Onme last thing, in the pull-down menu near the bottom of
the window, make sure that the selected item is “HDL”. After you click the
next button, you will get another dialog box which you can use to configure
various settings relating to your project.
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r
@ & New Project Wizard

Project Settings

Specify device and project properties.

Select the device and design flow for the project
Property Name Value
Evaluation Development Board iSpartan-3E Starter Board E]
Product Category All
Family Spartan3E
Device
Package
Speed -4
Top-Level Source Type HDL
Synthesis Tool XST (VHDL/Verilog) [~
Simulator 1Sim (VHDL/Verilog) (=]
Preferred Lanquage VHDL E]
Property Specification in Project File  Store all values E]
Manual Compile Order 0
VHDL Source Analysis Standard o R
Enable Message Filtering

) (o)

In the setting for “Evaluation Development Board” enter “Spartan 3E
Starter Board”. This will cause appropriate values to be entered for several
other settings related to the FPGA device used on this particular board.
Select “XST” as the synthesis tool, ISim for the simulation tool, VHDL as
the preferred language and VHDL-93 as the VHDL source analysis standard.
When you click “Next”, you should get a Project Summary dialog. Af-
ter clicking the Finish button, your Project Navigator window should look
something like this.
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At this point, let’s take a moment to observe a few things. First, there
is a large gray area at the top right. This area is usually used for entering
VHDL source code. We'll get to that shortly. The area to its left is divided
into two panels. The top panel typically lists source code files, organized
in a hierarchical fashion. The bottom panel provides controls for whatever
the current design activity is: typically synthesis or simulation. Across the
bottom of the window is a console area used for error messages. Note there
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are several tabs at the bottom of this area.
Now, let’s go ahead and create our first source file, by selecting “New
Source” from the Project menu. This brings up another dialog box. Here,

(EX5

& New Source Wizard

Select Source Type

Select source type, file name and its location.

£ IP (CORE Generator & Architecture Wizard)
Schematic
User Document

File name:

(] VHDL Package
s VHDL Test Bench calculator
Embedded Processor

Location:

\Users\jst\Documents\vhdIProjects\20 14\binaryCalculator E]

[¥] Add to project

[ Next ][ Cancel ]

we select VHDL module and enter a name in the text box at right. Clicking
Next takes us to another dialog where we can enter information about the
inputs and outputs to a module. It’s generally simpler to just skip this and
go on to the Summary page. Clicking Finish in the Summary page takes
us back to Project Navigator but with the top right area open to the new
source code file. After entering the source code for the calculator in the
editor window, the Project Navigator looks like this.
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It’s worth noting that right clicking in the editing window brings up a
menu of handy tools, including items to insert a group of lines or add /remove
comment marks from a group of lines. Notice that the upper left panel
now lists the source file just created. At the top of this panel, there is a
place to select one of two differeint “views”: Synthesis or Simulation. The
choice made here affects what information is displayed in this portion of the
window. Double-clicking on the “Check Syntax” item in the bottom panel at
left causes the synthesizer to run. Any errors in the VHDL code are reported
in the console area below.
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4.3 Simulating a Circuit Module

The next step in designing a circuit is to simulate it. In order to do this,
we need to create a testbench file. This is done by selecting “New Source”
from the Project menu in Project Navigator as we did earlier, but selecting
VHDL testbench” rather than “vHDL module”. This results in the creation of
a new testbench file, which we can edit to test our calculator circuit. Here’s
what the testbench might look like after editing.

entity testCalc is end testCalc;

architecture al of testCalc is
component ... end component;
signal clk, clear, load, add: std_logic;
signal dIn, result: std_logic_vector(15 downto 0);
begin
uut: calculator port map(clk, clear, load, add,
dIn, result);
process begin -- clock process
clk <= ’0’; wait for 10 ns;
clk <= ’1’; wait for 10 ns;
end process;
process begin
wait for 100 ns;
clear <= ’1’; load <= ’1’; add <= ’1’;
dIn <= xffff"; wait for 20 ns;
clear <= ’0’; load <= ’1’; add <= ’0’;
dIn <= xffff"; wait for 20 ns;
clear <= ’0’; load <= ’1’; add <= ’1’;
dIn <= xffff; wait for 20 ns;
clear <= ’0’; load <= ’0’; add <= ’1’;
dIn <= x0001"; wait for 20 ns;

clear <= ’0’; load <= ’0’; add <= ’17;
dIn <= x0500"; wait for 20 ns;
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wait for 20 ns;

assert (false) report "Simulation ended normally."
severity failure;
end process;
end;

Note that the testbench starts with an entity declaration that has no port
clause. This entity has no inputs or outputs, so the port clause is not needed.
Note that the testbench includes an instance of the calculator module with
the label uut. This stands for “unit-under-test” and is the conventional name
for the circuit being tested. Next there is a clock process that defines a clock
signal with a period of 20 ns. This uses the wait statement, which is a non-
synthesizable statement that is used in testbenches to control the relative
timings of signal transitions. The clock process repeats the two assignments
as soln as the simulation is running.

Finally, we have the main process that defines the other input signals to
our calculator module. You can think of the main process as operating “in
parallel” with the clock process. Note how each group of signal assignments
is followed by a wait statement of 20 ns. Since the clock starts out low, and
makes low to high transitions at times 10 ns, 30 ns, 50 ns and so forth, the
other inputs change when the clock is making its falling transitions. The
assert statement at the end of the second process causes the simulation to
terminate when it reaches this point. Otherwise, it would simply repeat the
test.

Now that we have a testbench, we can actually run the simulator. To do
this, selection the “Simulation view” in the Project Navigator. The window
should now look something like this.
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~ 48 clear <= '0'; load <= '0'; add <= '1'; dIn <=
49 clear <= '0'; load <= '0'; add <= '1'; dIn <= ~
< [om »
‘ & Start ‘ =13 Design Nj Files ||® Libraries‘ X Design Summary (out of date) [ [ B calaulatorvhd [ [ testcalc.vhd BJ
Console 08 X
i) INFO:HDLCompiler:1061 - Parsing VHDL file "C:/Users/jst/Documents/vhdlProjects/2014/binaryCalct »
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Now, select the testbench file in the top left panel. In the lower panel, you
should see an item for the Isim simulator. Expand this if need be and double-

click on “Simulate Behavioral Model.”

window.

This will bring up the simulation
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A few things to notice here. First, at the top right, there is a panel
containing the “waveform window”. This contains the input and output
signals for the circuit being simulated. By checking the waveform area we
can verify that the outputs produced by the circuit are consistent with what
we expect. This window can be separated from the main simulation window,
using the “float window” icon that appears just to the left of the icon shaped
like a wrench. It is usually more convenient to work with the waveform
window in this way, since we can more easily resize it to allow us to closely
examine signals of interest.

Before looking in detail at the waveform window, let’s examine the other
parts of the main simulator window. At the top left there is a panel that
includes an item for the testbench, and contained within it, the unit-under-
test (that is, the calculator circuit, in this case). When you click on the
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“uut” item, the center panel shows a list of all the internal signals associated
with the unit-under-test. By right-clicking on one of these signals, we get a
context menu that can be used to add that signal to the waveform display.
For the calculator, there are no internal signals that we need to add, but
in more complex circuits, the ability to add signals to the waveform display
is essential for tracking down problems when the circuit is not behaving as
we expect it to. At the bottom of the main simulation window, there is a
console area, where various informational messages are displayed.

Here is another view of the waveform window, after it has been separated
from the simulator window.

%] Float (P.20131013) - [Default.wcfg™] o[ -E- ]
[z File Edit View Simulation Window Layout Help =[5 %
DAEL ¥BDOX®|9 o | O BEME| L Arlies
/+ 91.08 ns A
;; Name |100 ns |150 ns 200 ns |250 ns |3

= 1 ax 1

L control inputs|

@ 1 clear

O 1 10ad ]

“ U add | [

=5 data infout

— WA din[15:0] 0 -1 W1 W 2 3 W 4 ¥ 296 ¥ 512 ¥ 768

s ) L

i B result[15:9 i {0 ¥ -1 0 ? W5 W 9 %265 1.l
e

|

-

y < 1 Sl o™ ol < a mn = | =
| Default.wcfg*® %} [

Sim Time: 360,000.00 ps

We have also made a couple formatting changes to the window. First
notice that dividers have been added to the left-hand panel to group related
signals together and label them appropriately. Dividers are added by right-
clicking in the left-hand panel and selecting the “New Divider” item from
the context menu. Another item in the conext menu allows us to change
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the radix used to display numeric values. Here, we are showing the input
and output signals as signed decimal numbers to make it easier to verify the
simulation results.

In a larger circuit, we might spend a fair amount of time adding and
arranging signals in the waveform window to make it easier to check the
results. Since we often have to re-run simulations several times before cor-
recting all the bugs, it makes sense to save the waveform configuration to a
file. Selecting “Save As” from the File menu in the waveform window allows
us to do just that. Then, on subsequent simulation runs we can start by
opening the saved waveform configuration.

A few more things to notice about the waveform window. First, at the
top of the icon bar along the left border, there are several zoom controls.
Use these to focus in on a specific portion of a simulation that may be of
interest. In longer simulations, you’ll often find it useful to observe signals
that change just occasionally at a large time scale, then zoom in on a small
portion of the simulation to observe more detailed behavior. In fact, you can
open several different waveform windows at the same time by selecting “New
Window” from the Window menu. Each window will appear as a separate
tab, allowing you to easily flip back and forth among different views of the
simulation.

The simulator provides a variety of other features and you are encouraged
to check out the tutorial that can be accessed through the Help menu.

4.4 Preparing to Test on a Prototype Board

Once a circuit has been simulated by itself, the next step is to test it on a
prototype board. However, before we can do that, we need to augment the
circuit with some additional components so that we can control the inputs to
the circuit using the input mechanisms on the prototype board, and observe
the results using its LCD display. The basic arrangement is illustrated below.
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The prototype board we’re using has four buttons and a knob that we
can use to control the input signals to the calculator. We’ll use the buttons
to control the calculator’s clear, load and add inputs, while the knob controls
the value of a 16 bit register that can be connected to the calculator’s data
input. The input data and output result can both displayed on the prototype
board’s LCD display, as binary numbers. To make this work, we need two
additional circuit components, an input module and an output module. We
won’t discuss the internals of these components, but we will describe how
they connect to the calculator.

Let’s start with the input module. First however, we have to explain
something about buttons. Buttons are mechanical devices with a stationary
contact and another that moves when we press down on the button. When
these contacts come together, they vibrate causing the resulting electrical
signal to switch on and off several times before becoming stable. This phe-
nomenon is called bouncing. Now bouncing is a problem because it can
cause an internal circuit to behave as though the button has been pressed
several times rather than just once. Consequently, the input module includes
circuits that debounce the buttons. These circuits essentially ignore signal
changes that do not remain stable for at least a few milliseconds. So the four
external signals, btn(0), btn(1), btn(2) and btn(3) all have corresponding
signals named dBtn which stands for debounced button. DBtn(0) is actually
reserved for a special purpose and given the name reset. Pressing the exter-
nal btn(0) will re-initialize all the components of the circuit. The remaining
three dBtn signals can be connected to other components as appropriate.

Now for some purposes, the dBtn signals do not do exactly what we want.
In some situations, we want a button press to cause an internal signal to go



72 Designing Digital Circuits (C) Jonathan Turner

high for exactly one clock tick. The add input to the calculator provides an
example of this. We want a button press to trigger a single addition, but if
we connect a dBtn signal to the add input, each button press would trigger
many additions, since the calculator does an addition on every rising clock
edge while the add signal remains high. For this reason, the input module
defines three pulse signals, pulse(1), pulse(2) and pulse(3). Pressing
down on the corresponding external button causes these signals to go high
for one clock tick.

Finally, we come to the knob. The input module contains a 16 bit register
which is controlled by the knob. Turning the knob clockwise causes the
register to increment, turning the knob counter-clockwise causes the register
to decrement. This register is connected to an output of the input module,
and can be connected to the data input to the calculator.

The output module is simpler to describe. It takes two 16 bit input
signals and displays these as binary numbers on the external LCD display.
We'll use it to display the data input to the calculator and its result output.

Now, to use the input module and output module with the calculator, we
need to define another circuit, which instantiates all three of these circuits
and connects them together. The architecture of this top level circuit is
shown below.

architecture al of top is

component calculator ... end component;
component binaryInputModule... end component;
component binaryInputModule... end component;

signal reset, clear, load, add : std_logic;
signal inBits, outBits: std_logic_vector(15 downto 0);
signal dBtn, pulse: std_logic_vector(3 downto 1);

begin
—-- connect the sub-components
imod: binaryInMod port map(clk,btn,knob,reset,dBtn,
pulse,inBits);
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calc: calculator port map(clk,clear,load,add,
inBits,outBits);

omod: binaryQutMod port map(clk,reset,inBits,
outBits,lcd);

-- define internal control signals
clear <= dBtn(1) or reset;
load <= pulse(2);
add <= pulse(3);
end al;

4.5 Simulating the Prototype Circuit

Before we can actually test our circuit on the prototype board, it’s important
to simulate the completed circuit, with all the assembled components. This
requires preparing a new testbench that generates the signals for the external
buttons and the knob. We’ll skip that step here, but we will show part of
the results of such a simulation.

Name Value | [0ns

testbench signals

B "¢ btnB:0) 0000 0000 +{01007}{0000 %1000 0000
B ™ knob[2:0] 110 %100
1 ck
internal signals
3{, reset
™ abtnB:1) 000 (0107000100 (000 (100 ||
B ™ pulseB:1) 000 W 000 w4 o000
Bl ™ inbits[15:0] oo o000 {001
1 clear i l_l
& load — ﬂ
| add 0 — Il I
B B outbits[15:0] Uuuu 0000 30001 3 o002 ¥

The signals for the external buttons and knob appear at the top of the
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waveform window. Notice that the debounced buttons, which appear further
down the page are delayed versions of the external button signals (only signals
dBtn(3..1) are shown). Recall from our earlier discussion that the input
module debounces the button signals, by suppressing signal transitions that
are not stable for at least a few milliseconds. Now our prototype board uses
a clock frequency of 50 MHz, so in order to debounce the external signals, we
need to delay them by at least 50 thousand clock ticks. This is inconvenient
when simulating the circuit, so we have artificially reduced the debouncer
delay to just four clock ticks. Finally, note how the load and add signals
appear as one clock tick pulses.

4.6 Testing the Prototype Circuit

Once we are convinced that our prototype circuit works correctly in simula-
tion, we can proceed to the implementation phase. This involves generating
a bitfile that can be used to configure the FPGA device on our prototype
board. Before we can do this, we need to add a User Constraint File to our
project. The ucf file contains two kinds of information. First, it defines the
mapping between the inputs and outputs of our top level circuit with the
package pins of the FPGA device we are using. Here is a sample.

NET "btn<O>" LOC = V4";
NET "btn<1>" LOC = H14";
NET "led<0>" LOC = F12";
NET "led<1>" LOC = E12";

NET "clk" LOC = C9";
NET "swt<0>" LOC = L13";
NET "swt<1>" LOC = "L14";

The first line associates the top level circuit’s btn(0) input with the
package pin that has the label “V4”. The other lines can be interpreted in
the same way. The ucf file also contains information about the frequency of
the clock signal. This takes the form shown below.
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NET "clk" TNM_NET
TIMESPEC "TS_clk"

n clkll ;
PERIOD "clk" 20 ns HIGH 50 ¥%;

To include a ucf file in your project, copy it to the project directory, then
select “Add Source” from the Project Navigator’s Project menu. (You can
also use Add Source to add VHDL files to your project. This makes it easy
to re-use a file from another project.)

The first time we use the implementation tool, there are a couple of steps
that are necessary. Start by selecting the “Synthesis View” in Project Navi-
gator and then selecting the top level circuit in the top left panel. Now, right
click on the “Synthesis” item in the lower left panel and select the “Process
Properties” item. This will bring up the Synthesis Properties window shown
below.

Select the Advanced Display Level and then check that the properties
listed match those in the figure. If not, make the necessary adjustments.

Next, right-click on on the “Implementation” item in the lower left panel
and select “Process Properties” to bring up the Implementation Properties
window.

Select the Advanced Display Level and check the box for the item labelled
“Allow Unmatched LOC Constraints”. This tells the implementation tool
not to worry if some of the pins on the package are not mapped to inputs
and outputs of our top level circuit.

Before we get to the implementation phase, run the synthesis tool by
double-clicking on the Synthesis item in the lower left panel. When the
synthesis tool runs, it produces a report containing information about the
synthesized circuit. It’s worth taking a few minutes to see what’s in this
report, as it contains a lot of useful information. You can access it through
the “Design Summary” page which appears as a tab in the upper right panel
of Project Navigator. Ome thing you’ll find in the synthesis report is a
summary of the basic circuit components used by the synthesizer.

Device utilization summary:

Selected Device : 3s500efg320-4
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B3 Process Properties - Synthesis Options =]
(CRETER) Switch Name Property Name Value 5
Zygti'g:'tsioc:‘it'ons -opt_mode Optimization Goal Area B
Xilinx Specific Options -opt_level Optimization Effort Normal E
-iuc Use Synthesis Constraints File [V]
-uc Synthesis Constraints File @
-lso Library Search Order @
-keep_hierarchy Keep Hierarchy Yes B
-netlist_hierarchy Netlist Hierarchy As Optimized E
-glob_opt Global Optimization Goal AllClockNets E]
-rtlview Generate RTL Schematic Yes E|
-read_cores Read Cores | =
-sd Cores Search Directories
-write_timing_constraints | Write Timing Constraints =1
-cross_clock_analysis Cross Clock Analysis =
-hierarchy_separator Hierarchy Separator / EI
-bus_delimiter Bus Delimiter <> B
-slice_utilization_ratio Slice Utilization Ratio 100 =
-bram_utilization_ratio BRAM Utilization Ratio 100 =
-case Case Maintain E
Work Directory lIProjects\2012\calculator\xst E]
set -xsthdpini HDL INI File (eae)
-verilog2001 Verilog 2001 ]
-vlgincdir Verilog Include Directories B
-generics Generics, Parameters ag
Property display level: |Advanced E‘ [¥] Display switch names
[ OK ] [ Cancel ] [ Apply ] [ Help ]
Number of Slices: 122 out of 4656
Number of Slice Flip Flops: 117 out of 9312
Number of 4 input LUTs: 238 out of 9312
Number used as logic: 206
Number used as RAMs: 32
Number of IOs: 28
Number of bonded IOBs: 24 out of 232
Number of GCLKs: 1 out of 24

There are two lines in this section to focus on. First, the number of slice flip
flops is reported as 117. The calculator module only accounts for 16 of these.
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The remainder are in the input and output modules. The next line reports
the number of 4 input Lookup Tables (LUTs). A LUT is a key component
in an FPGA device and can implement any four input logic function. By
configuring LUTs appropriately and wiring them together, FPGA devices can
be used to implement a very wide range of digital systems. Note that the
FPGA on the prototype board we’re using has 9312 flip flops and 9312 LUTs,
so this particular circuit uses a very small fraction of the total resources on
the chip.

There is one other part of the synthesis report that is worth taking note
of, and that is the section that reports some basic timing estimates for the
circuit.

Timing Summary:

Speed Grade: -4

Minimum period: 9.729ns (Maximum Frequency: 102.785MHz)
Minimum input arrival time before clock: 5.312ns
Maximum output required time after clock: 4.450ns
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Maximum combinational path delay: No path found

The first line reports a minimum clock period of 9.729 ns for this circuit.
This means that the circuit cannot be expected to operate correctly with a
smaller clock period. Since the prototype board uses a 50 MHz clock signal
(20 ns period), we can be confident that the circuit will work correctly.
Note that the timing estimates in the synthesis report should be viewed as
rough approximations. Until the implementation phase is complete, we do
not really have accurate estimates for all the internal circuit delays, so the
synthesis tool has to make educated guesses as to what these delays will be.

Ok, we’re finally ready to implement the circuit. To do this, double-click
on the “Implement” item in the lower left panel of the Project Navigator
window. Next double-click the item that says “Generate Programming File”
to create the FPGA bitfile that is used to configure the device. To do the
actual testing, you will need a computer with an attached prototype board.
If you don’t have a board that you can use on the computer where your
project files are stored, transfer a copy of the bitfile to a computer that does
have a prototype board. Make sure the prototype board is plugged into a
USB port, is connected to power and turned on (the power switch is the
small slide switch near the power connector).

To load the bitfile on the board, start the Xilinx Impact tool (you may
need to do a search in order to find where it’s located). When the tool starts
up, you will see two dialog boxes; click “No” in the first one and “Cancel” in
the second. Then, double-click on the “Boundary Scan” item in the panel at
top left. Next, in the large panel at top right, right-click and select “initialize
chain”. At this point, the window should look like this.
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Now right-click on the FPGA icon (it’s the leftmost one) and select “As-
sign New Configuration File” from the context menu. Enter the name of
your bit file when prompted. This should cause the file to be downloaded to
the FPGA. If all goes well, you should be able to start testing the calculator
using the buttons and knobs on the prototype board.

This concludes our introduction to computer-aided design tools. You are
encouraged to try things out for yourself. While there are a lot of details to
take in, none of it is particularly difficut. Once you’ve worked through the
process a few times, it will start to become familiar to you.
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Chapter 5

More VHDL Language
Features

In this chapter, we’ll describe a number of additional features of the VHDL
language, and explain how they can be used to design more complex digital
circuits. But first, it’s helpful to know a little about how the use of the
language has changed since it was first developed. Originally, VHDL was de-
veloped as a language for modeling and simulation of circuits, not for circuit
synthesis. The idea was that designers would find it useful to model the
behavior of hardware systems before they developed a detailed design. This
modeling process was essentially seen as a precursor to the more detailed de-
sign process that would proceed using traditional methods. It was only some
years after its initial development that computer-aided design tool vendors
recognized that circuits could be synthesized directly from VHDL specifica-
tions, if the VHDL code was written so as to avoid non-synthesizable aspects
of the language.

Because of this history, most books that describe VHDL define the seman-
tics of the language in terms of the required behavior of a circuit simulator.
This is unfortunate for those using the language primarily for circuit synthe-
sis, because it leads them to engage in a convoluted thought process about
how the sequential behavior of a circuit simulator can be translated into
hardware by a circuit synthesizer. In this book, we have made a point to
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directly define the language semantics in terms of circuits, because it is more
direct and makes it easier to grasp the essential nature of the synthesized
circuits.

Next, let’s turn to the subject of the signal in VHDL. A signal in a cir-
cuit specification is an abstraction of a wire, or collection of wires. Now
the signal value on a wire is generally determined by the output of some
gate or flip flop. So signals change as other signals change, and many such
changes can occur at the same time. As we have already noted this is very
different from the concept of a variable in a conventional programming lan-
guage, which is intrinsically connected with values stored in a computer’s
memory. Coming to grips with this difference between signals and variables
is fundamental to understanding the behavior of circuits defined using VHDL.
Now, just to add confusion to this issue, VHDL does also include the concept
of variables, in addition to signals. The semantics of VHDL variables are
different from that of signals, although they are also not really the same as
variables in conventional programming languages. Because it can be difficult
for beginners to get their heads around the different semantics of these two
language constructs, we will largely defer discussion of variables to a later
chapter. However, we will encounter a special case later in this chapter, in
the context of for-loops.

5.1 Symbolic constants

We’re going to turn next to a discussion of symbolic constants. Here’s an
example of a constant definition in VHDL.

architecture al of constExample is

constant wordSize: integer := 8;

signal x: std_logic_vector(wordSize-1 downto 0);
begin

end al;

Here, we are defining wordSize to be an integer constant with the value 8.
In the next line, we are using wordSize in the declaration of a signal vector.
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In a large circuit, we might have many signals that must all have the same
length, so it makes sense to define them using a symbolic constant, rather
than a literal value. This makes it clear to someone reading the code that
these signals are all really supposed to have the same length. It also allows
us to easily change the lengths of all the signal vectors, by modifying the
constant defintion, rather than editing lots of different signal declarations.
Now, in the previous example, the wordSize constant can be used any-
where within the architecture where it is declared, but suppose we wanted
to use a constant in an entity declaration, or in several different circuit com-
ponents. To do this, we need to use a package. Here is a simple example.

package commonConstants is
constant wordSize: integer := 8;
end package commonConstants;

In general, a package contains a collection of definitions that can include
constants, user-defined types, functions and procedures (more about these
later). Packages are generally defined in a separate file and included in a
library of related package declarations. In order to use the definitions in a
package, we need to include a use statement right before any VEDL module
that references the definitions in the package. For example,

use work.commonConstants.all;
entity ...
architecture ...

Here, the use statement specifies all definitions in commonConstants, which
is included in the library work. Work is a default library that is used to hold
packages defined within a given VHDL project.

Most VHDL projects also make use of a standard library defined by the
Institute for Electrical and Electronics Engineers (IEEE). This can be speci-
fied by including the following statements immediately before the declaration
of any VHDL module.

library ieee;
use ieee.std_logic_1164.ALL;
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use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;

Here, the library statement declares the intention to use packages in the
ieee library, and the subsequent use statements incorporate all definitions
found in the three specified packages. We’ll defer discussion of the contents
of these packages.

VHDL allows us to define new signal types. Here’s an example of an
enumeration type.

type color is (red, green, blue, black, white);
subtype primary is color range red to blue;
signal cl, c2, c3: color;

signal p: primary;

The first line introduces a new type called color with five allowed values,
each of which is given a symbolic name. The second line defines a subtype
called primary which includes the colors red, green and blue. The last two
lines contain signal declarations using the new types. With these definitions,
we can write the following code.

cl <= red;
p <= green;
if c2 /= green then
c3 <= p;
else
c3 <= blue; p <= blue;
end;

Note, the assignment p <= black is not allowed, since black is not a valid
value for signals of type primary.

Before moving on to the next topic, it’s worth noting that VHDL has an
extensive type system to enable users to define their own data types. In
fact, the types std_logic and std_logic_vector are examples of types that
are not built into the language, but which have been defined using the type
system. These type definitions are included in the IEEE library which is
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routinely included as part of computer-aided design tool suites. While we're
on the subject of std_logic it’s worth noting that signals of type std_logic
may have values other than 0 or 1. In fact, there are nine possible values
including one that essentially means “undefined”. Now these “extra” values
are useful in the context of simulation, as they make it easier to identify
situations in which a circuit definition fails to explicitly define the value of a
signal. We won’t discuss them in detail at this point, but it’s important to
know that there are more possiblities for std_logic signals than just 0 or 1.

It’s also important to know that the VHDL is a strongly-typed language,
meaning that signals that are combined in the same expression must have
compatible types. This requires that we exercise some care when constructing
signal assignments, to ensure that the type-matching rules of the language
are satisfied. There are occasions when we will find it necessary to explicitly
convert a signal from one type to another. The standard library provides
mechanisms for handling such situations when they occur.

5.2 For and case statements

Now let’s turn to another type of statement, the for-loop. Like conven-
tional programming languages, VHDL includes statements that can be used
to iterate through a set of index values. Now in a conventional language,
an iteration statement means “repeat the following group of program state-
ments, multiple times in sequence”. In VHDL, an iteration statement means
“replicate the circuit defined by the following statements”. Let’s consider an
example.

-- Negate a 2s-complement input value

-— Output bit i is flipped if input bits 0..i-1

-- include a 1

entity negate is port (
x : in std_logic_vector(wordSize-1 downto 0);
x_neg: out std_logic_vector(wordSize-1 downto 0));

end negate;

architecture arch of negate is
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signal foundOne: std_logic_vector(wordSize downto 0);
begin
process(x, foundOne) begin
foundOne (0) <= 0;
for i in 0 to wordSize-1 loop
x_neg(i) <= foundOne(i) xor x(i);
foundOne(i+1) <= foundOne(i) or x(i);
end loop;
end process;
end arch;

The input to this circuit is a 2s-complement number and the output is the
negation of the input value. Recall that to negate a 2s-complement number,
we first find the rightmost 1, then flip all bits to the left of the rightmost 1.

In the VHDL architecture, the signal vector foundOne has a 1 in every bit
position to the left of the first 1 in the input and a 0 in all other bit positions.
The circuit implemented by the first three iterations of the for-loop is shown
below.
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Notice how each iteration defines a circuit consisting of a pair of gates
and that these gates are linked to each other through the foundOne signal
vector. Also note that the number of loop iterations is determined by the
constant wordSize. Since we're using the loop to define multiple copies of
a circuit, the number of copies must be a constant. Because the number of



5. More VHDL 87

iterations is a constant, we could omit the loop altogether and simply use a
series of assignments.

process(x, foundOne) begin

foundOne (0) <= 0;

x_neg(0) <= foundOne(0) xor x(0);
foundOne (1) <= foundOne(0) or x(0);
x_neg(1) <= foundOne(1) xor x(1);
foundOne(2) <= foundOne(1l) or x(1);
x_neg(2) <= foundOne(2) xor x(2);
foundOne (3) <= foundOne(2) or x(2);

end process;

We can view the for-loop as just a shorthand way to write these repetitive
statements. There is another way we can write this for-loop, using an exit
statement.

process(x) begin
x_neg <= not Xx;
for i in O to wordSize-1 loop
x_neg(i) <= x(i);
if x(i) then exit; end;
end loop;
end process;

This version does not use the foundOne signal In this case, the signal x_neg is
assigned a default value of not x. The body of the loop overrides this default
assignment for all bit positions up to the rightmost 1 in x. Now, the exit
statement can be a little bit confusing, because it seems like it is intrinsically
associated with the notion of sequential execution of the loop statements.
It’s not so easy to see how it defines a circuit. One way to think about this
is to view each if-statement as defining an “exit condition” and the other
statements in the loop body are only “activated” if the exit condition is not
true. Here’s a version of the process that illustrates this idea.
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process(x) begin
x_neg <= not x;
exit(0) <= ’17;
for i in 0 to wordSize-1 loop
if exit(i) = ‘0’ then
x_neg(i) <= x(i);
end;
exit(i+1) <= x(i) or exit(i);
end loop;
end process;

The circuit defined by this specification is logically equivalent to the one
shown earlier. Before leaving this example, it’s worth noting that in this case
the loop is simple enough that we can rewrite that architecture without any
loop at all.

process(x, foundOne) begin
foundOne (0) <= 0;
x_neg <= foundOne xor x;
foundOne (wordSize downto 1) <=
x or foundOne(wordSize-1 downto 0);
end process;

Let’s look at another example of a loop. Here, we are using a loop to
implement a four digit BCD incrementer.

entity bcdIncrement is port(

a : in std_logic_vector(15 downto 0);

sum : out std_logic_vector(15 downto 0));
end bcdIncrement;
architecture al of bcdIncrement is
signal carry: std_logic_vector(4 downto 0);
begin

process(a, carry) begin

carry <= "00001";
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for i in 0 to 3 loop
sum(4*i+3 downto 4xi) <= a(4*i+3 downto 4%*i)
+ ("000" & carry(i));
if carry(i)=’1’ and a(4xi+3 downto 4%*i)="1001" then
sum(4*i+3 downto 4*i) <= (others => ’0’);
carry(i+1) <= ’1°;
end if;
end loop;
end process;
end al;

Here, the addition is done on 4 bit segments that correspond to BCD
digits. The case that triggers a carry into the next BCD digit is handled by
the if-statement. Again, keep in mind that the loop defines repeated copies
of a circuit. You can always expand the loop in order to understand exactly
what circuit it defines.

Before leaving the for-statement, it’s important to note that the loop
index in a for-statement is not a signal. That is, there is no wire (or group
of wires) in the constructed circuit that corresponds to the loop index. Also
note that there is no declaration of the loop index. It is simply defined
implicitly by the loop itself, and it is only defined within the scope of the
loop. A loop index is a special case of a VHDL variable. We’ll see other uses
of variables in a later chapter.

Next we turn to the case statement, which allows one to select among
a number of alternatives, based on the value of an expression. Here’s an
example.

q <= ’1%; -- provide default value for q
case x+y 1is

when "00" =>p <=1u; q <= y;

when "01" => p <=v; q <= u;

when "10" => p <= y xor z;

when others => p <= ’0’;
end case;
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The expression in the case statement determines which of the when clauses
is active. The expressions in the when clauses must either be constants or
constant-expressions, and they must all have the same type as the selection
expression that follows the case keyword.

By the separation principle, we can replace this case statement with
two similar case statements, one containing only assignments to p and the
other containing only assignments to q. Now each such case statement is
equivalent to a selected signal assignment for that signal. So, each such case
statement can be implemented by a circuit similar to the one we saw earlier
for the selected signal assignment. A case statement containing assignments
to several signals can be implemented using one such circuit for each signal.

In this example, notice that signal p appears in all the when clauses, but
q does not. In particular, the case statement defines a value for q only when
x+y=00 or 01. The default assignment to q ensures that q is well-defined in
all other cases.

5.3 Synchronous and Asynchronous Assignments

We have seen how a VHDL process can be used to define combinational cir-
cuits. What about sequential circuits? Most of the time when designing
sequential circuits, we're really interested in clocked sequential circuits. The
key to defining clocked sequential circuits in VHDL is the synchronization
condition. Here is a small example of a serial parity circuit.

entity serialParity is port (

clk, reset: in std_logic;

dIn: in std_logic;

parityOut: out std_logic);
end serialParity;
architecture arch of serialParity is
signal parity: std_logic;
begin

process (clk) begin

if rising_edge(clk) then
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if reset = ’1’ then
parity <= ’0’;
else
parity <= dIn xor parity;
end if;
end if;

end process;
parityOut <= parity;
end arch;

The parityOut output of this circuit is high, whenever the number of 1s
that have been observed on the dIn input is odd. The reset signal causes the
circuit to “start over”.

Now the if-statement in the architecture’s process includes the condition
rising edge(clk). This is an example of a synchronization condition. This
synchronization condition specifies that all assignments that appear within
the scope of the if-statement should happen only when the signal clk is mak-
ing a transition from low to high. Now thinking about the circuit defined
by this code, the implication is that the internal signal parity must be the
output of a flip flop. We will use the term synchronous assignment to refer
to any signal assignment that appears within the scope of a synchronization
condition. Other assignments are referred to as asynchronous assignments.
When using VHDL to define a combinational circuit, all assignments are asyn-
chronous, but a clocked sequential circuit will generally have a combination
of both synchronous and asynchronous assignments.

Now, if a specific signal, say sig, appears on the left side of a synchronous
assignment, then sig must be the output of a flip flop. Consequently, it
usually does not make sense for sig to appear in any asynchronous assign-
ments. So as a general rule, a given signal can appear in synchronous as-
signments or asynchronous assignments, but not both. Consequently, we
can also think of signals as being either synchronous or asynchronous. Note
that if a given signal is synchronous, assignments to that signal can only
appear within the scope of “compatible” signal conditions. So for example
falling edge(clk) and rising edge(someOtherClk) would not be com-
patible with rising edge(clk).
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Processes that include synchronization conditions often include a single
synchronization condition with a scope of that extends over the entire body
of the process. The serial parity circuit includes such a process. We refer to
such processes as purely synchronous. Now this brings us back to the subject
of the sensitivity list. In a purely synchronous process, it’s only necessary
to include the clock signal (the one used in the synchronization condition)
in the sensitivity list. Recall that the sensitivity list includes all signals that
a circuit simulator should “pay attention to”, since when changes to these
signals occur, process outputs may change. In a purely synchronous process,
all outputs to a circuit change when the clock signal changes, so it’s sufficient
to include only the clock signal in the sensitivity list.

Now, it’s possible for a given process to have both synchronous and asyn-
chronous assignments. Here’s an example.

process (clk,t,x) begin
if rising edge(clk) then
t <= s;
if en = ’0’ then
s <=’07; t <="1";
else
s <= X XOr s;
end if;
end if;
y <= t and x;
end process;

Note that the assignment to y falls outside the scope of the synchro-
nization condition, hence it is an asynchronous assignment. Because this
process includes an aynchronous assignment, its sensitivity list must include
the sigals that appear on the right-hand side of that assignment. In general
all signals that are used within the asynchronous part of such a mixed process
must be included in the sensitivity list. Note that we could easily split this
process into two separate processes, one for the synchronous signals and one
for the asynchronous signals. Indeed, many designers prefer to keep the syn-
chronous and asynchronous parts of their design separate in this way. This
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is certainly a legitimate choice, but since mixed processes are permitted by
the language, it’s important to be aware of the implications of using them.

5.4 Structural VHDL

In an earlier chapter, we described a simple binary calculator circuit. This
circuit can be implemented using an FPGA prototype board, and two other
circuit components, an input module called binaryInMod and an output
module called binaryOutMod. The circuit formed by combining these com-

ponents is illustrated below.
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VHDL provides language constructs to enable designers to specify groups
of components and the signals that connect them. Here is an example of a
VHDL module that illustrates how these constructs can be used to define the

interconnections shown in the diagram.

entity top is port(...); end top;

architecture al of top is

component  calculator port( ... );
component binaryInMod port( ... );
component binaryOutMod port( ... );

signal reset, clear, load, add: std_

end component;
end component;
end component;

logic;

signal dBtn, pulse: std_logic_vector(3 downto 1);
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signal inBits, outBits: word;
begin
imod: binaryInMod port map(clk,btn,knob,
reset,dBtn,pulse,inBits);
calc: calculator port map(clk,clear,load,add,
inBits,outBits);
omod: binaryOutMod port map(clk,reset,
inBits,outBits,lcd);

clear <= pulse(1); load <= pulse(2); add <= pulse(3);
end al;

First notice that this code is defining an entity called top that contains the
other components. The most important part of the architecture of top is the
series of three component instantiation statements. Let’s look at the second
of these, which is identified by the label calc. This statement instantiates
a copy of the calculator module and includes a port map that determines
how the interface signals of the calculator are connected to local signals
defined within top. The first signal in the port map is connected to the first
signal in the entity specification for the calculator, the second is connected
to the second signal in the entity specification, and so forth. The other two
component instantiation statements are similar.

The port maps in our example associate the local signals within top to
the interface signals of the respective components based on the position of
the interface signals within the component’s entity specifications. We say
that this style of port map uses positional association. Port maps may also
use named association in which local signal names are mapped explicitly to
the signal names in the entity specification. For example, we could have
written the following for the calculator.

calc: calculator port map(clk => clk,
dIn => inBits, result => outBits,
clear => clear, load => load,
add => add);
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Here, each port is specified by name, where the form is component_interface_s
=> local_signal. When using named association, the order in which the
signal mappings are listed does not matter. Although named association is a
little more trouble to write, it can make specifications more clear to a reader,
in the case of components with a large number of interface signals.

Notice that the architecture starts with a series of component declara-
tions, one for each distinct type of component that is used within the ar-
chitecture. We have abbreviated the component declarations here, but in
general, each component declarations contain the same information as the
corresponding entity declaration. Even though they are somewhat redun-
dant, the language does require that they be included, in every architecture
that uses a given component.

Circuit specifications that use component instantiation statements are
said to use structural VHDL. This style of circuit specification is mostly
used to wire together large circuit blocks, as we have done here. However,
structural VHDL can also be used to specify circuits using simple components
like gates. When structural VHDL is used in this way, it essentially provides
a way to encode a schematic representation of a circuit using text. While
there is rarely a good reason for designers to use structural VHDL in this
way, it is sometimes used in this way by computer-aided design tools, as
an intermediate representation of a circuit that has been synthesized from a
higher level specification.
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Chapter 6

Building Blocks of Digital
Circuits

In this chapter, we’re going to look a bit more closely at the basic elements
used to implement digital circuits, and we’ll see how they can be used to
construct larger components that serve as building blocks in larger digital
systems.

6.1 Logic Gates as Electronic Components

Up to now, we've been viewing gates as idealized logical elements. Of course,
in reality, they must implemented by electronic circuits that are constrained
by physical properties. Consequently, real digital components only approxi-
mate the idealized behavior and it’s important to keep this in mind.

Let’s start by considering how real digital circuits represent logic values.
All electronic circuits involve voltages and currents and these can be used to
represent information. Now voltages and currents are continuous, real-valued
quantities, not integers and certainly not logical values. Digital circuits use
ranges of voltage values to represent the two logic values. So for example, if
our digital gates use a power supply voltage of 5 volts, we might define the
range of values from 0 to 1 volt as logic 0, and the range from 4 to 5 volts

97
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as logic 1. What about the range between 1 and 4 volts? This is a sort of
no-man’s land. Voltage values in this range do not correspond to either logic
0 or logic 1, and while our signals must pass through this range when they
switch between the low and high ranges, signals do not normally remain in
this range for long.

Now, it’s important to separate the low range from the high range because
real circuits are subject to noise that can distort the voltages and currents
in a circuit. If we want our circuits to operate reliably, it’s important that
noise not cause us to mistakenly interpret a 0 as a 1 or vice versa. The
intermediate area between the low and high voltage ranges operates as a
buffer that makes it less likely that our circuits will operate incorrectly due
to the effects of noise. The size of that intermediate range is referred to
as the noise margin of the circuit. Now in the 1970s, most digital circuits
used a power supply voltage of 5 volts, but as integrated circuit fabrication
processes allowed gates to become smaller, it became desirable to reduce the
power supply voltage to enable faster operation. That has led to a gradual
shrinking of noise margins as illustrated below.
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Now, you might ask why is it that digital circuits use just two voltage
levels. Why not define three ranges, say 0 to 1 volt, 2 to 3 volts and 4 to
5?7 This would allow us to construct circuits based on ternary logic (that
is base 3). Now, it is possible to do this, and there are some arguments in
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favor of using ternary logic, instead of binary. In practice however, ternary
logic is rarely used and the main reason is that it’s simply more difficult
to implement gates that operate reliably using ternary logic. The required
circuits are more complex and the available noise margins are smaller. Thus,
while it’s tempting to think we could construct digital systems that do not
represent information in binary, these practical considerations make binary
the only sensible choice in most situations.

Now because voltages and currents are physical quantities, they cannot
change instantaneously from one value to another. It takes time for a signal
to transition between the high and low voltage ranges. There are a number
of factors that affect the time required, some of which we will study in a later
chapter. For now, just keep in mind that signal transitions take time. The
effect of this is that signal transitions at a gate input are not immediately
reflected at the gate output. The output transition is delayed slightly and
in larger circuits, these delays. add up and ultimately determine the perfor-
mance that the circuit is able to achieve. This is illustrated in the timing
diagram shown below.
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Timing diagrams like this are used to describe the timing relationships
among different signals in a circuit. They can also be used to define the
required relationships among the signals in a circuit we’re designing. Most
of the time when we draw timing diagrams, we’ll draw them as if the gate
delays were zero, but it’s important to keep in mind that this is just an
idealization of the actual circuit behavior.

Now it turns out that digital circuits can do some things that fall outside
the domain of mathematical logic. Normally, an electronic gate either makes
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its output signal have a high voltage or a low voltage. However, there is
a third possibility, which is that the gate can simply let the output “float”
in a disconnected state. The tri-state buffer is a special kind of gate that
implements this third option.

control

data_in data_out

When the control input of a tri-state buffer is high, the data output
is equal to the data input. When the control input is low, the output is
disconnected from the input. That means that the voltage level is not being
controlled by the gate, and is essentially left to float. When a tri-state buffer
leaves its output disconnected, we say that it is in the high impedance state
and we sometimes say that the output of the gate is equal to a special value
Z.

Now, why would we want to have a gate that behaves in this way? Well,
we can use such gates to let different parts of a large circuit share a set
of set of wires and use them to communicate in a flexible fashion. This is
illustrated below.
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The diagram shows three registers connected by a shared set of wires
called a bus. If the tri-state buffers at the output of the first register are
enabled (that is, their control inputs are all high), and the tri-state buffers
of the other two registers are disabled, the data in the first register will
appear on the bus, allowing either of the other registers to store the value,
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effectively transferring it from one register to another. So long as no two sets
of tri-states are enabled at the same time, we can use the shared bus to pass
values among the different registers. In larger digital systems, shared buses
are often used to pass information among different system components. For
this kind of communication scheme to work effectively, we need some way to
ensure than no two components attempt to put data on the bus at the same
time, and we need to make sure that we only load data from the bus when
someone has put data on the bus. If we load a register from a bus that is
not being actively controlled by some other component, the voltage values
on the bus wires may not correspond to valid logic values.

Here’s an example of how we can specify the use of a tri-state buffer in a
VHDL circuit specification.

entity tristate is port(
X,y : in std_logic;
d: out std_logic);
end tristate;

architecture al of tristate is
begin
process (x,y) begin
if x > y then d <= ’17;
else d <= ’7Z’;
end if;
end process;
process (x,y) begin
if x < y then d <= ’0’;
else d <= ’2’;
end if;
end process;
end al;

First, notice the assignment d <= ‘Z’ that appears in both processes.
The value ‘Z’ is a special value that indicates that the process is placing
signal d in the high impedance state. To implement this specification, a



102 Designing Digital Circuits (C) Jonathan Turner

circuit synthesizer must instantiate a tri-state buffer for each process, with
shared signal d as the output of both buffers. Here is a diagram of a circuit
that implements this specification.

X

y

Notice also that we are violating our usual rule of allowing only one pro-
cess to control a signal. Signals controlled by tri-states are an exception
to this rule, since it is possible for processes to safely share a signal using
tri-states. However, it’s important to recognize that it’s the designers respon-
sibility to ensure that the signal is shared safely. If the two processes attempt
to assign complementary values to d at the same time, they will effectively
create a direct electrical connection between the power supply and ground,
leading to excessive current flows that can destroy the physical device.

6.2 Storage Elements

In an earlier chapter, we introduced the D flip flop, which is the key storage
element used to implement digital circuits. The flip flop stores a single bit
of information when its clock input makes a transition from low-to-high (or
alternatively, high-to-low). A fundamental feature of a flip flop is that it is
synchronized to the clock, that is, the value stored (and the flip flop output)
change only when there is a clock transition.

Now, while the flip flop is a versatile and ubiquitous storage element, it is
not the only kind of storage element used in digital circuits. Another useful
element is the D latch. Like the flip flop, the latch has a data input and a
clock input, but it responds to the clock input in a different way than the
flip flop does. Specifically, whenever the clock input of a latch is high, the
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value at the input of the latch is propagated directly to the output. We say
that the latch is transparent in this case. When the clock input of a latch
drops, the output holds the value that it had at the time the clock dropped.
Changes to the data input that occur while the clock input is low have no
effect on the output. We say that the latch is opaque in this case.

The symbols for the latch and flip flop are shown below, along with an
implementation of a flip flop that uses a pair of latches.

D latch D flip flop
—C —>C

implementing a flip flop
with two latches

sl

Notice that when the clock input of this circuit is low, the first latch is
transparent, while the second is opaque. When the clock input goes from
low to high, the first latch becomes opaque, while the second becomes trans-
parent. Because the second latch is transparent only when the first latch
is opaque, the output of the second latch can only change when the clock
makes its low to high transition.

Now it’s important to observe that there this is an ambiguity in our defi-
nition of the behavior of both of these storage elements. Start by considering
the flip flop. We said that a new value is stored in the flip flop whenever
the clock makes a low-to-high transition. But what if that the data input
is changing at the same time that the clock is making its transition? What
value is stored in the flip flop in that case?” Well the answer is that we can’t
be sure. The flip flop might store a 0, or it might store a 1, or it might
do neither. If we take a real physical flip flop and change the value on the
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data input at the very instant the clock input is changing, the voltage at
the flip flop output may get “stuck” at an intermediate voltage level, or it
may oscillate between 0 and 1. When this happens, we say that the flip flop
is metastable, and it can remain in this intermediate state for an indefinite
amount of time. Usually a flip flop will leave the metastable state after just
a short interval with the output resolving to either 0 or 1, but there is no
way to predict how long this will take.

Metastability is an inherent property of real flip flops and can cause
digital circuits to behave erratically. For this reason, when we design digital
circuits we take some pains to ensure that the data inputs to flip flops are
stable when the clock is changing. In a later chapter, we will discuss a set
of timing rules that can be used to ensure that flip flops operate safely, but
for now the key point to understand is that correct operation of flip flops
depends on data inputs being stable during a clock transition. A similar
observation can be made about latches. In the case of a latch, the critical
time is when the latch is going from transparent to opaque (that is the clock
input is going from high to low). Changing the value on the data input at
this instant can cause the latch to become metastable.

6.3 Larger Building Blocks

In this section, we’ll look at a series of larger building blocks that can be used
to implement digital circuits. Circuit synthesizers often use these building
blocks to implement circuits specified in a hardware description language.

Let’s start by considering the multiplexor. In general, a multiplexor is a
device with & control inputs, 2¢ data inputs and a single output. The data
inputs are numbered 0,1, ...,2¥ — 1 and if the value on the control inputs is
the integer 4, input 7 is effectively connected to the output. That is, the data
value on input ¢ is propagated to the output. The logic equation defining the
output of a 2-to-1 mux is simply C’Dy+C D, so we can implement it directly
using three gates and an inverter. Larger multiplexors can be implemented
in a recursive fashion, using the 2-to-1 mux as a building block, as illustrated
below.
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Multiplexors can be used to implement selected signal assignments in
VHDL. They can also be used to implement signal assignments that operate
on individual bits from a logic vector. For example, consider the following
assignment, where A, B and X are four bit signal vectors, and i and j are two
bit signal vectors.

X <= A(i) and B(j);

This can be implemented by the circuit shown below.
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The decoder is another building block that can be used to construct
larger circuits. A decoder with & inputs has 2¥ outputs that are numbered
0,1,...,2¥ —1. When the value on the inputs is the integer i, output i of the
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decoder is high, while the other outputs are all low. A 1-to-2 decoder can be
implemented with just an inverter, while larger decoders can be constructed
from two smaller ones plus an AND gate for each output, as shown below.

2—4 decoder

1-2

deco%/e_r TO I 5 I 1
Zlg_ o2 D3
R

Decoders and multiplexors are closely related to one another. Indeed,
one can implement a multiplexor using a decoder. Decoders can also be used
to implement VHDL case statements and to control assignment to a selected
bit of a value stored in a register. For example, Consider the code fragment
below, where X is a four bit signal vector and i is a two bit signal vector.

if rising_edge(clk) then
X(i) <= A and B;
end if;

Here’s a circuit that uses a decoder together with several multiplexors to
implements this.
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Here’s a circuit that uses exclusive-or gates to flip all the bits in a signal
vector, based on some condition.
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g
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Here’s another circuit using exclusive-or gates that compares two values
to determine if they are equal or not. Notice how the circuit is constructed
from a linear array of repeated sub-circuits.
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Here’s another circuit that is constructed in a simlar way. This one
compares two values to determine which is larger numerically.

This circuit compares the bits of the two input values in sequence, start-
ing with the most significant bit. The first bit position where a(i) # b(7)
determines which of the values is larger.

We conclude this section with a brief discussion of memory components.
As its name suggests, a memory is a storage element, but unlike a flip flop or
latch, a memory component stores multiple bits, typically many thousands.
An example of a memory component is shown below.

enable —» 00

01
read/write —» ()2

data_in ==p

data_out <=

FE
address —»| Ff

The memory contains an array of numbered storage locations, called
words. The integer index that identifies a particular location is called its
address. This memory component has an address input, a data input and a
data output. The address input selects one of the words in the memory. To
read from the memory, we raise the enable input and the read/write input.
This causes the value stored at the location specified by the address inputs
to be placed on the data output. To write to the memory, we raise the enable
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input, while holding the read/write input low. This causes the value on the
data inputs to be stored in the location specified by the address inputs.

This particular memory component is asynchronous. That is, it is not
synchronized to a clock. Synchronous memory components are also often
used. These components have a clock input and all operations on the memory
take place on the rising clock edge.

Notice that the interface to the memory constrains the way that it can
be accessed. In particular, only one memory operation can take place at
one time. Multi-port memory components are able to support more than
one simultaneous operation (most often, two), using multiple sets of data,
address and control signals.

6.4 Lookup Tables and FPGAs

The Field Programmable Gate Array (FPGA) is a configurable logic device
that can be used to implement a wide variety of digital circuits. One of
the key elements of an FPGA is a configurable logic element called a Lookup
Table (LUT). A typical LUT has four inputs and a single output and can be
used to implement any logic function on four inputs (some newer FPGAs use 6
input LUTs, but we will focus on the 4 input case, to keep things simple). As
its name suggests, a LUT4 can be implemented using a small memory, with
the LUT inputs serving as the address inputs to the memory. We can think
of the LUT as storing the truth table for some logic function. By changing
the information stored in the LUT we can change the logic function that it
implements. This is the key to using LUTs to implement logic. The figure
shown below provides an example of how LUTs can be used to implement
logic circuits.
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If we view the inputs to the LUT as address inputs with A being the most
significant bit, the LUT for output F' will have a 1 in bit 6 and Os in all other
bits. The LUT for output GG will have 1s in bits 0-3, 7, 8-13 and 15.

