& Washington University in St.Louis

Engineering

12. A Closer Look at TCP

m TCP connection management
= Reliable data transport in TCP (simplified)

= How TCP selects a timeout value

Jon Turner - slides adapted from Kurose and Ross

& Washington University in St.Louis

Engineering

Reminder - TCP Segment Format

m Sequence number is sequence
number of first byte in payload

m Ack number is sequence number
of next expected byte

= Flags include

» SYN and FIN bits used to setup and
teardown connections

» RST used to reset connection
» ACK flag indicates valid ack #
» URG flag - generally not used
» PSH flag - generally not used

m Receive window specifies amount
of buffer space available at rcvr
» used for flow control

16 bits 16 bits
src port ‘ dst port
sequence #

acknowledgment #

hdr

leng | = | flags | recv window

checksum urgent data

options

application
data

& Washington University in St.Louis

Engineering

TCP Connection Establishment

[7

—

’open socket and configure
as “listening” socket

SYN(_]) accept (and wait)
connection socket opened
J,\—ﬂ

(Ks source address, port
SYN‘P‘C associated with socket
AQ
now connected

B

open Socket and connect

connection established

&

& Washington University in St.Louis

Engineering
Typical Connection Close

[7

—

FIN(wy)
1)
P\C\QM application closes Socket
connection established

ey all acks received
ACK(/V+1)
Socket closed

if final ACK is lost,
server re-sends FIN,
client re-sends ACK

application closes Socket

all acks received

=
©
2
o
]
£
pras)
d

Socket close

& Washington University in St.Louis

Engineering

TCP Client “Life Cycle”

wait 30
seconds

time wait

receive FIN
send ACK

FIN wait 2

receive ACK

send nothing -
FIN wait 1

established

client application
initiates TCP connection

SYN sent

receives SYN & ACK
send ACK

client application

initiates close
wait for pending acks,
send FIN

& Washington University in St.Louis

Engineering

TCP Server “Life Cycle”

server application
opens listening socket

LISTEN

receive ACK
send nothing

last ack

app closes socket, receive SYN,
wait for pending acks, send SYN & ACK
send FIN

SYN received

close wait

receive ACK

ive FIN
receive send nothing

send ACK
established

& Washington University in St.Louis

Engineering

Exercises

1. Draw a space-time diagram showing the complete life-cycle of a
TCP connection. Label the vertical line at the client with the client
states. Label the vertical line at the server with the server states.

& Washington University in St.Louis

Engineering

TCP Sequence Numbers and ACKs

m Seq. #'s:
» byte stream “number”
of first byte in
segment’s data
m ACKs:
»seq # of next byte
expected from other side
»cumulative ACK

m Out-of-order segments
» usually, out-of-order
segments are buffered

» TCP RFC doesn't actually
specify

Host A

User
types
'\’

host ACKs
receipt
of echoed
\CI

simple telnet
scenario

Host B

host ACKs
receipt of

‘C’, echoes
back ‘C’

& Washington University in St.Louis

Engineering

TCP Reliable Data Transfer

m TCP creates reliable service on top of IP
» pipelined segments (window size expressed in bytes)
»cumulative acks
m TCP uses single retransmission timer
» controls retransmission of “oldest” unacknowledged segment
»when lost segment received, cumulative acks allow sender to
avoid retransmitting segments first sent after lost segment
m Retransmissions are triggered by
» timeout events
» duplicate acks
m Initially consider simplified TCP sender
» ignore duplicate acks
»ignore flow control, congestion control

& Washington University in St.Louis

TCP Sender Events:

data rcvd from app:

= add bytes to send buffer
»send segment(s), if “allowed”
»seq # is byte-stream number
of first data byte in segment
m Start timer if not already
running
» timer controls retransmission
of oldest un-acked segment
m Expiration interval
TimeOutInterval

» determined dynamically
based on RTT

Engineering

timeout:

= Retransmit segment
that caused timeout

m Restart timer
Ack rcvd:

» If ack matches
previously un-acked
segment(s)

» discard bytes that have
been acked

» re-start timer if there are
still un-acked segments

10

10

& Washington University in St.Louis

Engineering

Simplified TCP Sender

sendBase

nextSeqNum = initialSeqNum

sendBase = initialSegNum un-acked

loop (forever) { bytes

switch(event)

event: data