Because LUTs are used to implement all the combinational circuits in
an FPCA we're often interested in knowing how many LUTs it takes to im-
plement a given component. For many common components it’s easy to
determine how many LUTs they require. For example, a 2 input mux can be
implemented with a single LUT since it has three inputs and a single output.
A 4 input mux can be implemented with three LUTs, using the recursive
construction discussed earlier.

It’s natural to ask if there is a straight-forward method for determining
the minimum number of LUTs required to implement a given circuit. Un-
fortunately, the answer to that question is no, but there are a couple simple
rules of thumb that set lower bounds on the number of LUTs required. First,
since a LUT has a single output, a circuit with n outputs requires at least n
LUTs. Similarly, a circuit with m inputs requires at least [m/4] LuT4s. We
can actually improve on this latter bound by noticing that in a circuit with
m inputs, n outputs and k LUT4s, k — n LUT outputs must be connected to
LUT inputs. Hence, m+(k—n) <4k or k > [(m—n)/3]. Note that these are
only lower bounds, and many circuits require far more LUTs than indicated
by the bounds. Still, they provide a useful starting point when trying to
estimate the number of LUTs that a given function might require.

Now, to enable them to implement a wide range of digital systems, FPGAs
contain a number of other components, organized into a fairly elaborate
structure. The, highly simplified diagram below, provides a rough indication
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of how these devices are organized.
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A Xilinx FPGA is organized around a basic building block called a Con-
figurable Logic Block (CLB). CLBs can be connected to one another using
programmable connections that are implemented by using wire segments
that are connected to one another using switch matrix components. We
won’t discuss the details here, but the ability to connect the CLBs together
in a flexible fashion is essential to enabling the FPGA to implement a wide
variety of digital systems. The FPGA used in our prototype board has several
thousand CLBs and larger devices have hundreds of thousands.

The figure shown below is a simplified diagram of a Xilinx CLB.

At the left edge of the figure are two LUT4 s and a third LUT with three
inputs. Near the center of the CLB are four multiplexors that can be config-
ured to propagate the LUT outputs in a variety of ways. Toward the right
side of the figure is a pair of D flip flops that can store information from ei-
ther of the LUT4 s, the three input LUT or a direct data input. Configuration
bits can be used to determine whether a flip flop operates on the rising or
falling clock edges, and how it responds to a global reset signal.

Modern FPGAs include other components, in addition to cLBs. In par-
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ticular, they are often equipped with memory blocks that can be used for a
variety of purposes. For example, the FPGAs on our prototype board have
20 memory blocks, each with approximately 18 Kbits of memory. Larger
devices have hundreds of such memory blocks.



Chapter 7

Sequential Circuits

In this chapter, we’re going to look more closely at the design of sequential
circuits. Earlier, we observed that there are two primary categories of digital
circuits: combinational circuits, and sequential circuits. The outputs of a
combinational circuit are always a direct function of the current input values;
that is the outputs do not depend on past input values. Sequential circuits
store data, meaning that their outputs may depend on previous input values,
not just current values. In this book, we will focus on clocked sequential
circuits in which data is stored in flip flops. Here’s a diagram that illustrates
the general structure of a clocked sequential circuit.

inputs L gjg’;lj:t asynchronous
next —| logic outputs
state gt?(tié
logic =
ync
current | S0 1 nn |Flip-flops output —»Sy'gm'[;%rt'gus
state signal — logic

The flip flops at the center of the diagram store one or more bits of
information. The outputs of these flip flops are referred to as the current
state of the circuit. The input signals to the flip flops are referred to as the
next state.

The block labeled next state logic is a combinational circuit that deter-
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mines what the next state will be, based on the current input values and the
current state. There are two output blocks, which are also combinational
circuits. The asynchronous output logic block determines the values of those
outputs that are functions of both the current inputs and the current state.
The synchronous output logic block determines the values of those outputs
that are functions of the current state alone. The synchronous outputs will
change only in response to a clock transition, while the asynchronous outputs
can change at any time.

7.1 A Fair Arbiter Circuit

Sequential circuits are often used as control elements in larger digital systems.
Sucn controllers are usually referred to as state machines. We’ll illustrate
this by describing an arbiter, which is a circuit that controls access to some
shared resource, like a memory perhaps. The figure below illustrates a typical
application of an arbiter. Two separate parts of a larger digital circuit need

(O]
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o k> 3 k>~
- (7)) -+
C (0] C
9 = Q
© O
ro ri
N )
arb
g0 gl

to access the shared resource in the middle of the diagram. We refer to these
two parts as client 0 and client 1. The arbiter has two signals connecting it
to each client, a request signal and a grant signal. To request exclusive use
of the resource, a client raises its request signal high. The arbiter gives it
permission to use the resource by raising its grant signal. The client holds its
request signal high while it is using the resource, then drops it low when it
is finished. In order to treat the two clients fairly, whenever the arbiter gets
simultaneous requests from both clients, it grants access to the client that
has been least recently served. This behavior is illustrated in the interface
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timing diagram shown below.
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Note that when the two clients make simultaneous requests, client 1 is
granted access, since client 0 used the resource most recently.

In order to implement the desired behavior, the arbiter needs to remem-
ber a few pieces of information. First, it needs to know if the resource is in
use or not, and if it is in use, which client is using it. When the resource
is idle, it also must remember which client should go next, in the case of
concurrent requests from both clients. We can keep track of this information
by defining four states for our controller.

e In the busy0 state, the resource is being used by client 0.
e In the busyl state, the resource is being used by client 1.

e In the idle0 state, the resource is not being and client 0 will get to go
next, if simultaneous requests are received from both clients.

e In the idlel state, the resource is not being and client 1 will get to go
next, if simultaneous requests are received from both clients.

We can specify the behavior of the circuit precisely using a state transition
diagram, as shown below.
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The ovals in the diagrams correspond to the four states of the circuit.
The ovals are labeled with the state name and the values of the two output
signals. So for example, in the two idle states, the grant outputs are both
low, while in each of the two busy states, one grant is high, while the other
is low. The arrows connecting the ovals indicate transitions between the
states. These are labeled by the input signals, so for example, if circuit is
in state idle0 and the two request inputs have values 0 and 1 respectively,
then the circuit will move from the idle0 state to the busyl state. Some
of the labels use an x to indicate a don’t care condition. So for example,
when in state idle0, if input r0 is high, we’ll go to the busy0 state next
regardless of the value of input rl. This reflects the fact that client 0 gets
priority when we’re in the idle0 state. Take a few minutes to study the state
diagram and make sure you understand the significance of all the transitions,
including the “self-loops”. Diagrams like this are a good way to work out
the proper relationship among the states in a state machine controller, and
are an important first step in the design process for such controllers.

An alternate way to specify the behavior of a state machine is using a
state table. A state table contains exactly the same information as the state
diagram. It just presents it in a different format, and some people find this
form easier to work with. Here is the state table for the arbiter circuit.
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inputs || outputs
current state | r0 rl g0 gl | next state
idle0 00 00 idle0
1x 00 busy0
01 00 busy1l
busy0 1x 10 busy0
Ox 10 idlel
idlel 00 00 idlel
x1 00 busy1
10 00 busy0
busyl x1 01 busyl
x0 01 idle0

entity fairArbiter is port(
clk, reset: std_logic;
request0, requestl: in std_logic;
grantO, grantl: out std_logic);
end fairArbiter;
architecture al of fairArbiter is
type stateType is (idleO, idlel, busyO, busyl);
signal state: stateType;
begin
process(clk) begin
if rising_edge(clk) then
-- next state logic
if reset = ’1’ then
state <= idleO;
else
case state is
when idleO =>
if requestO = ’1’ then
state <= busyO0;
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Given a state diagram or state table, it’s easy to write a VHDL specification
for the corresponding circuit. Here is the specification for the arbiter.
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elsif requestl = ’1’ then
state <= busyl;
end if;
when busy0 =>
if requestO = ’0’ then
state <= idlel;
end if;
when idlel =>
if requestil ’1’ then
state <= busyl;
elsif requestO = ’1’ then
state <= busyO;
end if;
when busyl =>
if requestl = ’0’ then
state <= idleO;

end if;
when others => -- nothing else
end case;
end if;
end if;

end process;

-- output logic

grantO <= ’1’ when state = busyO else ’0’;

grantl <= ’1’ when state
end al;

busyl else ’0’;

There are several things worth noting about this specification. First
observe how an enumeration is used to define a set of symbolic state names.
By defining state names in this way, the remainder of the code can use the
symbolic names, making the specification easier to understand and get right.

Next, notice that the process is used to define the next state logic. A
case statement is a good way to enumerate the various cases. If statements
can then be used to determine which state to go to next. Also, note that the
VHDL code does not specify the self-loops. The synthesizer will automatically
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generate the necessary circuitry to implement the self-loops, but we do not
need to show it explicitly in the code.

Finally, note that output logic appears outside the process. This is a
very typical way to specify the outputs. Observe that even though the VHDL
assignments are not synchronous assignments, the grant signals only change
when the clock changes since they are determined entirely by the state signals
(which are synchronous). Some circuits have more complex output logic
than we have here. In such cases, it may make sense to define a separate
combinational process for the output signals. It’s also possible to define the
output signals in the same process used to define the state signal, but you
need to be careful when doing this, to make sure that the resulting output
timing is consistent with what’s required for your circuit. If you assign
values to your outputs within the scope of the synchronization condition,
the outputs will not change until the next clock transition. You need to be
sure that this is the timing that your circuit requires.

A portion of a circuit that implements this VHDL specification is shown

below.

output logic

reql req0 (synchronous)

“idlel”—

state=
“busy0” —>C

req0 . )C/k
k P state

The circuit diagram brings out another issue, which is the question of
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how the state signal is actually represented. The diagram uses symbolic
state names to keep things simple, but the actual circuit generated by a
circuit synthesizer must use some concrete representation of the state using
binary signals. In this case, because there are four different states, we need
at least two bits to represent the four different possibilities. So for example,
we might use the bit pair 00 to represent the idle0 state, 01 to represent the
idlel state, 10 to represent the busy0 state and 11 to represent the busyl
state. Given these choices, it’s straightforward to define logic equations for
each of the two state bits, and the circuit synthesizer will do this when it
implements the circuit.

There are other ways to represent the state information using binary
signals. One common method is so-called one-hot encoding. In this method,
a separate bit is used for each state. So for example, we might use the four
bits 0001 to represent the idle0 state, 0010 to represent the idlel state, 0100
to represent the busy0 state and 1000 to represent the busyl state. At first
glance, this seems like a poor choice, since it uses more bits (and more flip
flops) than is strictly necessary. However, state machine implementations
that use one-hot encoding generally require simpler next state logic than
those that use the more compact binary encoding. This can offset of the cost
of the extra flip flops. More importantly, it tends to produce circuits that
have better performance, and this is often the more important consideration.

Before leaving the fair arbiter example, let’s consider an alternate version
in which the grant outputs are not delayed until the next clock tick, but
respond immediately to input changes. This allows the clients to start using
the shared resource sooner than they can in the original version. The figure
below shows a state diagram that describes an arbiter that works in this way.
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Note that the format of this state diagram is different from the format
of the earlier one. Specifically, the output signals now appear on the arrows
denoting the state transitions. This allows us to specify output values that
are dependent not only on the current state, but also on the input signals.
So for example, when in state idle(, the grant outputs are both low if the
request inputs are both low, but g0=0 and gI=1 if r0=0 and ri=1.

Now, it’s easy to get confused about state diagrams like this. When
reading (or constructing) such a diagram, remember that the output values
labeling an edge are a function of the “current state” and the input values.
They are not a function of the “next state” (the one the arrow points to).
Also, the output values respond immediately respond whenever the inputs
change, not on the next clock edge.

We can also specify this state machine using a state table. The first half
of the state table for this circuit is shown below.

inputs || outputs
current state | r0 rl g0 gl | next state
idle0 00 00 idle0
1x 10 busy(
01 01 busy1l
busy( 1x 10 busy(
0x 00 idlel
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To implement this version of the state machine, we need to change the
output equations. In the VHDL, this means replacing the original assignments
to the outputs with the following ones.

grantO <= ’1’ when (state = idle0 and requestO = ’17)
or (state = idlel and requestO > requestl)
or (state = busyO and requestO = ’1°)
else ’0’;
grantl <= ’1’ when (state = idlel and requestl = ’1°)
or (state = idleO and requestl > requestO)
or (state = busyl and requestl = ’1°’)
else ’0’;

State machines that have asynchronous output signals (that is outputs
that are functions of the state machine inputs, in addition to the current
state) are called Mealy-mode state machines. State machines that have only
synchronous outputs (outputs that are functions of the current state alone)
are called Moore-mode state machines. Mealy mode state machines can
offer a performance advantage in some situations, but they can make it more
difficult to achieve a target clock rate. We’ll discuss this issue in a later
chapter when we study timing issues in digital circuits.

7.2 Garage Door Opener

In this section, we’ll look at a slightly larger example of a state machine and
we’ll use it to explore some other issues that arise in the design of clocked
sequential circuits. But first, let’s review the process that we used to design
the arbiter circuit and see how it illustrates a general design process that can
be used for a wide range of different circuits.

At the beginning of the last section, we started with a text description
of the aribter and a block diagram showing how it might be used to control
access to a shared resource. This is generally a good way to start. Before
you can proceed with the design of a circuit, you need to be able to describe
exactly what it’s supposed to do. Sometimes, you’ll be given a precise spec-
ification, but often you’ll be given only a partial description, and will need
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to work out a lot of details for yourself. It’s best to start by defining the
input signals and output signals, and then describe how the outputs should
respond to changes in the inputs. To make this description precise, it’s gen-
erally a good idea to draw an interface timing diagram (as we did with the
arbiter) that shows when outputs should respond to input changes (in par-
ticular, should they respond immediately, or only on a clock transition). In
this phase of the design proces, you should ask lots of questions about how
the circuit should behave in particular cases and make sure you know how
to answer those questions.

Once you understand exactly what the circuit is supposed to do, you
need to think about what states are needed to allow the circuit to do its job.
The key here is to identify those things that the circuit must “remember” in
order to work correctly. (For the arbiter, this included whether the resource
was busy or idle. When it was busy, we also needed to remember which client
was using it. When it was idle, we needed to remember which client should
be served next, if both made simultaneous requests.) Once you understand
the things that the circuit must be remember, you can proceed is to write
down a list of states, and for each one, write a short description of what it
means when the circuit is in that state.

At this point, you may be ready to make your first attempt at a state
transition diagram. Start with a single state and think about what should
happen next for each of the possible input signal combinations. This will
allow you to fill in transitions to other states, and you can then proceed to
work out the transitions leaving the other states. Do not expect to get this
right the first time you try. It can take even experienced designers several
iterations before they get a state diagram that completely describes the re-
quired circuit behavior. Sometimes you will find that you need additional
states you had not anticipated, or that some of the states you had identified
are not really necessary. There is some inevitable trial-and-error to this part
of the design process, but if you think carefully about what the circuit is
supposed to do and work through it systematically, you should be able to
arrive at a state diagram that captures the required behavior.

Now once you have a state diagram (or state table, if you prefer that
representation), the process of writing the VHDL is very straightforward.
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You can use a process to describe the state transitions, as we did with the
arbiter. This will typically involve a case statement on the state variable,
with if-statements used to define specific transitions from each state. Outputs
can be defined with signal assignments outside of the next-state process. Or,
you may want to use a separate combinational process to define the output
signals. The thing to understand is that once you have the state diagram,
the process of writing the VHDL is largely mechanical. It’s just a matter of
writing code that implements the behavior described by the state diagram.

Let’s proceed to consider another example of a state machine, and we’ll
use it to reinforce what we’ve said about the general design process. So,
this next circuit is a controller for a garage door opener. It will control the
motor used to raise or lower the door, in response to a signal from a remote
control unit. It will stop the motor if it detects that the door is all the way
open or all the way closed (the door is equipped with sensors that detect
these conditions) and it will also reverse direction if the door is closing and
it detects an obstruction in the path of the door (another sensor detects the
presence of obstructions).

So, the circuit has four inputs and two outputs.

e The openClose input causes an open door to be closed, or a closed door
to be opened. It’s activated whenever a user presses the single button
on the remote control. This button can also be used to stop a door
that is in the process of opening or closing. Pressing the button again
will cause the “paused” door to move in the opposite direction.

e The atTop input is high whenever the door is fully open.

e The atBot input is high whenever the door is fully closed.

e The obstruction input is high whenever an obstruction has been de-
tected in the door opening.

e The goUp output is used by the controller to open the door.

e The goDown output is used by the controller to close the door.
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Here is a partial interface timing diagram showing a normal cycle of the door
closing then opening. We can draw similar diagrams showing cases where
the door pauses or reverses due to an obstruction.
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In the diagram, the arrows indicate causal relationships. So for example,
the openClose signal going high causes the goDown signal to go high. As an
indirect consequence of this, the atTop input goes low (after some delay).
Later, when the atBot input goes high, the goDown signal goes low. Of
course, in a real implementation of a garage door opener, the door would
be moving for 5-10 seconds, or many millions of clock ticks. This timing
diagram ignores this to keep things simple.

Now that we have an understanding of the overall behavior of the garage
door opener, it’s time to identify an appropriate set of states. In this case,
the state of the door itself suggests appropriate states for the controller.

e The controller is in the opened state when the door is fully open.
e The controller is in the closed state when the door is fully closed.

e The controller is in the opening state when we’re in the process of
opening the door.

e The controller is in the closing state when we’re in the process of closing
the door.
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e The controller is in the pauseUp state when we’ve stopped the door
while opening it.

e The controller is in the pauseDown state when we’ve stopped the door
while closing it.

The two pause states are used to remember which direction the door was
moving at the time the user paused it by pressing the button on the remote
control. This allows us to reverse the direction, the next time the user presses
the button.

The controller should also have a reset state, which is entered when the
power first comes on. Since a power outage might occur at any time, we
can’t really predict the position of the door when the power comes back on.
So the reset state will need to use the sensors to determine if the door is
fully open, fully closed or somewhere in between. The controller can then
transition to an appropriate state.

Since the garage door opener is not a performance-critical application, it
makes sense to use synchronous outputs. The goUp signal will be high when
we’re in the opening state. The goDown signal will be high when we’re in
the closing state. In all other states, both signals are low.

We're now ready to draw the state transition diagram.

() x1xx,00xx

openClose
obstruction
atTop
atBot
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Let’s examine a few of the state transitions to confirm our understanding
of how the controller should behave. In the opened state, we can assume
that the atTop signal is high and that the atBot signal is low. So, we only
need to pay attention to the openClose input and the obstruction input. If
obstruction is low and openClose is high, we’ll transition to the closing state

The controller should stay in the closing state so long as the openClose
input, the obstruction input and the atBot input all remain low. If obstruc-
tion goes high, we’ll switch to the opening state, if openClose goes high,
we’ll switch to the pauseDown state, and if atBot goes high, we’ll switch
to the closed state. The labels on the transitions describe this behavior ap-
propriately. Check the other transitions in the diagram and make sure you
understand the reasons for them.

At this point, we can write the VHDL specification of the circuit. We’ll
start with the entity declaration.

entity opener is port (
clk, reset: in std_logic;

openClose: in std_logic; -- signal to open or close door
obstruction: in std_logic; -—- obstruction detected

atTop: in std_logic -- door at top (fully open)
atBot: in std_logic; —- door at bottom (closed)
goUp: out std_logic; -—- raise door

goDown: out std_logic); -- lower door

end opener;
Next, we define the states.

architecture al of opener is

type stateType is (opened, closed, opening, closing,
pauseUp, pauseDown, resetState);

signal state: stateType;

Now, let’s move onto the state transition process.

begin
process (clk) begin
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if rising_edge(clk) then
if reset = ’1’ then
state <= resetState;
else
case state is
when resetState =>
if atTop = ’1’ then state <= opened;
elsif atBot = ’1’ then state <= closed;
else state <= pauseDown;
end if;
when opened =>
if openClose > obstruction then
state <= closing;
end if;
when closing =>
if openClose = ’0’ and obstruction = 0
and atBot = ’1 then
state <= closed;
elsif obstruction = ’1 then
state <= opening;
elsif openClose = ’1’ then
state <= pauseDown;
end if;

when others =>
end case;
end if;
end if;
end process;

Finally, we have the output signal assignments.

goUp <= ’1’ when state = opening else ’0’;
goDown <= ’1’ when state = closing else ’0’;
end al;
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At this point, we need to test the circuit to make sure it does behave as
expected. Here is a portion of a simulation showing a normal close/open
cycle. The four inputs are shown as a binary vector with the openClose
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input shown first, followed by obstruction, atTop and atBot. Observe how
the transitions occur in response to the input changes. The next segment of
the simulation shows the circuit passing through the pause states, and shows
its response to an obstruction.
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Chapter 8

State Machines with Data

In the last chapter, we introduced the topic of sequential circuits, focusing
on simple state machine controllers. In this chapter, we are going to look
at more complex controllers that store other data in addition to the basic
control state. This other data will be updated in response to input signals
and may affect the way the controller behaves. We’ll see that these extended
state machines can be conviently specified using a slightly higher level version
of the state transition diagrams discussed in the last chapter.

8.1 Pulse Counter

We’ll start with a simple circuit that detects pulses on a data input and
raises an event signal after a certain number of pulses have been detected.
For the purposes of this circuit, we define a pulse as one or more consecutive
clock ticks when the data input is high, preceded and followed by one or
more clock ticks when the data input is low. The number of pulses that are
to be counted before the event signal is raised is set when the signal is reset.
Let’s start by defining the interface signals.

e The reset signal intializes the circuit. After reset goes low, the circuit
starts detecting and counting pulses.

e The dIn input is the data input on which the circuit detects pulses.

131
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e The count input called N is a four bit signal that specifies the number
of pulses to be counted before the event output goes high. It must be
valid on the first clock tick after reset goes low.

e The event output goes high after N pulses have been detected and is
cleared by the reset signal.

The interface timing diagram illustrates the operation of the circuit.

/79 I T N I I O A
reset |
N X2 X )
din [ 1o o1 1 | 6 o
event ,__

Note that while this example uses pulses that last for just one clock tick,
in general pulses can last for an arbitrary number of clock ticks. We can
implement the pulse counter using a circuit that combines a simple state
machine with a counter, as shown in the block diagram below.

reset—|  COre
dIn state — event
) :
machine
g - o
ol 1 I
N— cnt

The block labeled cnt includes a register and additional circuitry that
allows the register to be loaded and decremented (using the two control
signals shown). It also has an output that signals when the value in the
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register is zero. This circuit will load the cnt register right after reset goes
low and will then decrement it whenever it detects the end of a pulse (the
data input goes from high to low).

We could write a VHDL specification that includes separate components
for the core state machine and counter blocks, but it turns out to be simpler
to view this entire circuit as a higher level state machine, in which the state
of the core controller and the counter value determine the overall behavior.
We can describe such a state machine using a generalized state transition
diagram. As in the case of the simple state machines discussed in the last
chapter, we need to start by determining what the controller must remember.
Then we can define an appropriate set of states.

In the case of the pulse counter, the key thing we must remember is the
state of the data input on the previous clock tick. This allows us to detect
when a new pulse starts (the data input was low, but now it’s high), and
when a pulse ends. Whenever a pulse ends, we’ll decrement the counter, if
it’s not already equal to zero. We also have to handle a special case when
the data input starts out high. In this case, the first high-to-low transition
on the data input does not correspond to the end of a pulse, so we need to
detect this case and handle it separately. This suggests the following set of
states.

e The resetState is entered when reset goes high.

e The startl state is entered if the data input is high when the reset
input goes low.

e The prev0 state means that on the previous clock tick the data input
was low.

e The prevl state means that on the previous clock tick the data input
was high, and at some time in the past, the data input was low.

We can use these states to define a generalized state diagram for the pulse
counter.
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din=1//...

=1/...
(prevl
din=0//
if cnt/=0, cnt<=cnt-

1
din=1//...
event<=1 if cnt=0, else 0

In this diagram, the transitions are labeled not by simple inputs and
outputs, but by conditions and actions, separated by a double forward slash.
The conditions refer to both input values and the value of the counter. The
actions specify how the counter value changes when state transitions occur.
The ellipses are used for those transitions where no action is required other
than the state change itself. So for example, if we're in the reset state and
the reset input goes low, but the data input is high, the controller will go
to the startl state and load the counter. It will remain in that state until
the data input goes low, when it will transition to the prev0 state. The
counter is decremented on every transition from the prevl to the prev0 state
(if it’s not already zero). The event output is specified at the bottom of the
diagram, and is high whenever the counter value is zero. Take a few minutes
to examine all the state transitions carefully, and convince yourself that this
circuit will in fact implement the required behavior. Note that the reset
input is not mentioned in the diagram, but it should be understood that the
state machine goes to the reset state whenever the reset input is high, and
remains there until the reset input goes low.

Now that we have the state diagram, it’s straightforward to write down
a VHDL specification for this state machine.

entity pulseCount is port(
clk, reset: in std_logic;
dIn: in std_logic;
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N: in std_logic_vector(3 downto 0);

event: out std_logic);
end pulseCount;
architecture arch of pulseCount is
type stateType is (resetState, startl, prev0, prevl);
signal state: stateType;
signal cnt: std_logic_vector(3 downto 0);
begin

process (clk) begin

if rising_edge(clk) then

if reset = ’1’ then
state <= resetState; cnt <= x"F";
else

case state is
when resetState =>
cnt <= N;
if dIn = ’0’ then state <= prev0;
else state <= startl;
end if;
when startl =>
if dIn = ’0’ then state <= prevO; end if;
when prevO =>
if dIn = ’1’ then state <= prevl; end if;
when prevl =>
if dIn = ’0’ then
state <= prevO0;
if cnt /= 0 then cnt <= cnt-1; end if;
end if;
when others =>
end case;
end if;
end if;
end process;
event <= ’1’ when cnt = x"0" else ’0’;
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end arch;

Notice that like with the simple state machines in the previous chapter, we
use a process to specify the state transitions. That same process is also
used to update the counter. Notice how the conditions in the if-statements
correspond directly to the conditions in the state diagram, while the actions
in the state diagram are reflected in the the statement lists for those if-
statements.

Now that we have a VHDL specification, we can go ahead and simulate it.
In this portion of the simulation, the data input is zero initially, so we proceed

reset |0 |
N 3 [o_Js
dn |0 | | |
ck |0 LT LT LT LT LT LT L LT L]
et |0 |xJFLl 5 4 I3 l2 I1 o
state |prevO (resetst... Jprévolprev1 Jorévo Jorév1jprevopreévjprévolpre... Jprevolprev1jprevolprevi]
event |1 |

Now 00 ps 100 ns 200ns 300ns

directly to the prev0 state when reset goes low. Note that the counter value
is initialized at this point and the counter is decremented on every high to
low transition of the data input. We also see that the event output goes
high when the counter reaches zero, and additional pulses are ignored at this
point. The next part of the simulation shows the case where the data input
is high when reset goes low. Notice that the counter is not decremented on

reset [0
N 3 5 0 B
dn |0 | | |
ok Jo LTI TTIPT TP rld
et 0 |0 Fl 3 12 I o
state |prevO |pr... Jorevolres... Istart1 Jorevo lorev1jprevolprev1jprevojprev1prévolprevlpr..
event |1 | ! ‘ |
Now p00ps 400 ns 500 ns 600 ns

the first high-to-low transition of the data input, in this case.
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Before going onto the next topic, let’s review the process of designing
a generalized state machine controller. As with the simple controllers, we
start by writing down a careful description of what the circuit is supposed to
do. This will generally include a list of inputs and outputs, and an interface
timing diagram that illustrates the operation of the circuit.

The next step is to determine what the circuit must remember in order
to implement the required behavior. There are two parts to this. There
is the part that must be remembered by the core controller, and the part
that is stored in data registers that the controller uses. In our pulse counter
example, the cnt value was the only additional data required, but in more
complex controllers there may be several registers and even large blocks of
memory. It’s a good idea to write down all the information that must be
remembered, including a list of all the states with a brief description for each,
plus a list of all the registers with a brief description of what they are used
for.

At this point in the process, we can start drawing a state transition
diagram, with the transitions labeled by the conditions that trigger the tran-
sitions, and the actions that should be taken when those transitions occur.
Once again, don’t expect to get this right the first time. Check your diagram
carefully and make sure that it accurately describes the required circuit be-
havior. Only after you’ve done that, should you go onto writing the VHDL.
You will generally find that it is easy to write the VHDL once you have a
complete state diagram in front of you. This part of the process is largely
mechanical, since you are really just translating your state diagram into code.

At this point, all that’s left is to test your circuit. Construct your test
input carefully to make sure it covers all transitions in your state diagram,
and check the simulation results to make sure that they are consistent with
the desired behavior. When you find things that are not right, you’ll need
to figure out what you did wrong. Sometimes the problem is simply that
you made a mistake when writing the VHDL code (perhaps you left out a
transition, or you made a mistake when writing the code to implement one
of the actions). These kinds of mistakes are the easiest to fix. Sometimes
you’ll find that you made a mistake when developing your state diagram.
While many such mistakes are also easy to correct, others may require that



138 Designing Digital Circuits (C) Jonathan Turner

you go “back to the drawing board.” Perhaps you forgot to include some
state that you needed, or your understanding of how the stored data must be
updated is incorrect. When this happens, try to use the results of the failed
test to help you get a better understanding of how the circuit is supposed to
work. Usually that will give you the insight needed to re-work your design
and get back on track.

8.2 Debouncer

In an earlier chapter, we discussed how the mechanical buttons used in our
prototype boards could vibrate when they’re pressed or released. These
vibrations cause the electrical signal from these buttons to “bounce” up and
down a few times before stabilizing to a high or low value. This can cause
circuits that take actions when a button is pressed or released to behave
erratically. To cope with this, a special circuit called a debouncer is used
to filter out the bounces, so that the internal signal sees just a single clean
transition from low-to-high or high-to-low, for each button press or release.
The behavior of a debouncer is illustrated by the following interface timing
diagram.

clk ruruuruuy
in

out
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The output signal is a delayed version of the input signal, that filters out
changes that do not persist for at least A clock ticks, where A is a constant
that depends on the clock period of the circuit and the typical oscillation
time associated with the mechanical vibrations of the buttons. For example,
if the clock period is 20 ns and the mechanical vibrations have a period of
1 ms, then A should have a value of at least 50,000. The timing diagram
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shows a delay of just a few clock ticks, but in practice a much larger value
would be used.

So, what is it that this circuit needs to remember. Well clearly it needs
a counter, so that it can keep track of how much time has passed since the
input last changed. It also needs to remember if it is waiting for the input
to stabilize at a new value, or if the current input value has been stable for a
long enough time. This suggests a state machine controller with two states
pending and stable, which controls a counter that starts counting whenever
the input changes. We’ll also need a separate register to store the value of
the previous input signal, so that we can easily detect a change in the input.
In addition, we’ll need a register to hold the output value, so that we can
maintain the “old value” while waiting for the input to stabilize This leads
to the state diagram shown below.

no change
and count>0 no change  no change//...
//count-- and count=0

//out<=in
Coending 3
change

change //count<=A
//count<=A

In this state diagram, we use the shorthand change or no change to
indicate a clock period when the input either has changed or has not. If the
old input value is stored in a register called prevIn, the change condition is
simply in#previn. If we’re in the stable state and the input changes, the
counter is initialized to A and we transition to the pending state. While in
the pending state, the counter is decremented so long as the input does not
change and the counter is greater than zero. If the input does change while
the controller is in the pending state, the counter is re-initialized. Once the
input stops changing, the counter eventually counts down to zero, triggering
a transition to the stable state. Note that on this transition, the input signal
is propagated to the output. From the state diagram we can derive the
following VHDL spec.
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entity debouncer is
generic (width: integer := 8);
port(clk: in std_logic;
din: in std_logic_vector(width-1 downto 0);
dout: out std_logic_vector(width-1 downto 0));
end debouncer;

architecture al of debouncer is
signal prevDin: std_logic_vector(width-1 downto 0);
constant debounceBits: integer := 2 + operationModex14;
signal count: std_logic_vector(debounceBits-1 downto 0);
begin
process(clk) begin
if rising_edge(clk) then
prevDin <= din;
if prevDin /= din then
count <= (others => ’1’);
elsif count /= (count’range => ’0’) then
count <= count - 1;
else dout <= din;
end if;
end if;
end process;
end al;

First notice that we’ve defined the debouncer to operate on a signal vector,
rather than a single bit signal. Also, we’ve included a generic constant in the
entity declaration. This is used to specify the number of bits in the input
and output logic vectors. We’ve given it a default value of 8, but any time
we instantiate the component, we can specify a different width, should we
choose to do so.

Next, notice that the architecture defines two registers prevDin and count
that store the previous input value, and the counter value used for filtering
out bounces in the input. Also notice that because the data output dout is
defined within the scope of the process’ synchronization condition, a register
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will be synthesized to store its value as well. Interestingly, there is no state
register in this implementation. While we could have included one, in this
case we chose to omit it because the value of the count register is all we really
need to control the operation of the circuit. Whenever count=0 we’re in the
stable state, otherwise we’re in the pending state.

Finally, note that the delay implemented by this circuit is determined by
the length of the count register. When the constant operationMode=1, it
has 16 bits, and since the circuit is initialized to the “all-ones” value, it will
count down 26 clock ticks giving us a delay of about 1.3 ms when the clock
period is 20 ns. If operationMode=0, the delay is just four clock ticks. This
value is used for convenience when simulating the circuit. A simulation of a
four bit version of the debouncer appears below.

Name Value E | 200 ns | 400 ns 600 ns
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Note how the first few changes to the data input do not affect the output.
Only those changes that persist for long enough for the counter to reach zero
propagate to the output.

8.3 Knob Interface

In this section, we're going to look at one of the circuits used with the
prototype boards we’re using for testing our circuits. This circuit implements
an interface to the prototype board’s knob. When the knob is turned, there
are two signals that are activated in a distinct sequence, depending on which
direction the knob is turned. We can think of the knob as having a pair of
buttons associated with it. As we turn the knob, raised “ridges” on the knob
shaft cause first one button to be pressed down, then the other. As the knob
continues to turn, the buttons are released.
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So, if we turn the knob in one direction we observe the sequence 00, 01,
11, 10, 00, 01, 11, 10 and so forth, while if we turn it in the other direction,
we observe the sequence 00, 10, 11, 01, 00, 10, 11, 01. (Note, the actual
implementation of the knob does not really involve separate buttons, but it
behaves in exactly in the same way that our conceptual knob does, and so
this is a useful mental model to use to understand its operation.)

We can use the pattern of signal changes to detect whether the knob is
turning in one direction or the other, and use this to increment or decrement
a value stored in a register. So for example, we might increment a stored
value whenever the two knob signals change from 00 to 01 and we might
decrement the stored value whenever the signal values change from 10 to 11.
The binary input module used by the calculator uses the knob in just this
way. The essential behavior of the knob interface circuit is illustrated in the
timing diagram below.

a JUUUUULT uuuduuUy
rot < 00 X 01 X111 X 10 Xi11 X01 X, 00 )
tick ’_| ,_,

clockwise ~ | ] |

Here, the two knob signals are labeled rot (short for rotation) and the
transition from 00 to 01 causes the tick output to go high for one clock tick
and the clockwise output to go low and stay low. Transitions from 10 to 11
also cause tick to go high for one clock tick and cause clockwise to go high.
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So what does this circuit need to remember? The main thing it needs
to remember is the previous value of the rot inputs. By comparing these
to the current values, it can make all the decisions required to generate the
tick output and the clockwise output. While we could write a formal state
diagram to describe this, it’s not really necessary to do so in this case.

However, before we proceed to the VHDL let’s add one more feature to
the knob interface. Recall that in addition to turning the knob, we can press
down on it. So, there is a third signal associated with the knob that works
like an ordinary button. In the binaryInMod circuit, we used that button to
adjust how we incremented the data value controlled by the knob. Initially,
turning the knob would increment the value starting with bit 0, but by press-
ing down on the knob, we could make the binaryInMod increment/decrement
the data value starting with bit 4 (or 8 or 12). To implement this feature,
let’s add another output to the knob interface called delta; this will be a 16
bit value equal to 20 or 2% or 28 or 2!2. Every press on the knob will cause
delta to go from one of these values to the next. A circuit using the knob
interface (like the binaryInMod) can then add or subtract delta to its stored
value whenever the tick output of the knob interface is high.

We're now ready to proceed to the VHDL spec for the knob interface.

entity knobIntf is port(
clk, reset: in std_logic;

knob: in knobSigs; -- 3 knob signals

tick: out std_logic; -- hi for each knob turn
clockwise: out std_logic; -- hi for clockwise rotation
delta: out std_logic_vector (15 downto 0); -- add/sub amt

end knobIntf;
architecture al of knobIntf is

signal dbKnob: knobSigs;

signal rot, prevRot: std_logic_vector(l downto 0);
signal btn, prevBtn: std_logic;

signal diff: std_logic_vector(15 downto 0);

begin
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db: debouncer generic map(width => 3)

port map(clk, knob, dbKnob);

rot <= dbKnob(2 downto 1);
btn <= dbKnob(0) ;
delta <= diff;
process(clk) begin
if rising_edge(clk) then
prevRot <= rot;
prevBtn <= btn;
tick <= ’0’;
if reset = ’1’ then
diff <= x"0001";
clockwise <= ’1’;

else

if prevRot = "00" and rot = "O01" then
tick <= ’1’; clockwise <= ’0’;

end if;

if prevRot = "10" and rot = "11" then
tick <= ’1’; clockwise <= ’1°’;

end if;

if btn > prevBtn then
diff <= diff(11 downto 0) &

diff (15 downto 12);

end if;
end if;
end if;
end process;
end al;

Jonathan Turner

The button signals are specified as a three bit value, with the top two bits
representing the rotational signals, while bit 0 is the signal that is activated
when you press down on the button. Note that all three signals are de-
bounced and then the debounced signals are assigned the local signal names
rot and btn. The signals prevRot and prevBtn are used to hold the values of
rot and btn from the previous clock tick, so by comparing these to rot and
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btn, we can detect signal changes and decide how to react.

Notice that the tick output is assigned a default value of 0, and is then
assigned a value of 1, whenever the rotation signal changes from 00 to 01 or 10
to 11. The clockwise signal changes to 1 whenever the rotation signals change
from 00 to 01, and it changes to 0 whenever the rotation signals change from
10 to 11. The internal diff signal is initialized to 1 and is rotated to the left
by four bit positions whenever a knob press is detected.

A portion of a simulation of the knob interface is shown below.
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8.4 Two Speed Garage Door Opener

We'll finish this chapter by extending the garage door opener we discussed in
the previous chapter. This new version controls a motor with two operating
speeds. When the door first starts moving, the controller sets it to the slower
speed, then switches to the faster speed after a couple seconds. Also, when
the door is closing, the controller switches to the slower speed when the door
is getting close to the bottom of the range.

To implement this new functionality, the controller needs to maintain
some additional information. First, it needs to know how much time has
passed since the door started moving, so that it can switch to the higher
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speed when enough time has passed. Second, it needs to track the position
of the door, so that it can decide when to slow it down, as it’s closing.

To make things interesting let’s say that the controller should be able
to support a variety of door heights and should adjust its operation for the
height of each specific door it is used with. Also, we’ll assume that the
speed at which the door travels is known, but we also want to allow for some
variation in the speed; say plus or minus 10 percent of the nominal values.

So let’s look at how we can extend the VHDL for the controller to satisfy
these various requirements. First, here are some new constant, type and
signal definitions that we’ll use in the architecture.

begin entity ... end entity;
architecture al of opener is

subtype timeVal is unsigned(15 downto 0); -— up to 65K ms
subtype positionType is signed(9 downto 0); -- up to 511 cm

constant slowPeriod: timeVal :
constant fastPeriod: timeVal :

to_unsigned(100,16); -- ms/cm
to_unsigned(40,16); -- ms/cm
constant ticksPerMs: unsigned(15 downto 0)

:= to_unsigned(50000,16);
constant speedUpTime: timeVal := to_unsigned(2000,16);
constant slowDownPos: positionType := to_signed(25,10);

signal speed: std_logic; -- 0 for slow, 1 for fast
signal ticks: unsigned(15 downto 0); -- count clock ticks
signal timeInMotion: timeVal;

signal timeSinceUpdate: timeVal;

signal position: positionType; -- door position (cm from bot)

Notice that the positionType has been declared as a signed value. We will
adapt to the actual door height, by setting the position value to 0 when we
detect that the door is at the bottom of its range (based on the sensor).
However, if the door does not start in the closed position, we have no way of
knowing its initial position. By initializing the position to zero and allowing
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it to go negative, we can ensure that the door will be going at the slow speed
the first time it comes to a close.

The slowPeriod constant specifies the number of milliseconds required
for the door to move one centimeter, when going at the slow speed. The
fastPeriod constant is defined similarly. The ticksPerMs constant specfies
the number of clock ticks in one millisecond. If the controller uses a 50 MHz
clock, this is 50,000. The speedUpTime constant specifies how long to operate
at the slow speed before speeding up (in ms). The slowDownPos constant
specifies the position of the door that triggers a switch from fast to slow.

The ticks signal is used to keep track of time in milliseconds. The
timeInMotion signal is the amount of time that has passed since the door
last started moving. The timeSinceUpdate signal is the amount of time that
has passed since the door’s position was last incremented or decremented.

Now, let’s take a look at the body of the architecture.

begin
process (clk) begin
if rising_edge(clk) then

if reset = ’1’ then
state <= resetState; speed <= ’0’;
ticks <= (others => ’0’);
timeInMotion <= (others => ’07);
timeSinceUpdate <= (others => ’0’);
position <= (others => ’0’);

elsif state = resetState then

if atTop ’1’ then state <= opened;

elsif atBot ’1’ then state <= closed;
else state <= pauseDown;

end if;
else
-- update time signals
if ticks = ticksPerMs then
timeInMotion <= timeInMotion + 1;
timeSinceUpdate <= timeSinceUpdate + 1;
ticks <= (others => ’0’);
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else
ticks <= ticks + 1;
end if;

This first part just shows the initialization logic and the advancing of the
signals timeInMotion and timeSinceUpdate. The next section shows how
the stored information is used to control the door while it is closing.

-- state transitions
case state is
when opened =>
speed <= ’0’;
if openClose = ’1’ and obstruction = ’0’ then
state <= closing;
timeInMotion <= (others => ’0’);
timeSinceUpdate <= (others => ’0’);

end if;
when closing =>
if obstruction = ’1’ then

state <= opening; speed <= ’0’;
timeInMotion <= (others=>’0’);
timeSinceUpdate <= (others=>’0’);
elsif openClose = ’1’ then
state <= pauseDown;
elsif atBot=’1’ then
state <= closed; position <= (others => ’0’);
elsif position <= slowDownPos then

speed <= ’0’;

elsif timeInMotion = speedUpTime then
speed <= ’17;

end if;

-- track position of door

if (speed=’0’ and timeSinceUpdate=slowPeriod) or
(speed=’1’ and timeSinceUpdate=fastPeriod) then
position<=position-1;



8. State Machines with Data 149

timeSinceUpdate<=(others=>’0’);
end if;

When the door starts to close, the timeInMotion and timeSinceUpdate sig-
nals are cleared. While it’s closing, an obstruction causes it to reverse direc-
tion and switch to the slow speed. The timeInMotion and timeSinceUpdate
signals are also cleared in this case. Note that the speed adjustments ensure
that the door will never speedup after it goes below the level specified by
slowDownPos.

The last few lines of this section decrement the position of the door when
it’s time to do so. Note that when the door changes direction, there is some
error introduced into the door position tracking. However, this should be
limited to about 1 cm, which is too small to have any serious impact on the
operation of the door.

We’ll omit the remaining code for the opener, but it’s a worthwhile exer-
cise to fill in the remaining parts. We’ll close with a portion of a simulation.
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In this simulation, the door starts in the fully open position, then closes.
Since the door position was initialized to zero, the position becomes negative
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as the door closes. This ensures that the door height signal remains below
the slowDownPos value, as the door closes the first time, preventing it from
speeding up. Once the door closes, the position signal is set to zero, allowing
the door position to be tracked as it opens. Notice that the door does speed
up after the first two seconds in motion. Also, notice that when it closes the
second time, it slows down before becoming fully closed.
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Chapter 9

Still More VHDL

In this chapter, we’ll complete our discussion of the VHDL lanaguage. While
we cover all the language features that are commonly used to define circuits,
our treatment of the language is not comprehensive. Once you have mastered
the essential elements of the language, you’ll be well-prepared to continue
your study of the language using other texts.

9.1 Making Circuit Specifications More Generic

In an earlier chapter, we gave an example using a symbolic constant wordSize
to represent the number of bits in a signal vector. Using symbolic constants
in this way helps make circuit specifications less dependent on specific signal
lengths. If used consistently, it makes it possible to change the lengths of a
set of related signal vectors, if we should decide that our original choice was
not ideal. VHDL provides a number of other features that can be used to make
circuit specifications more generic. By using these features, we can design
circuit components that are more flexible and can be more easily re-used in
other contexts or adapted to new requirements.

We'll start by considering signal attributes. Let signals x, y and z be
defined as follows.

constant longSize: integer := 16;
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constant shortSize: integer := 8;

signal x: std_logic_vector(longSize-1 downto 0);
signal y: std_Logic_vector(shortSize-1 downto 0);
signal z: std_Logic_vector(l to shortSize);

Given these definitions, x'left is an attribute that denotes the leftmost
index in the index range for x, so in this context x'left=15. Similarly
x'right=0. In general, the ' symbol indicates that what comes next is the
name of some signal attribute. Here are some more examples: z'low=1,
z'high=8 and x'length=16. Using these attributes, we can refer to the sign
bit of x as x'high. Or, we can refer to the high order four bits of y as
y(y'high downto y'high-3). There is also a range attribute which refers
to the entire index range of a signal. Using this, we can write things like

x <= (y'range => 'l', others =>'0');

The resulting value of x is x"00ff").

Next, we describe another way to make VHDL specs more generic us-
ing subtypes. Earlier, we saw an example of subtypes in the context of
enumerations. However, subtypes can also be used to assign a name to a
std_logic_vector or a particular length. Here’s an example.

subtype word is std_logic_vector(15 downto 0);
signal x, y: word;

Here, word is a new type, which can be used in signal declarations like any
other type. Signal declarations using the new type provide more information
to a reader, as well-chosen type names can provide an indication of how the
signal is used.

While we’re on the subject of types and subtypes, let’s take the oppor-
tunity to discuss two other types that are provided by the IEEE library,
the signed and unsigned types. These types are very similar to the std_
logic_vector. The main difference is that they are intended to be used in
contexts where the signal represents an integer value. For signed signals
the signal values are interpreted as being in 2s-complement form, so if x is a
signed signal, the expression in the if-statement
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if x < 0 then ... end if;

will evaluate to true if the sign bit of x is equal to 1. On the other hand, if x
is a std_logic_vector or an unsigned signal, the expression will never be
true.

Since VHDL is a strongly-typed language, it is sometimes necessary to
convert among these types. To convert a signed or unsigned signal x
to a std_logic_vector, use std_logic_vector(x). Similarly, to convert
a std_logic_vector z to signed use signed(z). To convert z to unsigned
use unsigned(z).

This brings us to the subject of integers in VHDL. An integer in VHDL
is defined in much the same way as in ordinary programming languages. In
particular, VHDL integers take on values that can range from —23! up to
231 _ 1. They are not defined as having a certain number of bits, although
they can naturally be represented using 32 bit binary numbers. On the
other hand, the std_logic_vector and the signed and unsigned types are
defined as one-dimensonal arrays of std_logic values. While they can be
manipulated much like normal integers (they can be added together, for
example), they are fundamentally different from the integer data type. As a
rule, circuits are constructed using signals of type std_logic_vector, signed
or unsigned, not integers. While it is possible to define integer signals in a
circuit specification, such signals are often not well-supported by CAD tools,
so it is best to avoid them.

However, there are some situations in circuit specifications where you do
need to deal with integers. In particular, loop indexes and array indexes
are defined as having an integer type and this leads to situations where
you may need to convert between an integer and one of the other types. To
convert a signed or unsigned signal x to an integer, use to_integer(x). To
convert an integer z to signed, use to_signed(z,LENGTH) and to convert z
to unsigned, use to_unsigned(z,LENGTH). Here, LENGTH is a constant that
specifies the number of bits in the new signal. Unfortunately, there are no
direct conversions between std_logic_vector and integers, so you need to
convert in two steps, through an unsigned signal.

Type conversions can be tedious to type, so designers often define more
concise versions of their own. We will follow that practice here. We will
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use int (x) to convert x to an integer and s1v(z,LENGTH) to convert z to a
std_logic_vector.

We will complete this section with a discussion of parameterized compo-
nents. Here’s an example.

entity negate is
generic ( wordSize => integer := 8 );
port (
x: in signed(wordSize-1 downto 0);
neg_x: out signed(wordSize-1 downto 0));
end negate;

The generic clause defines a constant wordSize with a default value of 8.
WordSize can be used anywhere within the entity or architecture. To instan-
tiate a parameterized component, we use a component instantiation state-
ment that includes a generic map.

negl: negate generic map(wordSize => 16) port map(...);

The instantiated component operates on 16 bit words, rather than the default
8. Note, that a circuit may instantiate several negate components, all using
different values for the wordSize parameter. The generic clause in the
entity declaration may contain several parameter definitions, separated by
semi-colons. Similarly, the generic map may specify the values of several
parameters.

9.2 Arrays and Records

In this section, we look at how we can define more complex data types. We'll
start with arrays. As noted earlier, the std_logic_vector type is actually
defined as an array of std_logic elements. Here’s an example of an array
whose elements have type unsigned

subtype register is unsigned(15 downto 0);
type regsterFileType is array(0 to 7) of register;
signal reg: regsterFileType;
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VHDL does not allow us to use the array directly in a signal declaration,
but we can use it to define a new type, registerFileType in this example.
Given these definitions, we can write things like this.

reg(2) <= reg(1l) + reg(4);

reg(3 downto 0) <= reg(7 downto 4);

reg(3)(5) <= 17

reg(int(x)) <= reg(int(y)) -- int() converts to integer

The first line adds the values from two registers and places the sum in a
third. The second line copies the values in four registers to four others. The
third line sets a single bit in reg(3) and the last one shows how registers can
be selected using the values of signals. Before signals can be used to index
an array, their values must be converted to integer type.

Now arrays can always be implemented using flip flops, but for large
arrays this can become excessively expensive. In some situations, arrays
can be implemented using memory components, and circuit synthesizers will
attempt to do this when it makes sense to do so. In order to synthesize
a memory, the use of the array within the VHDL spec must be consistent
with the constraints on the memory components that are available to the
synthesizer. For example, a basic memory component may have a single
address input, a single data input and a single data output. Consequently,
it’s not possible for two different parts of a circuit to read a value from the
memory at the same time. In order for the synthesizer to implement an array
using such a memory component, it must be able to determine that there
are never any concurrent reads from the memory. Here is an example of a
lookup table component that can be synthesized as a memory.

entity lookupTable is port(
clk: in std_logic;
modTable: in std_logic;
rowNum: in unsigned(3 downto 0);
inVal: in std_logic_vector(15 downto 0);
outVal: out std_logic_vector (15 downto 0));
end lookupTable;
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architecture al of lookupTable is
subtype rowType is std_logic_vector(15 downto 0);
type tableType is array(0 to 15) of rowType;
signal table: tableType;
begin
process(clk) begin
if rising_edge(clk) then
outVal <= table(int(rowNum)) ;
if modTable = ’1’ then
table(int (rowNum)) <= inVal;
end if;
end if;
end process;
end al;

In this specification, the table array is accessed in a way that is consistent
with the constraints on a typical memory component, allowing a synthesizer
to implement the array using a memory.

In some situations, an array is defined to hold a collection of related
constant values. Here’s an example.

subtype asciiChar is std_logic_vector(7 downto 0)
type hex2AsciiMap is array(0 to 15) of asciiChar;

constant hex2Ascii: hex2AsciiMap := (
XIIBOII, X"31", Xll32ll’ X"33",X“34", —_— 0_4
X"35", X"36", X"37",X“38", X"39", —_ 5_9
X"61", X"62",X“63", X“64", X“65", X||66ll —_ a_f
)3

This array stores the ASCII character codes for the hex digits 0-9, a-f. So
for example, hex2Ascii(12)=x"63" which is the ASCII character code for
the letter ‘c’. Since this has been declared as a constant array, a circuit
synthesizer may be able to implement it as a Read-Only Memory (ROM),
which is generally less expensive than a general memory component.

Next, we turn to the subject of VHDL records. While arrays allow us to
define collections of items that all have the same type, records allow us to
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define collections of dissimilar items. Here’s an example of a table whose
rows are defined using a record type.

type rowType is record
valid: std_logic;
key, value: word
end record rowType;
type tableTyp is array(l to 100) of rowType;
signal table: tableType

Given these definitions, we can write things like this.

table(2) .key <= table(1).value;
if table(0).valid = 1 then

table(5) <= (1, x"abcd", x"0123");
end if;

Notice that the second assignment includes a record specification on the
right. This lists the values of all fields of the record in the order they were
declared.

9.3 Using Assertions to Detect Bugs

The assert statement is a powerful tool for debugging circuit specifications.
Assert statements can be placed anywhere within an architecture body and
are checked during simulation. Here’s an example.

assert (x’range => ’0’) <= x and x < n;

The simulator will print a message if the signal x takes on values outside the
range [0,n —1]. We can also include a report clause and/or a severity clause.

assert (x’range => ’0’) <= x and x < n
report "out of range" severity failure;

This will cause the simulator to terminate when it encounters a failure of
this assertion. Other possible values are “note”, “warning” and “error”.
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Generally, the simulator will keep running if a failed assertion has a severity
of “note” or “warning”.

Assertions add no cost to a synthesized circuit, since they are checked
only during simulation. It’s smart to use them extensively, as it takes very
little effort to write them and they can save you many hours of debugging
time.

9.4 VHDL Variables

In addition to signals, VHDL supports a similar but different construct called
a “variable”. Unlike signals, variables do not directly correspond to wires
or any other physical element of a synthesized circuit, although they can
affect how a circuit is synthesized. The semantics of variable assignment are
different from the semantics of signal assignment, so VHDL uses a separate
symbol ‘:=’ to represent assignment to a variable. To illustrate the difference,
here is a small example of a process that uses a variable to define the values
of several signals.

process (x)
variable u: unsigned(3 downto 0);

begin
u = X;
a <= u;
u :=u + "0001";
b <= u;
u :=u + "0001";
c <= u;

end process;

Note that the variable u is declared as part of the process. Variables may
not be declared as part of an architecture. Now the way to think of u in
this context is as a shorthand for the expressions that appears on the right
side of the variable assignments. Each new variable assignment, “re-defines”
u to represent a different expression. Whenever a variable is used in an
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expression, we simply substitute the expression that the variable represents.
So, the assignments above are equivalent to the signal assignments

a <= x;
b <= x + "0001";
c <= (x + "0001") + "0001";

So, if the signal x has a value of "0001", then the three outputs will have
values of "0001", "0010" and "0011". This is what we would expect if
we were using an ordinary programming language, in which each variable
assignment copied a new value to a memory location. However in the VHDL
context, there is no underlying memory that holds variable values. Indeed,
there is nothing at all in the synthesized circuit that corresponds to the
variable. Still, VHDL variables do affect the values of the signals in a way that
is similar to the way variables in ordinary programming languages behave.
Now, most common uses of variable assignment can be understood purely
as defining a shorthand for an expression. However, there are some situations
that are not as straightforward. Here is an example of such a situation.

process (clk)
variable u: unsigned(3 downto 0);
begin
if rising_edge(clk) then
if x = "0000" then

u := "0000";
end if;
a <= u;
u :=u + "0001";
b <= u;
u :=u + "0001";
c <= u;

end if;
end process;

Notice that the variable u is only assigned a value when the signal x="0000".
So, it’s not entirely clear what value u should have in the assignments that
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use it. Because u is not defined under all possible conditions, VHDL interprets
this as meaning that u retains its value from one clock tick to the next. This
requires that the synthesized circuit include a register that can store the
value of u. So the process above is equivialent to the process shown below,
where u_sig is a new signal.

process (clk)
variable u: unsigned(3 downto 0);

begin
if rising edge(clk) then

u := u_sig;

if x = "0000" then
u := "0000";

end if;

a <= u;

u :=u + "0001";

b <= u;

u :=u + "0001";

c <= u;

u_sig <= u;
end if;
end process;

The assignment to u_sig at the end of the process preserves the variable’s
value until the next clock tick, where it is used to re-initialize the variable.
We can re-write the process without using variables as follows.

process (clk)
begin
if rising_edge(clk) then
if x = "0000" then
u_sig <= "0000";
else
u_sig <= u_sig + "0010";
end if;
a <= u_sig;
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b <= u_sig + "0001";
¢ <= u_sig + "0010";
end if;
end process;

Because the semantics of variable assignment in VHDL can be confusing, it’s
generally a good idea to use variables sparingly in circuit specifications. Your
code will usually be easier to understand and get right, if you use signals
whenever you can. There are occasions when a circuit specification can be
made simpler by using variables, but in most situations they are are not
worth the trouble.

9.5 Functions and Procedures

We have already seen how VHDL components, defined by an entity and ar-
chitecture, can be used to structure large circuit specifications into smaller
parts. VHDL also provides other mechanisms to structure circuit specifica-
tions: functions and procedures. A VHDL function takes one or more ar-
guments and returns a single value. Here’s an example of a function that
defines a circuit whose output is the maximum of two input values.

function max(x,y: word) return word is
begin

if x > y then return x; else return y; end if;
end function max;

When this function is used in a circuit specification, the synthesizer creates
a sub-circuit consisting of a multiplexor controlled by a comparison circuit.

X 1
max

y 0

A>B
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Within a function, its arguments are considered to be constants, so they
cannot appear on the left side of an assignment.

Given the above function definition, a circuit specification that includes
the assignment

largest <= max(a,max(b,c));

would include two copies of the max circuit connected in series.

The VHDL procedure can be used to define common circuit elements that
have more than one output. Here is an example of a circuit with three outputs
that determines if an input value falls within some pre-defined range.

procedure inRange(x: in word;
signal inRange: out std_logic;
signal tooHigh: out std_logic;
signal tooLow: out std_logic) is

constant loBound: word := x"0005";
constant hiBound: word := x"0060";
begin

tooLow <= ’0’; inRange <= ’0’; tooHigh <= ’0’;
if x < loBound then toolLow <= ’17;
elsif x <= hiBound then inRange <= ’1’;
else tooHigh <= ’1’; end if;
end procedure;

Note, the formal parameters to a procedure are designated as either inputs
or outputs. Here, the output parameters have been declared to be signals, so
that they can be associated with signals in the context where the procedure
is used. By default, output parameters are considered variables. In this
case, assignments to them must use the variable assignment operator and
they must be associated with variables in the context where the procedure
is used.
The circuit shown below can be used to implement the procedure.
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Local variables may be declared in functions or procedures, but local
signals may not be. Also, synchronization conditions may not be used within
functions or procedures, although functions and procedures may be used
within the scope of a synchronization condition defined as part of a process.

Functions and procedures may be declared either as part of an architec-
ture (before the begin that starts the body of the architecture) or as part
of a process. In the first case, the function/procedure can be used anywhere
within the architecture, in the second case it can be used only within the pro-
cess. To make a process/procedure available in mutiple circuit components,
it must be declared within a package.

An example of a package containing a function declaration appears below.

package commonDefs is
function max(x,y: word) return word;
end package commonDefs;

package body commonDefs is
function max(x,y: word) return word is
begin
if x > y then return x; else return y; end if;
end function max;
end package body commonDefs;

The package declaration has two parts. The package header includes con-
stant declarations, type declarations and function/procedure declarations.
The package body includes the actual definitions of functions and proce-
dures, previously declared in the package header.
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Chapter 10

Design Studies

This chapter is the first of three that present the design of a variety of
different digital circuits. The objective of these design studies is to help you
build experience and develop your own design skills.

10.1 Four-way Max Finder

We'll start with a circuit that finds the maximum of four input values that
are presented one bit at a time, starting with the high-order bit. Circuits
that work this way are referred to as bit serial circuits and are useful in
contexts where data is communicated bit-by-bit in order to minimize the
number of wires used to carry the data. It also provides a nice example of
building large components from smaller ones.

The circuit has a reset input and four data inputs. After the reset goes
low, new data bits appear on every clock tick oneach of the four data inputs.
The most-significant-bits arrive first. The circuit’s output signal is the largest
of the four input values. So for example, if the input values are 7010017,
7001007, 7011007 and 7001117, the output value would be ”01100”. The
interface timing diagram shown below illustrates the operation of the circuit.

167
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Notice that in the first clock tick following reset, we already know that
neither of the first two inputs can have the maximum value, since they both
have a most-significant-bit equal to 0, while the other two inputs have a
most-significant-bit equal to 1. By the third clock tick, it’s clear that input ¢
has the largest value. Note that the output biggest is synchronous with the
clock. Also, observe the bits of biggest can be output before we know which
of the inputs has the largest value. At each point in time, one or more of the
inputs is a “contender” for the largest value. All of the contenders have the
same sequence of high-order bits, so no matter which of them turns out to
have the largest value, those high-order bits will be the same.

Now, we could design a state machine to directly find the largest of the
four input values, but we’re going to take a different approach, by breaking
the problem into three instances of a smaller problem. This is illustrated in
the block diagram shown below.

2-way async

a—ix
m_ab max finder
max
—y ] L
max—pb |— biggest
c—1x y
max__| | =
d—1y m_cd
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This circuit contains three copies of a 2-way max-finder circuit. These each
propagate the larger of two values, presented bit-serially. To avoid adding ex-
tra delay to the output of the 4-way circuit, these are designed as Mealy-mode
state machines. That is, they have an asynchronous output that responds
directly to changes in the input signal. To provide a synchronous output for
the overall circuit, we add a single D flip-flop after the last max-finder.

So now, all we have to do is design a 2-way max finder. A simplified state
machine for such a circuit is shown below. The reset input, puts the circuit

x0/0 01/1 ,/~\10/1 0x/0
x1/1q<> \=/ @ 1x/1
22

in the state labeled ‘=’. After reset goes low, the circuit starts comparing its
two data inputs and it remains in the equal state, so long as the data inputs
are equal to each other. When the two inputs differ, the circuit switches to
either than less-than state, or the greater-than state, depending on which of
the two inputs has the larger value. Once this transition has occurred, the
circuit stays in that state and simply propagates the bits from the input that
has the larger value.

Now at this point, we could write down the VHDL for a 2-way max finder
component, then write the VHDL for a 4-way component that instantiates
three copies of the 4-way component and connects them together. However,
we’re going to look at an alternative approach to implementing the larger
component, using state registers and a pair of functions to define the indi-
vidual 2-way max finders. We'll start with the entity declaration and the
definition of the state type.

entity max4 is port (
clk, reset : in std_logic;
a,b,c,d : in std_logic;
biggest : out std_logic);
end max4;

architecture arch of max4 is
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-- states for 2-way max-finders
type stateType is (eq, 1lt, gt);

Now, let’s take a look at the next state function for the 2-way max finders.

-- next state function for 2-way max-finders
function nextState(state:stateType; x,y:std_logic)
return stateType is begin
if state = eq and x > y then return gt;
elsif state = eq and x < y then return 1t;
else return state;
end if;
end function nextState;

Note that the state values returned exactly reflect the transitions in the state
diagram. Here’s the output function.

-- output function for 2-way max-finders

function maxBit(state: stateType; x,y: std_logic)

return std_logic is begin
if state = gt or (state = eq and x > y) then return x;
else return y;
end if;

end function maxBit;

This returns the bit from the input that has the largest value, based on the
given state. Now, let’s look at how these functions can be used to define
multiple state machines.

signal s_ab, s_cd, s: stateType;
signal m_ab, m_cd, m: std_logic;
begin

m_ab <= maxBit(s_ab,a,b);

m_cd <= maxBit(s_cd,c,d);

m <= maxBit(s,m_ab,m_cd);

process(clk) begin

if rising_edge(clk) then
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assert m >= a or s_ab = 1t or s = 1t;
assert m >= b or s_ab = gt or s = 1t;
assert m >= c or s_cd = 1t or s = gt;
assert m >= d or s_cd = gt or s = gt;
if reset = ’1’ then

s_ab <= eq; s_cd <= eq; s <= eq;

biggest <= ’0’;

else
s_ab <= nextState(s_ab,a,b);
s_cd <= nextState(s_cd,c,d);
s <= nextState(s,m_ab,m_cd);
biggest <= m;

end if;

end if;
end process;
end arch;

The first line in this section defines three state registers, one for the 2-way
max-finder that determines the larger of the first two inputs, one for the
max-finder that determines the larger of the next two and one for the max-
finder that determines the overall maximum. The second line defines three
intermediate signals: m_ab is the larger of the first two inputs, m_cd is the
larger of the next two and m is the overall maximum. The first three lines
of the architecture define the output signals from each of the three state
machines using the maxBit function defined earlier. The state registers are
updated by the process, using the nextState function.

The four assert statements provide a check that the overall output is
correct. The first one asserts that either the current m-bit is greater than or
equal to the current a-bit, or the ab state machine has already determined
that a<b or the overall state machine has determined that m_ab<m_cd. The
other four are defined similarly.

Let’s finish with a simulation of the max finder.
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Note that the first group of signals relate to the max-finder for the first
two inputs, the next group relates to the max-finder for the next pair of
inputs and the last group relates to the max-finder for the overall circuit.
Observe how the values of inputs a and c¢ are propagated by the first two
max-finders, while the larger of these two (c) is propagated by the third one.

10.2 Binary Input Module

Next, we're going to look at the binary input module used with our prototype
board to translate the button and knob signals into internal signals that can
be used with a variety of other circuit modules. We’ve already looked at the
debouncer and knob interface, which are used by the binary input module,
but now we're going to bring it all together.

The binary input module does two things. First, it debounces the button
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inputs and provides both the debounced versions of buttons 1-3 and pulse
versions of buttons 1-3 for use by other circuit modules. (Button 0 is used
to generate a reset signal.) Second, it provides a set of 16 output bits that
are controlled by the knob, using the knob interface circuit.

Let’s start by looking at the entity declaration and various internal signals
of the input module.

entity binaryInMod is port(
clk: in std_logic;
-- inputs from actual buttons and knob
btn: in buttons; knob: in knobSigs;
—-—- outputs produced using inputs
resetOut: out std_logic;
dBtn: out std_logic_vector(3 downto 1);
pulse: out std_logic_vector(3 downto 1);
inBits: out word);

end binaryInMod;

architecture al of binaryInMod is

component debouncer ... end component;

component knobIntf ... end component;

signal dbb, dbb_prev: buttons; ——- debounced buttons, old vals
signal reset: std_logic; -- reset from btn(0)

signal tick, clockwise: std_logic; -- from knob interface
signal delta: word; -- from knob interface

signal bits: word; -- internal register

Next, let’s look at the body of the architecture

begin
—- debounce the buttons
db: debouncer generic map(width => 4)
port map(clk, btn, dbb);
dBtn <= dbb(3 downto 1);
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reset <= dbb(0); resetOut <= reset;

ki: knobIntf port map(clk, reset, knob,
tick, clockwise, delta);

-- define pulse and inBits
process (clk) begin
if rising edge(clk) then

dbb_prev <= dbb; -- previous debounced buttons
if reset = ’1’ then bits <= (others => ’0’);
elsif tick = ’1’ then
if clockwise = ’1’ then
bits <= bits + delta;
else
bits <= bits - delta;
end if;
end if;
end if;

end process;

pulse <= dbb(3 downto 1) and (not dbb_prev(3 downto 1));

inBits <= bits;

end al;

Most of the action here is in the process, which does two things. First, it
saves the current debounced button values in the dbb_prev register. Second,
it adds or subtracts delta from the internal bits register whenever tick
goes high. The assignment to pulse right after the process produces a one
clock-tick wide pulse whenever a debounced button goes from low to high.
The figure below shows a portion of a simulation of the input module.
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Name Value | | 600 ns 800 ns 1,000 ns
button signals

Bl ™ btn[E:0] 0 1} 0 W 1 [0 ¥ 2 ¥ 0 & X

Bl B dbb[3:0] :

S8 W dbb_previ3:0] 4
wresetout

Sl ™ dbtn[3:1]

B ™ pulse3:1)

o

e dk

knob signals
Bl ™ knob[2:0]
B ™# dbknob[2:0]
1 tick

1% dockwise
Bl B4 deita[15:0] |ff ooo uuuu b 0001
Sl B inbits[15:0] |ff cooo uuuu % 0000

Notice that the first transition of the buttons is not reflected in the de-
bounced buttons, as it does not last long enough to propagate through the
debouncer. The remaining changes to the buttons are reflected in the de-
bounced version after a delay. At times 870 ns and 1070 ns, we can observe
two one tick pulses.

The next segment of the simulation output shows how the outputs from
the knob interface affect the inBits signal.
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button signals
S B2 bin[3:0]
B# dbb[3:0]
S A dbb_prevE:0]ff o

1 resetout
S B2 dbtn[3:1]
Bl ™ pulse3:1]

% ck

knob signals

B¢ Knobl2:0]

¢ dbknob(2:0]
L tick 0 Il N Il | | l Il | |
1 dockwise T ] |

: m delta[15:0] 0010 0001 X 0010

S WA inbits[15:0] (0002 (0003 (D002 ¥ 0001 X 0000 | FAF_____DOOF [¥_001F YD..

Note how the change to delta near the end of this segment affects the
way the inBits signal changes.

10.3 LCD Display Module

In this section, we’re going to look at a component that is used to provide
a higher level interface to the LCD display on our prototype boards. The
actual physical device on the board has its own embedded controller and
communicates with circuits on the FPGA using a four bit wide data interface
and four additional control signals. The device defines a fairly elaborate set
of commands that can be used to transfer information and control how it
is displayed. While this results in a flexible and fairly feature-rich display
device, it makes it cumbersome to use in more typical applications. For this
reason, it’s useful to have an interface circuit that hides the messy details of
the device’s interface behind a much simpler, higher level interface.

So, what form should this higher level interface take? Perhaps the sim-
plest approach is to number each of the 32 character positions on the LCD
display with an index in 0-31, then design the interface to allow a “client
circuit” to write data to any of these character positions by specifying its
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index. This leads to the circuit in the diagram below.

nuChar-2» i;data
5
selekt —» |buffer i»control
update —» signals

The nuChar input is an eight bit AscCIil character code for a character
to be displayed. The selekt input specifies the character position on the
display where nuChar should be written and the update signal is asserted by
the client whenever it’s time to write a new character to the display. This
interface allows a client to control the display in a very simple way, without
having to be aware of all the low level details required to control the physical
device. Interface circuits like this are common in larger systems, where it’s
frequently useful to hide the details of a lower level interface from clients
that are better served by something simple.

The output side of the circuit has the four data signals and four control
signals used to control the actual physical device. Internally, the circuit
has a 32 byte character buffer in which values written by the client are
stored. The circuit periodically transfers each character in this buffer to the
physical display device using the output signals on the right. We are not
going to describe the details of this portion of the circuit, as they are very
dependent on the specifics of the display device. (If you are interested, the
reference manual for the prototype board includes a section that describes
the display device in some detail.) Instead, we are going to limit ourselves to
a description of the “client side” of the interface circuit, since this will give
you a more informed understanding of how it can be used.

Here is the relevant portion of the architecture for the 1cdDisplay inter-
face circuit.

architecture al of lcdDisplay is
type char_buf is array(0 to 31) of byte;
signal cb: char_buf := (others => x"20"); -- space char
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Jonathan Turner

-- update character buffer when update is asserted
process(clk) begin

if rising_edge(clk) then

if reset = ’0’ and update = ’1’ then

end if;

end process;

cb(int (selekt)) <= nuChar;
end if;

The first couple lines simply define the character buffer as an array of 32
bytes. The process simply writes to the selected byte in the buffer whenever
reset is low and update is asserted.

The figure below shows the initial section of a simulation, where a series
of characters are written to the LCD display module. Note that the first six
bytes of the character buffer are shown.

Name
1 ax

,} update

WA selekt[4:0]

B nuchar[7:0]

B2 cb[0:31)
B2 0
LN

L v
B2 B
LGRS
B 5]

m__1mn I 1mn . T1
00 ){01}(02){03}(04){05

| - Hoa b M c ¥ d ¥ el X f
Crrrrrrr Yo, XBb, B, Kb, ¥EH Eb..-
‘ )< .
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X [=
by d
¥ B
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10.4 Binary Output Module

In this section, we’ll look at how the binary output module that we’ve used
with the prototype board is implemented using the LCD display module.
Recall, that the binary ouput module has two 16 bit inputs, topRow and
botRow. The bits from these inputs are displayed as ASCII characters on the
external display device. The figure below shows the high level view of the
binary output module.

topRow — lcdDisplay L 8/ » IcdSigs

botRow %

The LCD display module is used transfer characters to the external dis-
play device. The output module’s controller simply has to write the ap-
propriate ASCII characters to the display module’s internal buffer using the
provided interface signals. The controller examines the bits from the two
input values one at a time and writes the ASCII character for each bit to the
display module. It cycles through all the bits repeatedly, using a counter to
control the process.

To complete the design, we need to decide how often the input characters
should be written to the display. It turns out that if we write to the display at
too high a rate, we can cause excessive contention for the display module’s
internal buffer. This can cause the external display to flicker. There is
also no reason to write to the display at a high rate, since it’s going to be
viewed by human beings, who cannot react to rapid changes anyway. If we
update the display every 20 ms or so, it should be fast enough to appear
instantaneous, while minimizing contention for the display module’s buffer.
Since the prototype board uses a clock with a period of 20 ns, a counter
length of 20 bits will give us an update period of about 20 ms.

The figure below shows a suitable circuit for the the output module.
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lcdDisplay S~ IcdSigs

selekt ! update

bitSelect |« s =0

n

[ —

counter

Observe that the selekt input of the display module comes from the high-
order five bits of the counter. The update signal is asserted whenever the
low-order bits of the counter are all zero. The mulitplexors at left select a
specific bit from one of the two data inputs. The bit select block determines
which bit is selected. It must account for the fact that the input bits are
numbered 15 downto 0, while the indexes of the LCD display positions start
with 0 in the top left and increase along the top row, then continue on the
next. The nuChar input to the display module is either the Asci character
code for 0 or the character code for 1. Which code is used is determined by
the selected bit from the two data inputs.

Ok, so let’s see how this is expressed using VHDL.

entity binaryOutMod is port(
clk, reset: in std_logic;
topRow, botRow: in word;
lcd: out lcdSigs);

end entity binaryOutMod;

architecture al of binaryOutMod is

component lcdDisplay ... end component;

-- counter for controlling when to update lcdDisplay
constant CNTR_LENGTH: integer := 6+14*operationMode;
signal counter: std_logic_vector (CNTR_LENGTH-1 downto 0);
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signal lowBits: std_logic_vector (CNTR_LENGTH-6 downto 0);
-- signals for controlling lcdDisplay
signal update: std_logic;
signal selekt: std_logic_vector(4 downto 0);
signal nuChar: std_logic_vector(7 downto 0);
begin
disp: lcdDisplay port map(clk, reset, update,
selekt, nuchar, lcd);

selekt <= counter (CNTR_LENGTH-1 downto CNTR_LENGTH-5);
lowBits <= counter (CNTR_LENGTH-6 downto O);
update <= ’1’ when lowBits = (lowBits’range => ’0’) else
)O);
nuchar <= x"30" when
(selekt(4) = °0’ and

topRow ((wordSize-1)-int (selekt (3 downto 0))) = ’0’)
or (selekt(4) = ’1’ and
botRow ((wordSize-1)-int (selekt (3 downto 0))) = ’0’)

else x"31";

process(clk) begin
if rising_edge(clk) then

if reset = ’1’ then counter <= (others => ’0’);
else counter <= counter + 1;
end if;

end if;

end process;
end al;

The selekt, update and nuChar signals are defined near the center of the
architecture body. Note that the assignment for nuChar specifies all the bit
selection circuitry shown in the diagram using the multiplexors and the bit
select block. The process simply increments the counter whenever reset is
low.

A portion of a simulation of the output module appears below.
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Name Vaue !, , 1000 | |beOOrs |, [L00ne,
1 M
1R reset
B toprow[15:0] 1011001110001111
B botrow[15:0] 0000111000110010
"4 counterf5) H000000000CO000000COG0C000CO00A0
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Notice that the display module’s internal buffer is the last waveform in the
window. It shows the AScII characters for all of the topRow bits and the first
several bits from botRow.



Chapter 11
Verifying Circuit Operation

In this chapter, we’re going to focus on methods for effective testing of digital
circuits. Testing is a very important part of the circuit design process and
companies that produce digital circuit products invest a major part of their
development budgets on testing and verification. Indeed, in many projects
there are more engineers assigned to the testing team than to the design
team.

What makes testing so important is that errors in digital circuits can
be very expensive. It can cost millions of dollars to manufactur a custom
integrated circuit. If an error is found after the first batch of chips has
been produced, a costly “re-spin” may be required to correct the problem.
Moreover, the time required to produce a new batch of chips may delay
a product release, costing a company far more money in lost sales, and
potentially allowing a competitor to gain a significant market advantage. If
a design error is discovered only after a product is shipped, the impact can
be far worse, requiring a costly product recall and damaging a company’s
reputation.

There are two major approaches to ensuring the correctness of digital
circuits. Testing circuits via simulation is the most widely used method, but
for some projects, formal verification methods are used to prove that a circuit
is logically correct. In this book, we’ll focus on testing, but it’s important
to keep in mind that more comprehensive methods are being developed and
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may be more widely used at some point in the future.

11.1 Assertion Checking in Circuit Specifications

One very powerful tool for discovering errors in a circuits involves the sys-
tematic use of assert statements in circuit specifications. Assertions can
be used to test that the inputs to a module, function or procedure do not
violate its input assumptions. For example, here is a procedure that updates
an entry in a table with 24 entries, and uses an assert statement to verify
that its five bit argument falls within the index range for the table.

procedure update(i: in unsigned(4 downto 0);
v: in unsigned(7 downto 0)) is begin
assert 0 <= to_integer(i) and to_integer(i) <= 23;
if table(to_integer(i)).valid = 1 then
table(to_integer(i)) .value <= v;
end if;
end procedure update;

More complex modules will typically have more elaborate assertions.
Note that an assert statement may invoke a function that carries out more
complex checking. Also keep in mind that assertions have no impact on
circuit performance as they are checked by the simulator but ignored by a
circuit synthesizer. So, it makes sense to use them extensively.

Here’s an example of an assertion being used to check that the outputs
of a circuit satisfy a basic consistency condition.

procedure minMax(a, b: in signed(7 downto 0);
X, y: out signed(7 downto 0))

is begin

if a < b then x <= a; y <= b;

else x <= b; y <= a;

end if;

assert x <= y;
end procedure minMax;
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While the assertion is hardly necessary in such a tiny circuit, it does illus-
trate an important point. We can often include a useful check on a circuit’s
operation without having to completely repeat the circuit’s computation. Of
course the assertion shown above is not enough to catch all possible errors
in this circuit, but even assertions that just perform consistency checks like
this can be effective at detecting errors that might otherwise be overlooked.

11.2 Testing Combinational Circuits

Let’s start our study of testing by looking at how to test combinational
circuits effectively. For small circuits, it’s often possible to do exhaustive
testing, where every output of the circuit is tested for every possible input
combination. If the number of inputs is very small (say 6 or less), it’s rea-
sonable to check all test cases manually, but as the number of inputs gets
larger, it’s worthwhile to automate the testing process to allow the computer
to check the results. To illustrate this, consider the following circuit.

entity negate is

generic(size: integer := 4);
port(
c: in std_logic; -- negate when c = high

dIn : in signed(3 downto 0);
dOut : out signed(3 downto 0));
end negate;
architecture al of negate is
begin
dOut <= (dIn’range => 0) - dIn when c = ’0’ else dIn;
end al;

This circuit is supposed to negate its input value (that is, take the 2s-

complement) when its control input is high. Otherwise, the data output

should equal the input. Notice however, that the actual implementation

negates the input when the control input is low, rather than when it is high.
Now let’s look at a testbench that checks this circuit.
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use work.txt_util.all;

entity testNegate is end testNegate;
architecture ... begin
uut: negate generic map (size => 4) port map(c, din, dout);
process begin
c <=0,
for i in -8 to 7 loop
din <= to_signed(i,4); wait for pause;
assert dout = din
report "error when c=0 i=" & str(i);
end loop;
c <= 17,
for i in -8 to 7 loop ... end loop;

First note the use statement at the top. This references a package of useful
utility functions for dealing with text strings. This package is not part of
the IEEE library and so most be included in the working library. Here, we
are using it so that we can use the function str() to convert an integer to
a string representing the value of that integer. Since the circuit has been
instantiated with four bit inputs and outputs, the for loops iterate over all
the possible values of the data input. Note that the assert statement in the
first loop is used to check that the output is correct in the case when c=0.
The second loop covers the case when c=1, athough the body of that loop
has been omitted.
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Here’s a portion of the output from a simulation run, which shows the

£ ISim (P.20131013)
File

appear when assertions are violated.

'a

='a

Edit View Simulation
o2al.

2|

|Instances a.. + O & X||Objects

w7 {} testnegate

>»
Instance and Proces:
—

Window Layout Help

Simulation Objects for :tb

1§«

o088 X| :
< [ » )

Q%Instanc... HE]
| Console

Object Name

DX ® [0 o |dh@ >

8
<

|
This is a Lite version of ISim.
Time resolution is 1 ps
Simulator is doing dircuit initialization process.
Finished dircuit initialization process.

at 40 ns: Error: error when c=0i=-7
at 60 ns: Error: error when c=0i=-6

Ll

DL Ainf0

~

=S

-
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Observe that because the simulator is checking the results, we don’t really

and here is a view of the simulation console where the assertion reports
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need to check the waveform window that closely (although it’s still a good
idea to do so, the first few times you simulate your circuit, in order to catch
errors in your assertions).

Also note that even though the testbench only checks a four bit version
of the circuit, we can be confident (once the error is corrected), that larger
versions will work correctly as well, since the circuit architecture is completely
independent of the specific signal length used.

Here’s part of a testbench for a findFirstOne circuit, which outputs the
index of the first 1-bit in its data input (starting from the least-significant
bit).

architecture al of testFindFirstOne is begin ...
uut: findFirstOne port map (dIn, firstOnelIndex, valid);

process
-- return copy of x but with bits 0..i set to O
function mask(x: word; i: integer) return word ...
begin
din <= x"0000"; wait for 10 ns;
for i in O to wordSize-1 loop
dIn <= mask(x"a35d",i); wait for 10 ns;
for j in O to int(firstOnelIndex) - 1 loop
assert dIn(j) = ’0’ report "detected error ...
end loop;
assert (valid=’0’ and dIn = (dIn’range => ’0’)) or
(valid=’1’ and dIn(int(firstOneIndex))=’1")
report "detected error when i=" & str(i);
end loop;

This testbench is not testing the circuit exhaustively. Instead it takes a fixed
input value (a35d in this example) and successively “turns-off” lower order
bits, leading to increasing values of firstOneIndex. The inner loop checks
that all output bits with index values less than firstOneIndex are zero and
the final assertion checks that the bit specified by firstOneIndex is in fact
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equal to 1. A portion of the simulation output from this circuit appears
below.

]
Name Value |: 1 1 1 . [0ns
8§ din[15:0] 2340 | 0000 X a35d X a35c 2358 X(5350_Xa340
B firstoneindex|| & 0 X 2 X3 X143 X6

L valid 1 |

Let’s look at a slightly bigger example. A barrel shifter is a circuit with
a data input, a data output and a shift input. The data output is a rotated
version of the data input, where the amount of rotation is determined by the
specified shift amount. For example, if the value of the shift input is 2, bit 5
of the output is equal to bit 3 of the input. All other bits of the outputs are
mapped similarly, with the highest bit positions from the input “wrapping”
around into the lowest bit positions of the output.

Consider an eight bit barrel shifter with a three bit shift input, and
suppose we want to test it exhaustively. There are more than two thousand
possible input combinations, so we clearly need some way of automating the
testing, so that we do not have to check the results manually. One way to
simplify the checking is to include two barrel shifters in our test, rather than
just one. The output of the first shifter is connected to the input of the
second. If we make the sum of the two shift inputs equal to eight, then the
output of the second barrel shifter should always be equal to the input of
the first, a condition that’s easy to check. Here is a portion of a testbench
based on this idea.

architecture ... begin
-— instantiate two shifters
uutl: barrelShift port map (dIn, shiftl, dMid);
uut2: barrelShift port map (dMid, shift2, dOut);

process begin
wait for 100 ns;
for i in 0 to 255 loop
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dIn <= to_unsigned(i,8);
shiftl <= "000"; shift2 <= "000"; wait for pause;
assert dIn = dMid
report "error detected when i=" & str(i) &
" and shiftl=" & str(to_integer(shiftl));

for j in 1 to 7 loop

shiftl <= to_unsigned(j,3); wait for 1 ps;

shift2 <= "000" - shiftl; wait for pause;

assert dIn = dOut

report "error detected when i=" & str(i) &

" and shiftl=" & str(to_integer(shiftl));

end loop;
end loop;

Notice that in the inner loop, there is a 1 picosecond wait right after the
assignment to shiftl. This is required to ensure that in the subsequent
assignment to shift2 the simulator uses the new value of shiftl rather
than the previous value. The figure below shows a portion of the simulation
of the barrel shifter.

Name Value . . |200 nsI . . |250 nsI
8§ shift1[2:0] B @D &5 &5 EB &5 &5 5 &5 T &1
B shift2(2:0] 5 D &5 &5 &5 &5 & &5 &5 4D &2
B din[7:0] 00 X 01 X 0z
8§ dmid[7:0] 00_ (o1 )02 ¥ 02 Y08 )10 Y20 (a0 )50 X(02 04|
B§ dout[7:0] 00_ (o1 (o1 ¥ o1 o1 (o1 ¥ o1 (o1 X o1 X0z X0z

Notice how the output of the second shifter (dOut) is equal to the input
of the first. You may wonder why the simulation displays the dOut signal as
changing every 10 ns while dIn=1, even though its value remains equal to 1.
This is just an artifact of the 1 ps delay in the testbench mentioned earlier.



11. Testing Digital Circuits 191

11.3 Testing State Machines

Testing state machines is generally more complicated than testing combina-
tional circuits, since we have to take into account the state of the circuit,
including both the control state and whatever data may be stored in reg-
isters. It’s also difficult to provide very specific guidelines, because state
machines can differ very widely, making it necessary to adapt the testing
strategy to the individual situation. Still, there are some general methods
that can be widely applied.

Let’s start by considering a simple state machine with no data beyond the
control state. Specifically, let’s consider the asynchronous version (Mealy-
mode) of the aribter circuit that was introduced in an earlier chapter. The
state transition diagram for that circuit is shown below.

x1/01 9091 00

Small state machines like this can be tested exhaustively, using the state
diagram. The objective is to find a set of inputs that traverse every transition
in the state diagram. For transitions that are labeled by inputs with don’t-
care conditions, a complete test will follow the transition multiple times, one
for each possible input condition. For example, the following input sequence
will test all the transitions in the arbiter state diagram.

00, 10, 10, 11, 00, 10, 00, 00, 01, 01, 11, 00, 01, 00, 11, 00, 11, 00

Follow the sequence through the diagram to make sure you understand how
this works. To verify that the circuit is correct, the testbench must verify
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that the output values match the state diagram. In this case, the sequence
of output values is

00, 10, 10, 10, 00, 10, 00, 00, 01, 01, 01, 00O, 01, 00, 10, 00, 01, 00

Verify this for yourself, using the state diagram. Here is the architecture of
a testbench that applies the input sequence above and checks it against the
expected output sequence.

architecture al of testArbiter is ...
type testData is record
requests: std_logic_vector(0 to 1);
grants: std_logic_vector(0 to 1);
end;
type testVec is array(natural range <>) of testData;
constant tv: testVec := (
("oo", "o0"), ("10", "10"), ("10", "10"™), ...);

begin ...
process
procedure doTest(td: testData) is
variable r0, rl, g0, gl: std_logic;
begin
r0 := td.requests(0); rl := td.requests(l);
g0 := td.grants(0); gl := td.grants(1l);
request0 <= r0; requestl <= rl; wait for 1 ps;
assert grantO = g0 and grantl = gl
report "error detected when r0,rl1=" & str(r0)
wait for clk_period;
end;
begin

wait for 100 ns;
reset <= ’1’; wait for clk_period; reset <= ’0’;
for i in tv’range loop doTest(tv(i)); end loop;

end; end;
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This testbench illustrates a general technique that can make it easier to
specify the input sequence for a circuit and the expected output sequence.
The testData record includes a pair of request inputs and the corresponding
pair of expected outputs. The testVec array contains the test sequence, with
each record in the array defining one step in the overall test sequence. The
doTest procedure carries out a single step in the test sequence, assigning the
specified test inputs to the circuit and comparing the actual circuit outputs to
the expected output values. An assert statement does the actual checking
and displays a suitable error message when a violation is detected. The
body of the process resets the circuit and applies the entire test sequence by
iterating through the testVec array and invoking doTest on each record.
A portion of the output of this simulation appears below. The input and
output values at time 150 ns have been highlighted.

— v qoons oons . Jpoo
g o Spligipglgliplgipipiglpl
L‘,} reset l_l
L‘& requestd ! | i | | |
‘J& requestl 0 |
L‘,} state . idle X busy0 Kidle1 Xbus... X idlel Xbusy1
U granto ; [ LI 1
‘J& grantl C

There are a couple things worth noting at this point. First, the test only
applies the reset signal once. This is arguably a reasonable thing to do,
since the standard implementation of reset in VHDL generally ignores the
state and all input conditions, so it’s not something that we're likely to get
wrong. Still, if we really wanted to be thorough, we could generalize the
testbench to enable checking that the circuit always resets correctly. There
is a bigger issue, which is that while our test does allow us to verify that
the circuit implemented by the VHDL correctly reflects the state diagram, it
does nothing to help us identify possible errors in the state diagram itself.
Moreover, in many situations, we may not have access to a state diagram
of the circuit we're testing. In this case, we must be prepared to construct
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our test sequence based purely on the high level specification of the circuit
itself. For the arbiter, it’s not too difficult to construct a comprehensive
test sequence, even without knowledge of the state diagram, but in other
situations it can be challenging to develop an effective test based only on the
specification.

Next, let’s look at an example of a testbench for a circuit that operates
on bit-serial input data. This circuit, called inRange, determines if one of
its bit-serial input sequences lies within the range of values defined by its
other two inputs. Specifically, the inputs are hi, x and lo and the circuit’s
inRange output should be high when the numerical value of the bit sequence
for x lies between the values for hi and lo. The three input values are
presented one bit at a time, with the most significant bit first. Consider an
example in which the bits of hi are 01110, the bits of x are 01011 and the
bits of 1o are 01001. Now the bits for the three inputs are all received one
bit at a time. So, on the first clock tick following reset, the bits 000 will be
received, on the second clock tick, the bits 111 will be received, and so forth.

The inRange output will always start out high, and will remain high if
x falls between hi and lo. However, if x does not fall between hi and lo,
inRange will eventually go low. When it goes low depends on when the
circuit is first able to detect that x is outside the range. For example if the
bits of hi are 011001, the bits of x are 011010 and the bits of 1o are 010011,
the circuit will not be able to detect the fact that x is outside the range until
the fifth clock tick, since up until that point, the bits of x that have been
received are the same as the bits of hi that have been received.

The state diagram shown below can be used to implement the inRange
circuit.
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00x,11x

The circuit starts in the center state (labelled =both) when the reset
signal goes low. It remains in this state so long as the three input bits are
all equal to each other. The significance of the state name is that, based
on the bits received so far, x is equal to both hi and lo. If, while we are
this state, the next input bit of x is either greater than the next input bit
of hi or smaller than the next input bit of 1o, the circuit transitions to the
out state, meaning that x is outside the range. If, on the other hand, the
next input bit of x is equal to the next bit of hi, but greater than the next
input bit of lo, the circuit switches to the =hi state, signifying that based
on the bits of received so far, x=hi>lo. Examine the remaining transitions
and make sure you understand why each transition makes sense. Also, note
that the inRange output remains high in all states except the out state.

Now, let’s look at how we can setup a testbench to conveniently test this
state machine.

architecture al of testInRange is

type testData is record

lo, x, hi, result: std_logic_vector(7 downto 0);

end record inVec;

type testVec is array(natural range <>) of testData;
constant tv: testVec := (
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(x"b5", x"55", x"ba", x"ff"),
(x"65", x"54", x"ba", x"fe"), ...);
begin
process begin
wait for pause;
for i in tv’low to tv’high loop
reset <= ’1’; wait for pause;
reset <= ’0’; wait for pause;
for j in 7 downto O loop
lo <= tv(i).lo(j);
x <= tv(i).x(j);
hi <= tv(i).hi(j);
wait for pause;
assert (inRangeOut=tv(i).result(j)) report ...

end loop;
lo <= ’0’; x <= ’0’; hi <= ’0’;
end loop;

As in the previous example, we have defined a testVec array which consists
of records containing the test data. In this case however, each record contains
logic vectors that represet all the bit sequences for hi, x and lo, plus the bit
sequence for the inRange output. The outer loop iterates through the entries
in the testVec array, while the inner loop iterates through the sequences
of input bits, and applies those bits to the circuit inputs. It then checks
the output and reports any discrepancy between the actual output bits and
expected output.
A portion of the the output of the resulting simulation appears below.
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We'll finish up this section with another example, this time using the
pulseCount circuit introduced in an earlier chapter. Recall that this circuit
loads a count value right after reset goes low and then observes its data input
looking for complete “pulses”. When the number of pulses observed is equal
to the count, it raises an event output. It uses an internal counter to track
the number of pulses seen so far.

When testing state machines with internal data, it can be useful to have
the testbench check the internal data values, in addition to the circuit out-
puts. Unfortunately, VHDL does not provide a mechanism to allow the test-
bench to directly refer to an internal signal of a circuit being tested. However,
we can get the same effect by adding auxiliary outputs to the VHDL specifi-
cation for use when testing. These extra outputs can be “commented-out”
of the source file when a circuit has been fully tested on its own and is ready
to be integrated into whatever larger system it may be part of.

We’ll use the pulseCount circuit to demonstrate this idea. We first mod-
ify the entity declaration.

entity pulseCount is port(
cntOut: out nibble; -- comment out, when not testing
clk, reset: in std_logic;
N: in nibble;
dIn: in std_logic;
eventOut: out std_logic);
end pulseCount;

We also need to add the following assignment to the architecture.

cntOut <= cnt;
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We can now verify the internal register value in addition to the event output.

begin
uut: pulseCount port map(counter,clk,reset,N,dIn,eventOut);

process
procedure doTest(count: std_logic_vector(3 downto 0);
dInBits: std_logic_vector(0 to 19);
evBits: std_logic_vector(0 to 19);
cntVals: std_logic_vector(79 downto 0)) is
begin
reset <= ’1’; wait for pause; reset <= ’0’;
N <= count; wait for clk_period; N <= (others=>’0’);
for i in 0 to 19 loop
dIn <= dInBits(i); wait for clk_period;
assert eventOut = evBits(i) and
counter = cntVals(4*(19-1)+3 downto 4*(19-i))
report "error detected at step " & str(i)
end loop;
end;
begin
wait for 100 ns;
doTest (x"0", "01110010100110111011",
"111111111111 11111111
x"00000000000000000000") ;
doTest(x"1", "01110010100110111011",
"00001111111111111111 ",
x"11110000000000000000") ;
doTest(x"1", "11110010100110111011",
"00000001111111111111",
x"11111110000000000000") ;
doTest (x"2", "01110010100110111011",
"00000001111111111111",
x"22221110000000000000") ;
doTest (x"5", "01110010100110111011",
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""00000000000000000111",
x"55554443322221111000") ;

doTest(x"5", "11110010100110111011",

""00000000000000000000",
x"55555554433332222111") ;

Observe that binary format is used to represent the input data and expected
event output, while hex is used for the expected count values. A portion of
the simulation output appears below.

Name L |1,3?0 nls L |1,4?0 nls Lo
1B ok EgEgN|
1§ reset
1 din 1 1T 1
B nB:0) 0
UJ; eventout |
U{} state starti X__prevd  XpreviXprevd Xprev1X prev0
B ntE:0] 1 X 0

11.4 Testing Larger Circuits

As digital systems get larger and more complicated, testing them becomes
increasingly challenging. Perhaps the most important tool for meeting this
challenge is the systematic application of unit testing. That is, testing each
individual design unit on its own, before proceeding to testing larger-scale
subsystems. This has some important advantages. First, it’s easier to find
errors when testing an individual design unit than when testing a larger
subsystem. Because a testbench only has access to the inputs and outputs of
the top-level circuit, it cannot automatically check the correctness of values
of internal signals. Consequently, design errors in internal modules may be
difficult to check automatically at the subsystem level. (We can still manually
check things by adding internal signals to the waveform window, and carefully
checking the circuit’s operation, but this can be time-consuming, and it’s easy
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to miss things when we are relying on manual checking alone.) Second, once
the smaller components of a larger system have been tested in isolation, the
higher level testing can focus on interactions among the components rather
than their individual operation. This greatly reduces the scope of what
needs to be tested at the system level. Third, in most professional design
settings, design components are re-used in different projects and adapted for
different purposes over time. A component that has been carefully tested
as an independent unit is more valuable, because it allows others to have
greater confidence in its correctness, when they seek to re-use it.

Now, even at the level of individual design units, testing can be become
challenging as the design units get larger. State machines that incorporate
large amounts of internal data can be tricky to test completely, because it’s
simply not practical to test them exhaustively, as we can for smalller circuits.
Instead, one needs to focus on key relationships among the state machine’s
internal values. For example, check that the circuit operates correctly when
when two data values are equal, or one is slighly larger, or smaller than
the other. Look for “corner-cases” where input values reach extremes of
their allowed ranges. In general look for unusual cases that might have been
overlooked in the design process. Experience has shown that design errors are
most often found when the circuit’s input is atypical, in one way or another.



Chapter 12

Continuing Design Studies

In this chapter, we’ll be looking at circuits that implement different kinds
of queues. The first is a simple data queue, designed to allow two different
parts of a circuit to pass data values in an asynchronous fashion. The second
is a packet FIFO that operates on larger multi-word blocks of information.
The third is a priority queue that maintains a set of (key, value) pairs and
supports efficient access to the stored value with the smallest key.

12.1 Simple Data Queue

We’ll start with a circuit that implements a simple data queue, illustrated
in the figure below.

dataln—>| —> dataOut
queue
full <— —>empty

This component can be used to let two parts of a larger circuit pass data in
an asynchronous fashion. One interface allows a producer to add data to the
end of the queue, while the other allows a consumer to retrieve data from the
front of the queue. These operations are requested using control inputs enq

201
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and deq. Outputs empty and full indicate the status of the queue. Whenever
the queue is not empty, the data output is the value of the first item in the
queue. Note that since the producer and consumer operate independently of
each other, the circuit must support simultaneous enqueue and dequeue oper-
ations. The interface timing diagram below illustrates the typical operation.

ce | L L L L L
eng [ 1
deq [ ]
din Xvalid X

dout X

empty, full X

There are several ways that a queue can be implemented, but perhaps
the most straightforward uses an array of storage locations, implemented as
a memory. A readPointer identifies the storage location where the ”first”
item in the queue can be found, while a separate writePointer identifies the
location where the next arriving value can be written to the array. A counter
keeps track of the number of array locations currently in use. This approach
is illustrated in the figure below.
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array

0
| readPntr=1 —1

occupied
words

| cnt=4 |

| writePntr=5 |—>

NOoOulh~, WN

The write pointer is advanced as new values are added to the queue,
eventually wrapping around to the first position in the array. Similarly, the
read pointer is advanced as values are removed from the queue. The first
part of a VHDL specification for the queue appears below.

entity queue is port (
clk, reset: in std_logic;
-—- producer interface
dataln: in word;
enq: in std_logic;
full: out std_logic;
—-- consumer interface
deq: in std_logic;
datalOut: out word;
empty: out std_logic);

end queue;

architecture arch of queue is

-- data storage array

constant gSize: integer := 16;

type qStoreTyp is array(0 to gSize-1) of word;
signal gStore: qStoreTyp;

—-- pointers and counter
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signal readPntr, writePntr: std_logic_vector(3 downto 0);
signal count: std_logic_vector(4 downto 0);

Notice that the read and write pointers are dimensioned to match the size
of the data storage array, while the counter has one extra bit, so that it can
represent both the number of values in a full queue and the number in an
empty queue. Here is the body of the architecture.

begin
process (clk) begin
if rising_edge(clk) then
if reset = ’1’ then
readPntr <= (others => ’0’);
writePntr <= (others => ’0’);
count <= (others => ’0’);
else
-- simultaneous enqueue/dequeue operations
if enq = ’1’ and deq = ’1’ then
if count = O then -- ignore deq when empty
gStore(int(writePntr)) <= dataln;
writePntr <= writePntr + 1;
count <= count + 1;
else
gStore(int(writePntr)) <= dataln;
readPntr <= readPntr + 1;
writePntr <= writePntr + 1;

end if;
-- simple enqueue
elsif enq = ’1’ and count /= gSize then

gStore(int (writePntr)) <= dataln;
writePntr <= writePntr + 1;
count <= count + 1;

-- simple dequeue

elsif deq = ’1’ and count /= O then
readPntr <= readPntr + 1;
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count <= count - 1;
end if;
end if;

end if;
end process;
—-- synchronous outputs
dataOut <= gStore(int(readPntr));
empty <= ’1’ when count = 0 else ’0’;
full <= ’1’ when count = gSize else ’0’;

end arch;

Observe that enqueue operations on full queues are ignored, while dequeue
operations on empty queues are ignored. A portion of a simulation is shown
below. Note the queue contents in the bottom part of the waveform display
and the pointer and counter values near the top.

reset 0 |_|
clk  JUHU Uy yyy U
enq o || |
deq 1 |
dataln |11 [00]01]02]03]04]05 06107 Jos Jog loAlorocionloEjoF 1011
readPntr (1 | JO e Blalsle 706 ]
witePntr |1 |Jo 1 o3 alls e 7 s lollalBlcpEFJo [ T1
count |00 | Joolo1]o2]o3]oajosloslo7]oslosloaloslocloploEloF 10 JoFjoejoblocjoloalos]
dataOut |02 [XX o1 Jo2JoBJoa o5 06107 Jog 09|
empty 1 1_,_|
ful o | [ ]
gstore ({11 T e e e e e e e e T To1 . {11 02 03 04 05 06 07/08 0..
b (0) 11 [XX_Jo1 J11
b (1) 02 [xx o2
b 2 03 |XX Jo3
b (3) 04 [XX loa
b (4) 05 |XX Jos
b (5) 06 |XX los
b (6) 07 XX o7
b () 08 XX Jos
Now Dps |y 200000 400000

We chose to use a counter to keep track of the number of items in the
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queue. This makes it easy to determine when the queue is empty or full. An
alternative approach replaces the counter with a single flip flop which is high
when the queue is full. Notice that whenever the queue is either empty or
full, the read and write pointers are equal to each other. The full flip flop
can be set to 1 whenever an enqueue operation makes the write pointer equal
to the read pointer.

Still another variant on the queue eliminates the full flip flop. Instead,
it simply reduces the number of items that can be stored in the queue. In
this version, we consider the queue to be full whenever the value of the read
pointer is one larger than the write pointer.

12.2 Packet FIFO

A packet is a block of data consisting of multiple words, with a pre-defined
format. It can be used by a producer/consumer pair to pass larger blocks of
information than can be conveniently transferred in a single word. This is
illustrated in the figure below.

incoming FIFO storing packets  outgoing
packet of different lengths packet

In this example, we will assume that the words are four bits wide and that the
first word of every packet contains its length (that is, the number of words
in the packet). We’'ll constrain the length to be at least three words and at
most six and we’ll raise an error signal if the number words in a packet falls
outside this range. Because the producer cannot know in advance if its next
packet will fit in the FIFO, we allow the producer to simply send the packet
to the FIFO component, and have the FIFO raise an acknowledgement signal
if it has room to store the entire packet. The producer uses a start-of-packet
signal to identify the first word of a packet. This interface is illustrated
below.

The acknowledgment signal is raised right after the first word of the packet
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ck LI LI LT L1 LT
sopin [ 1
dIn == Xx04 X“x01 X x02 X x03 X_--
ack [ ]

arrives, if there is room for the packet in the FIrFo. If there is not room, it
remains low. The producer is free to re-try sending a packet until the FIFO
is able to accept it.

The consumer-side interface has a similar character. The consumer has
an okZsend signal that it uses to tell the FIFO when it is ready to receive a
packet. The FIFO sends its first packet whenever the consumer is ready and
there is a packet to send. It identifies the first word of the packet being sent
using its own start-of-packet signal. This is illustrated below.

clk [ [T 1
ok2send [ |
sopOut [ 1

dout x04 X x01 X“x02 X_x03 X-o

As with the simple data queue, we can store the packets in a memory,
using a read pointer and a write pointer. However, the FIFO circuit needs
to keep track of both the number of packets that are present in the FIFO
and the number of words that are in use. It also has to use the length of an
arriving packet to determine how many incoming words to store. Similarly,
it must use the length of a departing packet to determine when the last word
of the packet has been sent.

Designing a control circuit that simultaneously manages the arriving and
departing packets can be tricky. Here, we’ll use another approach using two
separate controllers, one to handle incoming packets and other to handle
outgoing packets. This is shown in the following block diagram.
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din —%—+— pStore 4 dout
X
[ inCnt | [ wPntr | [ rPntr || outCnt |
LD[-1 |+1 +1| LD|-1

sopIn — ctlLeft ctiRight [ sopOut

ack «——  idle idle
busy
busy [ ok2send

error errState
1 nWords 1

The top of the diagram shows a packet storage block, implemented using a
memory. The write pointer controls where each word of an arriving packet
is placed in the memory, while an input counter keeps track of the number
of words left to be read. It is loaded from the data input when the first word
of the packet arrives. The write pointer and input counter are controlled by
the “left controller”, which manages the producer-side interface.

The consumer-side interface is controlled by the “right-controller” which
controls the read pointer and an output counter that keeps track of the
number of words remaining in the outgoing packet.

The two controllers share two counters, one which keeps track of the
total number of words in use in the memory, and another that keeps track
of the number of packets. These are incremented by the left controller and
decremented by the right controller.
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A state diagram for the left controller is shown below.

condition:

ctiLeft sopIn=1 and
(dIn<3 or dIn>6)

|dle/ action: none =@

condition:

condition:

inCnt=1 sopIn=1 and
tntnt= 3<=dIn<=6 and
action: nWords+dIn<=16

action:

load inCnt=dIn-1
increment nWords
increment wPntr
write to pStore
assert ack

increment nWords
increment wPntr
increment nPkts
write to pStore

condition:
inCnt>1

action:

decrement inCnt
increment nWords
increment wPntr
write to pStore

When the controller is in the idle state, it is just waiting for a new packet to
arrive. In this state, if the soplIn signal goes high, the controller switches to
the busy state or the error state, based on whether the length of the arriving
packet is in the allowed range or not. A transition to the busy state will
only occur if the packet length is in range and if the packet will fit in the
memory. (The diagram omits the self-loop for the idle state, since no action
is required in this case.) If the controller does transition to the busy state, it
loads the input counter, writes the first word of the packet to the memory,
advances the write pointer and increments the count of the number of words
in use. It also raises the acknowledgment signal to let the producer know
that the packet can be accepted. The controller remains in the busy state
as the packet arrives, then transitions to the idle state when the last word
arrives. The right-hand controller is similar.
The first part of a VHDL spec for the packet FIFO appears below.

entity pFIFO is port(
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clk, reset: in std_logic;
-- left interface
dIn: in word;
sopIn: in std_logic;
ack, errSig: out std_logic;
-- right interface
dOut: out word;
sopOut: out std_logic;
ok2send: in std_logic);

end pFIFO;

architecture archl of pFIFO is

constant psSiz : integer := 16;

subtype register is std_logic_vector(4 downto 0);
-- number of words left to arrive/leave

signal inCnt, outCnt: word;

-- pointer to next word to write/read

signal wPntr, rPntr: register;

-- number of words/packets stored

signal nWords, nPkts: register;

-- Packet store

type pStoreType is array(0O to psSiz-1) of word;
signal pStore: pStoreType;

- state machines controlling input and output
type stateType is (idle, busy, errState);

signal leftCtl, rightCtl: stateType;

-- auxiliary signals

signal inRange, validArrival, enoughRoom: std_logic;
signal nWordsPlus, nWordsMinus: std_logic;

signal nPktsPlus, nPktsMinus: std_logic;

The left and right controllers each have their own state variable. We’ll de-

scribe the various auxiliary next.

begin
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-- inRange is high if an arriving packet has a legal length
-- is only used when sopIn is high
inRange <= ’1’ when dIn >= x"3" and dIn <= x"6" else ’0’;
-- enoughRoom is high if we have room for an arriving packet
enoughRoom <= ’1’ when ((’0’ & dIn) + nWords) <= psSiz
else ’0’;
—-- validArival is high whenever an arriving packet can
-- be accepted
validArrival <= ’1’ when leftCtl
inRange

idle and sopIn = ’1’ and
’1’ and enoughRoom = ’1

else ’0’;

The inRange signal checks that the value on the data inputs is within the
allowed range for a packet length. It is only used when the sopIn input is
high. The enoughRoom signal is used to determine if an arriving packet will
fit in the available space. The validArrival signal is high on the first byte
of a packet that can be accepted by the FIFO.

Now that we have these preliminaries out of the way, let’s take a look at
the process that implements the left controller.

process (clk) begin -- process for left controller
if rising_edge(clk) then
ack <= ’0’; -- default value
if reset = ’1’ then

leftCtl <= idle;
inCnt <= (others => ’07);
wPntr <= (others => ’0’);
else
if leftCtl = idle then
if validArrival = ’1’ then
pStore(int (wPntr)) <= dIn;
inCnt <= dIn - 1; wPntr <= wPntr + 1;
ack <= ’1’; leftCtl <= busy;
elsif sopIn = ’1’ and inRange = ’0’ then
leftCtl <= errState;
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end if;
elsif leftCtl = busy then
pStore(int (wPntr)) <= dIn;
inCnt <= inCnt - 1; wPntr <= wPntr + 1;
if inCnt = 1 then leftCtl <= idle; end if;
end if;
end if;
end if;
end process;

Note that the process implements the state transitions specified in the di-
agram, it writes arriving data to the packet store and updates the input
counter and write pointer as required. It also raises the acknowledgement
signal when an arriving packt can be accepted. However, the process does
not increment the nWords and nPkts registers. This is done by a separate
process using the nWordsPlus and nPktsPlus signals defined below.

—-- outputs of left controller

nWordsPlus <= ’1’ when leftCtl = busy or validArrival = ’1’
else ’0’;

nPktsPlus <= ’1’ when leftCtl = busy and inCnt = 1 else ’0’;

errSig <= ’1’ when leftCtl = errState else ’0’;

The right controller is similar to the left.

process (clk) begin -- process for right controller
if rising_edge(clk) then
sopOut <= ’0’;
if reset = ’1’ then
rightCtl <= idle;
outCnt <= (others => ’0’);
rPntr <= (others => ’0’);
else
if rightCtl = idle then
if ok2send = ’1’ and nPkts > O then
outCnt <= pStore(int(rPntr));
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rightCtl <= busy; sopOut <= ’1’;
end if;
elsif rightCtl = busy then
outCnt <= outCnt - 1;
rPntr <= rPntr + 1;
if outCnt = 1 then
rightCtl <= idle;
end if;
end if;
end if;
end if;
end process;
-- outputs of right controller
nPktsMinus <= ’1’ when rightCtl = busy and outCnt = 1
else ’0’;
nWordsMinus <= ’1’ when rightCtl /= idle else ’0’;
dOut <= pStore(int(rPntr));

Finally, here is the process that maintains the nWords and nPkts registers.

-—- process for updating nWords and nPkts
process(clk) begin
if rising_edge(clk) then
if reset = ’1’ then
nWords <= (others => ’0’);
nPkts <= (others => ’0’);
else
if nWordsPlus > nWordsMinus then
nWords <= nWords + 1;
elsif nWordsPlus < nWordsMinus then
nWords <= nWords - 1;
end if;
if nPktsPlus > nPktsMinus then
nPkts <= nPkts + 1;
elsif nPktsPlus < nPktsMinus then
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nPkts <= nPkts - 1;
end if;
end if;
end if;
end process;
end archil;

The figure below shows a portion of a simulation, showing the arrival of
several packets.
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Name v, [PR0000ps (B0 000ps 700000, (809 00
1% reset 0
left interface left interface
- B§ din[3:0] 0| 0 K3 XI W2 X0 3 a X5 K6 X7 A6 X XAXE
1% sopin 0 [ 1 ] M1
1% ack 0 1 [ [
1& errsig 0

left controller ntroller
1% leftctl idll _idle| ¥ busy ¥_idle[ ¥ busy ¥i.[X busy
B 3§ incnt[3:0] 0
B &g wpntr[3:0] |7
1% ck 1
status registers
B &g nwords[3:0] | A
B ﬁ npkts[2:0] 2

Note that the sopIn signal goes high on the first word of each arriving
packet, and that an acknowledgement is generated immediately by the con-
troller. Note how the input counter and write pointer are updated as the
packets arrive. Also observe the updating of the nWords and nPkts registers.

The next figure shows a portion of the simulation where packet arrivals
and departures overlap.
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Notice how the next arriving packet is delayed because the FIFO does not
yet have room to accommodate the incoming packet. Once packets begin to
leave the FIFO, more space becomes available allowing new packets to arrive.
Observe that the nWords and nPkts signals do not much change much during
this period, reflecting the overlapping arrivals and departures.

12.3 Priority Queue

In this section, we’ll look at a priority queue. This is a data structure that
stores (key,value) pairs and provides efficient access to the pair with the
smallest key. We’ll look at a hardware implementation of a priority queue
that can perform insertions and deletions in constant time. The priority
queue is organized around a fairly simple idea that is illustrated in the fol-
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lowing figure.

7,8 | 4,2 | 6,17 - -
T
v

2,6 | 3,1 | 513 | 8,2 -
W 4

In this diagram, each of the occupied cells stores a (key,value) pair. Un-
occupied cells are marked with a dash. The cells are partially ordered to
support efficient operations on the entire array. Specifically, the pairs in the
bottom row are ordered by their keys, with the smallest key appearing in
the bottom-left cell. Each column is also ordered, with the smaller key ap-
pearing in the bottom row. The unoccupied cells are always at the right,
with at most one column having a single unoccupied cell. When a column
has one unoccupied cell, that cell is in the top row. If the cells satisfy these
constraints, the bottom left cell is guaranteed to have the smallest key in the
array.

This arrangement supports efficient insertion of new pairs and efficient
extraction of the pair with the smallest key. The figure below illustrates an
insertion operation, which proceeds in two steps.

shift top row right

1,11 | 7,8 4,2 | 6,17 -

2,6 3,1 | 5,13 | 8,2 -

compare & swap in each column

2,6 7,8 | 5,13 | 8,2 -

1,11 | 3,1 | 42 | 6,17 | -
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In the first step, the new (key,value) pair is inserted into the top left cell,
with all others pairs in the top row shifting to the right, to make room. In
the second step, the keys of the pairs in each column are compared to one
another and if the top pair has a smaller key than the bottom pair, then the
pairs swap positions. In the example, all but one of the pairs gets swapped.

It’s also easy to remove the pair with the smallest key. We simply shift
the bottom row to the left, then compare and swap pairs within each column.

From a hardware perspective, what’s appealing about this approach is
that it can be implemented by an array of independent components that
communicate only with neighboring components. This allows the compo-
nents in an integrated circuit chip to be arranged in the same way as the
cells in the diagram. The locality of the communication among components
leads to a compact and efficient circuit.

Here is the first part of a VHDL specification of the priority queue.

entity priQueue is port(
clk, reset: in std_logic;

insert, delete: in std_logic; -- control signals
key, value: in word; -— incoming pair
smallKey, smallValue: out word; -- outgoing pair
busy, empty, full: out std_logic); -- status signals

end priQueue;

architecture archl of priQueue is
constant rowSize: integer := 4;
-- array of cells
type pair is record
valid: std_logic;
key, value: word;
end record pair;
type rowTyp is array(0 to rowSize-1) of pair;
signal top, bot: rowTyp;
-- state type
type state_type is (ready, compareAndSwap);
signal state: state_type;
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The information associated with each cell is defined as a record containing
a valid bit plus the key and value. The two rows are defined as separate
arrays to facilitate independent operations.

The next portion the architecture shows the circuit initialization and the
first step in the insertion operation.

begin
process(clk) begin
if rising_edge(clk) then
if reset = ’1’ then
for i in 0 to rowSize-1 loop
top(i).valid <= ’0’; bot(i).valid <= ’0’;

end loop;
state <= ready;
elsif state = ready and insert = ’1’ then

if top(rowSize-1).valid /= ’1’ then
top(1 to rowSize-1) <= top(0 to rowSize-2);
top(0) <= (°1’,key,value);
state <= compareAndSwap;

end if;

The two assignments to top shift the new pair into the top row. The next
portion of the specification shows the first part of the delete operation plus
the processing of the compare and swap step.

elsif state = ready and delete = ’1’ then
if bot(0).valid /= ’0’ then
bot (0 to rowSize-2) <= bot(1l to rowSize-1);
bot (rowSize-1) .valid <= ’0’;
state <= compareAndSwap;
end if;
elsif state = compareAndSwap then
for i in O to rowSize-1 loop
if top(i).valid = ’1’ and
(bot (i) .valid = ’0 or
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top(i).key < bot(i).key) then
bot (i) <= top(i); top(i) <= bot(i);

end if;
end loop;
state <= ready;
end if;
end if;

end process;

Note that this priority queue does not support simultaneous insert and delete
operations. The final portion of the VHDL spec defines the output signals.

smallKey <= bot(0).key; smallValue <= bot(0).value;

empty <= not bot(0).valid;

full <= top(rowSize-1).valid;

busy <= ’1’ when state = compareAndSwap else ’0’;
end archl;

We'll finish off this chapter by reviewing a simulation of the priority queue.
This first portion shows a series of insertion operations.
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Name Vi ) ) ) |500 ns . . ) |1,000 ns ) .
inputs

l&reset 0 _I

1 insert 0 M I I I I I I ]
U}delete 0

> B key[15:0] 130 X8 X7 W5 W5 T3 XT3 T2 X[ a3
~ I value[15:0] S G GF D GF G G D G D (D &1
1§ ak o | AR AR UL AR

internal signals
7 B top[0:3] SN s (T 4 (4 (M) 4 (T 4 (6P + (6T + (e ) (T R
- I [0] {1 {o,uu (R o (O ¢ GO ¢ GOV & (VI o GEE0 + (690 ) W)

- g [ {1 {0,U,U} 4 COHT) ¢+ (G ¢ (S ¢ (N + (V) G}
% & .00 b (T s (EHES o (A ER O N

- g Bl {1 {0,U,U} o SO ) G
8§ bot[0:3] to o,u Uk L X8, X[{1,7,... X[{1,6,]. X[{1,5,.. X[{L4,... X[{1,3,.. X[{1,2,.. X[{1, 1,8 { .
- I [0 {af{_{o,uU 18,1 X{1,7,2 X6 X s & X as Xase X2 X {118
- g {1 {0,U,U} K8 X172 X163 X154 X{1.45 1,3,6
- g 2 {1 {0,U,U} 18 0 X172 X163 X {154
- I Bl {1 {0,U,U} ) (T 1,7,2
l& state re| ! read read read read read read read read K ready
outputs

. % smallkey[15:0] || 1 X 8 X 7 X &5 X X 4 X 3 X 2 1

> B smalvali15:0] || 8 ] X1 X 2 X 3T 2 X5 X8 X7 3
1% empty N |
1% fun 1 I I
1% busy 0 I I I I1 I I I Il

Observe how the data in the top and bottom rows is adjusted as new
(key,values) pairs arrive. The next section shows a series of deletion opera-
tions.
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Name vl . |L,500ns . . . [.000ns . [ .
inputs
L’é reset 0
Li-} insert 0
1§ delete el n - nmnm-n nmn -nmn n/
B key[15:0] 13 13
0§ value[15:0] 31 31
1 + AR AR
internal signals
2§ top[0:3] ) 3 X172 X[{18,1.X[{0,8,13,{0,8, 13 10,8 1.
o foj {1, X {1,36) X {145 X {154 X {163} X{1,7.2} X {181 X {081
B (ol {1, X{1,54 1,6,3 1,7,2 180 X 10,3,1}
2 o L. X172 X{18. 0 X {0,8,1}
B B
2§ bot[o:3] 10,8, ..
B o {0} .. 1,2, 1,3,6 1,4,5 1,54 16,3 1,7,2 18,1 10,8, 1}
B 10 . 1,3,5 1,54 16,3 L7 XXLE. oYX 10,8,1)
2 ol i 16,3 1,7,2 18,1 {0,8,1;
B B 1o T X 10,8,1;
L}} state re Mready mready mready mreacy mready mready mready m ready
outputs
B smalikey15:0] || 2 | TT X2 XT3 @ SO TE T X 8
By smavaiies:o) (|1 | BT X6 NS 0T 2 X 1
1§ empty 1 I
1§ fun o | 1
1§ busy ol MmN mn _n'n n _nmn_n

Once again, observe how the top and bottom rows are adjusted as values
are removed from the array.



Chapter 13

Small Scale Circuit
Optimization

The logic elements used to construct digital circuits (for example, gates or
LUTs) represent a limited resource. The number of logic elements on a sin-
gle chip directly affects its physical size and hence its manufacturing cost.
Also, as the size of a chip grows, the manufacturing yield (the percentage of
chips that have no manufacturing defects) can drop, further increasing costs.
Consequently, we are usually interested in designing circuits that provide the
required functionality using as few logic elements as possible.

In the 1970s, digital circuits were largely designed by hand, leading to
the development of circuit optimization methods that could be easily ap-
plied by human designers. Today, computer-aided design tools do most of
the heavy-lifting, and are generally pretty good at doing small-scale circuit
optimization. Still, there are occasions when it is useful for designers to be
able to optimize small circuits for themselves. An understanding of these
techniques also provides some insight into the kinds of decisions that CAD
tools must make when they perform automatic circuit optimization. So, in
this chapter, we will look at some basic methods for optimizing small cir-
cuits. Later in the book, we will look at how the larger-scale decisions made
by human designers can effect the cost of circuits, and we’ll explore how to
make better choices that lead to more efficient circuits.

223
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Our focus in this chapter will be on optimizing combinational circuits,
since this is where there is generally the greatest opportunity to reduce cir-
cuit complexity. Recally that a typical sequential circuit consists of a set
of flip flops defining its state and three combinational circuits, one defining
the signals leading to flip flop inputs, one defining the asynchronous out-
put signals and a third defining the synchronous output signals. It is these
combinational circuit blocks that are generally the most fruitful targets for
optimization.

We will explore two broad classes of methods in this chapter, algebraic
methods that involve applying the rules of Boolean algebra to obtain simpler
logic expressions, and algorithmic methods that are largely mechanical and
can be easily carried out by computer software.

13.1 Algebraic Methods

In Chapter 2, we explained the correspondence between combinational cir-
cuits and logic expressions in Boolean algebra. Any logic expression can
be directly converted to a combinational circuit using simple AND gates, OR
gates and inverters, and there is a direct correspondence between the gates
in the circuit and the operators in the logic expression. Hence, the sim-
plest logic expression for a given function yields the simplest circuit for that
function.

To take advantage of this, we need to know how to apply the rules of
Boolean algebra to obtain simpler logic equations. We discussed some of the
basic rules in Chapter 2. Here is a table that includes all the basic identities
that can be used to simplify logic expressions.
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1LX+0=X 2.X 1=X
3.X+1=1 4.X-0=0

. X+ X=X 6. X - X=X
TX+X =1 8.X X' =0
9.(X') =X

10 X4+Y =Y+ X 11.X Y=Y X

RX+Y+2)=(X+Y)+Z 13.X-(Y -2)=(X-Y) 2)
UXY+2)=X-Y+X-Z 15X+ - Z2)=(X+Y)-(X+2)
16. (X +Y) =X"-Y' 17. (XYY =X'+Y'

Identities 10 and 11 are commutative laws, while 12 and 13 are associative
laws. These should all be familiar from ordinary algebra. Rules 14 and 15 are
distributive laws and while the first of these corresponds to the distributive
law of ordinary algebra, the second has no counterpart in ordinary algebra.
The last two are referred to as DeMorgan’s rules and are useful for simplify-
ing expressions containing complement operators. DeMorgan’s rules can be
extended to handle larger expressions. For example

(X+Y+2)=(X+Y)+2)=X+Y).-Z =X"-Y'. 7
More generally,
(X1+X2+"'+Xn)/=X{'Xé"'Xfl

Similarly
(Xl‘XQ"'Xn)/:X{"i'Xé‘*'""FX;Z

There are a couple other handy identities that are worth committing to
memory.
X+XY=X+4Y X+XY=X

Note that all of these identities can be applied to complete sub-expressions.
So for example

(A+B)+AB'C=(A+B)+(A+B)C=A+B+C

Just as with ordinary algebra, simplifying logic expressions generally involves
a certain amount of trial-and-error. If you know the basic identities well,



226 Designing Digital Circuits (C) Jonathan Turner

you can use this knowledge to recognize patterns in expressions to which the
identities can be applied.

If you examine the table of identities, you will notice that there is a strik-
ing resemblance between the entries in the left column, with the correspond-
ing entries in the right column. This is no accident, but the consequence
of a general principle of Boolean algebra known as the duality principle. In
general, one can obtain the dual of any logic expression by replacing AND
operations with ORs, replacing ORs with ANDs, and interchanging all Os and
1s. So for example, the dual of A+ B-C'+01is A-(B+ C’)-1. When
constructing the dual, be careful to preserve the order in which operations
are performed. This often requires adding parentheses.

Referring to the table of identities, notice that in each row with two
identities, the left sides of the two equations are duals of each other, as are
the right sides. Now the duality principle states that if two expressions Fj
and FEy are equivalent, then their duals are also. That is

Ey = Ey & dual(E7) = dual(Es)

Consequently, all the equations on the right side of the table follow directly
from the equations on the left side.

The duality principle can be useful when attempting to prove that two
expressions are equivalent, since sometimes it may be easier to prove the
equivalence of the duals than the original expressions. We can also use it to
derive new identities. For example, by duality

A+A-B=A=A (A+B)=A4A

and
A+A -B=A+B=A-(A+B)=A-B

We can also use duality to simplify the complementing of large expressions.
For example, suppose we wanted to complement the expresson X - (Y- Z' +
Y -Z). We could do this by applying DeMorgan’s rule repeatedly, but there is
a simpler method using duality. We simply complement all the literals in the
expression and then take the dual (interchange ANDs and ORs, interchange
0s and 1s). So for example, complementing the literals in X - (Y'-Z'4+Y - Z)
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givesus X'+ (Y-Z+Y'-Z’") and taking the dual yields X'+ (Y +2)-(Y'+2").
Thus,
X Y- Z+Y - 2)))=X'+Y+2)- Y+ 2

We'll finish section by deriving a useful property of Boolean expresssions
known as the consensus theorem.

X Y+X - Z4+4Y - Z=X-Y+X -Z

We can prove this by applying the basic identites. In the first step, we apply
identities 2 and 7, giving us

X Y+X - Z+Y - Z=X-Y+X - Z+(X+X)Y -Z
Next we apply identity 14 to get
X Y+X - Z+(X'Y-Z+X Y- 2)
Continuing, we apply identites 2, 11 and 14 to get
XY -(14+2)+X"-Z- (Y +1)
and finally, we apply identites 3 and 2 to get
X Y+X'.Z

To better understand this argument, notice that what we’re doing in the
first two steps is splitting the expression Y - Z into two parts X - Y - Z and
X'-Y - Z). The first part is true only when X -Y is true, while the second
part is true only when X’ - Z is true. This allows us to discard each of the
two parts, since they are redundant.

Of course, we can apply the duality principle to obtain the following
variant of the consensus theorem.

(X+Y)- (X'+2)- (Y+2)=(X+Y) (X' +2)
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13.2 Algorithmic Methods

Algebraic methods are very powerful tools for simplifying logic expressions.
With practice, one can become very adept at using them to simplify even
very complicated expressions. Computer software can also perform symbolic
manipulation of logic expressions. In this section, we’ll look at another ap-
proach that is often used to simplify expressions in an essentially mechanical
fashion. We’ll see that for expressions with a small number of variables,
we can apply this method by hand. Computer software can also use it for
simplifying expressions with a moderate number of variables (say 10-15).

Before we can describe the method in detail, we need to introduce some
terminology. Expressions like AB + C'D + BCD' and ABC + D + BC' are
examples of sum-of-products expressions. More generally, a sum-of-products
expression is any expression of the form

ptermy + ptermy + - - - + pterm,,
where pterm stands for product-term and is a sub-expression of the form
X1 X9 Xp

Here, X is either the name of one of the variables in the expression or the
complement of one of the variables. The method we will introduce allows
one to find the simplest sum-of-products expression for a given expression.

A minterm is a product term that includes every variable in the expres-
sion. So for example, in the sum-of-products expression X'Y'Z+X'Z+ XY +
XY Z the first and last product terms are minterms, while the others are not.
Any sum-of-products expression can be re-written as a sum of minterms by
expanding each of the product terms that is not already a minterm into a
set of minterms. So for example, in X'Y'Z + X'Z + XY + XY Z the term
X'Z can be expanded into the pair of minterms X'Y’Z and X'Y Z and the
pair XY can be expanded into minterms XY Z’ and XY Z. Eliminating re-
dundant minterms, we get the sum-of-minterms expression X'Y'Z +X'Y Z +
XYZ +XYZ

We can also identify the minterms for an expression by constructing a
truth table and finding the rows in the truth table where the expression is
equal to 1. Here is a truth table for X'Y'Z + X'Z + XY + XY Z.
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XYZ
000
001
010
011
100
101
110
111

»—lr—tOO»—\O»ﬂO"‘J_j

Note that the first 1 in the table corresponds to the minterm X'Y’Z. The
other 1s in the table match the remaining minterms. We can assign numbers
to minterms, according to their row in a truth table. This gives us a conve-
nient way to specify a logic expression, by listing its minterms by number.
So for example, since X'Y'Z + X'Z + XY + XY Z consists of minterms with
numbers 1, 3, 6 and 7, it can be specified using the notation

D (1,3,6,7)

m

which is read as “the sum of minterms 1, 3, 6 and 7”.

It’s often convenient to write a minterm in a short-hand form using Os
and 1s. So for example X'Y’Z can be abbreviated as 001. There is also a
corresponding short-hand for product terms that are not minterms; X’Z can
be written 0x1 to indicate that the product term is true when X = 0 and
Z =1, but it doesn’t matter what value Y has.

Ok, so now let’s proceed to describe the general minimization procedure
for sum-of-products expressions. We start by identifying all the minterms in
the expression. If we want to simplify the expression, ABD+ A’B+ BC'D’ +
B'CD + B'CD’, we first identify the minterms 0010, 0011, 0100, 0101, 0110,
0111, 1010, 1100, 1011, 1101 and 1111, or more concisely >, (2,3,4,5,6,7,10, 1
The diagram below shows these minterms arranged on the page so that
minterms that are adjacent to each other differ in exactly one bit position.
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0011 0010
0100 0101 0111 O110
1100 1101 1111

1011 1010

Notice that if you take an adjacent pair, they can be viewed as a product
term. For example, the adjacent pair 0100 and 0101 corresponds to the
product term 010x. Similarly, 0101 and 1101 corresponds to the product
term x101. Similarly, any 2 x 2 grouping of minterms can be viewed as a
product term with two don’t cares. For example 0101, 0111, 1101 and 1111
corresponds to the product term x1x1.

We are now ready for the second step in the minimization procedure,
which is to identify the set of maximal product terms for the given expression.
A maximal product term is one that has the largest possible number of don’t
care conditions. So, x10x is a maximal product term for our example because
if we change either the 0 or the 1 to an x, we will get a product term that
includes minterms that are not in our original list. Several maximal product
terms are indicated in the diagram below.

(0011] 0010
(0100 0101]/0111] 0110]
1100 1101/[1111
10111010

Note that one of the maximal product terms corresponds to a 1 x 4 sub-
array of the minterm array, while another corresponds to a 4 x 1 sub-array.
In general, maximal product terms correspond to rectangular subarrays with
2, 4 or 8 cells.

The complete list of maximal product terms is 01xx, x10x, x1x1, xx11,
0x1x, x01x. Observe that most of these consist of contiguous sub-arrays con-
taining four minterms. The product term x01x appears to be an exception.
This product term corresponds to the two minterms in the top row together
with the two in the bottom row. It turns out that we can think of the top and
bottom rows as being adjacent to one another (that is neighboring minterms
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in these rows differ in just one variable), so the set of four minterms cor-
responding to x01x do form a 2 x 2 subarray. Note that the leftmost and
rightmost columns can also be considered adjacent to one another. The di-
agram below shows all the maximal product terms.

0011 0010J
(0100 (0101[[0111])0110
1100(1101)/1111

1011] 1010)

The next step is to identify those product terms that are essential to any
final solution. We say that a product term is essential if it is the only one
covering some minterm. Referring to the diagram, we can see that minterm
1100 is covered by just one product term x10x, so x10x qualifies as essen-
tial. Similarly, 1010 is covered by just one product term, x01x, so it is also
essential.

Notice that the two essential product terms cover eight of the eleven
minterms in the array of minterms. The last step is to select one or more
additional product terms that cover the remaining minterms. While up to
this point, the process has been completely mechanical and deterministic,
now we have to make some choices. There is usually more than one way to
cover the remaining minterms. In general, we want to use as few additional
product terms as possible, and we prefer to use “larger” product terms rather
than smaller ones. In this case, one good choice is the two product terms
0lxx and xx11. This gives us a final set of four product terms x10x, x01x,
01xx and xx11. The corresponding sum-of-products expression is

BC'+B'C+AB+CD

Note that the minimum sum-of-products expression may not be the simplest
expression overall. In this example, we could go one step further by factoring
the first and third terms, and the second and fourth. This gives

B(A'+C")+ C(B'"+ D)

This expression can be implemented using two AND gates, three OR gates
and three inverters.
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Let’s summarize the general method.

1. List all the minterms.

2. Combine minterms to obtain a list of maximal product terms.
3. Identify the essential product terms.

4. Select additional product terms to cover the minterms that have not
been covered already.

One way to proceed in the last step is to use a greedy strategy. Specifically,
we add product terms one at a time, and at each step we select a new product
term that covers the largest possible number of not-yet-covered minterms.
While this approach is not guaranteed to produce the best possible solution,
in practice it generally produces results that are at least very close to the
best possible.

Now, there is a nice graphical tool called a Karnaugh map that can sim-
plify the process we just went through. We've essentially introduced the
Karnaugh map in our presentation of the general algorithm, but we’ll now
present it a bit more directly. A Karnaugh map for a function of four vari-
ables is a square array of 16 cells, each corresponding to a possible minterm.
Consider first the left side of the figure below.

CD CD
00 01 11 10 00 01 11 10
00j 0|1 |3]|2 copofo0|1]1
0114|576 o1 1111
AB AB
1111213 (15|14 11111110
101 8 {9 |11|10 10/0|0]1]1

The labels along the side of the main array list values of two variables, A
and B, while the labels along the top list values of two more variables, C' and
D. Each cell in the array corresponds to a minterm and the numeric values
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of these minterms are shown within each cell. The number for a given cell
can be obtained by taking the label for the row and the label for the column
and interpreting it as a binary number. So for example, the cell labeled 13
is in the row labeled 11 and the column labeled 01. Since 1101 is the binary
representation of 13, this cell corresponds to minterm 13. Notice that the
labels on the side and top are not listed in numerically increasing order. This
is intentional and necessary. By ordering the labels in this way, we obtain an
array in which adjacent cells correspond to minterms that differ in exactly
one position.

When we use a Karnaugh map to simplify an expression, we fill in the
cells with 1s and Os, placing a 1 in each cell corresponding to a minterm of
the expression we are simplifying. The right side of the figure above shows
the minterms for the function we just simplified in our previous example.
When using a Karnaugh map, we effectively perform the first step in the
procedure by filling in the cells. To perform the second step, we identify
maximal product terms by circling rectangular sub-arrays that have either
2, 4 or 8 cells, that all contain 1s. These sub-arrays may wrap around from
the top row to the bottom or from the left colum to the right. Note that
the number of cells must be a power of two, since the number of minterms
in any product term is a power of two. This step is shown in the left side of
the figure below.

CD CD CD
00 01 11 10 00 01 |11 lq 00 01 ;ll 1q
00| 0 | O [\1][ 1) 00 0|0 |\ _;} 00 0|0 LT j
o1 | |[L][[L] 1 o1(1] 1) 11 o1 | [ ][] 1)
AB B AB
1 ][] o 11110 111 | 1J[1]] o
10 0| o |[1]] 1] 0| o0|o|f1]1] 0| 0| o [[1]] 1)

The middle part of the figure shows the selection of essential product terms,

while the right side shows a complete set that covers all the 1s in the map.

With a little practice, it becomes fairly easy to do steps 2-4 all at once.
Let’s try another example. The expression A(BC + B'C') + B'C + BC'
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is a function of three variables and can be represented by a Karnaugh map
with two rows and four columns. To make it easier to fill in the 1s in the
map, it helps to put the expression in sum of products form: ABC +AB'C’+
B'C + BC'.

BC
00 01 11 10

oo| 0 |[1]] O
A
o1{(1 [[1)] 1

1
L

In this case, there are just three maximal product terms and they are easy
to identify in the map. This gives us the expression A + B’C' + BC’. which
can also be written A+ (B @ C).

Let’s do another four variable example. Consider the function ABC’ +
A'CD'+ABC+AB'C'D'+ A'BC'+ AB'C. Filling in the 1s in the Karnaugh
map gives us the configuration shown below.

CD

00 01 11 10
o0/ 0|00 |1

—
ot{(1 | 1)] o (|1

AB j

11{(1)] 1|1 |1
0] 1] o |1 [I1

The circled product terms give us the sum-of-products expression BC’ +
CD'+ AC + AD'. We can factor this to get BC' +CD’' + A(C + D").

We can also use a Karnaugh map to get a product-of-sums expression for
a function F'. To do this, we cover the 0s in the Karnaugh map instead of the
1s. This gives us a sum-of-products expression for F’. By complementing
this expression, we get a product-of-sums expression for F'. Here’s the map
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showing the O-covering for the previous example.

CD
00 01, 11 10

00 &@ (0]] 1
o1| 1 | 1 [[o]] 1
AB 11 1]t
100 1|[0)[ 11

The resulting expression for F”’ is A’B’'C' + B'C'D + A’CD. Complementing
this, givesus F' = (A+B+C)(B+C+D")(A+C’'+D’). In this situation, the
product-of-sums expression leads to a slightly more expensive circuit than
the sum-of-products. However, in other situations, the product-of-sums may
be simpler.

Karnaugh maps can also be used to simplify functions with don’t care
conditions. Recall that a don’t care condition is when we don’t really care
about certain combinations of input variables, typically because in a given
application context that combination of inputs will never arise. We can take
advantage of don’t care conditions to obtain simpler circuits. The way we do
this using a Karnaugh map is that we mark the cells in the map that corre-
spond to don’t care conditions with an . When selecting maximal product
terms, we are free to choose whether to cover the x’s or not. Generally, it
makes sense to cover an x’s if you can obtain a larger product term (that is,
a larger rectangle) by including it. The figure below shows two alternative
coverings of a given function.
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The one on the left yields the expression A’C’'D + B + AC, while the one
on the right yields A’B'C'D + ABC’' + BC + AC.

We close this section by calling your attention to a computer program
that implements the circuit minimization method we have discussed in this
section. It can be found on the course web site and consists of two Java
classes, Simplify.java and a support class Pterm.java. To compile them, type

javac Pterm.java
javac Simplify.java

in a shell window on a computer with an installed Java compiler. To run
Simplify, type

java Simplify 3 01 3 57

or something similar. Here, the first argument to Simplify is the number of
variables in the expression to be simplified, and the remaining arguments are
the minterm numbers. The resulting output from Simplify in this case is

00x xx1

which represents the product terms in the resulting sum-of-products expres-
sion. The command

java Simplify 4 0 1 5 7 10 14 15

yields the output
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000x 1x10 x111 O1x1

You are encouraged to try out Simplify and run it on several different logic
functions of three or four variables. Check the results using a Karnaugh map.
If you are interested in getting a deeper understanding of circuit optimization,
here are a couple programming exercises that might interest you.

1. Simplify currently requires a list of minterms. Modify it so that it
will also accept product terms as command-line arguments (where a
product term is a bit string with n bit positions and at least one x).
This provides a more convenient way to express functions with more
than four of five variables.

2. The current version of Simplify does not handle don’t care conditions in
the input. Modify it to accept a command line argument consisting of
a single letter X. Additional arguments after the X, specify minterms
that correspond to don’t care conditions. Modify the optimization
procedure to take advantage of the don’t cares.
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Chapter 14

Still More Design Studies

In this chapter, we’ll be looking at two circuits, one that provides an in-
terface to a VGA video display, and another that implements the popular
minesweeper game, using the VGA display to show the game board.

14.1 VGA Display Circuit

Before we get into the details of the circuit, we need some background about
video displays and how video information is generally transferred from a
computer to a display using the Video Graphics Array (VGA) standard. The
VGA standard was developed for analog Cathode Ray Tube CRT displays in
the late 1980s, and even though modern displays no longer use CRT tech-
nology, the VGA standard continues to be widely used. CRT displays used
an electron beam to activate pixels on the inside surface of a glass display
tube. The beam was scanned horizontally across the screen for each row of
pixels in the display, with a short retrace interval between each row to give
the electron beam time to scan back across the screen to the start of the
next row of pixels. The standard VGA display has 640 pixels in each display
row and 480 visible display lines, giving a total of 307,200 pixels. The figure
below illustrates the basic operation.

239



240 Designing Digital Circuits (C) Jonathan Turner

\pixel (0,0) pixel (0,639(

video lines showing
horizontal retrace

pixel (479'639&

The scanning process is controlled using two synchronization signals: the
vertical sync signal consists of a periodic pulse that occurs about every 16.7
ms to give a 60 Hz video update rate for the display. The horizontal sync
signal consists of a similar pulse, but with a period of 32 us. The next figure
gives a more detailed view of the two timing signals.

back vertical sync front
porch display time porch
4

64 us 15.36 ms
928 us 320 us
| 16.7 ms »|

horizontal sync

The time periods immediately before and after the sync pulses are referred
to as the front porch and back porch respectively.

Now, a video display interface circuit contains a memory, called a dis-
play buffer, that holds the information that is to be transferred to the video
display. The VGA interface on our prototype board can only display eight
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different colors for each display pixel, so the display buffer requires 3 bits
per pixel, or 3 x 640 x 480 bits altogether. Unfortunately, the FPGA our
prototype board does not have this much memory, so we will implement a
half-resolution display with 320 x 240 pixels. We will still use the entire video
display, but each pixel stored in the display buffer will correspond to a 2 x 2
block of pixels on the actual display. A block diagram of the display interface
appears below.

controller —> \r/15ync
—> hSync
| vState | | hState | Y
N
dr+1, % cr+y 11 oI, +1,-319 data
line tick dispAddr|  gata _s[ain  dout dispPix
en —>
'w —>
76800x3
addr

The display buffer is shown at the bottom right. A client circuit can write
data to the display buffer using the provided memory control signals. The
controller generates the horizontal and vertical sync signals and scans the
entire display buffer every 16.7 ms, transferring vido data to the display. It
implements two state machines, a vertical state machine with states sync-
State, backPorch, displayRegion and frontPortch and a similar horizontal
state machine. It uses two counters to generate the timing signals. The line
counter keeps track of the current video line, while the tick counter keeps
track of the current clock tick. These counters are both reset to zero when
their state machines enter a new state.

The dispAddr register is initialized to zero at the start of a vertical scan
(during the vertical sync interval) and is incremented when the horizontal
and vertical state machines are both in the displayRegion state. Now, to
understand the way that dispAddr must be updated, we need to think care-
fully about a couple details. First, the FPGA on our prototype boards uses



242 Designing Digital Circuits (C) Jonathan Turner

a 50 MHz clock, so it has a clock period of 20 ns. This is half the nominal
40 ns required for each display pixel. This implies that the display address
should be incremented on every other clock tick, when the state machines are
in the displayRegion state. Now, since we’re implementing a half resolution
display, even that is not quite right. Each pixel in the display buffer is used
for a 2 x 2 block of display pixels. This means that during a horizontal scan,
we should only increment dispAddr after every four clock ticks. Moreover,
when we get to the end of a line, there are two possible cases, for how we
update dispAddr. If we’re at the end of an even-numbered line, we should
reset dispAddr to the value it had at the start of the current line, since we
need to display the same set of pixels again on the next line. This can be
done by subtracting 319 from dispAddr (there are 640 display pixels per line,
but only 320 pixel values stored in the display buffer). If we’re at the end of
an odd-numbered line, we can simply increment dispAddr.

The transition diagrams for the horizontal state machine is shown below.

hState
(note 50 MHz clock)

tick=hFpWidth-1//
tick<=0,
line<=line+1

tick=hDispWidth-1/,
displayRegio

tick<=0

The transitions are triggered when the tick counter reaches values defined
by the constants hSyncWidth, hBpWidth, hDisp Width and hFpWidth which
define the number of clock ticks in the sync pulse, the back porch, the display
region and the front porch. These constants are defined relative to a 50 MHz
clock. On the transition from the front porch to the sync state, the vertical
line counter is incremented. The vertical state machine is also processed on
these transitions, using the state transitions defined below.

tick=hSyncWidth-1//
tick<=0

backPorch

tick=hBpWidth-1//
tick<=0
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vState
(updated at end of horizontal lines)

line=vFpWidth-1/,
line<=0

line=vSyncWidth-1//
line<=0

backPorch

line=vBpWidth-1//
line<=0

line=vDispWidth-1//
line<=0

displayRegio

The structure is similar to the horizontal state machine, but here the
transitions occur only at the ends of horizontal lines.

With this background, we’re now ready to look at the VHDL specification
of the circuit. Let’s start with the entity declaration.

entity vgaDisplay is port (
clk, reset: in std_logic;
-- client-side interface
en, rw: in std_logic;
addr: in dbAdr; data: inout pixel;
-—- video outputs
hSync, vSync: out std_logic;
dispPix: out pixel);
end vgaDisplay;

The client-side interface includes a memory enable and read/write signal, as
well as an address input and a bi-directional data signal that can be used to
write to or read from the display buffer. The video-side interface consists of
just the two sync signals and a three bit display pixel.

The architecture header defines all the data needed for the vGa display
circuit.

architecture al of vgaDisplay is

-- display buffer and related signals

type dbType is array(0 to 240%320) of pixel;
signal dBuf: dbType;
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signal dispAddr: dbAdr; signal dispData: pixel;
-- signals and constants for generating video timing
type stateType is (syncState, frontPorch,
displayRegion, backPorch);
signal hState, vState: stateType;
—- horizontal clock tick counter, vertical line counter
signal tick: unsigned(10 downto 0);
signal line: unsigned( 9 downto 0);
—-— Constants defining horizontal timing, in 50 MHz clock ticks
constant hSyncWidth: hIndex := to_unsigned( 192,tick’length);..
-- Constants defining vertical timing, in horizontal lines
constant vsyncWidth: vIndex := to_unsigned( 2,line’length);..

The dbufAddr signal is the actual address input to the display buffer. It can
come either from the client interface or the dispAddr register used by the
display controller. The display buffer memory is synchronous, which means
that values read from the memory appear one clock tick after the memory
read is requested.

The first part of the architecture body defines the display buffer memory
and controls the read and write operations on the memory.

begin
-- display buffer process - dual port memory
process (clk) begin
if rising_edge(clk) then
data <= (others => ’Z7);
if en = ’1’ then
if rw = ’0’ then
dBuf (int (addr)) <= data;
else
data <= dBuf(int(addr));
end if;
end if;
dispData <= dBuf (int(dispAddr));
end if;



14. Still More Design Studies 245

end process;
dispPix <= dispData when vState = displayRegion
and hState = displayRegion
else (others => ’07%);

Notice that there are two different signals used to address the memory. This
causes the synthesizer to infer a dual-port memory, with two separate address
and data signals. FPGAs are typically capable of synthesizing either single-
port or dual-port memory blocks. In this situation, it makes sense to use
a dual-port memory so that memory accesses by the client do not interfere
with the transfer of pixel data to the display.

The next process implements the controller that generates the display
timing signals and the dispAddr signal. We start with the horizontal timing.

-- generate display timing signals and display address
process (clk) begin
if rising_edge(clk) then
if reset = ’1’ then
vState <= syncState; hState <= syncState;
tick <= (others => ’0’);
line <= (others => ’07);
dispAddr <= (others => ’07);
else

-— generate horizontal timing signals
tick <= tick + 1; -- increment by default
case hState is
when syncState =>

if tick = hSyncWidth-1 then

hState <= backPorch;
tick <= (others => ’0’);

end if;
when backPorch => ...
when displayRegion =>

if tick = hDispWidth-1 then
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hState <= frontPorch;
tick <= (others => ’0’);
end if;
if vState = displayRegion then
if tick(1 downto 0) = "11" then
dispAddr <= dispAddr+1;
end if;
if tick = hDispWidth-1 and
line(0) = ’0’ then
dispAddr <= dispAddr
- to_unsigned(319,
dispAddr’length);
end if;
end if;

The code for the syncState is typical of the timing logic for all of the states.
For brevity, we’ve skipped this code in other cases. Note the updating of the
dispAddr signal when the horizontal state machine is in the displayRegion
state. By default, dispAddr is incremented on every fourth clock tick (when
the two low-order bits of tick are equal to ”711”), but at the end of every
even-numbered line, 319 is subtracted to reset it to the start of the same
line.

The final section of code handles the vertical timing at the end of the
front porch.

when frontPorch =>
if tick = hFpWidth-1 then
hState <= syncState;
tick <= (others => ’0’);
-— generate vertical timing signals
line <= line + 1;
case vState is
when syncState =>
dispAddr <= (others => ’0’);
if line = vSyncWidth-1 then
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vState <= backPorch;
line <= (others=>’0’)
end if;
when backPorch => ..
when displayRegion => ..
when frontPorch => ..
end case;
end if;
end case;
end if;
end if;
end process;
hSync <= ’0’ when hState = syncState else ’1’;
vSync <= ’0’ when vState
end al;

syncState else ’1’;

Let’s finish up this section by verifying the circuit operation using simula-
tion. The figure below highlights the operation of the display buffer memory.

Name VI [SR0rs | posseifops | e || 20639
Lng reset 0
client interface
1§ en 1
1§ rw video
9§ addri16:0] read-out
B data[2:0] Z/ X
1§ ax
0§ dispaddr[16:0] | 13( (lient-side 13754 13755 X 13756 X
B disppix[2:0] 1 | write/read 1 I

Note that client-side reads and writes take place indendently of the reads
used to retrieve the pixel data so that it can be sent to the video display.
The next portion of the simulation highlights some of the signals gener-
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ated by the controller.

line
numbers
vertical timing V
B line[:0] 123 {117 118 119 120
1& vstate disgf displayregion

1 vsync 1

horizontal timin
By tick[10:0] || s1¢
U& hstate dis i
1 hsync 1|
video addr/data
0§ dispaddr(16|| 15¢ &2
B disppix[2:0]

horizontal states,
sync pulse

T T T T T T AT ToTite e,
O T T T TR T AT AT T
e A

B h AT A A AT e

ey

n

display pixels
incremented

display blanked outside
display region

Notice how the line numbers are incremented at the end of the horizontal
front porch interval. In this simulation, the display contains bands of dif-
fering color. In the bottom row, we can observe the color of the displayed
pixels changing from one line to the next.

The next part of the simulation shows the updating of the display ad-
dresses.
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vertical timing

5§ linep:0) 12z X 120 X 121 122
n 5 a - - 2\

ig vstate dig] .(_veven ) displayregio \(m\l

L vsync 1 line line

horizontal timin
0§ tick[10:0] || a4
JJ; hstate bac| ...
L5 hsync 1
video addr/data
0§ dispaddr[i6
B4 disppix[2:0]

19200=(120/2)*(640/2)

disg

layregion

display buffer
address advances
by 320

repeating display
buffer addresses

Notice how the display address at the start of the line can be calculated
from the line number. Also observe how at the start of an odd line, we use
the same address as on the previous even line, while at the end of an odd
line, the display address moves onto the next line.

14.2 Mine Sweeper Game

Mine sweeper is a classic video game in which players attempt to locate and
avoid “mines” in a rectangular array of squares, while “clearing” all unmined
squares. Unmined squares that are adjacent to squares containing mines are
labeled with the number of mines in all of their neighboring squares.

In this section, we’ll design a version of the mineSweeper game that
can be implemented on our prototype board, using the board’s vGA output
to display the array of squares. To accommodate the limitations of the
prototype board, we’ll limit ourselves to a game board with a 10 x 14 array
of squares. If each square is 20 x 20 pixels in size, our game board will occupy
the center of our half resolution display, leaving a 20 pixel border on all four
sides.

We’ll use the knob to control an x register and a y register that deter-
mine the position of the “current square” on the board. This square will
be highlighted visually on the video display. We’ll use a button to uncover
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the current square, and a second button to “flag” (or un-flag) the current
square, so that we can mark it to avoid accidentally stepping on squares that
we know contain mines. A third button will be used to start a new game,
where the difficulty of the game is specified using the switches on the board.

To represent the game state, we’ll define three arrays of bits. IsMined(z,y)
will be true whenever square (z,y) contains a mine, isCovered(z,y) will be
true whenever square (x,y) is covered and isFlagged(z,y) will be true when-
ever square (x,y) is marked with a flag. In addition, we’ll find it useful to
have a mineCount array that specfies the number of mines adjacent to each
square in the array.

There are several things that our circuit needs to do. First, it must
initialize the board state at the start of a game. This will involve clearing the
mine counts from the previous game, randomly placing mines on the board
and setting the isMined bits appropriately. It must also set all the isCovered
bits and clearing the isFlagged bits. Finally, it must compute the mine
counts. This can be done by scanning the array to find each mined square
and then incrementing the mine count values for all neighboring squares.

While the game is being played, the circuit must respond to user input.
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If the user requests that the current square be uncovered, the circuit must
update the isCovered bit, and end the game if the square contains a mine.
If the user requests that the current square be flagged, the circuit must
update the isFlagged bit. In addition, the circuit should continuously uncover
squares that are adjacent to existing uncovered squares with a mineCount
value of 0. While users could clear such squares manually, it’s convenient
to have such obviously unmined squares cleared automatically, and this is a
standard feature of typical implementations of the game.

With these preliminaries out of the way, we can proceed to a state dia-
gram of the mine sweeper circuit.

not done//
mineCount(xy,y;)<=0
advance x,,y; not done//
isCovered(xy,y;)<=1
isFlagged(x,,y1)<=0
if random value
above threshold
isMined(xy,y,)<=1
advance xy,y;

newGame=0//
isCovered(x,,y1)<=0
advance xy,y;

gameOver

stepOnlIt=1 and
isMined(x,y)=1//..

done//
reset xy,y;

done//
reset xy,y,,nbor

done//
reset xy,y,,nbor

stepOnIt=1 and

oM _ true//
islsc/\g:/lzeergg&y) )2/2/0 isCovered(x;,y;)=0 and N not done//
4 mineCount(x,,y;)=0 then if isMined(x,y) add 1 to
flagIt=1// isCovered(x,,y,,nbor)<=0 mineCount of nbor
isFlagged(x,y)<=1 advance Xxy,y,,nbor advance xy,y,,nbor

We'll start with the clearCounts state, which is entered when reset goes low.
In this state, the mineCount values are cleared, one at a time. Signals x
and y; are used to iterate through the game board, so that all mineCount
values get cleared. In the state diagram, the notation advance x1,y; refers



252 Designing Digital Circuits (C) Jonathan Turner

to this adjustment of these index signals. Similarly, the word done is used
to refer to the point when x1 and y; have progressed through all entries in
the array.

In the setMines state, the circuit iterates through the game board another
time, this time setting the isCovered bits, clearing the isFlagged bits and
conditionally setting the isMined bits. In the countMines state, the circuit
iterates through the board yet another time, but in this case, for each value
of x1 and y1, it also iterates through the neighboring squares, incrementing
their mineCount values if square x1, y; contains a mine.

In the playTime state, the circuit responds to the user’s input. If the
stepOnlt input is high, the circuit uncovers the square specified by the inputs
z and y and ends the game if the square contains a mine. If the flaglt
input is high, the circuit either flags or unflags square z,y. In addition to
responding to user input, the circuit iterates continuously through the game
board, looking for uncovered squares that have no neighbors that are mined.
It uncovers all neighbors of such squares. In the gameOver state, the circuit
simply uncovers all squares.

So, let’s turn to the actual VHDL circuit specification.

entity mineSweeper is port (

clk, reset: in std_logic;

—-- inputs from user

xIn, yIn: in nibble;

newGame, markIt, stepOnIt: in std_logic;

level: in std_logic_vector(2 downto 0);

-- video signals

hSync, vSync: out std_logic; dispVal: out pixel);
end mineSweeper;

The xIn and yIn signals specify the current square on the game board. The
newGame, markIt and stepOnIt signals allow the user to control the game.
The three bit level signal controls the density of mines on the board, with
larger values producing more mines.

The next section shows the states and arrays that define the game board.

architecture al of mineSweeper is
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-- state of game controller

type stateType is (clearCounts,setMines,countMines,
playTime,gameQver) ;

signal state: stateType;

—-- arrays of bits that define state of squares on game board

-- range extends beyond gameboard to eliminate boundary cases

type boardBits is array(0 to 15) of std_logic_vector(0 to 11);

signal  isMined: boardBits := (others => (0 to 11 => ’0°));

signal isCovered: boardBits (others => (0 to 11 => ’1’));

signal isFlagged: boardBits (others => (0 to 11 => ’07));

-- mineCount(x) (y)=# of mines in squares that are neighbors of (x

type countColumn is array(0 to 11) of unsigned(2 downto 0);

type countArray is array(0 to 15) of countColumn;

signal mineCount: countArray := (others => (0 to 11 => 0"0"));

Note that the first array index specifies the  coordinate (or column), while
the second specifies the y-coordinate (row). Also, notice that the arrays are
all have two extra rows and columns. This makes the code that accesses
the arrays somewhat simpler, as it does not need to handle lots of special
“boundary cases”. So the normal z-coordinate range is 1..14, while the y-
coordinate range is 1..10.

Note that the mineCount values are just three bits. Strictly speaking,
we should use four bit values, since a square could have mines in eight
neighboring squares. We’re ignoring this case, in order to reduce the cir-
cuit complexity enough to allow it to fit in the FPGA used by the prototype
board.

Now, we're going to skip ahead to the first part of the main process.

begin
if rising_edge(clk) then
if reset = ’1’ then
-— set initial pseudo-random value
randBits <= x"357d4d";
state <= clearCounts;
x1l <= x"0"; yl <= x"0"; nbor <= x"0";
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elsif newGame = ’1’ then
state <= clearCounts;
x1 <= x"0"; y1 <= x"0"; mnbor <= x"0
else
case state is
when clearCounts =>
mineCount (int (x1)) (int(y1)) <= o"O0O";
if x1 /= x"f" then
x1 <= x1 + 1;
elsif y1 /= x"b" then
x1 <= x"0"; y1 <= y1 + 1;
else
x1l <= x"1"; y1 <= x"1";
state <= setMines;
end if;
when setMines

>

-- place mines at random and "cover" them

randBits <= random(randBits);

if randBits < ("0" & level & x"000") then
setMine(x1,y1,’1°);

else setMine(x1,y1,’0%);

end if;

setCover(xl,yl,’1’); setFlag(xl,y1,’0’);

-- move onto next square

advance(x1,y1);

if lastSquare(x1l,yl) then
state <= countMines;

end if;

The code for the clearCounts state illustrates the process of iterating through
an array, so that elements can be cleared one by one. Note that here, the
circuit iterates through the extended range of values (z from 0 to 15, y from
0 to 11).

In the code for the setMines we do the same thing, but this time we use
a procedure called advance which modifies its arguments in much the same
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way, but using only the index values that fall within the strict limits of the
game board (1 to 14, 1 to 10). The lastSquare function returns true when
its arguments refer to the last square on the game board. The setMine, set-
Cover and setFlag procedures are simple convenience procedures for setting
values in the corresponding bit arrays. The random function implements a
simple pseudo-random number generator. If the resulting value is less than
a threshold determined by the level input, the circuit places a mine on the
specified square.
The next section shows the code for the countMines state.

when countMines =>
addToMineCount (x1,y1,nbor) ;
advance (x1,y1,nbor) ;
if lastSquare(x1,yl,nbor) then
state <= playtime;
end if;

The addToMineCount procedure increments the specified neighbor of the
specified square. Neighbors are identified by small integers, with 0 referring
to the neighbor immediately above the designated square, 1 referring to the
neighbor above and to its right and successive values continuing around the
square in a clockwise fashion. The version of the advance procedure used here
increments the neighbor index in addition to the z and y coordinates. The
version of the lastSquare procedure used here returns true if the arguments
refer to the last neighbor of the last square.
The next section covers the remaining states.

when playTime =>
if markIt = ’1’ then
-- mark/unmark cell if it’s covered
if covered(x,y) then
if flagged(x,y) then
setFlag(x,y,’0’);
else
setFlag(x,y,’1%);
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end if;
end if;
elsif stepOnIt = ’1’ then
if covered(x,y) then
if mined(x,y) then
state <= gameOver;
else
setCover(x,y,’0’);
end if;
end if;
end if;
clearNeighbors(x1,yl,nbor);
advance(x1,y1,nbor) ;
when gameQver =>
setCover(x1,y1,’0’); advance(xl,yl);
when others =>
end case;
end if;
end if;
end process;

The x and y signals used here are derived from the xIn and yIn inputs.
Their values are guaranteed to be within the legal range of index values for
the game board. The convenience functions covered, flagged and mined test
the specified bits of the corresponding arrays. They allow us to write

if mined(x,y) then ...
instead of
if isMined(int(x)) (int(y)) = ’1’ then ...

which is less cumbersome and makes the intended meaning more clear. The
clearNeighbors procedure uncovers the specified neighbor of the designated
square, if that square is uncovered and has 0 neighbors that are mined. In
the gameOver state, the circuit iterates through all the squares and uncovers
them.
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It’s worth taking a moment to observe that whenever the circuit iterates
through all squares and neighbors on the board, it takes 14 x 10 x 8 = 1120
clock ticks or just over 22 microseconds. There is no reason that the updating
has to occur this frequently, but there is also no strong reason to slow down
the update rate.

This VHDL spec uses quite a few special functions and procedures. We
won’t detail them all, but here’s a small sample.

-- Return true if square contains a mine, else false
begin impure function mined(x,y:nibble) return boolean is begin
if isMined(int(x)) (int(y)) = ’1’ then return true;
else return false;
end if;
end;
—— Return the number of mines contained in neighboring squares
impure function numMines(x,y: nibble) return unsigned is begin
return mineCount (int(x)) (int(y));
end;
-- Advance x and y to the next square on board.
-- Wrap around at end.
procedure advance(signal x,y: inout nibble) is begin
if x /= x"e" then x <= x + 1;
elsif y /= x"a" then x <= x"1"; y <= y + 1;
else x <= x"1"; y <= x"1";
end if;
end;
-- Return next pseudo-random value following r
function random(r: word) return word is begin
return (r(5) xor r(3) xor r(2) xor r(0)) & r(15 downto 1);
end;

The random function uses a simple linear feedback shift register to generate
a pseudo-random sequence.

Let’s move on to examine a simulation of the mineSweeper circuit. We’ll
start with a very coarse time-scale, so that we can observe some of the large-
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scale features of the game.
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; 0,0,0,0,0,0,0,1,1,1,0,0], 0,0,0,0,0,0,0,1,0,1,0,0],[0,0

Notice how the isMined array is changing at the very start of the simulation,
as the board is initialized. Shortly after this point, the mineCount array is
modified as the circuit counts the mines adjacent to each square. The next
feature we can observe is a flag being set, leading to a change in bit (4,1) of
the isFlagged array. Next, we see the stepOnlt signal going high two times,
resulting in a number of mines being uncovered.

Let’s take a closer look at some of these features.
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Here, we are highlighting an interval where mines are set on squares (5,3),
(6,3) and (7,3). Note how these bits of the isMined array are getting set as

a result.
Now let’s look at the mine counting process. At the lower left, we can see

1B ak [minesin ’II mine on M ULy
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incrementing | in column 1

counts at neighbors
\_of square 5,10

that mineCounts is changing as we iterate through the last two neighbors
of square (4,10). Since the circuit should only increment the mine counts
of squares that neighbor a mine, we should check that square (4,10) does
indeed contain a mine. We can see that it does by looking at the isMined
signal. We can verify the mine count values for column 1 of the mine count
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array, by comparing the mine counts against the mines in columns 0, 1 and
2.
Next, let’s look at the uncovering of “safe squares”.

1 dk uncovering mines in covering of

L e Al columns 0..6 columns 0..6
game board )
1§ state stepping on 1,3 STyt
B ismined[0:15] te 000,008,000,000,410, 100, 120,100,710,050,0C0,004,000,0
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2§ minecount[0:15] ¢ {[0,0,0,0,0,0,0, L, 1, ,0,0],0,0,0,0,0,0,0, 1,0, 1,0,01,10.0,0,0,0,0,0, L L.1
B «1B:0] s | 1 Y 2 'Y 3 X
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The changes we see to the isCovered array occur after the stepOnlt signal
goes high at square (1,3). By looking at the isMined array, we can determine
which squares should be uncovered and verify that the results shown at the
right end of the isCovered waveform are correct. It’s worth noting that it
can take multiple passes through the game board to uncover all the squares
that should be uncovered as a consequence of a single stepOnlt event. Here,
we are showing the state after the last square gets uncovered. (Thought
exercise: how many passes through the game board are needed to clear the
squares after a single stepOnlt event, in the worst-case?)

At this point, we're essentially done with all the circuitry needed to im-
plement the core game logic, but we still need to design the circuit that
displays the game state on an external vGA monitor. We’ll use our existing
vgaDisplay component, but we need to augment this with some additional
circuitry to copy pre-defined patterns to designated locations in its display
buffer. We’ll build a separate component to copy a single specified pattern
to the display. The code segment below shows how that component is used.

—-— process to iterate through cells for copying to display
-- advance (x2,y2) through range of values periodically
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process(clk) begin
if rising_edge(clk) then
if reset = ’1’ then
timer <= (others => ’0’);
x2 <= x"1"; y2 <= x"1";
else
if timer = (timer’range => ’0’) then
advance (x2,y2) ;
end if;
timer <= timer + 1;
end if;
end if;
end process;

-- copy pattern for x2,y2 to its position on display

cp: copyPattern port map(clk,reset,startCopy,highlight,pat
x2,y2,busy,hSync,vSync,dispVal);

startCopy <= ’1’ when timer = (timer’range=>’0’) else ’0’;

highlight <= ’1’ when x2 = x and y2 = y else ’0’;

pat <= pattern(x2,y2);

The copyPattern component does the heavy lifting of copying a specified
pattern to the display buffer. The process simply advances the signals zs,
yo through all the coordinates on the board, under the control of a timer
that limits the update rate. A new copy operation is initiated every time
the timer is equal to zero, and the highlight signal is raised whenever the
T9, yo coordinates match the player’s current square. This signal directs the
copyPattern block to modify the appearance of the pattern for this square,
so that players can identify their current location on the board by looking
at the video display.

The pat signal is determined by the pattern function, which returns an
integer index for the pattern that should be displayed for square x1, yo.

—-- Return the appropriate pattern number for square x,y
impure function pattern(x,y: nibble) return nibble is begin
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if (not covered(x,y)) and (not mined(x,y)) then
return "0" & std_logic_vector(numMines(x,y));

elsif covered(x,y) and (not flagged(x,y)) then
return x"9";

elsif covered(x,y) and flagged(x,y) then
return x"a";

elsif (not covered(x,y)) and mined(x,y) then
return x"b";

else
return x"0";

end if;

end;

Pattern number 0 depicts an uncovered blank square. For ¢ in the range
1-8, pattern number ¢ depicts an uncovered square labeled by a mine count.
Pattern number 9 depicts a covered square, pattern number 10 depicts a
covered square with a flag and pattern number 11 depicts an uncovered
square with a mine.

So all that remains is the copyPattern component. Here is the entity
declaration.

entity copyPattern is port(
clk, reset : in std_logic;
—-— client side interface
start, highlight: in std_logic;
pattern: in nibble;
X, y: in nibble;
busy: out std_logic;
-- interface to external display
hSync, vSync: out std_logic;
dispVal: out pixel);

end copyPattern;

Next, we have the portion of the architecture header that defines the
graphical patterns.
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architecture al of copyPattern is
component vgaDisplay ...end component;
subtype patRow is std_logic_vector(3#*20-1 downto 0);
type patArray is array(0 to 12x20-1) of patRow;
constant patMem: patArray := (
-- uncovered, blank square
0'22222222222222222220" ,

0"'22222222222222222220",
0"00000000000000000000",

—-- uncovered square labeled 1
0""22222222222222222220",
0'22222222222222222220" ,
0""22222222227222222220",
0'22222222277222222220" ,
0'22222222777222222220" ,
0""22222227777222222220",
0'22222222277222222220" ,
0""22222222277222222220",
0'22222222277222222220" ,
0""22222222277222222220",
0'22222222277222222220" ,
0""22222222277222222220",
0'22222222277222222220" ,
0""22222222277222222220",
0'22222222277222222220" ,
0''22222227777772222220" ,
0""22222227777772222220",
0'22222222222222222220" ,
0""22222222222222222220",
0"00000000000000000000",

—-- uncovered square labeled 2
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—-- uncovered square labeled 3

);
Each pattern is a 20 x 20 block of pixels. They are all stored in a constant
array, where each row of the array holds 60 bits, enough for 20 pixels. So
each block of 20 consecutive rows defines one pattern. Since we have a total
of 13 distinct patterns, the array contains 13 x 20 rows. Only one of the
patterns (the one for an uncovered square containing a 1) is shown explicitly.
Note that octal strings are used to represent the pixel data, so each octal
digit corresponds to one pixel. The pixel value 2 designates green, while 0
designates black and 7 designates white, Consequently, uncovered squares
have a green background with a black border along the bottom and right

edges, while the numeric labels are shown in white.
Let’s move onto the body of the architecture.

vga: vgaDisplay port map(clk,reset,en,rw,dispAdr,curPix,
hSync,vSync,dispVal);

curPix <= patPix when hilite = ’0’ else not patPix;
process(clk)
. —— function and procedure definitions
begin
if rising_edge(clk) then
en <= ’0’; rw <= ’0’; -- default values
if reset = ’1’ then
tick <= (others => ’1’); hilLite <= ’0’;
else
tick <= tick + 1; -- increment by default

if start=’1’ and tick=(tick’range=>’1’) then
initAdr(x, y, pattern,
dispAdr, patAdr, patOffset);
hilLite <= highLight;
elsif tick < to_unsigned(4%400,11) then
-- an update is in progress
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-- each step involves copying a pixel from
-- the pattern to the display buffer;
-- we allow four clock ticks per step
if tick(1 downto 0) = "00" then
-- first read from pattern memory
patPix <= unsigned(
patMem(int (patAdr)) (
int (patOffset) downto
int (pat0ffset-2)));
-— write display buf during next tick
en <= ’17;
elsif tick(1 downto 0) = "11" then
advanceAdr(dispAdr, patAdr, patOffset);

end if;
else -- returns circuit to "ready" state
tick <= (others => ’1’);
end if;
end if;
end if;

end process;

The vgaDisplay module is instantiated at the top of this section. Its dispAdr
input specifies the display buffer address where the next pixel is to be written.
The curPix input specifies the pixel data to be written. Observe that the
bits of curPix are inverted for highlighted squares to give them a distinctive
appearance.

The timing for the main process is controlled by the tick signal. This is
set to all 1s when the circuit is idle, and is incremented on each clock tick
while it is performing a copy operation. At the start of the copy operation,
the display address dispAdr is initialized along with the signals patAdr and
patOffset that specify a row in the pattern memory and the offset of a pixel
within that row. This initialization is done by the initAdr procedure. The
value of the highlight input is also saved in a register at this time. Each
step in a copy operation involves reading one pixel from the pattern memory
and writing that pixel to the display buffer. The circuit allows four clock
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ticks for each such step. When the low-order two bits of tick are equal to
zero, it reads a pixel from the pattern memory and sets the display buffer
enable high, so that during the next clock tick, the value read from the pixel
memory is written to the display buffer. When the low order two bits of tick
are both high, the advancdAdr procedure adjusts the display buffer address,
the pattern address and the pattern offset, as needed to handle the next
pixel.
The initAdr procedure appears below.

-—- injtialize address signals used to access the
-- pattern memory and the display buffer
procedure initAdr(x, y, pat: in nibble;
signal dAdr: out dbAdr;
signal pAdr, pOffset: out byte) is
variable row, col: unsigned(2*dAdr’length-1 downto 0);
begin
-- first display address of square x,y is 20%320*%y+20%*x
-- since 320 pixels per display row and each
-- pattern extends over 20 rows
row := to_unsigned(20%*320,dAdr’length)
* pad(unsigned(y),dAdr’length);
col := to_unsigned(20,dAdr’length)
* pad(unsigned(x),dAdr’length) ;
dAdr <= row(dAdr’high downto 0)
+ col(dAdr’high downto 0);
-- first pattern address is 20*(the pattern number)
-- offset starts at 59 and goes down to 2
pAdr <= pad(slv(20,8) * pad(pattern,8),8);
pOffset <= slv(59,8);
end;

The row and col variables are defined to break the calculation of the initial
display buffer address into smaller parts. The pad function used here, is
used to adjust the length of a given signal. In the assignments to row and
col, it creates signals with the same values as x and y but enough bits to be
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compatible with a display buffer address. The VHDL multiplication operator
produces a product that has twice as many bits as its two operands. This
is why row and col have been defined to have 2*dAdr’length bits. The
assignment to dAdr discards the high-order bits of row and col before adding
them together. The calculation of the pattern address is similar, although
a bit simpler. Notice here that we are using pad to truncate the signal
produced by the multiplication operation.

Finally, we have the advanceAdr procedure, used to update the display
address plus the pattern address and offset signals.

-- Advance address signals used to access
—-- the pattern memory and display buffer
procedure advanceAdr(signal dAdr: inout dbAdr;
signal pAdr, pOffset: inout byte) is
begin
if pOffset = 2 then -- reached end of pattern row
pAdr <= pAdr + 1; pOffset <= slv(59,8);
dAdr <= dAdr + to_unsigned(320-19,dAdr’length);
else -- continue along the row
pOffset <= pOffset - 3; dAdr <= dAdr + 1;
end if;
end;

All that’s left is to verify the operation of the copyPattern block from
the simulation.
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This shows the start of a copy operation that copies pattern number 5 to
the position on the display used for square 5,6. The first display address is
6 x 20 x 320 + 5 x 20 = 38,500 or 09664 in hex. The first pattern address is
5 x 20 =100



Chapter 15

Implementing Digital Circuit
Elements

In this chapter, we’re going to take a closer look at the basic elements used
to build digital circuits. We'll discuss how they can be implemented using
lower level components (transistors) and how the underlying implementation
affects delays that occur in real circuits.

15.1 Gates and Transistors

Digital circuits can be implemented using a variety of specific circuit tech-
nologies. By far the most commonly used technology is ¢MOS, which stands
for complementary metal oxide semiconductor. In this section, we're going
to look at how gates are implemented in CMOS circuits using more funda-
mental electronic components called transistors. We will find that in ¢MOS,
the standard AND gate actually requires more transistors than the so-called
NAND gate, which is logically, an AND gate with an inverted output. So,
before we talk about transistors, it’s worth taking a little time to discuss
NAND gates and NOR gates.
The figure below shows the symbols for the NAND and NOR gates

269
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and the logic functions that they define. The inversion bubbles on the

NAND gate NOR gate
VY SRV
y X7 v (X+Y)

outputs of these symbols just indicate that the output signals are comple-
ments of what we would expect for the conventional gates. We can always
construct a standard AND gate by connecting the output of a NAND gate to
an inverter, but since NAND gates use fewer transistors than AND gates, it
can be more efficient to construct circuits using NAND (and NOR) gates than
the conventional gates. Unfortunately, circuit diagrams containing NANDs
and NORs can be difficult to understand Fortunately, there are a couple of
handy tricks that can be used to make it a bit easier. The key observation
is contained in the figure below.

-
T

This diagram shows two equivalent ways to draw a NAND gate in a circuit
(and the same for a NOR gate). We can draw a NAND in the conventional way,
as an AND with an inverted output, or we can draw it as an OR with inversion
bubbles on both inputs. The equivalence of these two representations follows
directly from DeMorgan’s law: (X -Y) = X' +Y".

Now, these alternate representations of the NAND and NOR gates allow
us to draw a circuit containing NANDs and NORs in a way that’s easier to
understand. For example, consider the circuit on the left side of the diagram
below.
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In the middle diagram, we have re-drawn the rightmost NAND gate in
its alternate form. Now, since the wires connecting the gates have inversion
bubbles on both ends, they are equivalent to wires with no-inversion bubbles.
That is, the circuit on the left is logically equivalent to the one on the right.
By using the alternate forms for NAND and NOR gates, we can make circuit
diagrams using them, much easier to understand.

Now, let’s turn to the subject of transistors. CMOS circuit technology
uses a particular type of transistor called the Field Effect Transistor or FET.
There are two types of FETs, n-type and p-type, of more concisely n-FET and
p-FET. The left part of the diagram below shows the symbol for an n-FET.

n-FET off n—FETA) on n-FET

ga te_{ L_{ ? H

An n-FET has three terminals. The control terminal on the left is referred
to as the gate of the transistor (note we are using the word “gate” here in
a different way, than we have up to now), while the other two terminals are
referred as the source and the drain. When the voltage on the gate input
is low, the transistor acts like an open switch, that prevents current from
flowing between the source and the drain. This is illustrated by the middle
part of the diagram. On the other hand, when the voltage on the gate input
is high, the transistor acts like a closed switch that connects the source and
drain together, although with some resistance to current flow, as indicated
by the resistor symbol in the right part of the diagram. (Readers who have
studied transistors in electronics courses will recognize that this discussion
over-simplifies the operation of the transistor, but for our purposes, this
simplified description will suffice.)

The p-FET is similar to the n-FET and is illustrated in the diagram below.
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p-FET off p-FETJ) on p-FET

o ey

Note that the p-FET symbol includes an inversion bubble on its gate input.
This indicates that the the p-FET turns on when the voltage on the gate is
low and turns off when the voltage on the gate is high. That is, the p-FET
behaves in a way that is complementary to the n-FET.

n-FETs and p-FETs are usually used in pairs, with one transistor in each
pair in the on-state whenever the other is in the off-state. This is illustrated
in the figure below, which shows the typical ¢CMOS implementation of an
inverter, a NAND gate and a NOR gate.

inverter NAND NOR
4 ——od

) _| (AB)’ 5 O|
—L Y

(A+B)’

Let’s start with the inverter. Notice that when the inverter input is high,
the n-FET will turn on, while the p-FET will turn off. This means that the
output is essentially connected to the ground voltage, which forces the output
voltage to be low. Similarly, when the inverter input is low, the n-FET will
turn off and the p-FET will turn on, connecting the inverter output to the
power supply voltage and forcing the output voltage high. So we can see
that this cMoOs circuit does behave like a logical inverter.

The NAND gate is a bit more complicated. First, let’s consider the case
when the two inputs are both high. This turns on both of the n-FETs, while
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it turns off both of the p-FETs. As a result, the output is pulled low, as
we expect for a logical NAND gate. On the other hand, if either (or both)
of the inputs are high, then one (or both) of the n-FETs will be turned off
and one (or both) of the p-FETs will be turned on. As a result, the output
will be connected to the power supply voltage, and the output will be high.
Again, just what we expect for a logical NAND gate. Note how the p-FETS
in the NAND gate are connected in parallel to each other, while the n-FETs
are connected in series. This choice is essential to ensuring that the circuit
functions as a NAND gate.

The NOR gate is similar to the NAND. In this case, the p-FETs are con-
nected in series, while the n-FETs are connected in parallel. Note that when
either input is high, the output is pulled low, but if both inputs are low, the
output is pulled high.

It’s natural to ask if we could directly implement AND and OR gates using
transistors. For example, why not just take the NOR circuit but use n-FETs
in the top part of the diagram and p-FETs in the bottom part. This would
appear to directly implement the desired AND functionality and would save
us the mental hassle of dealing with gates that have inverted outputs. Unfor-
tunately, more subtle aspects of the n-FET and p-FET components prevent us
from building reliable gates in this way. Because of the underlying electrical
properties of the transistors, n-FETs generally are only used to connect gate
outputs to the ground voltage, while p-FETs are only used to connect gate
outputs to the power supply. Consequently, it’s common practice to refer to
the n-FETs in a gate as pulldown transistors and to refer to the p-FETs as
pullups.

We can generalize the circuits for the NAND and NOR to produce gates
with more than two inputs, as illustrated below.
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Here, we simply extended the previous circuit, by adding another p-FET
in parallel with the original two, and another n-FET in series with the original
three. Note, we could also implement a three input NAND using a NAND, a
NOR and an inverter, but this circuit would require ten transistors, while the
circuit shown above uses just six.

Now that we know about transistors, we can take a closer look at the
tristate buffer, to better understand what it means when a tristate buffer is
in the high impedance state. The figure below shows an implementation of
a tristate buffer using a NAND gate, a NOR gate, an inverter and a pair of
transistors.

="
in %out out

When the control input is high, both gates respond to changes in the data
input. Specifically, when the data input is low, the pulldown is turned on
and the pullup is turned off (making the output low). Similarly, when the
data input is high, the pullup is turned on and the pulldown is turned off
(making the output high). In both cases, the data output is equal to the
data input.

When the control intput is low, both the pullup and pulldown are turned
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off, effectively disconnecting the tristate buffer from the output wire. This is
really what is what we mean, when we say that a tristate buffer is in the “high
impedance” state. If several tristate buffers have their outputs connected to
the same wire, they can take turns using the wire, so long as at most one
has its control input high, at any one time. The others, by disconnecting
from the output wire, allow the active tristate to have complete control over
whether the output wire is high or low.

Let’s wrap up this section by looking at an example of how we can reduce
the number of transistors used by a circuit by replacing conventional gates
with NANDs and NORs. The lefthand diagram below shows a combinational
circuit with four inputs and four outputs. The righthand diagram shows an
equivalent circuit in which NANDs and NORs have been substituted for some
of the conventional gates.
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If AND gates are implemented using a NAND followed by an inverter (as is
required, in CMOS) and the OR gates are implemented similarly, the lefthand
circuit requires 60 transistors, while the righthand circuit requires just 50,
a significant reduction. Fortunately, with modern CAD tools, it’s rarely nec-
essary for us to perform such optimizations manually. Circut synthesizers
take the relative costs of different types of gates into account, and attempt
to select components that minimize the overall circuit cost.
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15.2 Delays in Circuits

Up to now, we’ve largely treated gates as ideal logic devices with zero delay.
That is, when a change at a gate input causes an output to change, that out-
put change occurs instantaneously. In reality, physical implementations of
gates do not work that way. To change the output of a gate, we actually need
to change the voltage at the output of the circuit that implements the gate,
and changing a voltage takes some time. In human terms, the magnitude
of the resulting circuit delays is infitesimal, but in the world of integrated
circuits these delays are what ultimately limit the performance of our com-
puters, cell phones and other devices. The figure shown below illustrates the
delays involved.

e
tPH L tPLH

When the inverter input X goes high, the output Y changes from high to
low, but the signal takes some time to move from the high voltage to the
low voltage. We refer to this delay as the propagation delay for the gate,
and it’s typically measured from the time the input changes until the output
gets “most of the way” to its ultimate voltage level. Because n-FETs and
p-FETs have some different electrical characteristics, the propagation delays
are usually different for rising transitions and falling transitions. The nota-
tion tpprr, denotes the propagation delay for a high-to-low transition (at the
gate output), while tpry denotes the propagation delay for a low-to-high
transition.

To understand why these delays occur, let’s a closer look at the operation
of the inverter, using the diagram below.
Here, we’ve shown the circuit that implements the inverter. Let’s assume
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that the output of the inverter is connected to the input of some other gate,
which is not shown. From an electrical perspective, the input of the other
gate operates like a small capacitor. Before the inverter input X goes high,
the inverter output Y is high, and the capacitor stores a positive charge.
When X goes high, the n-FET in the inverter turns on, while the p-FET
turns off. This allows the positive charge on the capacitor to flow through
the n-FET to ground. This transfer of charge from the capacitor allows the
output voltage to drop. This is illustrated in the diagram below which shows
the equivalent circuit representation of the inverter, both before and after
the input changes.

equivalent circuit equivalent circuit
when Y is high when Y is low

3

4 ‘ Y
Pl !

Observe that because an on-transistor has some resistance to current flow,
there is a limit to the rate at which the charge on the capacitor can be
transferred through the transistor. This is what ultimately causes the delay
in the change to the output voltage.

We can now make some other observations based on what we have learned.
First, notice that a NAND gate has its two pulldown transistors arranged in
series, and since their resistances add together when they are both in the on
state, it can take longer for the output of a NAND gate to go from high-to-
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low than it does for it to go from low-to-high. Similarly, for a NOR gate, a
low-to-high transition can take longer than a high-to-low transition. Also,
because a three input NAND has three pulldowns in series, its high-to-low
transitions will take longer than those for a two input NAND.

The time it takes for signal transitions to occur also depends on the
number of other gates that a given gate’s output is connected to. If the
output of an inverter is connected to several other gates, those other gates
each add to the effective capacitance at the inverter’s output. Since a larger
capacitance can store more charge, it takes more time to transfer the charge
from the capacitance through the inverter’s pulldown (or pullup) when the
inverter output changes. The number of other gates that a given gate output
connects to is referred to as the fanout of that gate. In general, the larger
the fanout, the slower the signal transitions.

What does this all mean for the performance of larger circuits constructed
using gates? Let’s consider the example circuit shown below.

u Beall

‘ D
X

A G
Y
—

Each gate in this circuit contributes to the delay experienced by signals pass-
ing from inputs to outputs. So, for example, a signal passing from input U to
output F' passes through two gates, each contributing some delay. A signal
from input Z, going to output G passes through three gates, so we can expect
a somewhat larger delay along this circuit path. In general, the more gates
that a signal must pass through to get from an input to an output, the larger
the delay will be. If we assume that each gate contributes the same amount
of delay, then we can estimate the delay for a circuit simply by counting the
number of gates along all paths from circuit inputs to circuit outputs. For
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the example circuit, we can observe that the worst-case path (from input Y
to output F') passes through four gates. We often use the worst-case delay
through a circuit as a general way to characterize the circuit’s performance.

To accurately determine delays in a circuit, it’s necessary to consider the
electrical details of all the individual gates, as well as the fanouts of each gate
within the larger circuit. Fortunately, modern CAD tools can automate the
process of estimating circuit delays, using fairly detailed models of individual
circuit elements. Still, even though delay estimation is something that we’re
rarely called upon to do manually, it is important to understand how these
delays arise and the factors that influence them.

15.3 Latches and Flip Flops

Recall that in an earlier chapter, we discussed how a D flip flop could be
implemented using simpler storage elements called D latches. In this section,
we're going to look at how latches are implemented using gates. We’re going
to start with a particularly simple type of latch called the set-reset latch or
more concisely, the SR-latch. As the name implies, it has two inputs, a set
input S, and a reset input, R. When S is high and R is low, the latch output
becomes high. When R is high and S is low, the latch output becomes low.
When both inputs are low, the output of the latch does not change. If both
inputs are high, the output of the latch is not defined, although circuits
implementing a latch do generally have a well-defined behavior in this case.
The figure below shows a table summarizing the behavior of the latch and
an implementation using a pair of NOR gates.

SR Latch Equivalent Circuit
S R | Q(t+1) x when R=5=0
00 | QU Q {>°
01| o LOQ_‘
10 1 '
11| 22 S ©

In the table at the left, the notation Q(t) refers to the output of the latch
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at time t. So, when we say that Q(t + 1) = Q(¢) when S = R = 0, we'’re
really just saying that in this case, the latch remains in whatever state it was
in before both inputs became low. Notice that the latch has been defined
with two outputs @ and @', where Q is what we normally think of as the
state of the latch and @’ is simply the complement of (). Since we get the
complement “for free” in this circuit, it’s natural to make it available as a
second output of the latch. Also, notice that since the latch is constructed
using gates, the latch outputs do not change instantaneously when the inputs
do. The propagation delay of a latch is defined as the time between an input
change and the corresponding output change. As with gates, there may be
different propagation delays for high-to-low vs low-to-high transitions.

The righthand part of the figure shows an equivalent circuit for the latch
when the two inputs are both low. Notice that this circuit consists of two
inverters connected to form a cycle. The outputs of the two inverters are
stable and can store a data value indefinitely.

Now, let’s look at what happens when the .S input of the latch goes high,
while the R input remains low, the output of the bottom NOR gate will go
low, causing the output of the top gate to go high. This makes the top input
of the bottom gate high. Once that happens, we can drop the S input low
again, and the latch will remain set. Similarly, raising R high while keeping
S low, causes the latch to reset.

Now, what happens if we raise both the S and R inputs high at the same
time. We said earlier that the latch outputs are not defined in this case. That
is, the logical specification of the latch does not account for this situation,
since it is not consistent with the intended usage of the latch. Still, there is
nothing to stop us from applying these inputs to the actual circuit. When
we do so, we observe that both NOR gate outputs go low, leading to the
contradictory situation that @ and @’ have the same value. This makes it a
little unclear what the state of the latch is at this point, so for that reason
alone, it makes sense to avoid the situation where S and R are both high at
the same time.

It turns out, there is another reason to avoid the condition S = R = 1.
Consider what happens if the circuit is in this state and we simultaneously
change S and R from high to low, meaning that all gate inputs are low. This
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will cause the outputs of both NOR gates to change from low to high, after a
short delay. Once the gate outputs become high, both NOR inputs have a high
input. This causes the gate outputs to change again, from high to low. But
this leads back to the situation where all gate inputs are low, triggering yet
another transition from low to high. This process can continue indefinitely
and is an example of metastability. In general, we say that a latch or flip
flop is metastable if it is stuck between the 0 and 1 states. Metastability can
cause voltages in a circuit to oscillate between high and low, or to remain
stuck at an intermediate voltage that is neither low, nor high. The timing
simulation below shows an example of an SR-latch becoming metastable.

ftestbench/s
ftestbench/r

ftestbench/q

ftestbench/gb

metastability

Metastability is an inherent property of storage elements in digital circuits
and can cause circuits to behave in unpredictable ways. We can usually
avoid metastability by avoiding the conditions that cause circuits to become
metastable. We’ll see in the next chapter there are some situations where we
cannot always avoid metastability. Fortunately, in those situations where we
cannot avoid it, we can usually mitigate its effects.

Now, it turns out that an S R-latch can be implemented with NAND gates
instead of NOR gates, as illustrated in the diagram below.

NAND-based SR Latch
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This circuit behaves slightly differently from the NOR-based latch, since the
latch sets when the S input is low, rather than when it is high (similarly for
the R input). Latches are often equipped with control inputs. In the varant
shown below, the state of the latch can only be changed when the control
input is high.

SR Latch with Control Input

S_

Q —s Q—
C —C

Q TR Q9P
R_

Also, note that the additional NAND gates in this circuit effectively invert
the S and R inputs when C' = 1, so this latch will be set when the S input
and C input are both high.

Now, this last version of the SR-latch can be turned into an implemen-
tation of a D-latch by adding an inverter, as shown below.

D Latch
Q —D Q—
Q —C Qp-
C—¢

Like the SR-latch, the D-latch can become metastable under certain con-
ditions. In this case, metastability can occur if the D input of the latch is
changing at the same time the the control input is going from high to low. As
discussed in an earlier chapter, we can use a pair of D-latches to implement
a D-flip flop.

When the flip flop’s control input is low, the first latch is transparent, while
the second is opaque. When the flip flop’s clock input (C) goes high, the
first latch becomes opaque, meaning that its output cannot change, while the
second latch becomes transparent, reflecting the value in the first latch at the
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D—p Q s Q@ b Q
C —C
Q'l R Qpr—Q’ c Q

time the clock input went high. The propagation delay of a flip flop is the
time beteen the clock input going from low-to-high and any corresponding
change at the output. Because the latches from which they are constructed
can become metastable, flip flops can also.

We're going to finish up this section with a brief description of several
different types of flip flops. While these other types are not often used in
circuits constructed using modern CAD tools, they do sometimes appear in
circuits, so it’s a good idea to be aware of them and understand how they
work. We'll start with the SR-master-slave flip flop. This flip flop can be
implemented using a pair of S R-latches, as shown below.

s—s oFs q]—¢
C —c

R—+HR Qp R Q' p—Q

C

When the control input is high, the first latch can be set or reset, using the S
and R inputs. When the control input goes low, the first latch can no longer
change, and the value it stores gets propagated to the second latch. Note
that this flip flop is not edge-triggered. Changes to the S and R inputs that
occur while the control input is high can affect the output, as illustrated in
the simulation shown below.
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Observe that this simulation also shows the flip flop becoming metastable.
The figure below shows a toggle flip flop.

reen G
0 | Q© r—l>o—p e

1] Q)

C—pC Qp—

This is an edge-triggered flip flop with a “toggle” input called T'. If T' is high
when the clock goes from low-to-high, the flip flop toggles from one state to
the other. The right part of the diagram shows an implementation that uses
a D-flip flop and an exclusive-or gate.

Our final flip flop is a clocked JK-flip flop, which combines aspects of
the SR and toggle flip flops.

J K |Q(t+1) L

J
00| Q) D
0 1 0 K <
10 1 ,
11 Q'(t) C—pC Qp

If the J input of this flip flop is high on a rising clock edge, and the K input is
low, the flip flop will be set (that is, the output will become high). Similarly,
if the K input is high and the J input low on a rising clock edge, the flip
flop will be reset. If both are high, when the clock goes high, the state of the
flip flop toggles. An implementation using a D-flip flop and some additional
gates is shown in the right part of the diagram.



Chapter 16

Timing Issues in Digital
Circuits

In earlier chapters, we have mentioned that if the input to a D-flip flop is
changing at the same time that the clock is going from low to high, the
flip flop can become metastable, causing the overall circuit behavior to be
unpredictable. To ensure reliable operation, it’s important to make sure that
flip flop inputs are stable when the clock is changing. In this chapter, we will
look more closely at this issue and learn how we can structure our circuits
to ensure reliable operation, and how CAD tools support this.

16.1 Flip Flop Timing Parameters

Let’s start by looking more closely at the operation of the D-flip flop. We've
said that in order to avoid metastability, the D input to the flip flop must be
stable when the clock is changing. To make that statement more precise, we
want to define a time interval around the time the clock makes its low-to-high
transition when the flip flop input must not change. This stable interval is
defined by two parameters. The setup time of the flip flop is the time from
the start of the stable interval to the rising clock edge, while the hold time
is the time from the rising clock edge to the end of the stable period. These

285
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definitions are illustrated in the diagram shown below.

c setL<p
b o f———}—1hold
DI D)
_ "
pC Q e
/

min, max propagation delay

In this diagram, the unshaded portion of the waveform for the D input is
the stable period. To ensure safe operation, the signal should not change
during this time interval. It is safe for the input to change during the shaded
portion of the waveform. The shaded part of the waveform for output @ is
the period when the output can change. It is bounded by the minimum and
maximum propagation delay of the flip flop.

The timing constraints on the D-input have some implications for the flip
flop operation. Consider the following diagram, which shows two flip flops
connected by a circuit path that passes through several gates.

combinational <«—period —»

—p o circuit path
b ol clk
L y e flip flop prop. delay
J7 >C X X
clock , |_ <«—>»comb. circuit delay
source y X
« Setup time

+ clock skew

Suppose the clock makes a low-to-high transition, causing the output of the
first flip flop to change after a short delay. As the signal propagates through
the connecting gates to the second flip flop, it will be delayed further. If
the total delay along this path is too long, it’s possible that the input of the
second flip flop will be changing when the next rising clock edge occurs. To
ensure that this does not happen, we require that the following inequality be
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satisfied.

(clock period) > (max FF propagation delay)
+ (max combinational circuit delay)
+ (FF setup time) + (max clock skew)

This is known as the setup time condition. Here, clock skew is a parameter
that specifies the maximum time difference between the arrival of a clock edge
at two different flip flips. In integrated circuits, the circuitry that delivers
the clock to different flip flops is designed to keep this difference as small as
possible. Still, there is always some non-zero difference in the clock arrival
times and this must be taken into account.

Note that the setup time condition essentially imposes a lower bound on
the clock period. Modern CAD tools can check all paths from the output of
one flip flop to the input of another, and use this to compute a minimum
clock period for the overall circuit. In the Xilinx design tools, this minimum
clock period is reported in the synthesis report that is produced as part of
the synthesis phase of the circuit implementation process. An example of
the relevant section of the synthesis report is shown below.

Timing constraint: Default period analysis for Clock ’clk’
Clock period: 4.227ns (frequency: 236.560MHz)
Total number of paths / destination ports: 45 / 5

Delay: 4.227ns (Levels of Logic = 3)
Source: state_FFd1 (FF)
Destination: cnt_2 (FF)
Source Clock: clk rising

Destination Clock: clk rising

Data Path: state_FFdl to cnt_2
Gate Net
Cell:in->out  fanout Delay Delay Logical Name (Net Name)
FDR:C->Q 9 0.626 1.125 state_FFd1l (state_FFd1l)
LUT2:11->0 1 0.479 0.740 _mux0001<2>20_SWO0 (N123)
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LUT4_L:I2->L0 1 0.479 0.123 _mux0001<2>24_SWO (N119)

LUT4:I3->0 1 0.479 0.000 _mux0001<2>43 (_mux0001<2>)
FDS:D 0.176 cnt_2
Total 4.227ns (2.239ns logic, 1.988ns route)

(53.0% logic, 47.0% route)

The first few lines summarize the overall results of the timing analyis.
They show a minimum clock period of 4.227 ns, resulting in a maximum
clock frequency of 236.56 MHz. The rest of the text describes a particular
circuit path that has the worst-case delay of 4.227 ns. It identifies the source
and destination flip flops, and the sequence of components that the circuit
passes through as it goes from the source flip flop to the destination. The
per component delay is divided into two parts, an intrinsic “gate delay” and
a “net delay” that is related to the length of the connecting wires and the
fanout of the network (recall that larger fanout implies larger capacitance,
which in turn leads to higher delays).

Often, when designing a circuit, we have some specific clock period that
we're trying to achieve, so we canot simply increase the clock period to
ensure that the setup time condition is always satisfied. During the “place-
and-route” phase of the circuit implementation process, modern CAD tools
attempt to place components on the chip, and route the connecting wires
so as to avoid violations of the setup time condition. However, in some
situations, the tools may be unable to find any combination of component
placement and routing that satisfies all setup time conditions at the same
time. In this situation, circuit designers must either settle for a longer clock
period than they would like (reducing the performance of the system), or
restructure the circuit in some way to eliminate the setup time violations
without increasing the clock period.

There is a second timing condition that circuits must also satisfy, to
ensure that flip flop inputs are only changing when it’s safe to do so. Again,
let’s consider the path from one flip flop to another. Note that if the sum
of the flip flop propagation delay and the combinational circuit delay is too
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small, it’s possible for the input of the second flip flop to change during the
time interval when it’s required to be stable. This is illustrated below

L «—— ' hold+skew
combinational

—p ol circuit path clk
%D fo) «——ff delay
X X

>C
>C cc dela
clock F |_ y X: Y
source

The hold time condition requires that

(hold time) + (max clock skew) < (min FF propagation delay)

+ (min combinational circuit delay)

Note that if a manufactured integrated circuit violates the setup time condi-
tion, we can still use the circuit by operating it with a reduced clock period.
Violations of the hold time condition are more serious, in that they can pre-
vent a circuit from working reliably at any clock speed. Fortunately, in many
contexts hold time violations are unlikely to occur, because the sum of the
flip flop hold times and the clock skew are usually smaller than the minimum
flip flop propagation delay. So, even when the combinational circuit delay is
zero, hold time violations will not occur.

Next, let’s consider an example of a simple circuit and look at how we can
manually check the that the setup and hold time conditions are satisfied. The
diagram below shows a state machine that implements a bit-serial comparison
circuit.
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After reset goes low, the circuit compares inputs A and B, one bit at a
time. The most-significant bits arrive first, so the first time the circuit detects
a difference between the two inputs, it can tell whether A > B or A < B.
The inputs and outputs of the two flip flops have been labeled u, v and x, y
for reference. Let’s suppose that inverters have a propagation delay between
1 ns and 2 ns, that AND gates and OR gates have a propagation delay that is
between 2 ns and 4 ns, and that flip flops have a propagation delay between
3 ns and 8 ns. Let’s also suppose that the flip flop setup time is 2 ns, that
the hold time is 1 ns and that the clock skew is .5 ns. (Note, these are not
realistic values; they have been chosen simply to keep the arithmetic simple.
On the other hand, the variation in values does reflect the charactistics of
real circuits. The delays in physical components can vary considerably, due
to variations in the manufacturing process and the operating conditions for
the circuit.)

Let’s start by checking the hold time condition from the output of the
first flip flop to the input of the second flip flop (so from v to z).

(hold time) + (max clock skew) < (min FF propagation delay)
+ (min combinational circuit delay)
1+5=15 < 3+1+3x2=10

We can see that the inequality is not violated in this case, so the hold-time
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condition is satisfied for the path from v to . Since the path from y to u
is symmetric with the v-to-z path, we can conclude that it also satisfies the
hold-time condition. Next, let’s consider the path from v to u. This passes
through two gates.

(hold time) 4+ (max clock skew) < (min FF propagation delay)
+ (min combinational circuit delay)
1+5=15 < 3+2x2=7

This also satisfies the hold-time condition. Actually, in this case we can
drop the clock skew from the hold-time condition since we’re going from the
output of a flip flop back to its own input, the clock skew is zero in this case.
Finally, we note that the y-to-x path is symmetric with the v-to-u path, so
it also satisfies the hold time condition.

Next, let’s look at the setup time condition for the path from v to z.

(clock period) > (max FF propagation delay)
+ (max combinational circuit delay)
+ (FF setup time) 4+ (max clock skew)
(clock period) > 8+ (2+3x4)+2+.5=245

The setup time condition implies a minimum clock period of 24.5 ns. Next,
let’s check the path from v to w.

(clock period) > (max FF propagation delay)
+ (max combinational circuit delay)
+ (FF setup time) + (max clock skew)
(clock period) > 8+ (2x4)+2+.5=185

We can actually drop the clock skew from the condition in this case also, so
the minimum clock period implied by this path is 18 ns. Since the other two
paths are symmetric with the first two, the worst-case clock period is 23.5
ns, giving a maximum clock frequency of 42.6 MHz.

Suppose we have a circuit with a hold time violation. Is there anything we
can do about it? The answer is yes, we simply add delay. Suppose that in the
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previous example, the hold time parameter for the flip flops was 8 ns instead
of 1. This would lead to hold time violations on the u-to-v path and the
z-to-y path. We can eliminate the violation by inserting a pair of inverters
into each of these paths, right before the OR gate inputs. This increases the
minimum path delay by 2 ns, eliminating the hold-time violation.

Now, let’s return to the original example, but let’s suppose that the 23.5
ns clock period is not acceptable for the application in which we’re using the
circuit. Is there anything we can do to reduce the maximum circuit delay,
in order to improve the performance? In this case, we can replace the AND
and OR gates with NOR gates as illustrated below.

A >0

Q A>B

IS

+—>C

reset —— clk

(Note, some of the NOR gates are drawn in their alternate form, to emphasize
the similarity with the original circuit.) Because NOR gates are faster than
the ANDs and ORs they’re replacing, we get an overall reduction in the max-
imum propagation delay. Moreover, this version does not require inverters
in the v-to-x and y-to-u paths, further reducing the delay on those paths.
In a later chapter, we’ll take a more systematic look at how we can reduce
delays in combinational circuits in order to obtain better performance. This
often involves more fundamental restructuring of the circuit, to obtain an
equivalent circuit with lower delay and hence higher performance.

Modern CAD tools can perform the required timing analysis for all pairs of
flip flops within a single integrated circuit or FPGA. However, what happens
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when we are building a larger system using multiple integrated circuits or
FPGAs? In this context, we may not have detailed information about the
circuits within the components we’re using, but we still need to be able to
verify that the setup and hold conditions will be satisified within the larger
system. To do this, we need to extend our timing analysis across all the
paths that pass between components. In order to do this, we need some
information about the delays within the components we’re using. Consider
the example shown below.

interconnect
delay
(4,81 —757 (3]
clk T

The output from the lefthand component has been labeled with a pair of
numbers [4,8]. These represent the minimum and maximum delays in the
circuit from the time the clock changes, to the time when a change appears
at the output (note, that in this example we are considering a signal that
only changes following a clock transition). These delay numbers include the
flip flop propagation delay in addition to the delay on the circuit path from
the flip flop to the output of the component.

The input of the righthand component is labeled similarly, with the min-
imum and maximum delays from that input to a flip flop within the circuit.
The interconnect between the circuit components can also contribute signifi-
cantly to the delay, and is labeled with pair of numbers, indicating minimum
and maximum delays.

Using the numbers shown in the diagram, the minimum delay from a flip
flop in the lefthand component to a flip flop in the righthand component is 8
ns, while the maximum delay is 19 ns. If the flip flop setup time is 2 ns and
the clock skew is 1 ns, the minimum clock period implied by this connection
is 22 ns. This connection will not cause a hold time violation, so long as long
as the flip flop hold time is at most 7 ns.
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CAD tools can provide the information needed to check that setup and
hold conditions are satisfied when combining components to build larger
systems. A section of a synthesis report from the Xilinx tools is shown below

Timing constraint: Default OFFSET IN BEFORE for Clock ’clk’
Total number of paths / destination ports: 17 / 12

ODffset: 4.356ns (Levels of Logic = 4)
Source: dIn (PAD)
Destination: cnt_2 (FF)

Destination Clock: clk rising

Data Path: dIn to cnt_2
Gate Net
Cell:in->out  fanout Delay Delay Logical Name (Net Name)

IBUF:I->0 7 0.715 1.201 dIn_IBUF (dIn_IBUF)

LUT4:10->0 1 0.479 0.704 _mux0001<2>33 (_mux0001<2>_mapl
LUT4_L:I3->L0 1 0.479 0.123 _mux0001<2>24_SWO (N119)
LUT4:13->0 1 0.479 0.000 _mux0001<2>43 (_mux0001<2>)
FDS:D 0.176 cnt_2

Total 4.356ns (2.328ns logic, 2.028ns route)

(563.4% logic, 46.6% route)

This shows the maximum delay from an input to a flip flop. The synthesis
report also provides information about output delays.

16.2 Metastability and Synchronizers

By carefully adhering to the timing rules discussed in the last section, we
can usually ensure that the inputs to flip flops change only when it is safe
for them to do so. However, there are some situations when the timing of
input signals is outside our control as circuit designers. For example, when
someone presses a button on the prototype board, the timing of that signal
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transition is inherently unpredictable, so there is always some chance that
this will cause the D input of some flip flop to change at the same time as a
rising clock edge, potentially causing the flip flop to become metastable.

So what can we do about this? The key to addressing this problem is
to use a special circuit called a synchronizer at each input that can change
asynchronously. Now a synchronizer is not a panacea, in that it cannot
prevent metastability failures 100% of the time. However, synchronizers can
be designed to make metastability failures extremely rare. To see how this
is done, let’s take a look at a basic sychrnonizer.

potentially

h metastable
asynchronous i W .
y input D Q signal D Q— probably safe

signal

>C >C
clk l_ I_

This circuit consists of two flip flops connected in series. The input to the
first flip flop is connected to the input that has the potential to change
asynchronously. The output of the second flip flop connects to the rest of
our circuit. So long as the second flip flop does not become metastable, the
remainder of our circuit can be protected from metastability failures. We say
that the synchronizer fails if the second flip flop does become metastable.

Now, let’s suppose that the asynchronous input does change at the same
time as a rising clock transition This can cause the first flip flop to become
metastable. Now, the second flip flop won’t be immediately affected by this,
but if the first flip flop is still metastable at the time of the next rising clock
edge, the second flip flop can also become metastable, leading to a failure of
the synchronizer.

Now, what makes the synchronizer effective is that when a flip flop be-
comes metastable, it rarely stays metastable for very long. We cannot put
any definite upper bound on how long it will be metastable, but the more
time passes, the less likely it is that the flip flop will remain metastable. So,
one way to reduce the probability of a synchronizer failure is for the synchro-
nizer to use a clock signal with a relatively long period. While this can be
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effective, we probably don’t want to make the synchronizer clock period too
long, as this may have a negative impact on system performance. So, it’s
important to be able estimate the frequency with which synchronizer failures
can occur, so that we can engineer our systems to make them extremely rare.

So how likely is it that an asynchronous signal transition leads to a syn-
chronizer failure. Well, there are two things that must happen for a synchro-
nizer to fail. First, the signal must change, just when the clock is making
its rising transition. Let Ty be the length of the critical time interval during
which signal changes lead to metastability. If T" is the clock period, then the
probability that a random signal change will trigger metastability is 7o /7.

Now, for a synchronizer to fail, the first flip flop must not only become
metastable, it must stay metastable for nearly a full clock period. Experi-
mental measurements of flip flops have shown that the amount of time that
they remain metastable follows an exponential distribution. More precisely,
the probability that a metastable flip flop is still metastable after T time
units is less than e~ 7/7 where e &~ 2.71828 is the base of the natural loga-
rithm and 7 is a parameter of the flip flop. Hence, the probability that a
random signal transition causes a synchronizer failure is

(To/T)e "/

Now the time between synchronizer failures depends not only on this prob-
ability, but on how often asynchronous signal transitions occur. If « is the
average amount of time between consecutive asynchronous signal transitions,
then the mean time between failures for the synchronizer is

o/ (To/T)e™ ") = (aT /Tp)e™ '™

So for example, if T'=50 ns, « = 1 ms, 7 = Ty = 1 ns then the mean time
between failures is approximately 8 trillion years. However, note that this
time is very sensitive to the paramater choices, especially the value of T'. In
particular, if 7' = 10 ns, the mean time between failures drops to just 220
seconds.

The chart shown below shows the mean time to failure under a variety
of conditions.
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Observe that whenever T'/7 increases by 2, the MTBF increases by about
an order of magnitude. The dashed line indicates an MTBF of 10 years.
Points at the top end of the range represent MTBF values of more than 10
thousand years.

We can make a synhronizer as reliable as we like by increasing time
between the instants when the asynchronous input is sampled. Here is a
circuit that illustrates this.

0 n
0 probably
async —LD_D Q HID_D O™ safe” signal

input
l—>C pC

clk —y
L| counter =0

By increasing the number of bits in the counter, we increase the effective
period of the synchronizer without changing the period of the clock used




298 Designing Digital Circuits (C) Jonathan Turner

by the rest of the system. The drawback of this approach is that we delay
processing of the asynchronous input and we may even fail to observe some
signal transitions. However in many situations, there is a known lower bound
on the time between signal transitions. So long as the time between sampling
intervals is smaller than the minimum time between signal transitions, we
can avoid missing any transitions.
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Chapter 17

Introduction to
Programmable Processors

As mentioned in Chapter 1, one of the most important digital circuits is the
programmable processor. These are the circuits that drive our laptops and
cell phones, as well as many modern appliances, and even our cars. What
makes processors so important is their remarkable flexibility, and the key to
that flexibility is programmability. While a processor is just a single circuit,
it can be programmed to implement a remakable diversity of functions. This
programmability means that one device can do many different things. What
we will discover in the next couple chapters is that as powerful as they
are, processors can be implemented using fairly modest circuits. While it is
certainly true that the modern processors at the heart of our laptops and
cell phones are pretty complex, most of that complexity is there for the sole
purpose of improving performance. The essential feature of programmability
does not require it.

17.1 Overview of the WASHU-2 Processor

We will begin our study of processors with an example of a simple processor,
called the WASHU-2, which is illustrated in the diagram below.

301
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Address ng 0000
IREG PC IAR ACC Data Bus 0001
ALU 0004
Controller enable 8882
read/write 0007
0008
0009
000A
FFFF
Memory

There are two main components to this system, the processor itself, and the
attached memory which stores data used by the processor and instructions
that determine what the processor does. The two are connected by a 16 bit
wide address bus and a 16 bit wide, bidirectional data bus. There are also
two control signals, enable and read/write.

The processor contains four registers. The Instruction Register (IREG) is
used to hold a copy of the instruction currently being executed. The Program
Counter (PC) holds the address of the current instruction. The Accumulator
(Acc) is used to hold intermediate results that are computed by the proces-
sor. The Indirect Address Register (IAR) is used when processing indirect
address instructions, which we’ll describe shortly. The Arithmetic/Logic
Unit (ALU) implements the core arithmetic functions (addition, negation,
logical AND, and so forth); in the WASHU-2, it is a fairly simple combina-
tional circuit. Finally, there is a controller that coordinates the activities of
the other elements of the processor and controls the transfer of data between
the processor and the memory.

Now that we’ve covered the components that make up our programmable
processor, we can look at what it actually does. The central activity of the
processor is to retrive instructions from memory and carry out the steps
required by each instruction. This process is referred to as the fetch-and-
execute cycle and the processor repeats it over and over again as it executes
programs. In the fetch portion of each cycle, the processor retrieves a word
from memory, using the value in the PC as the memory address. The value



17. Introduction to Programmable Processors 303

returned by the memory is stored in the IREG. Now this value is just a 16
bit number, but the processor interprets it as an instruction. In the execute
part of the instruction, the processor does whatever the current instruction
directs it to do. For example, it might retrieve some data from memory
and place it in the accumulator, or it might change the value of the PC so
as to change which instruction is handled next. By default, the processor
proceeds from one instruction to the one at the next location in memory.
The processor implements this by simply incrementing the program counter.

Before we move on to describe the WASHU-2’s instructions, we need to
introduce a simple property of 2s-complement binary numbers. Suppose, we
have a four bit binary number that we want to convert to an eight bit binary
number. If the four bit number is 0101, it’s obvious what we should do,
just add Os on the left, giving us 00000101. But what if the original number
is negative, like 1010, for example. It turns out that to produce an eight
bit number with the same magnitude, all we need to do is add 1s to the
left, giving us 11111010. You can check this by taking the 2s complement of
1010 and 11111010. So in general, if you want to convert a four bit number
to an eight bit number, you just copy the sign bit into the new positions.
This process is called sign extension and can be used to convert any binary
number to a longer format without changing its magnitude. Several of the
WASHU-2 instructions use sign extension, as we’ll see shortly.

The WASHU-2 has just 14 instructions, so we’ll describe each of them in
detail. The first instruction is the Halt instruction, which has the numerical
value x0000. It simply causes the processor to stop processing instructions,
and is summarized below.

0000 halt - halt execution

The next instruction is a little more interesting. It is the negate instruction
and has the numerical value x0001. To execute the negate instruction, the
processor simply replaces the value in the accumulator by its negation.

0001 negate - ACC = -AC

The next instruction is the branch instruction, which adds a specified offset
to the value in the PC in order to change which instruction gets executed
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next. The first two hex digits of this instruction are 01 and the remaining
digits are treated as an eight bit signed number. This number is extended
to 16 bits (using sign-extension) and then added to the PC.

01xx branch - PC = PC + ssxx

In the instruction summary, the value ssxx refers to the sign-extended value
derived from the low order eight bits of the instruction word. There are
several conditional branch instructions that are similar to the (unconditional)
branch.

02xx branch-if-zero - if ACC==0, PC = PC + ssxx
03xx  branch-if-positive - if ACC>0, PC = PC + ssxx
04xx  branch-if-negative - if ACC<0, PC = PC + ssxx

Notice that these branch instructions all have a limitation, which is that they
can only adjust the PC value by about 128 in either direction. More precisely,
we can only jump ahead by 127 instructions, or jump back 128. There is one
more branch instruction, called the indirect branch, that does not have this
limitation.

05xx  indirect branch - PC = M[PC + ssxx]

Here, the notation M[PC + ssxx] refers to the value stored in the memory at
the address equal to PC + ssxx. Notice that since the value stored at M[PC
+ ssxx] can be any 16 bit number, we can use the indirect branch to jump
to any location in memory.

Our next instruction loads a constant into the accumulator.

1xxx constant load - ACC = sxxx

Here again, we are using sign-extension, this time to convert the low-order
12 bits of the instruction word into a 16 bit signed value with the same
magnitude. The direct load instruction loads a value into the accumulator
from a specified memory location.

2xxx  direct load - ACC = M[pxxx]
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The notation M[pxxx] refers to the value in the memory location specified
by pxxx, where the xxx comes from the instruction word and the p is the
high-order four bits of the PC. This makes it easy to access memory locations
that are in the same part of memory as the current instruction. The indirect
load instruction allows us to access a memory location through a pointer.

3xxx  indirect load - ACC = M[M[pxxx]]

The direct store and indirect store instructions are similar to the load
instructions. They just transfer data in the opposite direction.

bxxx  direct store - M[pxxx] = ACC
6xxx  indirect store - M[M[pxxx]] = ACC

There are just two more instructions. The add instruction adds the value
in a memory location to the value currently in the accumulator. The and
instruction performs a bit-wise logical AND of the value in a specified memory
location with the value in the accumulator.

8xxx add - ACC
CXXX and - ACC

ACC + M[pxxx]
ACC and M[pxxx]

Summarizing, we have

0000 halt - halt execution
0001 negate - ACC = -AC

O1lxx branch - PC = PC + ssxx

02xx branch-if-zero - if ACC==0, PC = PC + ssxx
03xx  branch-if-positive - if ACC>0, PC = PC + ssxx
04xx  branch-if-negative - if ACC<O, PC = PC + ssxx
05xx  indirect branch - PC = M[PC + ssxx]

1xxx  constant load - ACC = sxxx
2xxx  direct load - ACC = M[pxxx]
3xxx  indirect load - ACC = M[M[pxxx]]
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5xxx  direct load - M[pxxx] = ACC
6xxx  indirect load - M[M[pxxx]] = ACC

8xxx add - ACC
CXXX and - ACC

ACC + M[pxxx]
ACC and M[pxxx]

To run a program on the WASHU-2, all we need to do is load the instructions
into memory, starting at location 0, then reset the processor. This will cause
it to begin the fetch-and-execute cycle, retrieving instructions based on the
value of the PC and carrying out the steps involved in each instruction, one
after another.

Note that the basic fetch-and-execute cycle is the one essential feature of
a programmable processor. Instructions are nothing but numbers stored in a
computer’s memory that are interpreted in a special way. There is an endless
variety of instruction sequences we can specify, and this is what allows us
to program the processor to do so many different things. Even though the
WASHU-2 is a relatively simple processor, it is fundamentally no different from
the processors that run our laptops and cell phones. All execute instructions
stored in memory in a similar fashion. The main difference is that modern
processors have larger memories and can execute instructions at faster rates.

17.2 Machine Language Programming

Now that we have seen the instruction set used by the WASHU-2, let’s take
a look at some programs. We'll start with a simple program that adds a
sequence of numbers and stores the sum in a specified location in memory.
However, before we do that, we need to say a little bit about how a user
interacts with a program on the WASHU-2.

Most “real computers” have input and output devices, like a keyboard,
a mouse and a video display that we can use to interact with running pro-
grams. Since we’ll be implementing the WASHU-2 on our prototype boards,
we need to interact with the processor using the limited mechanisms that our
boards provide. In the next section, we’ll see how we can use the prototype
board’s knob, buttons and LCD display to read values stored in memory and
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change the values in selected memory locations. We’ll use this mechanism
to enter data for use by running programs and to retrieve the results of their
computations.

The first program we’ll implement is equivalent to the program shown
below, written in C-style notation.

sum = O;
while (true) {
inVal = -1;
while (inVal == -1) {} // wait for user to change inVal
if (inVal = 0) break;
sum += inVal;

}

In this program, inVal and sum refer to specific locations in the WASHU-
2’s memory. Specifically, inVal is the location where a user enters input
data, and sum is the location where the processor places its result. The
program starts by setting inVal to -1 and waits for the user to set it to
some other value (this does imply that the user cannot enter -1 as an input
value). If the value entered by the user is 0, the program interprets that as
a signal to terminate the program. To implement this using the WASHU-2’s
machine instructions, we’ll go through the C program, one statement at a
time, replacing each with an equivalent sequence of WASHU-2 instructions.
The initialization of sum is easy.

0000 1000 (ACC = 0) -- sum = O;
0001 5011 (M[0011] = ACC)

The left column indicates the address at which the instruction is stored, while
the next column is the instruction itself. The text in parentheses is just a
reminder of what the instruction does, while the comment at right shows the
C-statement that is implemented by this sequence of instructions. Observe
that the first instruction just loads a constant 0 into the accumulator, while
the next instruction stores this in memory location 0011, which is the location
that the program uses to store its result.
The next two instructions shows the start of the outer loop.
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0002 1FFF (ACC= 1) -- while (true) {
0003 5010 (M[0010] = ACC) - inVal = -1;

Since there is no condition to test for the loop, we don’t need any instructions
here to implement the start of the loop. The immediate load instruction
loads -1 into the accumulator (observe the use of sign-extension) and the
next instruction stores this in location 0010, which is the location used by
the program for input data from the user.

Next, we have the inner loop.

0004 1001 (ACC = 1) - while(inVal==-1)
0005 8010 (ACC = ACC+M[0010]) - {3
0006 O2FE (if ACC=0 go back 2)

The first instruction loads 1 into the accumulator, while the second adds the
current value of inVal to the accumulator. If the user has not changed the
value of inVal, this will make the value in the accumulator 0. If it is, the
conditional branch instruction at location 0006 subtracts 2 from the program
counter (again, notice the use of sign-extension), causing the program to re-
turn to location 0004 for the next instruction. When the user does eventually
change inVal, the program continues to the next instruction in sequence.

0007 2010 (ACC = M[0010]) -= if (inVal==0)
0008 0204 (if ACC=0 go ahead 4) - break;

Here, the first instruction loads inVal into the accumulator. If it’s zero,
we jump ahead four instructions in order to break out of the loop. The
remainder of the program is

0009 8011 (ACC = ACC + M[0011])  -- sum += inVal
000A 5011 (M[0011] = ACC)

000B 01F7 (go back 9) -1}

000C 0000 (halt) -- halt

The first instruction adds the current sum to the value in the accumulator
(which is inVal) and the next stores the result back to sum. The branch
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instruction at location 000B goes back 9 locations to location 0002, which is
where the outer loop started.
Putting it altogether, we have

0000 1000 (ACC = 0) -- sum = 0;

0001 5011 (M[0011] = ACC)

0002 1FFF (ACC= -1) -- while (true) {
0003 5010 (M[0010] = ACC) -- inVal = -1;
0004 1001 (ACC = 1) - while(inVal==-1)
0005 8010 (ACC = ACC+M[0010]) -= {}

0006 O02FE (if ACC=0 go back 2)

0007 2010 (ACC = M[0010]) -- if (inVal==0)
0008 0204 (if ACC=0 go ahead 4) - break;
0009 8011 (ACC = ACC + M[0011]) — sum += inVal;
000A 5011 (M[0011] = ACC)

000B O01F7 (go back 9) --}

000C 0000 (halt) -- halt

0010 1234 -- input value

0011 5678 -— sum

We can use the simulator to observe the program running. To do this, we
need to initialize the processor’s memory so that it contains the program
when the simulator starts up. This is done by modifying the VHDL for the
memory component so that the memory is initialized to contain the instruc-
tions listed in the program. We then simulate the processor using a testbench
that resets the processor, then let’s it run. Here is a small portion of a sim-
ulation of the sum program.
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First, note the signals listed in the waveform display. It starts with a
reset followed by the memory signals. The processor state waveform gives
an indication of what the processor is doing at each point in time and the
tick register identifies the individual clock tick within each processor state.
The register values and ALU output are shown at the bottom.

This segment of the simulation starts with an instruction fetch from mem-
ory location 0008. We can observe the returned instruction (0204) on the
data bus, and we can see it being stored in the IREG at the end of tick 1 of
the fetch. We can also observe the PC being incremented at the end of the
fetch. Instruction 0204 is a branch-if-zero instruction, but since the value in
the accumulator is not 0, the processor continues to the next instrruction in
sequence.

The next fetch retrieves the instruction 8011 from location 0009 (observe
the changes to the address and data signals) and stores the instruction in
the instruction register at the end of tick 1 of the fetch. Once again, the pPC
is incremented at the end of the fetch. Because 8011 is an add instruction,
the processor initiates another read to memory location 0011. The value
returned on the data bus is 0001. This is added to the ACC causing its
value to increase from 2 to 3. The final instruction in this segment of the
simulation is a direct store to location 0011. Observe the read/write signal
going low, and the value 0003 being sent across the data bus to the memory.

The figure below shows a view of the processor at a much longer time-



17. Introduction to Programmable Processors 311

scale.

Name Valu |16us
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At this time-scale, we cannot see the details of the instructions being ex-
ecuted, but we can observe changes to the memory locations used by the
program for input and output. For the purposes of this simulation, the
memory has been augmented with a pair of registers that are updated when-
ever locations 0010 and 0011 are modified. The last two lines of the waveform
window show the values of these registers. We can observe that M[0010] is
changed to 1 at the start of this portion of the simulation. This causes the
running program to add 1 to the value of M[0011] and we can observe this
in the waveform display. The program then changes M[0010] back to -1 and
waits for it to change again. When the user sets M[0010] to 2, the program
responds by adding this to the value in M[0011] and so forth.

Writing programs in machine language quickly becomes tedious. Higher
level languages, like C or Java, allow us to write programs in a more conve-
nient notation, while compilers handle the tedium of translating those pro-
grams into machine instructions. In the case of the WASHU-2, we do not have
the luxury of a compiler, but we do have a simple assembler that makes the
job somewhat easier. Here is an assembly language version of the machine
language program we just looked at.
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location O
cLoad O -- sum = O;
dStore sum
loop: cLoad -1 -- while (true) {
dStore inVal - inVal = -1;
cLoad 1 - while (inVal == -1) {}
add inVal
brZero -2
dLoad inVal - if (inVal == 0) break;
brZero end
add sum - sum += inVal
dStore sum
branch loop --}
end: halt -- halt
location 0010
inVal: 01234 —-- input value
sum: 05678 -- sum of input values

The very first line of this program is an assembler directive that instructs
the assembler to assign the instruction on the next line to location 0000 in
the WASHU-2’s memory. It will assign subsequent instructions to 0001, 0002,
0003 and so forth. The first instruction is a constant load, designated by the
mnemonic cLoad. The next instruction, a direct store, uses the mnemonic
dStore.

Notice that we are not required to specify the location of the target of
the store. Instead, we just use a name, which the assembler associates with
the target location. A name in an assembly language program is defined by
entering the name at the start of a line, followed by a colon. This associates
the name with the memory location for that line. So for example, the name
loop corresponds to location 0002, the name end corresponds to location
000c, inVal corresponds to location 0010 and sum to location 0011

Note that while most branches in our program use labels, there is one
that uses a numerical offset to branch back 2 instructions. Also notice that
data values can be entered directly into memory as we have done here for
inVal and sum. The leading 0 in 01234 tells the assembler to interpret the
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number as a hex value. If no leading 0 is used, the value is interpreted as
decimal.
Our assembler is a fairly simple Java program. To compile and run it

type

javac Assembler. java
java Assembler sourceFile

If we do this for our little sum program, we get the output shown below.

16#0000# => x"1000", -— sum = O;

16#0001# => x"5011",

16#0002# => x"1fff", -- while (true) {

16#0003# => x"5010", - inVal = -1;

16#0004# => x"1001", - while (inVal == -1) {}

16#0005# => x"8010",
16#0006# => x"02fe",

16#0007# => x"2010", -- if (inVal == 0) break;
16#0008# => x"0204",

16#0009# => x"8011", -- sum += inVal

16#000a# => x"5011",

16#000b# => x"O01f7", -- 1

16#000c# => x"0000", -- halt

16#0010# => x"1234", -- input value

16#0011# => x"b678", -- sum of input values

Each line of output takes the form of a VHDL initializer. If we insert these lines
into the memory initialization section of the WASHU-2’s memory component,
the processor will begin executing the program whenever it is reset.

17.3 Prototyping the washu-2

To use any computer, we need to be able to interact with it. We will use
a very simple mechanism to interact with the wASHU-2. First, we’ll use
the LcD display to show the information in the processor’s registers, and to
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examine the processor’s memory. Here’s an example of what we might see
on the LcD display while running a program.

5010 ffff 000a
0003 0000 5011

The top left number is the value in the IREG. In this case, it shows a direct
store instruction. Just below it is the PC value. The next column shows the
values in the accumulator and the 1AR. The rightmost column shows the
values of two additional registers called snoopAdr and snoopData that are
used to examine and modify the contents of the memory.

We can use the knob to change the value of either snoopAdr or snoop-
Data. Specifically, when switch number 3 is in the down position, then
turning the knob changes the value in the snoopAdr register. This allows us
to examine successive memory locations, simply by turning the knob. When
switch number 3 is in the up position, turning the knob controls the value
in snoopData. Pressing button number 1 causes the value in the snoopData
register to be written to the location specified by the snoopAdr register.
This allows us to enter data for use by a running program, and to observe
the results of its computation.

The buttons on the prototype board are also used to control the single
step feature of the WASHU-2 processor. By pressing button number 3, while
the processor is running, we can pause the processor, allowing us to examine
the values in the processor’s registers (while it is running, these values are
changing all the time, making it difficult to discern their values on the LCD
display). By pressing button number 3 again, we can cause the processor to
execute a single instruction before pausing again. Pressing button 2, causes
it to go back to normal operation.

In principle, the WASHU-2 processor can handle 65,536 memory loca-
tions. Unfortunately, our prototype board has only enough memory for about
20,000 16 bit words. We’d like to use part of this memory for a display buffer,
so we can drive an external video monitor. In order to preserve most of the
memory for programs and data, we’ll use a quarter resolution display buffer
to store 160 x 120 pixels.
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The figure below shows how the memory is organized for the prototype
WASHU-2.

0000
age 0
OFFF Pag
1000 0
age
1FFF el
2000
page 2
2FFF
3000 s
3FFF
missing
plfEs display
buffer
FOOO0
page F
FFFF

The memory address space has been divided into 16 logical pages, each con-
sisting of 4096 words. The main memory component provides the storage for
the first four pages, and a separate vgaDisplay component provides storage
for the last page, which is used as a display buffer. There is no memory to
support pages 5 through E. The vgaDisplay component is connected to the
same memory signals as the main memory component. The main memory
component responds to accesses that specify addresses in the first four pages,
while the vgaDisplay responds to accesses that specify addresses in the last
page.

Now, this vgaDisplay component has a slightly different client-side in-
terface than the one we looked at in an earlier chapter. That component
allowed the client to read and write individual pixels. The component we’ll
use here provides a client-side interface that uses 16 bit words, since that is
what the WASHU-2 processor uses. Each word stores five pixel values, and the
high-order bit is ignored. Programs that need to modify individual pixels in
the display buffer will typically need to read a 16 bit word, modify a specific
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pixel within the word, then write that word back to the display buffer.

17.4 Using Subprograms

From the early days of computing, programmers have found it useful to de-
compose large programs into smaller, re-usable parts. In some programming
languages, these are referred to as subroutines, in others as procedures or
functions. Here, we’ll use the generic term subprogram to refer to a part
of larger program that is designed to be “called” from other parts of the
program and to return one or more results. We’ll start with the example
of a subprogram that implements multiplication. Since the WASHU-2 has no
multiplication instruction, this will come in handy when we write programs
that require multiplication.

Our multiplication subprogram is based on the long multiplication algo-
rithm we all learned in elementary school, but adapted to binary numbers.
It can be written in C-style notation as follows.

int mult(int a, int b) {
prod = 0; // initialize product
mask = 1; // mask to select bits of multiplier
while (mask != 0) {
if ((b & mask) != 0) // add next partial product

prod += a;
a <<= 1; // shift multiplicand
mask <<= 1; // shift mask bit

¥

return prod;

}

Let’s look at an example using 6 bit arithetic, with a=000110 and b=000101.
At the start of the first iteration we have

prod = 000000 a = 000110 mask = 000001

At the end of the first iteration, we have



17. Introduction to Programmable Processors 317

prod = 000110 a = 001100 mask = 000010
At the end of the second iteration, we have

prod = 000110 a = 011000 mask = 000100
At the end of the third, we have

prod = 011110 a = 110000 mask = 001000

The remaining iterations produce no change in prod, so the final result is
011110 or 30, which is the product of 6 and 5.

To implement a subprogram in assembly language, we need some conven-
tion about how a calling program passes arguments to a subprogram, and
how the subprogram returns results. We will use a very simple convention,
in which the arguments and return values are stored in memory locations
just before the first instruction in the subprogram. Here are the first few
lines of our multiplication subprogram.

location 0100 -- int mult(int a, int b)
mult_a: 0 -- first argument
mult_b: 0 -- second argument
mult_prod: O -- return value
mult_ret: O -— return address

These lines simply label the locations where the arguments and return value
will be stored. The last line defines the location of the return address in
the calling program. This is the location in the calling program that the
subroutine should branch to when it has completed its computation. To use
this subprogram, a calling program will copy the arugments to the locations
mult_a and mult_b and the return address to mult_ret. When the subpro-
gram completes, it will leave the product in mult_prod and then branch to
the location specified by the return address. The calling program can then
copy the result from mult_prod.

This segment of code highlights an issue that arises with assembly lan-
guage programs. With a simple assembler like ours, all the names used in the
program must be unique. This makes things complicated when attempting
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to write subprograms, since we want them to be re-usable in a variety of
contexts. We have resolved this issue by preceding each name used by the
subprogram with a unique prefix mult_. This will be sufficient for our pur-
poses, but it is worth noting that more sophisticated assemblers do provide
mechanisms to support more flexible and convenient use of names.

Let’s move onto the actual instructions that define our subprogram. The
first few just initialize mult_prod and mult mask and start the main loop.

mult: cLoad 0
dStore mult_prod
cLoad 1
dStore mult_mask
mult_loop: dLoad mult_mask
brZero mult_end

-- mask

-- prod = 0;

1;

-- while (mask != 0) {

The next few instructions add the next partial product to mult_prod, when

the current bit of the multiplier is 1.

dLoad mult_b

and mult_mask
brZero 4

dLoad mult_prod
add mult_a
dStore mult_prod

- if ((b&mask) != 0)

-= prod += a;

The remaining instructions finish off the loop and return to the calling pro-

gram.

dLoad mult_a
add mult_a
dStore mult_a
dLoad mult_mask
add mult_mask
dStore mult_mask
branch mult_loop
mult_end: iBranch mult_ret
mult_mask: O

- mask <<= 1;

-}
—-- return prod;
-- mask
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Note the use of the indirect branch to return to the calling program. Putting
it altogether, we have

location 0100 -- int mult(int a, int b)
mult_a: 0 -- first argument
mult_b: 0 -- second argument
mult_prod: O -- return value
mult_ret: O -— return address
mult: cLoad 0O —-— prod = 0;

dStore mult_prod

clLoad 1 -- mask = 1;

dStore mult_mask
mult_loop: dLoad mult_mask -- while (mask != 0) {

brZero mult_end

dLoad mult_b - if ((b & mask) != 0)

and mult_mask

brZero 4

dLoad mult_prod - prod += a;

add mult_a

dStore mult_prod

dLoad mult_a - a <<= 1;

add mult_a

dStore mult_a

dLoad mult_mask - mask <<= 1;

add mult_mask
dStore mult_mask

branch mult_loop --}
mult_end: iBranch mult_ret —-- return prod;
mult_mask: O -- mask

Next, let’s take a look at another subprogram that converts a string of AScII
characters representing a decimal number into binary. Here’s a C-style ver-
sion.

int asc2bin(char* p, int n) {
num = 0;
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while (n != 0) {
num *= 10;
num += (*p - ’O’);

return num;

3

Here, p points to the first in a sequence of memory locations that are assumed
to contain ASCII character codes corresponding to decimal digits. The second
argument n indicates the number of ASCII characters in the string of digits.
The program considers each digit in turn, starting with the most significant
digit. We subtract the AscII code for 0 from each digit, in order to get the
actual value of that digit.

We'll implement the multiplication on the fourth line of the subprogram
using our multiply subprogram. Here is the first part of the program.

location 0200 -- asc2bin(char* p,int n){
a2b_p: 0 -- first argument
a2b_n: 0 -- second argument
a2b_num: 0 —-- return value
a2b_ret: 0
asc2bin: cLoad O -— num = 0;

dStore a2b_num
a2b_loop: dLoad a2b_n -- while (n !'= 0) {

brZero a2b_end

As before, we store the arguments, return value and return address right
before the first instruction. The first few instructions just initialize num and
start the loop. Here’s the part that calls the multiply subroutine

cLoad 10 - num *= 10;
dStore mult_a
dLoad a2b_num
dStore mult_b
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a2b_retloc:
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cLoad a2b_retLoc
dStore mult_ret
iBranch 1

mult

dLoad mult_prod
dStore a2b_num

Note how this uses the locations defined earlier in the mult subroutine. The

second constant load instruction loads the constant a2b_retLoc.

The as-

sembler interprets this as the address associated with the label. The second
line from the end contains just the label used for the first instruction in the
mult subroutine. The assembler interprets a line like this as specifying that
the memory location corresponding to this line should contain a copy of the
address associated with the label mult. Consequently, the indirect branch
instruction just before this line, will transfer control to the first line of the
subroutine. The next part of the program adds the next decimal digit into

num.

cLoad 030 -
negate

dStore a2b_temp

iLoad a2b_p

add a2b_temp

add a2b_num

dStore a2b_num

num += (*p - 0);

Note the use of the indirect load instruction, to retrieve the next character.
The remainder of the program follows

cload 1 - p++;
add a2b_p

dStore a2b_p

cLoad -1 - n--;
add a2b_n;

dStore a2b_n;
branch a2b_loop -}
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a2b_end: iBranch a2b_ret -- return num;
a2b_temp: 0 -- temporary storage

Putting it altogether, we have

location 0200 -- int asc2bin(char* p,int n
a2b_p: 0 -- first argument
a2b_n: 0 -- second argument
a2b_num: 0 -- return value
a2b_ret: 0
asc2bin: cLoad O -— num = O;
dStore a2b_num
a2b_loop: dLoad a2b_n -- while (n !'= 0) {
brZero a2b_end
cLoad 10 - num *= 10;

dStore mult_a
dLoad a2b_num
dStore mult_b
cLoad a2b_retLoc
dStore mult_ret
iBranch 1
mult
a2b_retLoc: dLoad mult_prod
dStore a2b_num
cLoad 30 — num += (xp 0);
negate
dStore a2b_temp
iLoad a2b_p
add a2b_temp
add a2b_num
dStore a2b_num
cLoad 1 -- p++;
add a2b_p
dStore a2b_p
cLoad 1 - n--;
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add a2b_n;

dStore a2b_n;

branch a2b_loop --}
a2b_end: iBranch a2b_ret —-- return num;
a2b_temp: 0 -- temporary storage

At this point, it’s interesting to look back and reflect on the processor’s role
in the execution of these programs. No matter how big or complicated the
programs get, the processor’s role remains the same. It simply fetches in-
structions from memory, carries out the steps required for each instruction,
then does it again, and again and again. It’s kind of remarkable that this rel-
atively simple process provides the foundation on which all modern software
systems rest.
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Chapter 18

Implementing a
Programmable Processor

In the last chapter, we discussed the operation of the WASHU-2 processor,
largely from the programmer viewpoint. In this chapter, we will take a
detailed look at the circuit used to implement it.

18.1 Overview of the Implementation

Let’s start with a closer look at the WASHU-2’s fetch-and-execute cycle. This
can be conveniently summarized in the state diagram shown below.

I

At the left end of the diagram is the processor’s fetch state, and for each
instruction there is a corresponding state that appears to the right (a few have
been combined to simplify the diagram). While it is in the fetch state, the
processor determines which instruction is to be executed next and switches

negate
dLoad
Add,And
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to the state for that instruction. Each of the instruction states returns to
the fetch state once the instruction has been completed.

Most of the processor states require several clock ticks, in order to carry
out all the steps that their instructions require. A separate tick register keeps
track of the current clock tick within the current state, and the processor
uses this to control the timing of the signal transitions.

The next figure is a detailed block diagram of the WASHU-2 processor,
showing all the registers, their connections to the address and data bus and
the controller.

- » Addr Bus

‘ ‘ = Data Bus
i
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s Sz T = < <
o
A 9 3 al || s
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Control Logic mem_en\—

(combinational circuit) mem_rw |

state ‘ ’ tick ‘

Starting at the left end of the diagram, we have the IREG. Note that the
input to the IREG is connected to the data bus, so that instructions retrieved
from memory can be loaded into the register. The output side of the IREG
also connects to the data bus through a set of tristate buffers.

The pC appears next. Note that its input can come from several sources.
First, it can be loaded from the data bus (this is used during indirect branch
instructions), second, it can be incremented to go to the next instruction
(the most common case) and third its current value can be added to the sign-
extended value obtained from the low-order eight bits of the IREG. The PC’s
output can be connected to the address bus through a set of tristate buffers.
The IAR’s connections to the bus are relatively simple. It can be loaded from
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the data bus and its value placed on the address bus. The accumulator can
obtain a new value from the output of the ALU, from the data bus or from
the low-order 12 bits of the IREG. Its output can be connected to the data
bus through a set of tristate buffers. The ALU is a combinational circuit that
implements the various arithmetic and logic operations. It’s operation input
selects which operation is selected. For example, it may negate the value
received from the accumulator, or add the value in the accumulator to the
value on the data bus. The state and tick registers are shown at the bottom
of the diagram. The remaining circuitry (labeled controller) is just a large
combinational circuit.

The block diagram shows all the signals needed by the controller to co-
ordinate the activities of the other components. To illustrate how these
are used, consider what happens during the fetch portion of the fetch-and-
execute cycle. To retrieve the next instruction from memory, the controller
first enables the tristate buffers at the output of the PC, while raising the
memory enable and read/write signals. This causes the memory to return
the data value stored at the address specified by the pc. The controller
causes this data value to be stored in the IREG by raising the load input of
the IREG at the appropriate time. At the end of the fetch, it increments the
PC, by asserting its load input, while selecting the appropriate input to the
multiplexor.

18.2 Signal Timing

In this section, we're going to look closely at each of the processor states,
identify the sequence of steps that must take place for each state and derive
appopriate signal timings for each of these steps.

We’ll start with the fetch, which was discussed briefly at the end of the
last section. Here is a list of the steps involved in the fetch.

e Initiate memory read. This inolves enabling the tristate buffers at
the output of the pc, while raising the memory enable and read/write
signals.

e Complete memory read. This involves turning off the memory enable,
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disabling the PC’s tristates and loading the returned data value in the
IREG.

e Increment the PC. Requires enabling the PC’s load input while selecting
the increment input of the PC’s multiplexor.

The timing diagram shown below indicates exactly when each of these steps
is done.

clk J LI LT LJ
mem en J/

mem_rw

abus Xpe X
dbus _ Xzxam X

pc X
ireg Y{dbus

The memory read occurs when the tick register is zero. The data value is
returned by the memory when tick=1 and is stored in the IREG at the end
tick 1. The label on the waveform for the address bus indicates that the
value on the bus is coming from the PC. Similarly, the label on the data bus
indicates that the value comes the RAM and the label on the IREG indicates
that the value comes from the data bus.

Let’s turn next to the timing for a direct load instruction. Like the fetch,
this involves a memory read.

e Initiate memory read. Enable the tristate buffers for the low 12 bits
of the IREG and the high four bits of the PC while raising the memory
enable and read/write signals.

e Complete memory read. Turn off the memory enable, disable the tris-
tates and load the returned data value in the accumulator.

Here’s the signal timing needed to implement these steps.
The label on the address bus only mentions the IREG but as noted above, the
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mem_rw
abus
dbus

acc___ Y

high order four bits of the address come from the pc. The add instruction
and and instruction have exactly the same timing as the direct load, so we
do not show them separately. The only difference with these instructions is
that the controller must select the appropriate ALU operation and load the
accumulator from the ALU, rather than directly from the data bus.

Next, let’s turn to the indirect load instruction. Here are the steps re-
quired

e Initiate first memory read. Enable the tristate buffers for the low 12
bits of the IREG and the high four bits of the pPC while raising the
memory enable and read/write signals.

e Complete first memory read. Turn off the memory enable, disable the
tristates and load the returned data value in the IAR.

e Initiate second memory read. Enable the tristate buffers for the 1AR
while raising the memory enable and read/write signals.

e Complete first memory read. Turn off the memory enable, disable the
tristates and load the returned data value in the Acc.

Here is the timing used to carry out these steps.
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clk I I
mem en /[ \____

mem rw

abus Xireq) X iar X
dbus Kram X Yram)C
iar X

acc X

This starts out like the direct load, but the result returned by the first
memory read is stored in the indirect address register, rather than the accu-
mulator. The second memory read, uses the IAR to supply the address. The
result of this second read is then stored in the accumulator.

Now, let’s look at the timing for the store instructions.

direct store indirect store
clk I LTI clk LI LI LI
mem en/ L mem en/ \__/
mem rw \ [ mem rw [
abus abus

dbus dbus _Aram Yacc }_
iar X

Note that the direct store requires just a single clock tick, as we do not have
to wait an extra tick in order to get a reply from the memory. The indirect
store starts out just like the indirect load, but finishes much like the direct
store.

18.3 VHDL Implementation

Now that we’ve worked out the detailed signal timing, all that’s left to do is
look at how the implementation can be done using VHDL. We'll start with
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the entity declaration.

entity cpu is port (
clk, reset: in std_logic;
-— memory signals
en, rw: out std_logic;
aBus: out address; dBus: inout word;
-— console interface signals
pause: in std_logic;
regSelect: in std_logic_vector(l downto 0);
dispReg: out word);
end cpu;

The memory signals constitute the main part of the processor’s interface with
the rest of the system. However, there are several other signals used by a con-
sole component that we’ll describe in the next chapter. The console provides
the “user-interface” to the computer. That is, it supports the display of pro-
cessor registers on the LCD display and the mechanisms for single-stepping
the processor and examining/modifying the contents of memory locations.
The pause signal causes the processor to suspend execution after complet-
ing the current instruction. The regSelect signal is used to select one of the
four processor registers. The dispReg signal is used to pass the value of the
selected register to the console, so that it can be displayed.

The next section defines the processor state, the tick register and the
signals for the registers and ALU.

architecture cpulArch of cpu is
type state_type is (
resetState, pauseState, fetch,
halt, negate,
branch, brZero, brPos, brNeg, brInd,
cLoad, dLoad, iload,
dStore, iStore,
add, andd
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signal state: state_type;
signal tick: std_logic_vector(3 downto 0);

signal pc: address; -- program counter

signal iReg: word; —-- instruction register
signal iar: address; -- indirect address register
signal acc: word; —-- accumulator

signal alu: word; -- alu output

Next, we have several auxiliary signals, that are used internally.

-- address of instruction being executed
signal this: address;
—- address used for direct load, store, add, andd,
signal opAdr: address;
-- target for branch instruction
signal target: word;
begin
opAdr <= this(15 downto 12) & ireg(11l downto 0);
target <= this + ((15 downto 8 => ireg(7))
& ireg( 7 downto 0));

The signal called this is the address of the instruction currently being ex-
ecuted, or that has just completed execution. This may seem superfluous,
since the PC contains the address of the current instruction. However, since
the PC is incremented at the end of the fetch state, its value is generally “off-
by-one” during the execution phase of the instruction. The opAdr signal is
formed from the high four bits of this and the low-order 12 bits of IREG.
This is the address used by several instructions, including direct load, direct
store and add. The target signal is used by the branch instructions. It is
formed by sign-extending the low eight bits of the IREG and then adding this
quantity to this.
Moving on, we hve the following assignments.

-—- connect selected register to console
with regSelect select
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dispReg <= iReg when "00",
this when "O1", -- this instead of pc
acc when "10",
iar when others;
-—- select alu operation based on state

alu <= (not acc) + x"0001" when state = negate else
acc + dbus when state = add else
acc and dbus when state = andd else

(alu’range => ’0°);

The dispReg output selects one of the four processor registers based on the
value of regSelect. Note that in place of the PC, it returns the value of this.
When the processor suspends operation in response to the pause input, it
does so after the instruction has completed execution, when the value in
the PC no longer corresponds to the current instruction.. At this point in
the fetch-and-execute cycle, the IREG shows the current instruction and this
shows its address.

The ALU is defined by the selected assignment statement at the end of this
segment. Because the WASHU-2 has such a limited instruction set, there is not
much to the ALU in this case. In processors with more extensive instruction
sets, the ALU forms a much more substantial part of the processor.

The remainder of the WASHU-2 specification consists of two processes.
The first is a synchronous process that controls the processor’s registers,
including state and tick. The second is a combinational process that controls
the memory signals, using state and tick. We’ll start with the synchronous
process, specifically the part that handles the decoding of instructions.

-- synchronous process controlling state, tick and processor
process (clk)

function decode(instr: word) return state_type is begin
-— Instruction decoding.
case instr(15 downto 12) is
when x"O" =>
case instr(11 downto 8) is
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when x"O" =>
if instr(11 downto 0) = x"000" then
return halt;
elsif instr(11 downto 0) = x"001" then
return negate;

else
return halt;
end if;
when x"1" => return branch;
when x"2" => return brZero;
when x"3" => return brPos;
when x"4" => return brNeg;
when x"5" => return brInd;
when others => return halt;
end case;
when x"1" => return cload;
when x"2" => return dLoad;
when x"3" => return iload;
when x"5" => return dStore;
when x"6" => return iStore;
when x"8" => return add;
when x"c" => return andd;

when others => return halt;
end case;
end function decode;

The instruction decoding is implemented by the decode function, which sim-
ply returns the state for the instruction specified by its argument. Observe
how the case statements directly correspond to the numerical instruction
encodings discussed in the previous chapter.

Next, we hae a simple utility procedure that is invoked at the end of
every instruction.

procedure wrapup is begin
-- Do this at end of every instruction
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if pause = ’1’ then

state <= pauseState;
else

state <= fetch; tick <= x"0";
end if;

end procedure wrapup;

Note that it enters the pause state when the console raises the pause input.
The processor always completes the current instruction before reacting to
the pause input, so the console is expected to hold it high long enough for
any in-progress instruction to complete. Now, let’s move onto the body of
the process.

begin
if rising edge(clk) then
if reset = ’1’ then
state <= resetState; tick <= x"0";
pc <= (others => ’0’); this <= (others => ’0’);

iReg <= (others => ’0’); acc <= (others => ’0’);
iar <= (others => ’0’);
else
tick <= tick + 1; -- advance time by default
if state = resetState then
state <= fetch; tick <= x"0";
elsif state = pauseState then

if pause = ’0’ then
state <= fetch; tick <= x"0";
end if;

elsif state fetch then
if tick = x"1" then
iReg <= dBus;
elsif tick = x"2" then
state <= decode(iReg); tick <= x"0";
this <= pc; pc <= pc + 1;
end if;
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When reset is dropped, the processor enters a transient resetState that simply
initializes the state and tick registers. Whenever the processor is in the pause
state, it checks to see if pause has dropped low, and if so, moves onto the
fetch state. When in the fetch state, the processor performs a memory read.
This is controlled by the asynchronous process responsible for the memory,
which we’ll get to shortly. The memory returns a value on the data bus
during clock tick 1, and this value is stored in the IREG at the end of clock
tick 1. At the end of clock tick 2, the state register is updated, and tick is
set to zero, to take the processor into the execution phase. In addition, the
program counter is updated along with this.

Next, we have the code that implements the execution phase of of the
branch instructions.

else
case state is
-— branch instructions
when branch =>
pc <= target; wrapup;
when brZero =>
if acc = x"0000" then
pc <= target,;
end if;
wrapup;
when brPos =>
if acc(15)=’0’ and acc /= x"0000" then
pc <= target;
end if;
wrapup;
when brNeg =>
if acc(15) = ’1’ then
pc <= target;
end if;
wrapup;
when brInd =>
if tick = x"1" then
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pc <= dBus; wrapup;
end if;

Most of these instructions take just a single clock tick. The one exception is
the indirect branch, which must wait for the memory to return the address of
the branch destination during tick 1. Again, note that the asynchronous pro-
cess is responsible for initiating the memory operation. Here, we simply store
the returned value in the pc. Next, we have the memory load instructions

-— load instructions
when cload =>
acc <= (15 downto 12 => ireg(11))
& ireg(11 downto 0);
wrapup;
when dload =>
if tick = x"1" then
acc <= dBus; wrapup;
end if;
when iload =>
if tick = x"1" then
iar <= dBus;
elsif tick = x"3" then
acc <= dBus; wrapup;
end if;

Observe that at the end of tick 1 of the indirect load, the processor stores
the value returned by the memory in the 1AR, while at the end of tick 3, it
stores the value returned by the second memory read in the Acc. Finally, we
have the store instructions, followed by the arithmetic and logic instructions

-— store instructions

when dstore => wrapup;

when istore =>
if tick = x"1" then iar <= dBus;
elsif tick = x"2" then wrapup;
end if;
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-- arithmetic and logic instructions
when negate => acc <= alu; wrapup;
when add | andd =>
if tick = x"1" then
acc <= alu; wrapup;

end if;
when others => state <= halt;
end case;
end if;
end if;
end if;

end process;

Note that the add and and instructions can share a case since they differ
only in the operation used by the ALU.
Next, let’s look at the asynchronous process that controls the memory.

-- Memory control process (combinational)
process (ireg,pc,iar,acc,this,opAdr,state,tick) begin
-- default values for memory control signals
en <= ’0’; rw <= ’1’;
aBus <= (others => ’Z’); dBus <= (others => ’Z’);
case state is
when fetch =>
if tick = x"0" then
en <= ’1’; aBus <= pc;
end if;
when brInd =>
if tick = x"0" then
en <= ’1’; aBus

N
I

target;
end if;

The default assignments leave the memory disabled. During tick 0 of the
fetch state, the memory enable is raised high, while the value in the pC
is placed on the address bus. (Note, that the read/write signal is high by
default.) During tick 0 of the indirect branch, the memory enable is raised
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high again, while the target signal is placed on the address bus. The next
segment handles the load and arithmetic instructions.

when dLoad | add | andd =>
if tick = x"0" then
en <= ’1’; aBus <= opAdr;
end if;
when iLoad =>
if tick x"0" then
en <= ’1’; aBus <= opAdr;
elsif tick = x"2" then
en <= ’1’; aBus <= iar;
end if;

Observe that two memory reads take place during the indirect load. The
first uses the opAdr signal as the memory address, while the second uses the
IAR. Finally, we have the memory operations for the two store instructions.

when dStore =>
if tick = x"0" then
en <= ’1’; rw <= ’0’;
aBus <= opAdr; dBus <= acc;
end if;
when iStore =>
if tick = x"0" then
en <= ’1’; aBus <= opAdr;
elsif tick = x"2" then
en <= ’1’; rw <= ’0’;
aBus <= iar; dBus <= acc;
end if;
when others =>
end case;
end process;
end cpulrch;

Note that these instructions both drop the read/write signal low in order to
store the value in the accumulator to memory.
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That wraps up our implementation of the WASHU-2 processor. It’s worth
noting that there is not really that much to it. The entire processor specifi-
cation takes less than 250 lines of VHDL, and the circuit implemented by the
spec uses just 106 flip flops and 387 LUTs. This is about 1% of the flip flops
on the prototype board’s FPGA and about 4% of the LUTs. Now, it must
be acknowledged that the performance of this processor is relatively lim-
ited. It can execute only about 10 million instructions per second, while the
processors in our laptops can execute over a billion instructions per second.
Nonetheless, it exhibits the same kind of flexibility as more sophisticated
processors, because it shares with them, the key attribute of programmabil-
ity.



Chapter 19

Supporting Components

In this chapter, we’re going to finish up our discussion of the WASHU-2 pro-
cessor with a look at the supporting components that allow us to interact
with running programs, when the processor is implemented on our prototype
boards.

19.1 Overview of the Complete System

Let’s start with a block diagram that shows all the major system components.

341
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At the left end of the diagram, we have a vgaDisplay component similar
to the circuit presented in an earlier chapter. The main difference is that this
version contains a display buffer with 16 bit words, each containing five pixels.
It shares the bus with the main memory and responds to memory read /writes
for addresses that are greater than or equal to £000. The main memory
component handles reads/writes for addresses up to 3fff. The remaining
memory addresses are ignored, since the prototype boards do not not have
enough memory to support the full range of addresses. Programs running
on the processor can display information on an external monitor simply by
writing the appropriate pixel values into the vgaDisplay component’s display
buffer. The display resolution is one quarter the standard VGA resolution, so
there is a total of 120 lines, where each line has 160 pixels. Since there are
five pixels per word, each line corresponds to 32 words in the display buffer.

The Console component allows us to single-step the processor, to ob-
serve the values in the processor registers or selected memory locations. It
also allows us to write data into memory, providing a crude, but effective
mechanism for supplying data to a running program. The prototype board’s
buttons, knob and switches are used to control the interaction with the pro-
cessor. The LCD display is used to show the registers and memory contents.

Notice that the processor’s memory enable and read/write signals actu-
ally go to the console. Most of the time, the console simply propagates these
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signals, but in order to implement the memory snooping functions, the con-
sole must be able to take control of the memory away from the processor.
Routing these signals through the console allows it to do that. The console
uses the pause signal to suspend the normal processor operation when in
single-step mode. This is also used to interrupt the processor in order to
perform the memory snooping functions. The regSelect and cpuReg signals
are used by the console to obtain the current values of the the processor’s
registers, so that they can be shown on the LCD display.

Before proceeding to the implementation of the console, let’s take a look
at a simulation that demonstrates its various functions. This first segment
shows how turning the knob controls the snoopAdr and snoopData registers.

memory E

B mri0[15:0] -1 : -1

B mr11[15:0] 0 ! 0

console E

1§ btnp) 0 : [

L5 btn[2) 0 '

1 btnp) 0 i

B knob[2:0] 0 0669-)0@9 0 XBEEX 0
2§ snoopadr(15:0] 0010 000e X 000f X 0010

8§ snoopdata[15:0] || 1 : 0 ¥ 1
_‘,13 snoopmode 1 E |

_‘,13 pause 0 :

Note where the snoopMode changes from 0 to 1, causing the role of the
knob to change. Also, observe the button press about halfway through the
segment. This triggers a memory write, which we see in the next segment,
shown below.
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memory E

5§ mr10[15:0] -1 : 1 X 1 ) S
B mr11[15:0] 1 i 0 X 1
console E

1§ btn) 0 |

1} otn2 0 '

1 btnp) 0 i

B4 knob[2:0] 0 : 0

8§ snoopadr(15:0] o010 |f 0010

8§ snoopdata[15:0] | 1 ' 1

U,»} snoopmode 1 E

U,»} pause 0 r]_

Note that the pause signal goes high at the start of this segment. At
the end of the pause interval, the value in the snoopData register is written
to memory location 0010. The subsequent changes to memory locations
0010 and 0011 are caused by the running program, which adds the value in
location 0010 to the value in location 0011, then changes the value in 0010
back to —1. The next segment demonstrates the single-step feature.
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At the start of this segment, the processor is paused. Then, button 3
is pressed, causing the pause signal to drop for one clock tick, allowing the
processor to start the next instruction. Once started, it continues until the
instruction has completed, then pauses again. Near the end of this segment,
button 2 is pressed, causing the pause signal to drop and normal operation
to resume.

19.2 Implementing the Console

In this section, we’ll go through the details of the console implementation.
Let’s start with the entity declaration.
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entity console is port(
clk: in std_logic;
resetOut: out std_logic;
-- inputs from user
btn: in buttons;
knob: in knobSigs;
swt: in switches;
-- memory bus signals
memEnQut, memRwOut: out std_logic;
aBus: out word;
dBus: inout word;
—-—- processor interface signals
memEnIn, memRwIn: in std_logic;
pause: out std_logic;
regSelect: out std_logic_vector(l downto 0);
cpuReg: in word;
-- signals for controlling LCD display
lcd: out lcdSigs);
end console;

The resetOut signal is just a debounced version of button 0. Next, we have
component declarations, and a number of signal declarations.

architecture al of console is

component debouncer .. end component;
component knobIntf .. end component;
component lcdDisplay .. end component;

signal dBtn, prevDBtn: buttons;
signal reset: std_logic;

-- single step control signal
signal singleStep: std_logic;

-- local signals for controlling memory
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signal memEn, memRw: std_logic;

-- signals for controlling snooping

signal snoopAdr: address; signal snoopData: word;

signal snoopCnt: std_logic_vector(6*operationMode + 9 downto 0);
signal snoopMode, snoopTime, writeReq: std_logic;

-- signals for controlling input from knob, buttons
signal tick, clockwise : std_logic;
signal delta: word;

The singleStep signal is high whenever the processor is in single step mode.
During periods when snooping operations are being performed, the internal
memory control signals memEn and memRw determine the values of the
output signals memEnQOut and memRwOut.

The snooping functions are controlled using the snoopAdr and snoop-
Data registers, plus a counter called snoopCnt. The snoopMode signal is
controlled by switch number 3. When it is low, the console is in “snoop out”
mode, meaning that the snoopData register shows the value in the memory
location specified by snoopAdr. In this mode, the knob controls the value
of snoopAdr. When snoopMode is high, we’re in “snoop in” mode, meaning
that the value in snoopData is written to memory whenever the user presses
button number 1. In this mode, the knob controls the value of snoopData.

The snoopTime signal goes high periodically for an interval lasting 16
clock ticks. During this interval, the processor pause signal is high, caus-
ing the processor to suspend execution after it completes the instruction
currently in progress. At the end of the snoopTime interval, the console
either loads the snoopData register from the memory location specified by
snoopAdr or it writes the value currently in snoopData to that memory lo-
cation. The writeReq signal is raised when the user presses button 1 on the
prototype board, to request that the value in snoopData be written to mem-
ory. The memory write does not actually take place until the next snoopTime
interval. The tick, clockwise and delta signals come from an internal instance
of the knob interface component we have used before. The next few signals
are used to control the updating of the LCD display.
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-- counter for controlling when to update lcdDisplay

constant CNTR_LENGTH: integer := 8 + operationModex*12;

signal lcdCounter: std_logic_vector (CNTR_LENGTH-1 downto 0);

signal lowBits: std_logic_vector (CNTR_LENGTH-6 downto 0);

-- signals for
signal update:
signal selekt:
signal nuChar:

controlling lcdDisplay
std_logic;

std_logic_vector(4 downto 0);
std_logic_vector(7 downto 0);

type hex2asciiMap is array(0 to 15) of character;
constant hex2ascii: hex2asciiMap

20, 3 =>3", 4

(0=>0, 1="1, 2=> => ’4’,

5=>°5", 6=>6", 7 =>°7, 8=>8, 9=>79,
10 => ’a’, 11 => ’b’, 12 => ’c’, 13 => ’d’, 14 => ’e’,
15 => 7f%);

The console uses an instance of the lcdDisplay module we’ve used previously,
so these signals should look familiar. Next, let’s move onto the body of the
architecture.

begin
-- connect all the sub-components
db:  debouncer generic map(width => 4)
port map(clk, btn, dBtn);
kint: knobIntf port map(clk, reset, knob,
tick, clockwise, delta);
disp: lcdDisplay port map(clk, reset, update,
selekt, nuchar, lcd);
reset <= dBtn(0); resetOut <= reset;

-- process for controlling single step operation
process(clk) begin
if rising_edge(clk) then
prevDBtn <= dBtn;



19. Supporting Components 349

if reset = ’1’ then
singleStep <= ’0’;
else
if dBtn(3) > prevDBtn(3) then
singleStep <= not singleStep;
elsif dBtn(3) = ’1’ then
singleStep <= ’1’;
elsif dBtn(2) > prevDBtn(2) then
singleStep <= ’0’;
end if;
end if;
end if;
end process;

The single step process determines the value of the singleStep signal, based
on button pushes from the user. Button 3 is pressed either to enter single-
step mode, or to execute one instruction at a time. Whenever the processor
is not in single step mode, pressing the button causes it to enter single step
mode. If the processor is already in single step mode when the button is
pressed, it will leave single step mode for a single clock tick before returning
to single step mode. This allows the processor to start the next instruction,
and once it starts, it will continue until that instruction has been completed.
Whenever button 2 is pressed, the processor leaves single step mode.
Next we have assignments that control several different signals.

memEnOut <= memEnIn or memEn;

memRwOut <= memRwIn and memRw;

snoopTime <= ’1’ when snoopCnt(snoopCnt’high downto 4) =
(snoopCnt’high downto 4 => ’17)

else ’07;
pause <= singleStep or snoopTime;
snoopMode <= swt(3); -- when low, we’re in "snoop out" mode

-- when high, we’re in "snoop in" mode

The memory control outputs are a combination of the memory control signals
received from the processor and the internal memory control signals used
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when performing snooping functions. Either the processor or the console can
raise the memFEnQut signal. Similarly, either can pull the memRwOQOut signal
low. The console never attempts to use the memory while the processor is
executing instructions, so most of the time the signals from the processor are
simply propagated through to the memory.

The snoopTime signal is asserted periodically, based on the value of
snoopCnt and remains high for 16 clock ticks at a time. The pause signal is
raised high whenever we're in single step mode or the snoopTime signal has
been raised.

Next, we’ll look at the implementation of the snooping functions. There
are two processes that control snooping. The first is a synchronous process
that controls the snooping registers, plus the writeReq signal. The second is
a combinatorial process that defines the memory control signals.

—-- process that controls snoop registers and writeReq
process(clk) begin
if rising edge(clk) then
if reset = ’1’ then
snoopAdr <= (others => ’0’);
snoopData <= (others => ’0°);
snoopCnt <= (others => ’0’);
writeReq <= ’0’;
else
snoopCnt <= snoopCnt + 1;
-— raise writeReq when button pushed
if dBtn(1) > prevDBtn(1l) and snoopMode = ’1°

then
writeReq <= ’17;
end if;
-— load snoopData at end of snoopTime period
if snoopTime = ’1’ and snoopMode = ’0’ then

if snoopCnt(3 downto 0) = x"d" then
snoopData <= dBus;
end if;
end if;
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if writeReq = ’1’ and snoopTime = ’1’ and
snoopCnt (3 downto 0) = x"f" then
writeReq <= ’07;
end if;
-- update snoopAdr or snoopData from knob
if tick = ’1’ then
if snoopMode = ’0’ then

if clockwise = ’1’ then
snoopAdr <= snoopAdr + delta;
else
snoopAdr <= snoopAdr - delta;
end if;
else

if clockwise ’1’ then
snoopData <= snoopData + delta;

else
snoopData <= snoopData - delta;
end if;
end if;
end if;
end if;

end if;
end process;

Note that the writeReq signal is raised high when a button is pushed and
snoopMode is high, meaning that the console is in “snoop in” mode. Next,
observe that when the console is in “snoop out” mode, the value on the
data bus is stored in snoopData near the end of the snoopTime interval.
The actual memory read is controlled by a separate process that we’ll get
to shortly. Also, observe that the writeReq signal is cleared at the end of
the snoopTime period. The last part of this process simply updates either
snoopAdr or snoopData, depending on the value of snoopMode.
Next, we have the process that actually generates the memory signals.

—-—- process controlling memory signals for snooping



352 Designing Digital Circuits (C) Jonathan Turner

process (snoopTime, snoopCnt, snoopData, snoopAdr) begin
memEn <= ’0’; memRw <= ’1°;
aBus <= (others => ’Z’); dBus <= (others => ’Z’);
if snoopTime = ’1’ then
-- allow time for in-progress instruction to finish
if snoopCnt(3 downto 0) = x"c" then
memEn <= ’1’; aBus <= snoopAdr;
elsif writeReq = ’1’ and
snoopCnt (3 downto 0) = x"f" then
memEn <= ’1’; memRw <= ’0’;
aBus <= snoopAdr; dBus <= snoopData;
end if;
end if;
end process;

Observe that memory operations are performed only near the end of the
snoopTime interval, after the processor has had enough time to complete its
current instruction. The read operation is always performed, but as we saw
earlier, the value returned by the memory is only stored in the snoopData
register when snoopMode is low. If a memory write has been requested, it is
performed during the last clock tick of the snoopTime interval.

Next, we have the part of the console that controls the LCD display.

—-- process to increment lcdCounter
process(clk) begin
if rising_edge(clk) then

if reset = ’1’ then lcdCounter <= (others => ’0’);
else lcdCounter <= lcdCounter + 1;
end if;

end if;

end process;

-- update LCD display to show cpu and snoop registers
-- first row: ireg acc snoopAdr
-- second row: pc iar snoopData
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lowBits <= lcdCounter (CNTR_LENGTH-6 downto 0);
update <= ’1’ when lowBits = (lowBits’range => ’0’)
else ’07;
selekt <= lcdCounter (CNTR_LENGTH-1 downto CNTR_LENGTH-5);

regSelect <= "00" when selekt <= slv(4,5) else
"10" when selekt <= slv(10,5) else
"01" when selekt <= slv(20,5) else
"11";

The selekt signal selects one of the character positions on the LCD display.
The circuit displays the IREG in the first four positions of the first row (selekt
in the range 0 to 3); it displays the accumulator in the middle four positions
of the first row, (selekt in the range 6 to 9); it displays the PC in the first
four positions of the second row, (selekt in the range 16 to 19); and finally,
it displays the IAR in the middle four positions of the second row, (selekt in
the range 22 to 25). The regSelect signal chooses the appropriate processor
register for each range of selekt values.

The next process determines the value of the nuChar signal. This specifies
the character to be written on the LCD display at the position specified by
selekt. During each clock tick, it selects a hex digit from one of the processor
registers, or from snoopAdr or snoopData. The selected hex digit is converted
to the corresponding ASCII character and this character is then converted to
type byte (the ¢2b function does this trivial type conversion).

process (cpuReg, snoopAdr, snoopData, selekt) begin
case selekt is
-— high nibble of processor registers
when "00000" | "00110" | "10000" | "10110" =>
nuChar <= c2b(hex2Ascii(int(cpuReg(15 downto 12))));
-- second nibble of processor registers
when "00001" | "00111" | "10001" | "10111" =>
nuChar <= c2b(hex2Ascii(int(cpuReg(11l downto 8))));
-- third nibble of processor registers
when "00010" | "01000" | "10010" | "11000" =>
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nuChar <= c2b(hex2Ascii(int(cpuReg(7 downto 4))));
-- low nibble of processor registers
when "00011" | "01001" | "10011" | "11001" =>

nuChar <= c2b(hex2Ascii(int(cpuReg(3 downto 0))));

-- nibbles of snoopAdr register

when "01100" => nuChar <= c2b(hex2Ascii(int(
snoopAdr (15 downto 12))));
when "01101" => nuChar <= c2b(hex2Ascii(int(
snoopAdr (11 downto 8))));
when "01110" => nuChar <= c2b(hex2Ascii(int(
snoopAdr (7 downto 4))));
when "01111" => nuChar <= c2b(hex2Ascii(int(

snoopAdr (3 downto 0))));
-- nibbles of snoopData register
when "11100" => nuChar <= c2b(hex2Ascii(int(
snoopData(15 downto 12))));
when "11101" => nuChar <= c2b(hex2Ascii(int(
snoopData(11 downto 8))));
when "11110" => nuChar <= c2b(hex2Ascii(int(
snoopData(7 downto 4))));
when "11111" => nuChar <= c2b(hex2Ascii(int(
snoopData(3 downto 0))));
-- space characters everywhere else
when others => nuChar <= c2b(’ ’);
end case;

end process;

end al;

This brings us to the end of our presentation of the WASHU-2 processor and
its supporting components. It’s interesting to note that the amount of VHDL
code needed to specify the console is actually a bit larger than the amount
that was needed to specify the processor. The amount of actual hardware
needed is roughly comparable. While the processor requires 106 flip flops
plus 387 LUTSs, the console uses 123 flip flops and 362 LuTs. The complete
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system, including vgaDisplay and the main memory component uses 278 flip
flops and 935 LUTs.
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Chapter 20

Memory Components

In this chapter, we’re going to take a closer look at how memory components
are implemented, and the factors that limit their performance. In the next
two chapters, we’ll see how the performance of memory systems affects the
performance of programmable processors.

20.1 SRAM Organization and Operation

Let’s start with a reminder of how a memory component operates. The fig-
ure below shows a typical asynchronous memory component.

data_in —

address —

WN = O

—— data_out

enable —»

W —>

Conceptually, the memory is just an array of numbered storage locations,
each capable of storing a word of some fixed size. The numbers used to iden-
tify the storage locations are referred to as the addresses of those locations.
This type of memory is referred to as a Random Access Memory (RAM) be-
cause we can access different memory locations in arbitrary order with no

357
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impact on performance.

The RAM component has an enable input, a read/write input, an address
input and separate data input and output signals. To perform a memory read
operation, we provide an address, then raise the enable and read /write signals
high. The component then responds with the value stored at the specified
location. To perform a memory write, we provide an address and data value,
raise the enable signal and then drop the read/write signal low. This causes
the memory component to store the specified value in the specified location.

The figure below shows an implementation of a small static RAM(SRAM).

data_in
P ariver
—GV YAV, YAV, NAY;
|| T T T T T T T T
j|] o] Per] e
o T L
address—->§ _J_l_[o[><]°:|_'_b J—l—[%o]_'—‘_ _h_[,[z]o]_'—L- JJ_L|;[><]°:|_'J__L
2 2T T T T
1L L L L L L 1L L
/ﬁ_) storage yﬁi

R

cell
sense data_out
amplifier

This particular SRAM stores four words, each of which is four bits long. At
the center of the diagram is an array of storage cells, each of which stores
a single bit of data. Each storage cell contains a pair of inverters and is
accessed using a pair of transistors. When the transistors are turned off,
the cell is isolated, and the inverter outputs have complementary values.
Either the top inverter’s output is 0 and the bottom inverter’s output is
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1, or the top inverter’s output is 1 and the bottom inverter’s output is 0.
These two possibilities are referred to as the storage states of the memory
cell. Notice that each memory cell requires a total of six transistors. We
could also implement a storage cell using an SR-latch with a control input.
Such a circuit can be implemented with four NAND gates, giving a total of 16
transistors. Thus, the SRAM cell uses less than half the number of transistors
as a latch-based storage cell.

Now, it’s important to keep in mind that typical memory components
have much larger storage arrays than the one shown here. It’s common to
have hundreds of rows and columns a single storage array. We’re showing a
very small example to illustrate the essential features, but keep in mind that
in real memory components, the scale is very different.

To read a word from the memory, we supply an address and raise the
enable and read/write signals high. This causes one of the outputs of the
row decoder to go high, which causes the access transistors in the storage
cells in one row to turn on. When the transistors turn on, the inverters
in the storage cell are connected to the vertical data lines in each of the
four columns. Because the inverters in each cell have complementary output
values, one of the two data lines in each column will go high, while the other
will go low. Now, because a typical storage array has hundreds of rows and
columns, there is a large capacitance associated with the vertical data lines.
Recall that large capacitances lead to relatively slow signal transitions. To
make matters worse, the transistors used in the storage cells are kept as small
as possible to maximize storage density, and small transistors have relatively
high resistance, making the signal transitions even slower. To speed up the
read-out process, there is a sense amplifier at the bottom of each column,
which amplifies the difference in voltage on the two data lines. This makes
it unnecessary to wait until the inverters in the storage cell are able to drive
the voltage on the vertical lines all the way high or low. In this example, the
sense amplifiers have tristate outputs which are controlled by the memory
enable input.

To write a word to memory, we provide address and data, raise the enable
and then drop the read/write signal low. This allows the input data to
flow through the tristate column drivers to the vertical data lines in each
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column. What happens when the column drivers for a given column are
changing the value stored in the selected cell within that column? When
the access transistors for that cell are turned on, the column drivers and the
inverters within the cell have their outputs connected together, through the
access transistors. Normally, we would not want to have two different gates
simultaneously trying to drive the same wire, but this is an exception to the
usual rule. The transistors in the column drivers are designed to be much
more powerful than the transistors in the inverters (essentially this means
that the on-resistance of the column drivers’ transistors are much smaller
than the on-resistance of the transistors in the inverters). This allows the
column drivers to quickly force the pair of inverters to switch from one storage
state to the other.

Now, let’s take a closer look at the operation of the memory, starting
with the read operation.

Read cycle
address address valid X777/
enabld AN

access time——»

r/w’
d_outV/////[11 T 7T

data valid

Note that there is a delay between the time the enable signal goes high and
the time that the data is available at the output. This delay is a combination
of the combinational circuit delay in the row decoder and the time required
for the inverters in the selected storage cells to drive the voltages on the
vertical data lines far enough apart so that the outputs of the sense amplifiers
are all the way high or all the way low. This interval is called the access time
of the memory. Any circuit that uses the memory must wait until this much
time has passed before attempting to use the output of the memory. Also
note that the address inputs must remain stable while the memory access is
taking place. Now, let’s take a look at the write operation.
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Write cycle
address address valid 777]
t,

enable t, )
| |
r/w’ l/_ —
data_in /77 data valid 7777

The timing for the write is a little more complicated than the timing for
the read. Here, it’s important that the address is valid and the enable is high
before the read/write signal goes low. Also, the read/write signal must go
high again before the address lines can change and the enable drops low. The
time periods labeled 1, to and t3 are the minimum allowed times between
the indicated signal transitions. If these constraints are not adhered to, it’s
possible that a memory write may affect some memory location other than
the one that we’re trying to change. The sum of the three time intervals is
called the memory cycle time.

Together, the access time and the cycle time characterize the performance
of the memory component. The access time imposes a limit on how often we
can read from the memory. The cycle time imposes a limit on how often we
can write.

Next, let’s look at a simulation of the operation of an asynchronous RAM.
We'll start with a functional simulation that does not include circuit delays.

read
cycles
s [ ] [ 1

‘dbusout
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Let’s start with the read cycles. When the enable first goes high, the address
starts out at 0000 and then changes to 0001. The data output returns stored
values AAAA and 5555. When the adrress changes to 0002 the output becomes
XXXX because this memory location was not initialized in the simulation.
Notice that during the write cycles, the address is only changed when the
read/write signal is high. Here’s a closer look at the first write cycle.

1#dbusout

‘ details
i of write 4iE

We see that before the read /write signal goes low, the data output shows the
value currently stored in the memory. When the read/write signal drops,
the output signal follows the input. The new value is retained when the
read/write signal goes high again.

To get a more realistic view of the operation of the memory, let’s look at
a timing simulation.

1/dbusout

In the read cycles, notice that there is now a delay from the time the enable
goes high or the address changes until the output becomes stable. A similar
observation applies to the write operations. Here’s a closer look at the read.



20. Memory Components 363

Read C cl Detail

For the second read, we observe a delay of about 15.5 ns from the time
the address changes to the time that the output becomes stable. This implies
that the access time for this memory must be at least 15.5 ns. Here’s a closer
look at the write.

Write Cycle Detail

Here, we observe a delay of about 12.7 ns from the time the read/write
signal goes low until the data output reflects the input. This implies that
the memory cycle time must be at least this long.

Before leaving this section, we note that modern memory components
are often designed to operate synchronously, rather than asynchronously. A
synchronous memory uses a clock, and stores the provided address and data
in an internal register at the start of a memory operation. During a memory
read, the output from the memory array is stored in an output register on
the next clock tick.
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20.2 Alternate Memory Organizations

In the last section, we noted that the storage arrays in real memory com-
ponents may have hundreds of rows and columns. If we simply scaled up
the memory organization used in the last section, this would mean that our
memory component would have hundreds of data inputs and outputs. This
is usually not very practical, so real memory arrays are typically structured
so that each row in the array contains bits belonging to multiple words. For
example, a memory with a 256 x 256 array of storage cells might store 8
words of 32 bits apiece in each row (or 32 words of 8 bits, or 16 words of 16
bits, and so forth). The figure below illustrates how this is done. It shows a
memory that stores eight words of two bits each.

data_in
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en

et 1 |
- 0 ‘j,J_ i §7J_ L <7J_ 1 <7J_ 1L
it v s
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Because the memory stores eight words, it requires a total of three address
bits. T'wo of these are used by the row decoder, as before. The third bit goes
to the column decoder at bottom left. The outputs of the column decoder
are used to enable the sense amplifiers in alternate columns, when reading.
They are also used to enable the column drivers in alternate columns when
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writing.

Let’s consider a larger example, to get a more complete understanding
of how such memory components are constructed. Let’s suppose we want
to implement a memory that stores 128 bytes, that is, the “words” in the
memory are each eight bits long. Since the total amount of memory required
is 128 x 8 = 1024, we can implement this using a square storage array with
32 rows and 32 columns (32 x 32 = 1024). Now, because we have 128 = 27
words, we need 7 address bits. Since each row in the array contains 32 bits,
each will store four words. Consequently, the row decoder will use the first
five address bits and the column decoder will use the remaining two.

We can generalize this discussion to handle SRAMs of arbitrary size. Let’s
suppose we want to implement a memory with n words of w bits apiece. For
simplicity, we will assume that both n and w are powers of 2 and that the
total number of bits N = nw is an even power of 2, say N = 22¥ where k is
an integer. The number of rows and columns are both equal to 2* and so k
address bits are needed by the row decoder. Since the total number of address
bits is log, n, the number of bits used by the column decoder is (log, n) — k.
The number of words per row is 2% Jw. In our previous example, n = 128,
w =8, N = 1024 and k = 5, and the row decoder used k = 5 address bits
and the column decoder (logy 128) — 5) = 2. The number of words per row
is 2°/8 = 4.

So far, our example memory components have used separate data inputs
and outputs. For single port memory components, it is more typical to use
bidirectional data lines, in order to reduce the number of 10 signals required.
This is straightforward to implement, requiring only that the output data
paths be controlled by tristate buffers.

Several of the circuits we have studied use memory blocks that are built
into the FPGA on our prototype board. These FPGAs are equipped with 20
configurable block rams. These can be configured for a variety of different
word sizes, making them flexible enough to use in wide range of applications.
They can also be combined to form larger memory blocks. The figure below
illustrates how a larger memory can be constructed using smaller memory
components as building blocks.



366 Designing Digital Circuits (C) Jonathan Turner

SRAM SRAM SRAM SRAM

16Kx16 16Kx16 16Kx16 16Kx16

= g g E et

ECD%'U ECIJ%'U Ewg'c ECIJ%'U

rw A 45 4 IEY ) A 44 4 444 4
address

v A\ 4 A 4 A 4

!

data

In this example, we are using 16K x 16 building blocks to construct a
64K x 16 memory. The decoder at the left uses two of the 16 address bits,
while the remaining 14 go to the memory components. The outputs of the
decoder go to the enable inputs of the memory components, so only one of
them will be enabled at any one time. There are a variety of other ways we
could construct this memory. For example, if we had memory blocks that
were 64K x 4, we could use each memory block to provide four bits for each
word of the 64K x 16 memory being constructed. This version is a little
simpler, as it does not require an external decoder.

20.3 Dynamic RAMs

We noted earlier that the static RAM storage cell uses just six transistors,
as opposed to 16 for a storage cell constructed from an Sr-latch. Dynamic
RAMs reduce the storage cell to just a single transistor, plus a capacitor, as
shown in the diagram below.

select
storage
/capacitor

Many copies of this storage cell can be assembled into storage arrays much
like those discussed earlier. The horizontal bit lines control the selection

data
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transistors in the storage cells and the vertical data lines connect to the
lefthand terminal of the transistor. Unlike in the SRAM case, a DRAM storage
array has just one vertical data line per column and one column driver. To
store data into a particular storage cell, we turn on the selection transistor
(by providing the appropriate address bits to the row decoder) and enable
the column driver for the column containing the storage cell (by providing
the appriate address bits to the column decoder). This will either charge the
cell’s storage capacitor (storing a “1”) or discharge it (storing a “0”).

Now the readout process for DRAMs is a little more complicated than for
SRAMs. The first step in the process is to precharge the vertical data lines in
the storage array to an intermediate voltage V,.r that is between ground and
the power supply voltage. We then supply an address, which turns on the
selection transistors in the desired row of the storage array. This causes one
storage cell in each column to be connected to the vertical data line for that
column. If the storage cell stores a “1”, the positive charge on the storage
capacitor will flow out onto the vertical data line, raising the voltage level on
the data line. If the storage cell stores a “0”, charge will flow into the storage
cell’s storage capacitor from the vertical data line, lowering the voltage on the
data line. Now recall that the data lines in a storage array have an associated
capacitance of their own. In large arrays, this capacitiance is much larger
than the capacitance of the storage cells. Consequently, when we connect the
storage array to the vertical data line (by turning on its selection transistor),
the voltage on the data line changes by a very small amount. The sense
amplifier for the column compares the voltage on the data line to Vi and
amplifies this voltage difference to produce the output bit for that column.

Now, an unfortunate side-effect of the read-out process is that in order to
read the stored bit, we have to change the amount of charge on the storage
capacitor, effectively destroying the stored value. In order to maintain the
data following a read operation, it’s necessary to write the data back to
the storage array after reading it. This is done automatically by DRAM
components, but it does have a direct impact on their performance. This
property of DRAM arrays is referred to as destructive read-out.

Now, DRAMS have another unfortunate property, which is that the in-
formation stored in a DRAM array can “decay” over time. This happens
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because real-world capacitors cannot maintain a charge for an indefinite pe-
riod. Small leakage currents within a capacitor causes the charge on the
capacitor to dissipate after a period of time, effectively erasing any stored
information. To prevent information from being lost, DRAM arrays must be
refreshed periodically. This means that the information stored in each row
must be read out (before the charge on the storage capacitors has dissipated),
and rewritten (restoring the full charge on the capacitors). Modern DRAM
components do this refresh automatically during periods of inactivity.

We can now explain where the adjectives static and dynamic come from.
A dynamic memory is one in which the stored information can decay over
time, while a static memory is one in which the stored data remains stable
so long as the circuit is powered on. This may seem a little counter-intuitive
as we normally think of “dynamic” as a positive attribute. Here it is not.

Before wrapping up this chapter, let’s briefly consider the relative advan-
tages and disadvantages of SRAM and DRAM. The big advantage of DRAM
is that because it has such a small storage cell, it’s possible to build DRAM
memory chips that have much larger storage capacities than can be done
using SRAM. For this reason, DRAM is generally used for the main memory
in modern computer systems. The main drawback of DRAM is that it takes
considerably more time to access data stored in a DRAM than it does to access
data stored in an SRAM, and this limits the system performance that can be
achieved in systems that use DRAM. In a later chapter, we’ll see that while
modern computer systems use DRAM as their primary storage mechanism,
they also use smaller SRAMS to boost overall system performance.



Chapter 21

Improving Processor
Performance

In this chapter, we’re going to examine the factors that limit the performance
of programmable processors and look at some of the ways that processor
designers have tried to overcome these limits.

21.1 A Brief Look Back at Processor Design

In the early days of computing, programmable processors were necessarily
fairly simple, because the capabilities of the available circuit technology made
it expensive to implement processors that required large numbers of logic
gates. Processors of that period often had quite limited instructions sets
that were not much more sophisticated than that of the WASHU-2.

As technology improved through the sixties and seventies, it became pos-
sible to implement processors with more elaborate instruction sets. This led
to better performance, since a single instruction could often do the work
of several instructions in earlier computers. Instructions for integer multi-
plication and division, while consuming a significant number of logic gates,
replaced time-consuming arithmetic subroutines, significantly speeding up
numerical calculations. The later introduction of hardware floating point

369
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units had an even more dramatic impact on scientific computations. This
period also saw the introduction of processors with growing numbers of gen-
eral purpose registers, allowing programmers to eliminate many of the load
and store operations requred in processors with a single accumulator, like
the wASHU-2.

Throughout the 1970s and 1980s a major focus of processor designers
was improving performance through the design of more effective instruction
set architectures. In large part this process was driven by the rapid improve-
ments in digital circuit technology. As it become practical to integrate large
numbers of gates on a single chip, designers looked for ways to use the new
resources to improve performance. Adding new instructions was often seen
as the best way to take advantage of the growing capabilities. This quickly
led to instruction set architectures with hundreds of instructions, some of
which served highly specialized purposes.

In the 1980s there was a growing recognition that the expansion of in-
struction sets had gotten out of hand. The vast majority of software was
now being written in high level languages rather than assembly language,
and compiler writers found it difficult to take advantage of many of the more
specialized instructions. This led to the introduction of so-called Reduced
Instruction Set Computers (R1SC). Proponents of the RISC approach argued
that instructions should be included in instruction sets only if this could
be justified by better performance when executing real software, or at least
benchmarks that reflected the characteristics of real software. They argued
that excess instructions do impose a cost, because they consume chip area
that might better be used for some other purpose and they tend to slow
down the achievable clock rate, which affects the performance of all instruc-
tions. During this period, processor design became much more sophisticated,
with alternate architectures evaluated in a rigorous way through extensive
simulations.

There was another issue that emerged as a major concern for processor
designers in this time period, and that was the growing gap between the
time it took to execute an instruction and the time it took to retrieve a value
from memory. In the 1970s, processors might execute one instruction every
microsecond and the time needed to get a value from memory was roughly
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comparable. As processor clock rates increased throughout the 1980s and
1990s, the situation changed dramatically. Modern processors can execute
instructions in less than one nanosecond, but the time needed to retrieve
data from main memory can exceed 100 ns. While memory technology has
improved dramatically since the 1970s, most of that improvement has been
in the form of higher memory density. Memory speeds have also improved,
but nearly so much as processor speeds.

This has created a very different kind of performance challenge for pro-
cessor designers, and the principal way they have found to address it is to
avoid main memory accesses whenever possible. One way to avoid memory
accesses is to increase the number of processor registers, and indeed mod-
ern processors have hundreds of general purpose registers. This eliminates
most memory accesses for program variables, because those variables can be
kept in registers. A more sophisticated way to avoid main memory accesses
is to equip processors with small on-chip memories called caches. Because
caches are small and close to the processor, they can be much faster than
the main processor memory which is implemented using separate memory
components. Caches are used to hold copies of data from selected mem-
ory locations, allowing programs to avoid main memory accesses whenever a
copy is available in the cache. It turns out that this technique is remarkably
effective, for the vast majority of real software.

In the remainder of this chapter, we will focus on how processor perfor-
mance can be improved by expanding instruction set architectures. In the
next chapter, we’ll discuss the role of caches in some detail, and we’ll touch
on some of the other ways that processor designers have sought to improve
performance.

21.2 Alternate Instruction Set Architectures

A processor’s instruction set architecture is essentially the set of processor
features that directly affect the way programs are written. This includes the
instructions themselves, but also the number and specific characteristics of
the processor’s registers.

In a processor with multiple general purpose registers, the instruction
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set architecture must provide a way to specify which register (or registers)
is to be used to perform a given operation. Processors are often designed
to make it easy for programs to execute many instructions using only values
stored in registers. This requires instructions whose operands are obtained
from registers and whose result is stored in a register. Indeed, in most
modern processors, the only instructions that access memory are load and
store operations. All others operate only on values in registers.

Modern instruction set architectures generally have instructions to handle
all the standard arithmetic and logical operations (addition, subtraction,
multiplication, division, and, or, xor, shift, etc), since these operations are
used frequently by most software. Frequently, each instruction will come in
several variants to handle data of different sizes (8 bits, 16, 32 and 64). Many
(but not all) also include hardware to perform floating point operations.

Since many programs process data using pointers, processors commonly
include instructions to facilitate the efficient use of pointers. This may in-
clude incrementing or decrementing a pointer as part of an instruction that
accesses data through a pointer.

Let’s consider an architecture that illustrates some of these features. The
WASHU-16 is a processor with 16 general-purpose registers, which take the
place of the single accumulator in the WASHU-2. Like the WASHU-2, it is a 16
bit processor, but unlike the WASHU-2 it includes some instructions that re-
quire multiple words. Multi-word instructions require extra processing steps,
but they do give processor designers a lot more flexibility than architectures
in which all instructions must fit in a single word.

Let’s start by looking at the constant load instruction.

otdd constant load. R[t]=ssdd (sign-extended)

The constant load instruction is identified by a 0 in the first hex digit. The
second hex digit (indicated by the ‘¢’ in the summary) specifies one of the 16
general purpose registers (the target) of the load, while the last two hex digits
(indicated by “dd”) specify a constant value. This constant is sign-extended,
then stored in the specified register.

Next, let’s consider the direct load.

1txx aaaa direct load. R[t]=M[aaaal
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This is our first two word instruction. It is identified by a 1 in the first hex
digit. The second digit specifies the target register, as with the constant
load, and the second word of the instruction specifies the memory address
of the value to be loaded. Note that the last two hex digits of the first word
are not used.

Next, we have an indexed load instruction, which is used to access data
using a pointer. This takes the place of the indirect load in the WASHU-2.

2tsx indexed load. R[t] = M[R[s]+x]

The instruction is identified by the 2 in the first hex digit. The next two
digits specify the target and source registers respectively. In this case, the
source register usually contains the address of the value to be loaded. To
make the instruction a little more flexible, the last hex digit is added to
R[s] to obtain the memory address. This is a handy feature for languages
that use a stack to store local variables and arguments to sub-programs. A
typical implementation of such languages uses two general-purpose registers,
a stack pointer and a frame pointer. The frame pointer points to the first
stack location used by the subprogram at the top of the stack. The local
variables of that subprogram can then be accessed by adding small constant
offsets to the frame pointer.

Because pointers are often used to access memory locations one after
another in sequence, the WASHU-16 includes indexed load instructions that
also increment or decrement the pointer register.

3tsx indexed load, increment. R[t]=M[R[s]+x]; R[s]++;
4tsx indexed load, decrement. R[s]-—-; R[t]=M[R[s]+x];

In the WASHU-2, we must use three instructions to advance a pointer, after
accessing memory using it. Here, the increment requires no extra instruc-
tions. Note that the decrement version does the decrementing before the
memory access. This is designed to facilitate use of the register as a stack
pointer. Often processors have instructions with both pre-increment, post-
increment and pre-decrement, post-decrement variants. Here, we are limiting
ourselves to two variants, for simplicity.
The store instructions are directly comparable to the load instructions.
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5sxx aaaa direct store. M[aaaal=R[s]

6tsx indexed store. M[R[t]+x]=R[s]
Ttsx indexed store, increment. M[R[t]+x]=R[s]; R[t]++;
8tsx indexed store, decrement. R[t]--; M[R[t]+x]=R[s];

Next, let’s look at the arithmetic instructions.

90ts copy. R[t]=R[s]

91ts add. R[t]=R[t]+R[s]
92ts subtract. R[t]=R[t]-R[s]
93ts negate. R[t]=-R[s]

Note, that these are all register-to-register instructions, so they do not require
any memory accesses. With 16 registers at our disposal, many subprograms
can store all of their local variables in registers. When we compare this to
the WASHU-2, it’s easy to see how this would significantly cut down on the
number of memory accesses required. Also observe that there are 12 unused
instruction codes starting with 9, so it is straightforward to extend this set
to include additional instructions.
Here are the logical instructions

AOts and. R[t]=R[t] and R[s]
Alts or. R[t]=R[t] or R[s]
A2ts exclusive-or. R[t]=R[t] xor R[s]

Once again, there is ample room in the instruction coding for additional
instructions.
Finally, let’s examine the branch instructions.

COxx tttt branch. PC=tttt

Cltt relative branch. PC=PC+sstt (sign-extended add)
Dstt relative branch on zero. if R[s]=0, PC=PC+sstt
Estt relative branch on plus. if R[s]>0, PC=PC+sstt
Fstt relative branch on minus. if R[s]<0, PC=PC+sstt

There are two unconditional branches. The first uses a second word to sup-
ply the target address, while the second adds an offset to the PC, as in the
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WASHU-2. As with the WASHU-2, there are three additional branch instruc-
tions, but these all specify a specific register.
Putting it altogether, we have

Otdd
1txx aaaa
2tsx
3tsx
4tsx
bsxx aaaa
6tsx
Ttsx
8tsx

90ts
91ts
92ts
93ts

AOts
Alts
A2ts

B0O0OO
COxx tttt
Cltt
Dstt
Estt
Fstt

constant load. R[t]=ssdd (sign-extended)

direct load. R[t]=M[aaaal

indexed load. R[t]=MI[R[s]+x]

indexed load, increment. R[t]=M[R[s]+x]; R[s]++;
indexed load, decrement. R[s]--; R[t]=M[R[s]+x];
direct store. M[aaaal=R[s]

indexed store. M[R[t]+x]=R[s]

indexed store, increment. M[R[t]+x]=R[s]; R[t]++;
indexed store, decrement. R[t]--; M[R[t]+x]=R[s];

copy. R[t]=R[s]

add. R[t]=R[t]+R[s]
subtract. R[t]=R[t]-R[s]
negate. R[t]=-R[s]

and. R[t]=R[t] and R[s]
or. R[t]=R[t] or R[s]
exclusive-or. R[t]=R[t] xor R[s]

Halt.

branch. PC=tttt

relative branch. PC=PC+sstt (sign-extended add)
relative branch on zero. if R[s]=0, PC=PC+sstt
relative branch on plus. if R[s]>0, PC=PC+sstt
relative branch on minus. if R[s]<0, PC=PC+sstt

The WASHU-16 has 22 instructions. This is still a fairly small instruction
set, but does give a sense of how more complete instruction sets can improve
the performance of running programs. For example, consider a subprogram
with three arguments and five local variables that includes a loop that is re-
peated many times. If we keep all the subprogram arguments and variables
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in registers, we can run this entire subprogram without ever loading data
from memory or writing data to memory (with the exception of initializing
the registers at the start of the subprogram, and writing the final results
to memory, at the end). This means that for most of the time the pro-
gram is running, the only memory accesses will be those that happen during
instruction fetches. This gives us a major improvement in performance.

Now, the new instruction set architecture has a smaller impact on the
performance of the fetches. It does reduce the number of instruction fetches
required to some extent, since a single instruction can often do the work of
several WASHU-2 instructions. Still, every fetch does require a memory access.
In the next chapter, we’ll see how we can avoid most of these accesses using
a cache.

21.3 Implementing the WASHU-16

In this section, we’ll look at how we can implement the WASHU-16. We’ll see
that while there are some significant differences from the WASHU-2, there are
also many similarities. Perhaps the biggest difference with the WASHU-16 is
its use of multiple registers. These can be organized in a register file, along
with the ALU, as shown below.
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The register file includes two internal buses, labeled A and B that connect
the registers to the ALU. By enabling the appropriate tristate buffers at the
register ouputs, the controller can connect any pair of registers to the ALU
inputs. The output of the ALU can be loaded into any register, making it
straightforward for the controller to implement any of the arithmetic/logic
operations. The tristate buffers connecting the A bus to the address bus,
allow the contents of any register to be used as a memory address. The mux
and tristate at the right end of the diagram allow any register to be loaded
from memory and allow the value in any register to be stored to memory.

Now, let’s consider how we can implement the WASHU-16 processor using

VHDL.

entity cpu is port (
clk, reset: in std_logic;
en, rw: out std_logic;
aBus: out address;
dBus: inout word);

end cpu;

architecture cpulArch of cpu is
type state_type is (
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reset_state, fetch,

cload, dload, xload, xloadI, xloadD,

dstore, xstore, xstorel, xstoreD,

copy, add, sub, neg, andd, orr, xorr,

halt,

branch, rbranch, rbranchZ, rbranchP, rbranchM
);
signal state: state_type;
signal tick: std_logic_vector(3 downto 0);

To simplify things a little bit, we are not including console signals, nor im-
plementing the pause feature. As with the WASHU-2, we define a state for
each instruction and use a tick register to keep track of the current time step
with each state.

Here are the processor registers.

signal pc: address; -- program counter

signal iReg: word; -- instruction register

signal maReg: address; —-— memory address register

signal this: address; -- address of current instruction

-- register file
type regFile is array(0 to 15) of word;
signal reg: regFile;

In addition to register file, we have introduced a new memory address reg-
ister, which is used during direct load and store instructions to hold the
address of the location being accessed.

Next we have three auxiliary registers.

-- index of source and target registers
signal target: std_logic_vector(3 downto 0);
signal source: std_logic_vector(3 downto 0);
-- target used for branch instructions
signal branchTarget: address;
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begin

branchTarget <= this + ((15 downto 8 => ireg(7))

Recall that most instructions involve a target register, a source register, or
both. The target and source signals are the indices that identify those regis-
ters. The branchTarget register is the target used by the branch instructions.
It is obtained by adding the address of the current instruction to the low-

& ireg(7 downto 0));

order eight bits of the instruction register (after sign-extension).
Next, let’s turn to the instruction decoding.

-- main process that updates all processor registers

process (clk)

-- instruction decoding, sets state, source, target

procedure decode is begin
-- default assignments to target and source
target <= ireg(11l downto 8);
source <= ireg(7 downto 4);
-— Instruction decoding.

case
when
when
when
when
when
when

when
when
when
when

ireg(15
x"O" =>
x"1" =>
x"on =>
x"3" =>
x"4n =>
x"5" =>
x"6" =>
xX"7" =>
x"g" =>
x"9" =>

downto 12) is

state <= cload;

state <= dload;

state <= xload;

state <= xloadl;

state <= xloadD;

state <= dstore;

source <= ireg(11l downto 8);
state <= xstore;

state <= xstorel;

state <= xstoreD;

case ireg(ll downto 8) is

when x"0" => state <= copy;
when x"1" => state <= add;
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when x"2" => state <= sub;
when x"3" => state <= neg;
when others => state <=halt;
end case;
target <= ireg(7 downto 4);
source <= ireg(3 downto 0);
when x"a" => case ireg(ll downto 8) is
when x"0" => state <= andd;
when x"1" => state <= orr;
when x"2" => state <= xorr;
when others => state<=halt;
end case;
target <= ireg(7 downto 4);
source <= ireg(3 downto 0);
when x"b" => state <= halt;
when x"c" => if ireg(11l downto 8) = x"0" then
state <= branch;
elsif ireg(1ll downto 8) = x"1" then
state <= rbranch;
else
state <=halt;
end if;
when x"d" => state <= rbranchZ;
source <= ireg(11l downto 8);
when x"e" => state <= rbranchP;
source <= ireg(11 downto 8);
when x"f" => state <= rbranchM;
source <= ireg(11 downto 8);
when others => state <= halt;
end case;
end procedure decode;
procedure wrapup is begin
-- Do this at end of every instruction
state <= fetch; tick <= x"0";
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end procedure wrapup;

Unlike the WASHU-2, here we are using a procedure to implemement the
decoding operation, rather than a function. This is so that we can assign
source and target values, in addition to the processor state. The wrapup
procedure serves the same purpose as in the WASHU-2.

Next, let’s look at the initialization of the processor and the handling of
the fetch state.

begin
if rising_edge(clk) then
if reset = ’1’ then
state <= reset_state; tick <= x"0";
pc <= (others => ’0’); iReg <= (others => ’0°);
maReg <= (others => ’0’);
target <= (others => ’07);
source <= (others => ’0’);
for i in O to 15 loop
reg(i) <= (others => ’07%);
end loop;
else
tick <= tick + 1; -- advance time by default
case state is
when reset_state => wrapup;
when fetch =>
case tick is
when x"1" => ireg <= dBus;
when x"2" =>
if ireg(15 downto 12) /= x"1" and
ireg(15 downto 12) /= x"5" and
ireg(15 downto 8) /= x"cO" then
decode; tick <= x"0";
end if;
this <= pc; pc <= pc + 1;
when x"4" =>
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maReg <= dBus;
decode; tick <= x"0";

pc <= pc + 1;
when others =>
end case;

Observe that for most instructions, the instruction fetch terminates at the
end of tick 2. The three exceptions are the direct load, the direct store and
the (non-relative) branch instruction. For these, the fetch is extended for
two more ticks to allow the address to be read from the second word of the
instruction.

Now, let’s turn to some of the instructions.

when halt => tick <= x"0"; -- do nothing

-— load instructions
when cload =>
reg(int(target)) <= (15 downto 8=>ireg(7))
& ireg(7 downto 0);
wrapup;
when dload =>
if tick = x"1" then
reg(int(target)) <= dBus; wrapup;
end if;
when xload =>
if tick = x"1" then
reg(int (target)) <= dBus; wrapup;
end if;
when xloadIl =>
if tick = x"1" then
reg(int (target)) <= dBus;
reg(int(source)) <= reg(int(source))+1;
wrapup;
end if;
when xloadD =>
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if tick = x"1" then
reg(int (target)) <= dBus; wrapup;
reg(int(source)) <= reg(int(source))-1;
end if;

Note that for the indexed load instructions, the target register is loaded from
the memory location specified by the source register. The store instructions
are similar, although somewhat simpler.

-- store instructions

when dstore | xstore => wrapup;

when xstorel =>
reg(int (target)) <
wrapup;

when xstoreD =>
reg(int(target)) <= reg(int(target))-1;
wrapup;

reg(int (target))+1;

The register-to-register instructions can be implemented very simply, as
shown below.

-- register-to-register instructions
when copy =>
reg(int (target)) <= reg(int(source));
wrapup;
when add =>
reg(int (target)) <=
reg(int (target)) + reg(int(source));
Wwrapup;
when sub =>
reg(int (target)) <=
reg(int(target)) - reg(int(source));
wrapup;
when neg =>
reg(int (target)) <=
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(not reg(int(source)))+1;
wrapup;
when andd =>
reg(int(target)) <=
reg(int (target)) and reg(int(source));
wrapup;
when orr =>
reg(int(target)) <=
reg(int (target)) or reg(int(source));
wrapup;
when xorr =>
reg(int (target)) <=
reg(int (target)) xor reg(int(source));
wrapup;

Finally, we have the branch instructions.

-- branch instructions
when branch => pc <= maReg; wrapup;
when rbranch => pc <= branchTarget; wrapup;
when rbranchZ =>
if reg(int(source)) = x"0000" then
pc <= branchTarget;

end if;
wrapup;
when rbranchP =>
if reg(int(source))(15) = ’0’ then
pc <= branchTarget;
end if;
wrapup;
when rbranchM =>
if reg(int(source))(15) = ’1’ then

pc <= branchTarget;
end if;
wrapup;
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when others => state <= halt;

end ca
end if;
end if;

end process;

se;

385

As with the WASHU-2, a separate combinatorial process controls the memory

signals.

-— process controlling memory signals

process(ireg,pc,maReg,reg,state,tick) begin

en <= ’0’; rw <= ’17;

aBus <= (others => ’0’); dBus <= (others => ’Z’);

case state is
when fetch =>
if tick =
en <=

end if;
when dload =>
if tick =
en <=

end if;

XIIOH
J 17 ;

XIIOH
) 1) ;

or tick
aBus <=

then
aBus <=

when xload | xloadIl =>

if tick =
en <=

aBus <= reg(int(source)) + ireg(3 downto 0);

end if;
when xloadD =>
if tick
en <=

aBus <= (reg(int(source))-1) + ireg(3 downto

end if;
when dstore =>

X”O“
) 1J ;

XIIOH
) 1) ;

then

then

en <= ’1’; rw <= ’0’;

aBus <= maReg; dBus <= reg(int(source));

= x"3"

pc;

maReg;

then

0);
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when xstore | xstorel =>
en <= ’1’; rw <= ’0’;
aBus <= reg(int(target)) + ireg(3 downto 0);
dBus <= reg(int(source));

when xstoreD =>
en <= ’1’; rw <= ’0’;
aBus <= (reg(int(target)) - 1) + ireg(3 downto 0);
dBus <= reg(int(source));

when others =>

end case;

end process;
end cpulrch;

Note that the indexed load with decrement does not use the source register
directly, to specify the address. Instead it first subtracts 1, since we need to
perform the memory read during tick 0, when the source register has not yet
been decremented. The indexed store with decrement is handled similarly.

Let’s finish up this chapter by taking a look at a simualation showing
the execution of some of these instructions. First, here is a short segment
showing a constant load, followed by a direct load.
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Name Value|  [200000ps  |250000ps  [300000ps  [350000ps  (400000ps
1% reset 0
bus signals
1% en 0 1 11 | | | [
1& w 1

1 B abus[15:0] | 0000 0000 }OOp1 0000 #0002 0030 0003

- B dbus[15:0] || zzzz 7277 H021E 2277 77tz {0030 %ZZ¢Z 7777
1% ck 0 T L LML
1§ state neg | reset st.. ¥ fetch ¥ cload}{ fetch W [dioad |

P B tick[3:0] 0
special registers

b B§ pc[15:0] | 000E 0000 i o001 o002\ 0003
- B ireg[15:0] | 9311 0000 021E b 1600

1> 2§ mareg[15:0] | 0032 0000 b 0030
) B source[3:0] {1 0 X 1 bt 0
b B target[3:0] |1

\general purpose purpose registersi

v B reg[0:15] | [000o,( [0000,0p00,0000,0000,0400,0000,0... X[0000,0000,001E,00{00,0000,0000,0040,0000... ¥[0004
b 35 [0] 0000 0000
B [1] 007F 0000
> 9§12 001F 0000 X 001E
B [3] 1234 0000
9 4] 0000 0000
b 2§ [5] 4711 0000
b 2§ [6] 5525 0doo )(5525
> 3 [7] BDOF 0000

Note that the first eight of the general-purpose registers are shown at
the bottom of the waveform windows, with the more specialized registers,
appearing above. Observe that the first instruction (021E) changes the value
of R[2] (the target) to 001E. Notice that the second instruction (1600) has a
five tick fetch state, during which the program counter is incremented twice.
During the last two ticks of the fetch, the processor retrieves the address at
location 2 and stores it in the memory address register. The value of the
memory address register is then used as the address during the execution
phase of the instruction, resulting in the value 5525 being loaded into R[6]

Next, we have an indexed load with increment, a copy and a subtract
instruction.
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Name Value [350000ps ~ |600000ps ~ |650000ps ~ |700000ps  |750000ps |80
1& reset 0
bus signals g
1% en 0 ] J | | |
1& w 1

. 2§ abus[15:0] | 0000 | D XD004Y_ 0000 X00R0¥0000 0005 0000 0006 0000 a0l
. 2§ dbus[15:0] | 222z | L XZZZZ§3522 ¥ 2222 | Y1234 ¥ZZ7Z}39035 7277 ¥9276 7777

IS

1% XS O ) e I I A
1§ state neg | X fetch W [xloadi ¥ fetch W copy ¥ fetch WCsub ||
b 2§ tick[3:0] 0 10 5 1 0 q 1 0 1 g2} 0
special registers special registers I
- 3§ pcf15:0] 000E 0do4 X 0005 X 0006 X 0
|- B ireg[15:0] 9311 2722 H 3522 9035 9276
|- &§ mareg[15:0] | 0032 0030
1> 2§ source[3:0] |1 p b 5 H
P 2§ target[3:0] {1 i b 5 b 3 b
Eg{m@j@o}i general purpose registers
v B reg[0:15] | (0000, - [0000]0000,001E,0000,0000,00... {[0000]0000,001F, 0000, ...[0000,0000,001F. 1234,0...[0
- B [0] 0000 0000
e B [1] 007F 0040
B B2 001F 001E X 01F
- B3] 1234 0000 X 1234
- 94 0000 0040
[ % [5] 4711 0000 X 1234
- 9§ (6] 5525 5535
w B anoe_| O 1234 »(B00H

The indexed load (3522) adds 2 to R[2] and uses the sum as the memory
address. The value returned from memory is loaded into R[6], and R[2] is
then incremented. The copy instruction (9035) copies the value in R[5] to
register R[3] while the subtract instruction (9276) subtracts the value in R[6]
from R[7].

Finally, we have an indexed store with decrement, a constant load and a
negate instruction.
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. Value . [L1o0000ps  (1150000ps  L200000ps  [1250000ps  [1300000p
1§ reset 0 E
bus signals bussignals |
1§ en 0 : I N I [ 1
1§ w 1 - |
b B abus[15:0] || 0000 0000 0020 4 000C X 00pa (000D 0000
p 2§ dbus[15:0] || cooo E':X 2777 ¥ 8252 ¥ Z77Z ¥ 4711 3 ZZ7Z ¥ 017F X 7777 9311 ¥ 7z
1% ck ST I I e [
15 state fetch | X fefch Yxsto... fetch fetch Wonga W |
e CEURNE - - -
special registers i
> B pc15:0] 0010 [t 0008| e 0ooc X 0opo b 00
b B ireg[15:0] [ Fl02 | 5500 X 8252 b 017F b 9311
1 B§ mareg[15:0] [ 0032 |} 0032
1 8§ source[3:0] |1 5 b b
1 B target[3:0] |1 5 b 2 X
general purpose | general purpos: registers
v B reg[0:15] || [0000,i; {0000,0000,001F,1234,0000,471... {[0000,0000,001E, 134,0000,...[0000,407F 001E, 1234,000
b 2§ [0] 0000 0000
B[] = 0000 X 007F W FFet |
[ % [2] 001E qo1F 001E
B [3] 1234 |1 1234
> 9§ [4] 0000 0000
- 8§ (5] 4711 4711
B> 2§ [6] 5525 3525
- B [7] BDOF |i BDOF

The indexed store (8252) with decrement adds 2 to
this as the address for the store. It then decrements R[2]. The constant load
(017f) loads 007F into R[1] and the negate instruction (9311) negates the
value in R[1].

These examples illustrate the basic operation of the WASHU-16 processor.
Note that while the specifics are different, the overall operation is really very
similar to that of the WASHU-2. The main additional source of complexity
is the 16 general purpose registers. Of course, this is also what gives the
WASHU-16, its performance advantage over the WASHU-2.

R[2] — 1 and uses
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Chapter 22

Improving Processor
Performance Even More

In the last chapter, we concentrated on how we could improve processor
performance through more efficient instruction set architectures. In this
chapter, we’re going to focus on how caches can be used to improve processor
performance.

A cache is a small fast memory used to hold copies of memory words
that have been recently used. Before a processor initiates a memory read
operation, it first checks to see if the desired word is in the cache. If it is, the
processor uses the cached copy, otherwise it goes ahead and does a memory
read. Now caches can make a big difference in modern processors, because
in a processor with a 1-2 GHz clock, it can take 100 clock cycles or more to
retrieve data from main memory, but just a few cycles to retrieve data from
cache. Caches tend to be very effective because programs have a tendency
to re-use the same memory locations many times within a short time period.
For example, consider the memory locations that hold the instructions that
implement a loop in a program. The same instructions are used every time
the program goes through the loop, so if these instructions are saved in a
cache, the first time through the loop, they will be available in the cache for
all the remaining iterations.

391
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22.1 Cache Basics

There are several different ways to implement a cache. The most general
is the fully associative cache, which is implemented using a special type of
memory called content-addressable memory CAM. A CAM is essentially a
hardware implementation of the software data structure known as a map.
The words in a CAM are divided into two parts, a key and a value. To lookup
an entry in a CAM, we provide a query, which is compared against all the
keys stored in the caM. The value associated with the first entry for which
the key field is equal to the query is returned as the output of the lookup
operation. When a CAM is used to implement a cache, the key field contains
a main memory address and the value is the contents of the memory word
at that address. So, we can think of the cache as storing a set of (address,
value) pairs, and defining a mapping from an address to the value stored at
that address.

The figure below shows an example of a cache implemented using a CAM.

query key=3456
result=341c

v| key | value

0| 0123 | 9876

1| 1234 | 3412

1| 1235 | 6431

1| 3456 | 341c

/0 213b | bcde
valid bit 1] aped | 9090

Note that each entry has an address field, a value field and also a valid bit.
Entries for which the valid bit is zero are ignored during lookup operations.
The cache entries tell us what values are stored at certain memory locations;
for the example, we can infer that M[1234]=3412 and M[abcd]=9090. When
we perform a lookup, the query is compared against the stored address fields
of all entries for which the valid bit is set. In the example, the query of 3456
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matches the entry (3456, 341c), so the value 341c is returned as the result of
the lookup.

Now, suppose the processor executes a load instruction for memory lo-
cation 5412. Since there is no cache entry with an address field equal to
5412, the processor will have to retrieve the word from main memory. When
it does so, it will make a new entry in the cache, using one of the unused
words. What happens if we retrieve a new word from memory, when the
cache is already full (all valid bits are set)? In this case, we generally want
to replace one of the existing cache entries with the new one. The ideal
choice is the least-recently used entry, since experience with real programs
has shown that this one is less likely to be needed in the future, than those
entries that have been accessed recently.

Now, one problem with fully associative caches, is that cAM’s are rela-
tively expensive (compared to SRAMS) because they require comparison logic
in every word, to compare the query to the stored addresses. This has led
to alternative cache architectures that use SRAM in place of the camM. The
simplest of these alternatives is the direct-mapped cache, illustrated in the
figure below.

query result=341c
3456

index |y | tag | value
00(0| 01 | 9876

5511 12 | 6431
56| 1].34 | 341c
tag 57/0| 21 | bcde

First note that the numbers at the last edge of the memory represent the
memory addresses for the SRAM used to implement the cache. Also, observe
that the SRAM has a tag field in place of the address field used in the fully
associative cache. The entry for a given main memory address is stored in
the SRAM at the location specified by its low-order bits. The high order bits
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of the main memory address are stored in the tag field of the entry. So in the
example shown above, we can infer that M[1255]=6431 and M[3456]=341c.

When we do a lookup in a direct-mapped cache, we use the low-order bits
of the query key (the index) as the SRAM address. The high order bits of the
query are then compared to the stored tag bits in the entry selected by the
index. If they match and the valid bit is set, then the value field represents
the contents of the memory location that we're interested in. Otherwise,
we’ll need to do a main memory read, updating the cache when the contents
of the memory word is returned. Note that unlike in the fully-associative
cache, here we have no choice about where to store the new entry. It must
be placed in the location specified by its low-order bits. Because the entry
for a given main memory address can only appear in one location, we do
not need to search the entire memory to find it; we just need to check one
location.

How do evaluate the performance of alternative cache designs? The cru-
cial criterion is how often we find what we’re looking for in the cache. This
is generally referred to as the hit rate. Note that in order for any cache to
have a high hit rate, it’s necessary that the same instructions are executed re-
peatedly. Thus programs with loops generally have better cache performance
than programs that have long sections of “straight-line code”.

Given a direct-mapped cache and a fully-associative cache with the same
number of entries, the fully-associative cache will usually a higher hit rate,
since it has no restriction on where it must store a particular (address, value)
pair. It is limited only by the total number of entries. On the other hand,
the fully-associative cache consumes considerably more area on an integrated
circuit chip than a direct-mapped cache with the same number of entries. If
we reduce the number of entries in the fully-associative cache to the point
where the area consumed is equal to that of the direct-mapped cache, we
often find that the direct-mapped cache performs better.

Direct-mapped caches are most commonly used as instruction caches;
that is, they are used to hold instructions to be executed, rather than data.
Let’s consider an example, to get a better understanding of how it is that
this very simplistic caching strategy can deliver good performance. Suppose
we have a subprogram consisting of 200 instructions. Note that since the in-
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structions in the subprogram are stored in consecutive memory locations, the
low order bits of the instruction addresses will be different. More precisely,
for any two instructions in the subprogram the low-order eight bits of the
addresses of the two instructions will be different. Consequently, if we have
a direct-mapped cache that can hold 256 instructions, all the subprogram’s
instructions can be present in the cache at the same time. So, when the
subprogram begins execution, no instruction will have to be loaded into the
cache more than once. Now, if the subprogram contains a loop that is exe-
cuted many times, we get to re-use those loop instructions from cache many
times, avoiding the memory reads that would normally occur during an in-
struction fetch. Note that a fully-associative cache with the same number of
entries will perform no better in this situation, but will consume considerably
more chip area.

The behavior of this subprogram is an example of a more general prop-
erty called locality of reference. Essentially this just means that instruction
addresses that are encountered during the execution of real programs are
highly correlated. More precisely, if two instructions are executed close to
each other in time, it’s likely that those two instructions are close to each
other in memory. This in turn implies that their addresses differ in the low
order bits, and that property is what allows a direct-mapped cache to be
effective at reducing the number of main memory accesses.

22.2 A Cache for the WASHU-2

Let’s take a look at how we can apply these ideas to the wasHU-2. In
particular, let’s add a direct-mapped cache to the WASHU-2 processor and
see how it improves the performance of running programs. To keep things
simple, we’ll use a fairly small cache with just 64 entries (by comparison, the
instruction caches in a typical laptop can hold thousands of instructions).
Here are the declarations needed to implement the cache.

type icacheEntry is record
valid: std_logic;
tag: std_logic_vector(9 downto 0);
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value: word;
end record;
type icacheType is array(0 to 63) of icacheEntry;
signal icache: icacheType;
signal icacheIndex: std_logic_vector(5 downto 0);
signal icacheOut: icacheEntry;
begin

icacheIndex <= pc(5 downto 0);
icacheOut <= icache(int(icachelIndex));

Note that each cache entry has a valid bit, a ten bit tag and a 16 bit memory
word. Since the cache has 64 entries, the index is the low-order six bits of
the main memory address, and the tag is the remaining ten bits. Since we
are implementing an instruction cache, the cache is only used during the
instruction fetch, and the index bits are always the low-order six bits of the
pC. The icacheOut signal is the value of the cache entry with the specified
index.
Here is the code that implements the fetch.

elsif state = fetch then
if tick = x"0" then
—-— check cache for data
if icacheOut.valid = ’1’ and
icacheOut.tag = pc(15 downto 6)
then

state <= decode(icacheQut.value);
iReg <= icacheOut.value;

this <= pc; pc <= pc+l;

tick <= x"0O";

end if;
elsif tick = x"1" then
iReg <= dBus;

icache(int(icachelIndex)) <=
(°1,pc(15 downto 6),dBus);
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elsif tick = x"2" then

state <= decode(ireg);

dpc <= pc; pc <= pc + 1; tick <= x"0";
end if;

Observe that the cached entry is checked during tick 0 of the fetch, and if
the entry is valid and has a matching tag, the processor proceeds directly to
the execution phase, skipping the memory read. If the cached entry is either
not valid, or has a tag that does not match the PC, the memory read takes
place, and the value returned from memory is stored in the IREG and used
to update the cache entry, at the end of tick 1.

Here is the relevant section of the process that controls the memory.

process (ireg,pc,iar,acc,pcTop,state,tick) begin
-- Memory control section (combinational)

case state is
when fetch =>
if tick = x"0" and
(icacheQut.valid = ’0’ or
icacheQOut.tag /= pc(15 downto 6)) then
en <= ’1’; aBus <= pc;
end if;

This code allows the memory read to proceed only if the the (address, value)
pair we’re looking for is not in the cache.

So, how big a difference will this make in the execution of a real pro-
gram? Consider the multiply subprogram from Chapter 17. This has a loop
that contains 15 instructions and is executed 16 times. So, there are 240
instruction fetches performed during that loop. With no cache, these fetches
take three clock ticks each, for a total of 720 clock ticks. With the cache,
the number of clock ticks required by all the fetches is 3 x 15 + 225 = 270,
a savings of 450. This is a significant improvement, but it’s actually a much
smaller improvement than we would see on a modern processor that uses
an external DRAM for its main memory. In that case, the time to fetch an
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instruction from main memory might be 100 ns, while the time to retrieve
the instruction from cache could be just a couple ns. So a cache hit could
give us a 50x speedup, rather than the 3x we get with the WASHU-2.

22.3 Beyond Direct-Mapped Caches

Direct-mapped caches are very effective for reducing the number of memory
accesses when used as instruction caches. They are less effective when used
to store data values used by a program, because data access patterns are not
as regular as instruction fetches. So, if direct-mapped caches do not work
well for data, do we have to fall back on fully associative caches? It turns
out that there is an intermediate strategy that allows us to get most of the
benefits of a fully associative cache, but at a cost which is not much higher
than that of a direct-mapped cache.

A k-way set associative cache is implemented using k “banks” of SRAM,
where k is a small integer, typically in the range of 4 — 8. Each bank can
be viewed as a direct-mapped cache, but they are operated in parallel, and
each main memory word can be stored in any of the k banks. An example
of a 2-way cache is shown below.

query result=79d4
33“56 bank 0 bank 1

index | |tag|value|iru|v|tag|vaiue
00{1{01|9876| 0 {0|47 |13d4

55(1]12]6431| 1 fd |892e
56|1|.b7[341c| 0 |1|.34 |79d4
tag 57|0|21|bcde| 1 |1]2d |43bd

[y

[y

As with the direct-mapped cache, we place entries in the set-associative cache
based on the low-order bits of their main-memory addresses. The index
determines the row in the cache where the entry will be stored. However,
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because we can place a given entry in either bank, we have somewhat more
flexibility than we do in a direct-mapped cache. As with the direct-mapped
cache, we can use the index and tag bits of the entries to infer the contents of
main memory locations. So, in the example, we can infer that M[1255]=6431
and M[2d57]=43bd.

When we do a lookup in this cache, we read the entries in both banks
and compare the stored tag values against the tag of the query. If we find
a matching tag, then the value field for that entry is returned. If neither
matches, we must retrieve the required value from memory. Each row in the
cache also has an Iru bit that specifies which bank has the least-recently-
used entry. In a row with two valid entries, this tells us which entry should
be replaced when a new entry is being added to the cache. (For k > 2,
we’ll need to maintain more than one bit of information to keep track of the
least-recently-used entry in the row.)

To compare the performance of a set-associative cache to a direct-mapped
cache in a fair way, we need to assume the same number of entries in both.
So, a direct-mapped cache will have k times as many rows as the comparable
k-way cache. The advantage of the k-way cache comes from the fact that
each main memory word can be stored in any of the k& banks. This makes
it less likely that a cache entry will be evicted from the cache by the entry
for some other memory location that happens to have the same index. Note
that if we let k get large, the set-associative cache starts to resemble the
fully-associative cache. Indeed if k is equal to the number of cache entries,
then the two are equivalent.

Before wrapping up our discussion of caches, we should note that caches
used in computer systems usually do not store individual words, but larger
blocks of data, referred to as cache lines. Typical cache line sizes range from
32 to 128 bytes. The use of larger cache lines requires an adjustment in how
we define the index and tag. Consider an example of a computer system that
uses byte addresses and has a cache with a line size of 64 bytes. Observe that
for a give cache line, the bytes in the cache line will have addresses in which
the low order six bits range from 0 to 63. So effectively, the low-order six bits
of the main memory address identify a particular byte within a cache line,
while the higher-order bits of the address can be viewed as the address of the



400 Designing Digital Circuits (C) Jonathan Turner

cache line itself. The index and tag are defined relative to this “cache-line
address.” That is, the low-order six bits of the main memory address are not
included in the index.

The reason that computer systems use larger cache lines rather than
individual words is that it leads to better performance. There are two reasons
for this. First, it turns out that we can retrieve an entire cache line from
memory in about the same amount of time as we can retrieve a single word,
so there is little extra cost involved. Second, for typical memory access
patterns, the words in a cache line are often needed by the processor at
around the same time. The most striking example of this is when a program
is executing straight-line code. When we fetch the first instruction in a
cache line, we must wait for the cache line to be retrieved from memory, but
for the remaining instructions, there is no memory access required. Those
instructions are already in the cache.

There are a couple other variations on how caches can be designed that
are worth mentioning. The first concerns the replacement policy, which
determines which entry in a k-way cache is replaced when a new entry must
be added to a given row. The most natural policy is the least-recently-
used policy, which we have already mentioned. Unfortunately, a straight-
forward implementation requires logy k bits per entry, and can slow down
the operation of the cache. For this reason, caches are often designed using
a pseudo-LRU policy that requires a single bit per entry and performs nearly
as well as a strict LRU policy.

The second variation concerns when data is written to main-memory. In
a write-through cache, whenever a store instruction is executed, the stored
value is written to both the cache and main memory. In a write-back cache,
the stored value is written only to the cache when the store instruction is
executed. If at some later point in time, that value must be evicted from the
cache, it is then written to main memory. Write-back caches can significantly
reduce the amount of write traffic to main memory, especially in situations
where stored values are written multiple times in succession.
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22.4 Other Ways to Boost Performance

Processor designers have devised a number of other ways to improve the
performance or programmable processors. One of them is pipelining. This
is essentially a form of parallel computing, in which the processor works
on multiple instructions at the same time. The operation of a pipeline is
similar to a manufacturing assembly line, in which a product moves through
a sequence of station, with each station responsible for a particular small part
of the overall assembly process. In an instruction pipeline, we have a series
of pipeline stages that each perform a small part of the processing of the
instructions that flow through them. When a pipeline is operating at peak
efficiency, it will complete the execution of some instruction on every clock
tick, even though it may take ten or more clock ticks for a single instruction
to work its way through all the pipeline stages.

While the basic concept of an instruction pipeline is straight-forward, the
actual implementation can be very challenging, since often a given instruc-
tion cannot be carried out until the result from some previous instruction
is known. A variety of techniques are used keep the pipeline operating effi-
ciently, even when instructions depend on each other in this way.

Conditional branches in programs pose a significant challenge to the de-
sign of pipelines. When we come to a conditional branch in a program, there
are two possibilities for the instruction that is to executed next. To keep the
pipeline busy, we want to start work on the next instruction immediately,
but we cannot know for sure which instruction to start working on until af-
ter the conditonal branch instruction completes. Processors typically resolve
this conflict by trying to predict which branch direction is most likely. If the
prediction is correct, the processor can just keep on feeding instructions into
the pipeline. If it is not, the processor must backup to the branch point,
discarding the instructions that were started since the branch point.

It turns out that the vast majority of branch instructions in real programs
are highly predictable. For example, the branch instruction at the top of a
loop is resolved the same way on all but the last iteration of the loop. Sim-
ilarly, branches associated with tests for error conditions are almost always
resolved the same way. To exploit this predictability, processors incorporate
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branch prediction mechanisms. One simple branch predictor uses a single
bit for each branch instruction. Every time a branch instruction is executed,
its prediction bit is set based on which way the branch went. When we need
to predict the direction of a given instruction, we base our prediction based
on which way the branch went the last time. For branches that almost al-
ways go the same way, this simple mechanism can be very effective. More
elaborate techniques can be used in situations where the branch direction is
not so consistent.

We'll close this chapter with a brief discussion of multi-core processors.
A multi-core processor is a single integrated circuit that contains several dis-
tinct processor cores, each capable of executing a separate program. Modern
server chips now typically have eight or more cores, laptop chips frequently
have four and even cell phones are now being equipped with dual core pro-
cessors. The different cores on a single chip generally share main memory.
This allows programs running on different cores to communicate with each
other through values saved in the shared memory.

Each core in a multi-core chip maintains its own L1 cache, while L2 caches
may be either shared or kept separate. When different cores maintain their
own caches, values stored in main memory can also be stored in multiple
caches. This creates the potential for the various copies to become inconsis-
tent. Multi-core processors implement explicit cache-consistency mechanisms
to ensure that copies are maintained in a way that at least appears consistent
to software.

Microprocessor manufacturers began producing multi-core processor chips
in the late 1990s when they could no longer boost single-core performance
by increasing the clock frequency. While multi-core processors have allowed
manufacturers to continue to improve the aggregate performance of their
products, they do create challenges for software designers. In order to use
the new chips to boost the performance of single applications, software de-
signers must incorporate parallelism into their programs. Correctly coordi-
nating the activity of multiple threads of execution can be very challenging,
and getting the best possible performance from such programs can be even
more difficult.



Chapter 23

Making Circuits Faster

When designing circuits, we often find ourselves facing two competing sets
of demands. On the one hand, we would like to make our circuits as small as
possible, in order to fit within the available resources of an available FPGA,
for example. On the other hand, we would also like our circuits to be as fast
as possible, in order to achieve a target clock frequency needed to meet the
system’s performance objective. Often, these two things go together (small
circuits are often fast circuits), but in some cases we have to trade-off circuit
cost against performance.

In this chapter, we are going to look at some ways we can improve the
performance of circuits. We will focus on arithmetic circuits, both because
they are often critical to system performance, and because there are some
well-developed techniques that have been developed for arithmetic circuits
but that can also be applied in other contexts.

23.1 Faster Increment Circuits

We'll start with what the simplest of all arithmetic circuits, the incrementer.
Consider what happens when we add 1 to a binary number.

10101111 + 1 = 10110000
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Notice how the rightmost bits of the the input value (up through the first
zero) are flipped in the result. The circuit shown below is based on this
observation.

In each bit position, we flip the “current” input bit if all input bits to the
right of the current position are equal to 1. This is a simple and elegant
circuit, but it does have one drawback. The number of gates on the circuit
path from the rightmost input bit to the leftmost output bit grows directly
with the number of bits. This can limit the performance when operating on
large data values. Now there’s an obvious solution to this problem; instead
of using a chain of AND gates, why not use a tree-structured circuit in which
the circuit depth grows as the logarithm of the number of inputs, rather
than linearly? Here’s a circuit that implements the carry logic, based on this
approach.
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Here c; represents the carry into bit position ¢. The shaded gates highlight
a binary tree that produces the cg. The carrys for the other bit positions are
“piggy-backed” onto this tree, adding as few additional gates as needed to
generate the remaining carry signals. A 64 bit version of this circuit has a
maximum path length of 6, while the carry logic for the original ripple-carry
incrementer has a maximum path length of 63. Unfortunately, this version is
still not ideal, because it includes some gates with a large fanouts. Since the
maximum fanout grows linearly with the number of bits, the circuit delay
will also grow linearly.

Here’s another circuit that is based on the same basic idea, but does so
in a way that keeps the fanout small.
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Note that in this circuit, no gate has a fanout larger than two, and the
maximum path length is three. For an n bit version of the circuit, the
maximum path length is logy n, while the fanout remains 2. To understand
fully how the circuit works, define A(%, j) = a; - a;—1 - - - a; and note that for
1>k>7,

In the diagram, the first row of AND gates implements the function A(i,i—1)
for all values of ¢ > 0. The second row implements the function A(é,i — 3)
using the equation

A(ii—3) = A(i,i— 1) A(i — 2,i — 3)
The third row implemements A(i,7 — 7) using
A(iyi—7)=A(i,i—3) - At — 4,1 —7)
In a larger circuit, the k-th row implements A(i,i — 2¥ — 1) using
Aliyi— (28— 1)) = A(i,i — (281 = 1)) - A — 281 i — (28 — 1))

The method used for the carry-logic is referred to as carry-lookahead. In the
next section, we’ll see how it can be applied to general adders.
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23.2 Faster Adder Circuits

In this section, we're going to look at how to build fast addition circuits,
but let’s start by reviewing the binary version of the standard longg addition
algorithm that we learned in grade school. An example of binary addition is

shown below.
111110100 carry-in

010011010 addend
001101011 augend
100000101 sum

The addition proceeds from right to left. Let a; and b; be the two input
bits for position ¢ and let ¢; be the the carry into position ¢. The sum bit
8; = a; D b; P ¢; where @ denotes the exlusive-or operation. The carry out of
position 7 is given by, ¢;+1 = a;b;+a;c; +b;c;. This is equal to a;b;+ (a; B b;)c;.
These observations lead to the circuit shown below.

a,b, aeg

The long horizontal box highlights the carry logic. Notice that the maximum
path length through the carry logic for an n bit adder is 2n. We’d like
to speed this up using the carry-lookahead technique that we used for the
increment circuit, but here things are a bit more complicated, so we need to
proceed in a systematic way.

There are two basic ideas that play a central role in the lookahead adder.
The first is carry generation. We say that bit position ¢ generates a carry if
a; = b; = 1. If this condition is true, we know there will be a carry out of
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position %, even if there is no carry into position 7. The second idea is carry
propagation. We say that bit position ¢ propagates a carry if a; # b;, since
when this is true, ¢;+1 = ¢;. The circuit diagram above identifies signals
g1 = a1b1 and p; = a1 @ by. In general, g; = a;b; and p; = a; ® b;.

We can generalize the idea of carry propagation to groups of bits. Define
the function P(7,j) = 1 if and only if p; = p;—1--- = p; = 1. Thus, whenever
P(i,j) =1, ¢i41 = ¢;. This implies that for i > k > j

We can use this to generate a family of propagate signals just as we did for
the carry logic in the increment circuit.

We can also generalize the idea of carry generation to groups of bits.
Define G(i,5) = 1 if bit positions i downto j generate a carry. That is,
ciy1 = 1 even if ¢; = 0. Note that ¢;41 = G(7,0), so we can obtain our
required carry signals using the appropriate generate signals. We’ll do this
in a recursive fashion. First, observe that

G(i,i—1) = gi + gi—1pi

That is, the two bit group (i,7 — 1) generates a carry if position i does, or
position ¢ —1 generates a carry and position ¢ propagates the carry. Similarly,

G(i,i—3)=Gi,i— 1)+ G(i —2,i — 3)P(i,i — 1)

and
G(i,i—7)=G(i,i —3)+G(i — 4,1 — T)P(i,i — 3)

More generally, for ¢ > k > j

These equations lead directly to the circuit shown below.
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The shaded circuits implement the propagate signals, while the remainder
implement the generate signals. Here, the maximum path length through the
carry logic is 2logy n, as opposed to 2n for the ripple-carry adder. So for

n = 64, we can expect the lookahead adder to be ten times faster than the
ripple-carry adder.

23.3 Other Linear Circuits

The carry lookahead idea can also be applied to circuits that use other other
number bases. The figure below shows a BCD adder.
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Here, each adder block adds a pair of BCD digits and produces a BCD
digit as the result. The carry that goes between adder blocks represents the
carry in the base-10 addition algorithm. The performance characteristics of
this adder are similar to those of the binary adder, and we can apply the
lookahead technique in exactly the same was as we have done for the binary
adder.

The adder block itself can be implemented as shown below.

I
adder4

When the four bit binary adder produces a result that is greater than nine,
a carry-out is generated, and the sum is corrected by subtracting 10. Note
that this requires a comparison circuit to the carry chain, increasing the
carry delay. Also note that the comparison circuit must use the four sum
bits plus the carry-out, since in some cases the incoming digits can add to a
value that is too large to fit in four bits.

There is alternative version of the BCD adder based on a different assign-
ment of bit patterns to the decimal digits. The excess-three representation
adds three to the usual binary equivalents. So for example, the decimal digit
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2 is represented by the bit pattern 0101, and the digit 8 is represented by
1011. It turns out that this approach produces a more symmetric encoding
of the decimal digits, which leads to simpler and faster circuits. Here is an
excess-three adder block that demonstrates this.

L |

adderd [«—
A\ 3II

.

add/sub
|

In the excess three circuit, a carry is generated when the binary adder over-
flows, producing a carry out of the high order bit. (For example, if we add the
decimal digits 644, the binary adder is actually adding 1001+ 0111 giving
0000 with a carry out of the high-order bit.) When no carry is generated, we
correct the result by subtracting 3. This converts the excess-6 sum produced
the adder to an excess-3 value. When a carry is generated, we correct the
sum by adding 3. This is equivalent to sutracting 10 and converting from
excess-6 to excess-3. This circuit is a little simpler than the conventional bed
adder block, but more important, it has a much smaller carry delay.

The ripple-carry increment, binary adder and BCD adder circuits are all
examples of a general linear circuit structure, in which a basic building block
is organized in an linear array with connecting sign providing “intermediate
results” of one form or another. A general pattern for such circuits is illus-
trated below.

2 SN N S N N A by

-« e—| — e—| — -« —
« — l—| — — " e —

R vy

Some other circuits that have the same property are subtractors, twos-
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complement circuits, max/min circuits and comparators. The figure below
shows a standard inequality comparator. In this case the signals flow from
high-order bits to low-order bits, but the basic structure is the same. Also
observe that because of the linear structure, we can expect performance to
degrade as number of bits gets large. However, like with the increment and
adder circuits, we can apply the lookahead idea to obtain much faster ver-
sions.

_____________________

Linear circuit structures are particularly common among basic arithmetic
circuits, but can also appear in more complicated circuits. For example, con-
sider a “tally” circuit that takes an n bit input vector and for each bit position
produces a tally T'(i) equal to the number of ones in positions i,...,0. This
can be implemented as a linear array of adders. Moreover, we can speed it
up using a lookahead circuit in which the basic elements are also adders.

23.4 Multiplication Circuits

We’ll finish this chapter by consider circuits for integer multiplication. First,
let’s review the binary version of the long multiplication algorithm that we
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all learned in grade school

1010 multiplicand
1101 multiplier
1010 partial products
0000
1010
1010

10000010 product

As in the decimal multiplication algorithm, we multiply the bits of the mul-
tiplier with the multiplicand to produce the partial products. Since each bit
is either 0 or 1, the partial products are either 0000 or the multiplicand (in
this case 1010). Adding the partial products together produces the overall
sum. Here is a circuit that implements this algorithm.

Yo X3 X2 X1 X
X5 X, X, X,
Y]_ 3.1\241 A0

Addend || Augend
Adder
C| Sum

X3 X5 X1 X
Y23210

Addend |[ Augend
Adder
C| Sum

X3 X5 X1 X
Y33210

Addend [ Augend
Adder
Cl Sum

T 1T
P,P¢PsP,PsP,P, P,

Here, the adder outputs labeled C' are the carry out of the high-order bits.
What can we say about the performance of this circuit? Well, at first
glance it would appear that the maximum delay through the circuit would
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be about n — 1 times larger than that for a binary adder. So, if ripple-carry
adders were used, the maximum path length would be contain about 2n?
gates. It turns out that this is not the case. If you look at the diagram
above, and think about the structure of the ripple-carry adder, you’ll realize
that the worst-case path starts at the top right of the circuit and ends at
the bottom left. The circuit path always proceed from top-to-bottom and
from right-to-left. There are actually many worst-case paths, but they all
share this basic property. Consequently, the worst-case path passes through
2(n — 1) exclusive-or gates, 2(n — 1) AND gates and 2(n — 1) OR gates. If we
assume that the delay through an exclusive-or gates is about twice as large
as the delay through an AND gate or OR gate, the overall delay is roughly four
times larger than the delay through a single adder, not n — 1 times larger.

What happens if we substitute lookahead adders for the ripple-carry
adders? In this case, it turns out that the adder delays do all accumulate,
giving us a worst-case path length containing 2(n — 1) exclusive-or gates,
(n — 1)logyn AND gates and (n — 1)logyn OR gates. Consequently, this
circuit is actually slower than the multiplier that uses ripple-carry adders.
However, we’re not done yet. We can get better performance if we replace
the linear array of adders in the original circuit with an adder tree, as shown
below.

Here, the partial products are fed into the top row of adders, and the overall
sum of the partial products is produced by the adder in the bottom row.
When using lookahead adders, this circuit has a worst-case path that con-
tains 2log, n exclusive-or gates, (logs n)2 AND gates and (logy n)? OR gates.
For n = 64, this is 12 exclusive-or gates, 36 AND gates and 36 OR gates. This
compares to 126 of each type, in the case of the original multiplier.
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What if we use ripple-carry adders in an adder-tree? In this case we get
2logy n exclusive-or gates, 2(n — 1)logyn AND gates and 2(n — 1)logyn OR
gates in the worst-case path. That turns out to be worse than the original
version.
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Chapter 24

Producing Better Circuits
Using VHDL

In previous chapters, we’ve discussed how we can reduce the number of gates
needed to implement certain logic functions. However, there is a snag when
trying to apply these lessons in the context of modern CAD tools, where
we do not have direct control over the circuits that a synthesizer produces.
While it is possible to write VHDL code that specifies exactly what gates to
use and how to connect them, writing VHDL in this way largely throws away
the advantages of using a higher level language in thie first place.

In this chapter, we’ll discuss how the way we write our VHDL code affects
the resources (flip flops and LUTs, when using FPGAs) used by the circuits
produced by circuit synthesizers. By getting a better understanding of the
capabilities and limitations of synthesizers, we can learn to write code in a
way that makes it more likely that the synthesizer will produce a high quality
result.

At the outset, it’s worth mentioning that resource usage is not the only
criteria that is important when designing circuits using VHDL. Often we
may be more concerned with completing a design quickly, so as to deliver
a product in a timely way. In this context, we may not have the time to
explore a variety of different architectures. On the other hand, there are also
situations when it may be crucial to reduce the resources used by a given

417
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circuit, in order to ensure that it fits within the constraints imposed by the
FPGA or ASIC being used to implement the overall system. In any case, it’s
always worthwhile to maintain some basic awareness of the resources used
by our circuits, so that we can make an informed decision about whether we
need to consider more efficient alternatives, or not.

24.1 Some Motivating Examples

The way in which we write our VHDL circuit specifications can have a big
effect on the quality of the circuit produced by a synthesizer. Let’s look
at a very simple example that illustrates this. The following code fragment
implements the core of a very simple arithmetic and logic unit (ALU), with
16 bit data inputs A and B, a 16 bit data output X and a two bit control
input C.

with C select

X <=B when 00,
(not B) + 1 when 01,
A+B when 10,
A-B;

The expression (not B) + 1 produces the 2s-complement of B. The “de-
fault” implementation of this circuit uses a 4:1 multiplexor, an adder, a
subtracter and a 2s-complement circuit. If we were to construct this circuit
using only four input LUTs, we would get 3 LUTSs per bit for the multiplexor,
2 LUTs per bit for the adder, another 2 LUTSs for the subtracter and another
2 LUTSs per bit for the 2s-complement circuit. This gives us a total of 10
LUTs per bit, or 160 altogether. In reality, the synthesizer is able to do
much better than this for a couple reasons. First, it is able to recognize that
the adder, subtracter and 2s-complement circuit are never used at the same
time, so that it can combine these functions. Second, the FPGA we are using
has other “hidden” resources in addition to the LUTs and flip flops. These
are not general purpose resources, but are designed to assist in the synthesis
of certain commonly occuring logic functions (like addition and subtraction).



24. Producing Better Circuits Using VHDL 419

Consequently, the synthesizer is able to produce a circuit using 49 LUTSs, or
just over three per bit.

This is not too bad, but it turns out, we can do better. Here is an
alternate code fragment that implements the same ALU.

A1 <= A and (15 downto O => C(1));
Bl <= B xor (15 downto 0 => C(0));
X <= Al + B1 when C(0) = °0’

else A1 + B1 + 1;

This version was written to implement the circuit shown below.

A B

|

c(1) = and || xor lc(0)

Vv

adder <—C(0)

!

X

The adder combines the intermediate signals A1 and B1. The C(1) input is
and-ed with the bits of A, making A1 = 0 whenever C'(1) = 0. The C(0)
input is connected to the carry input of the adder and to a set of exclusive-or
gates. When it is high, the bits of B are flipped and 1 is added to the result,
effectively negating B. So this circuit, either adds A or 0 to B of —B, which
produces exactly the same result as the original circuit. The payoff is that
this circuit can be synthesized using just 16 LUTs, a three-to-one reduction.

Next, let’s consider a version of the fair arbiter circuit we discussed earlier
in the book. This version is designed to handle four clients and maintains
an internal list of the clients to determine which client should get to go
next, when two or more simultaneous requests are received. In this case,
the first client in the list that is making a request gets to go first, and after
being served, it is moved to the end of the list. Here is a table summarizing
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the resources used by six different VHDL specifications for this circuit (all
produced by different designers).

design | flip flops | LUTS
0 19 35
1 27 127
2 28 | 108
3 19 69
4 17 71
5 27 78

Note the wide variation in the resource usage, especially in the LUT counts.
The most expensive design uses more than three times the number of LUTs
as the least-expensive design. This kind of variation is not all that unusual,
even among experienced designers.

Here’s another example that illustrates two fundamentally different ar-
chitectures for the same function. The code fragment below implements a
simple barrel shifter, which rotates its input to the left by a specified amount.

process (dIn, shift)
begin
for i in 0 to n-1 loop
dOut (i) <= dIn(i-shift);
end loop;
end process;

Here, n is the width of the data input and output and shift is an input
signal that controls the amount by which the individual bits are rotated. At
first glance, it would appear that this circuit requires n subtraction circuits
plus n multiplexors, each with n data inputs. It turns out that because the
subtraction involves the loop index, the synthesizer is able to implement it
using the circuit shown below (for the case of n = 4).
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Observe how the inputs to the different muliplexors are rotated relative to
one another. This allows the circuit to be implemented without any explicit
subtraction circuits. Now unfortunately, the circuit still requires n multi-
plexors with n inputs each, and since an n input multiplexor requires about
n/2 LUTs, this circuit requires about n?/2 LUTs, altogether. For n = 64,
that’s 2048 LUTs, which is more than 20% of the total number in the FPGA
used on our prototype board. It turns out that there is an alternative design
that uses far fewer LUTs.

din(3) dIn(2) diIn(1) dIn(0)

[ [ [ |
0 1/X0 1/X0 1/\0 1
shift(0) ﬁ /ﬁ /ﬁ /’X /

| [ |
P\O 1/1_\0 1/ﬁo 1/ﬁ0|1/

dOut(3) dOut(2) dOut(1) dOut(0)

shift(1)

Note that the first row of multlexors rotates the input signals by one posi-
tion when shift(0)=1. Similarly, the second row rotates the signals by two
positions when when shift(1)=1. For larger versions of this circuit, row k
rotates the inputs by 2* positions when shift(k)=1. This produces exactly
the same result as the original version but uses only nlog, n LUTs, which is
384 when n = 64, about one fifth the number used by the first design. Here
is a VHDL specification for the second version of the barrel shifter.
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process (dIn, shift)
variable t: unsigned(n-1 downto 0);
begin
t := dIn;
for j in 0 to 1gN-1 loop
if shift(j) = °1’ then
t := t(n-(1+2%*j) downto 0) & t(n-1 downto n-2%x*j);
end if;
end loop;
dOut <= temp;
end process;

The key point of this example is that there are often fundamentally dif-
ferent implementations of a given logic function, and the resources used by
these different implementations can vary widely. Recognizing the existence
of a fundamentally different architcture is not something that a circuit syn-
thesizer can do. It is up to a human designer to recognize when the resource
usage is excessive, and look for more efficient alternatives.

24.2 Estimating Resource Usage

In order to determine if the resources used for a given circuit are reasonable,
we need to have at least a rough idea of what a reasonable resource usage
would be. There are three categories of resources we are generally concerned
with when designing with FPGAs: flip flops, LUTs and memory.

Flip flops are generally the easiest resource to estimate, since most flip
flops are consumed by registers that we specify in a direct way. Any signal
that is assigned within the scope of a synchronization condition must be
implemented using flip flops, so we can easily account for the number used.
There are a few things that can complicate this process. First, when the
encoding of state signals used in state machines is left up to the synthesizer,
we may not be sure how many flip flops are used. Most often, the synthe-
sizer will use a one-hot encoding, leading to one flip flop per state. Second,
synthesizers sometimes replicate flip flops that have large fanouts, in order
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to improve performance. Finally, synthesizers will sometimes optimize out
flip flops whose outputs are never actually used in the circuit. In all three
cases, the synthesis report will include messages that allow you to determine
exactly what it did, so if the reported flip flop counts do not match what you
expect, you can usually resolve the discrepancy fairly easily by examining
the synthesis report.

The second category of resource is LUTs. It is often difficult to account
for LUTs precisely, but there is one easy thing to check to get a sense of
whether the LUT count is reasonable or not. Since FPGAs are equipped with
equal numbers of LUTs and flip flops, any circuit that uses many more LUTs
than it does flip flops is likely to end up wasting a significant fraction of the
available resources. So, if your circuit uses an appropriate number of flip
flops and has a LUT count that is roughly comparable to the number of flip
flops used, you can be reasonably confident that your design is well-balanced
and is probably not using more LUTs than it should. Now, just because
a design uses more LUTs than flip flops does not necessarily mean that its
resource usage is excessive, but it does mean that we may need to look at it
more closely to make sure we understand how LUTs are being used.

To make it easier to estimate the LUTs used by a given VHDL specification,
it’s helpful to know how many LUTs are used by common building blocks.
The table below lists resource counts for a variety of building blocks that are
used by circuit synthesizers. Here, n is the width of the data handled by the
component.

component no constant input | one constant input

incrementer /adder n n
select bit n/2 0
modify selected bit n+n/4 1
decoder n+n/8 0

equality compare n/2 n/4

less-than compare n n/2
shift /rotate nlogyn 0
loadable register 0 -
loadable counter n -




424 Designing Digital Circuits (C) Jonathan Turner

Let’s start with the middle column, which gives the LUT counts for the gen-
eral case when all inputs are signals whose values can change as the circuit
operates. As mentioned earlier, FPGAs include certain hidden resources that
enable commonly occuring functions to be implemented more efficiently. In
particular, there are special circuits to implement carry logic in ripple-carry
adders and similar circuits. These allow adder circuits to be implemented
with just one LUT per bit, rather than the two LUTs that would be required
if we had to implement the carry logic explicitly with LUTs. Similarly, there
are “helper circuits” that allow an n input multiplexor to be implemented
using about n/2 LUTs, rather than the n — 1 we would use if we built such
a mux using 2-to-1 muxes arranged in a tree. This allows us to select one
bit from an n bit vector using n/2 LUTs. To change a selected bit of an
n bit vector, we need n + n/4 LUTs, making assignment to an element of
a vector a relatively expensive operation. Comparing two n bit signals for
equality takes n/2 LUTs, but comparing them to see if one is less than the
other requires n.

The right hand column of the table gives the LUT counts when one of
the inputs to the component has a constant value. So to select a bit from
a vector, when the index of the selected bit is a constant requires no LUTS
in the synthesized circuit. Similarly, when comparing an input signal to a
constant, we can cut the number of LUTs in half, compared to the general
case.

By examining the VHDL for a circuit, we can often identify where the syn-
thesizer will need to instantiate various components, such as adders, counters
and comparison circuits. We can then use the information in the table to
quickly estimate the LUTs used by these components. In circuits that process
parallel data with word widths of 16 or more bits, these elements typically
account for most of the resources used.

We can also use this information to try to identify places where we can
reduce the resources used. For example, we might have a circuit with three
32 bit adders, that are always used at different times. It may make sense
in this situation to use one adder for all three additions, rather than three
separate adders.

The third resource that we must account for in our circuits is memory.
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FPGAs are often equipped with configurable SRAM blocks. In the FPGAs
used on our prototype boards, these block RAMs have 18 Kbits and can be
configured in a variety of ways. LUTs can also be used to implement memory
blocks, and if we only need a small amount of memory (say a few hundred
bits), it makes more sense to implement the memory using LUTs than using
a block RAM. The number of LUTs needed to implement an n bit memory
is n/16, so for example, a 64 x 8 bit memory can be implemented using 32
LUTs. Note that memory provides a much more efficient way of storing large
amounts of data than flip flops. In most situations, when we have lots of
data to store, it makes sense to store it in memory if we can.

24.3 Estimating and Reducing Resource Usage

In this section, we’ll look at several examples to see how we can estimate
the resources required by a given circuit. We will also compare our own
estimates to the information found in the synthesis report, to get a better
understanding of the synthesized circuits, and to identify opportunities to
reduce the resource usage.

Let’s start with a familiar circuit, the debouncer that we’ve used to de-
bounce the buttons and knobs on the prototype boards. Recall that the
VHDL specification of this circuit include a generic width parameter, so we
can instantiate debouncers of various sizes. The debouncer has an internal
counter that it uses to delay the propagation of the input signals until they’ve
had a chance to “settle”. It also stores the input signals on each clock tick
so that it can compare the previous value to the current value. The figure
below shows a circuit diagram, based on the VHDL specification.
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Let’s start by accounting for the number of flip flops. The counter is 16
bits wide and the prevDin and dOut registers are both n bits wide, where n
is the generic width. So for example, if n = 8, we have a total of 32 flip flops
in this circuit. This is exactly what the synthesis report gives as the flip flop
count.

To estimate the LUTs used, we need to identify the various elements of
the circuit. The top section of the diagram implements the counter plus
an “equal-0” comparator. The counter can be implemented using one LUT
per bit, while the equality counter requires one LUT per group of four bits,
giving us 16+4=20 LUTs for this part of the circuit. The general equality
comparator requires n/2 LUTSs, so for n = 8 that’s 4 more. This gives us
a total of 24 LuTs, while the synthesis report gives a total of 27. This is a
small enough discrepancy that we won’t worry about it. The objective is not
to account for every single LUT but to confirm that we have a reasonably
accurate understanding of how the resources are being used.

Since the number of LUTs used by this circuit is smaller than the number
of flip flops, we can reasonably conclude that this circuit is about as efficient
as we can reasonably make it. However, there is still an opportunity to
reduce overall resource usage, with respect to the debouncer circuit. Recall
that in our design of the binary input module, we used one debouncer for the
button signals, while the knob interface circuit used a separate debouncer
for the knob signals. Each of these debouncers has its own 16 bit counter,
which is clearly somewhat redundant. If we had designed the circuit using a
single 7 bit wide debouncer, instead of two smaller ones, we could have saved
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16 flip flops and 20 LUTs, cutting the overall resource usage for debouncing
by nearly a factor of 2.

Next, let’s look at priority queue circuit, that we discussed in Chapter
12. Recal that this circuit consists of an array of cells with two rows and &
columns. Each cell stores a (key, value) pair, including a valid bit used to
identify the cells that are “in-use”. To insert a new entry, we shift the top
row to the left, then do a “compare-and-swap” operation in each column. To
remove an entry, we shift the bottom row to the right, then do a compare-
and-swap. The diagram below shows a typical column in the array.

topShift

] &T
|
valid, key, value

swap

;

compare
AndSwap

¢ ‘i

botShift

valid, key, value

The block labeled swap consists of a less-than comparator, plus a small
amount of additional logic to compare the valid bits. If the key and value
are each n bits wide, one column in the array contains 4n+ 2 flip flops. Since
each register can be loaded from two different sources, we need one LUT per
register bit, plus n LUTs for the less-than comparison. This gives us a total
LUT count of 5n + 2 or 82 when n = 16. The synthesis report for this circuit
gives 91 LUTs per column, which is within about 10% of our estimate.
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In this case, the LUT count is about 40% larger than the flip flop count for
the case of n = 16. This is reasonably close, and since there is no obvious way
to reduce the number of LUTs used by the column circuit, we can conclude
that the circuit is probably about as efficient as we can make it.

Still, it is worth asking if the overall approach used by the priority queue
could be improved upon. If we wanted to instantiate a priority queue that
could hold say 1000 key/value pairs where the key and value are both 16 bits,
this circuit would require 33,000 flip flops, far more than we can accommodate
on the FPGAs used on on our prototype boards. However, we could store this
information in just two of the 20 block RAMs that the FPGAs contain. Is
there a way to use this memory to store the (key,value) pairs, while still
supporting fast insertion and deletion? It turns out that there are ways
to do this, based on software algorithms for priority queues. While these
approaches do require more time to perform an insertion or deletion, they
can accommodate much larger sets of (key,value) pairs. The bottom line is
that the given circuit is appropriate in applications where performance is
critical and the number of pairs is not too large. If we can tolerate slower
performance and need to handle hundreds or thousands of pairs, an alternate
approach may be called for.

Next let’s turn to a larger example, the WASHU-2 processor. This circuit
is large enough that in order to estimate the resource use it helps to build
a spreadsheet listing the key elements of the circuit and an estimate of the
resources they use. Here is such a spreadsheet for the WASHU-2.
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flip flops | LUTSs

PC 16 32

IREG 16 0

IAR 16 0

ACC 16 32

this 16 16

ALU 16 80

aBus 0 32

dBus 0 0

target 0 16
decoder 0 40
state 17 17

tick 4 4

dispReg 0 32
if-conditions 0 25
total 101 326
actual/area 100 | 361
actual /speed 106 | 389

The first five lines list the flip flops and LUTSs used in connection with the main
processor registers. The PC requires 32 LUTs, since it can be incremented
and can be loaded from either the IREG or the data bus. Similarly, the Acc
requires 32 since it can be loaded either from the IREG (during constant load
instructions), the data bus or the ALU. The IREG and IAR do not require
any extra LUTs because they are both loaded only from the data bus. The
ALU implements addition, negation and logical-AND. These each require one
LUT per bit, plus we need two more LUTs per bit to select from among four
possible values. This leads to our estimate of 80 LUTs altogether. The address
bus signal uses no flip flops, but does require two LUTs per bit to select from
among three possible sources (the IREG ,pCand the 1AR). The branch target
signal requires one LUT per bit, since it requires an adder to add the pC
to the offset in the IREG. The instruction decoding function requires about
40 LUTs to implement the conditions implied by its case statements, and to
construct its 17 bit result. The state signal is implemented using a one-hot
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encoding and since there are 17 states, it requires 17 flip flops. We need one
LUT per flip flop to handle the updating of the state. The dispReg signal
is the output that sends a selected register to the console. It requires a 4:1
multiplexor with 2 LUTs per bit. The line labelled if-conditions is an estimate
of the number of LUTs used by for the conditions in all of the if statements
in the two processes. Most of these conditions require a single LUT.

The total from our estimates is 101 flip flops and 326 LUTs. The circuit
was synthesized using two different optimization criteria (these are specified
in the process properties of Project Navigator). When optimized for area,
the synthesized circuit had 100 flip flops and 361 LUTs. When optimized for
speed, it had 106 flip flops and 389 LUTs. These are both reasonably consis-
tent with the estimates, allowing us to be comfortable with our understand-
ing of how the resources are being used. We can check our understanding by
examing the high level synthesis section of the synthesis report.

Synthesizing <cpu>...

Found finite state machine for signal <state>.

| States | 17

| Transitions | 54 ...

Found 16-bit tristate buffer for signal <aBus>.

Found 16-bit tristate buffer for signal <dBus>.

Found 16-bit 4-to-1 multiplexer for signal <dispReg>.

Found 16-bit register for signal <acc>.

Found 16-bit adder for signal <alu$addsub00>.

Found 16-bit register for signal <iar>.

Found 16-bit register for signal <iReg>.

Found 16-bit register for signal <pc>.

Found 16-bit adder for signal <pc$addsub00> created: line 146.
Found 16-bit adder for signal <target>.

Found 16-bit register for signal <this>.

Found 4-bit register for signal <tick>.

Found 4-bit adder for signal <tick$add00> created: line 134.
Summary: inferred 1 Finite State Machine(s).
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inferred 84 D-type flip-flop(s).
inferred 4 Adder/Subtractor(s).
inferred 16 Multiplexer(s).
inferred 32 Tristate(s).

This identifies elements like state machines, registers and adders, and sum-
marizes the overall resources used. In a circuit that instantiates additional
sub-components, a separate section like this appears for each sub-component.
We'll finish this chapter with a similar analysis of the resources used by
the WASHU-2’s console circuit. As before, we’ll start with a spreadsheet.

flip flops | LUTS

debouncer 24 22
knob interface 43 30
led display 36 120
snoopAdr 16 32
snoopData 16 48
snoopCount 16 16
ledCounter 20 20
regSelect 0 6
nuChar 0 44
hex2Ascii 0 8
prevDBtn 4 0
singletons 2 10
total 177 | 356
actual/area 160 | 389

Here, the first three lines are for the three sub-components of the console.
The values shown came from synthesizing the sub-components separately.
The snoopAdr signal is a 16 bit register along with an adder/subtracter,
that is used to adjust the value as the knob turns. We estimate 2 LUTs per
bit for this. For the snoopData signal we estimate 3 LUTs per bit, since in
this case, we must also be able to load a new value from the data bus. The
snoopCount is a 16 bit counter, requiring 1 LUT per bit. The IedCounter is a
20 bit counter, also requiring 1 LUT per bit. The regSelect is a two bit signal
specified by the following conditional signal assignment.
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regSelect <= "00" when selekt <= slv(4,5) else
"10" when selekt <= slv(10,5) else
"01" when selekt <= slv(20,5) else
||11||;

The three less-or-equal compaators each require 2 LUTs, leading to our es-
timat of 6 LUTs for this signal. The nuChar signal is eight bits wide and
is derived from one of 12 different four bit signals, selected by a large case
statement. We estimate 5 LUTs per bit in this case, giving a total of 40. The
prevDbtn signal is just a delayed copy of the debounced button signals, used
to detect button presses. The line labeled singletons is for the two one bit
registers, singleStep and writeReq.

When we compare our estimates to the values in the synthesis report,
there is one surprise. Our estimate of the flip flop count is too large by 16,
which is a fairly large discrepancy when it comes to flip flops. If we look more
closely at the synthesis report, we can find the explanation in the following
message.

INFO:Xst:2146 - In block <console>, Counter <lcdCounter>
<snoopCnt> are equivalent, XST will keep only <lcdCounter>.

What the synthesizer has noticed is that both of these counters are initialized
to zero and incremented on every clock tick. While IcdCounter has four more
bits that snoopCount, its low order 16 bits are always exactly the same as
snoopCount. Hence, it can omit snoopCount and use the low order bits of
ledCounter in its place. This is how it comes up with 16 fewer flip flops than
we got from our own analysis.

There is actually one other surprise in the synthesis report, but this one
is not so pleasant. The suprise is contained in the following lines.

Found 16x8-bit ROM for signal <nuChar$rom0000> at line 261.
Found 16x8-bit ROM for signal <nuChar$rom0001> at line 264.
Found 16x8-bit ROM for signal <nuChar$rom0011> at line 282.

Now the circuit does contain the constant array hex2Ascii that we expect
to be implemented as a 16 x 8 ROM. This ROM can be implemented using
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8 LUTs, but the synthesis report lists 12 copies of this circuit for a total of
96 LUTs. Why should this be happening? The culprit turns out to be this
process.

process (cpuReg, snoopAdr, snoopData, selekt) begin
case selekt is

when "00000" | "00110" | "10000" | "10110" =>
nuChar <= c2b(hex2Ascii(int(cpuReg(15 downto 12))));
when "00001" | "00111" | "10001" | "10111" =>

nuChar <= c2b(hex2Ascii(int(cpuReg(1l downto 8))));

when "01100=>nuChar<=c2b(hex2Ascii(

int (snoopAdr (15 downto 12))))
when "01101=>nuChar<=c2b(hex2Ascii(

int (snoopAdr(11 downto 8))));

The individual cases are never needed at the same time, but the synthesizer
is not able to figure that out by itself. Consequently, it has created separate
copies of the hex2Ascii ROM for each of the 12 distinct cases. We can get a
more efficient circuit by re-writing this process as shown below.

process (cpuReg, snoopAdr, snoopData, selekt) begin
case selekt is

when "00000" | "00110" | "10000" | "10110" =>
showDigit <= cpuReg(15 downto 12);

when "00001" | "00111" | "10001" | "10111" =>
showDigit <= cpuReg(11l downto 8);

when "00010" | "01000" | "10010" | "11000" =>
showDigit <= cpuReg(7 downto 4);

when "00011" | "01001" | "10011" | "11001" =>

showDigit <= cpuReg(3 downto 0);
when "01100" => showDigit <= snoopAdr (15 downto 12);
when "01101" => showDigit <= snoopAdr(11 downto 8);
when "01110" => showDigit <= snoopAdr (7 downto 4);
when "01111" => showDigit <= snoopAdr (3 downto 0);
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when

Designing Digital Circuits (C) Jonathan Turner

"11100" => showDigit <= snoopData(15 downto 12);
"11101" => showDigit <= snoopData(ll downto 8);
"11110" => showDigit <= snoopData(7 downto 4);
"11111" => showDigit <= snoopData(3 downto 0);
others => showDigit <= x"O;

end case;
end process;
nuChar <= x"20" when selekt(3 downto 1)="010"

or selekt(3 downto 1)=101
else c2b(hex2Ascii(int(showDigit)));

Here, the process defines the new showDigit signal, which is the four bit
digit that should be displayed on the LCD display. The final assignment to
nuChar uses showDigit as the argument to hex2Ascii eliminating the redun-

dant copies.

Synthesizing the circuit with this change leads to a savings of

58 LUTs, a reduction of about 15%.



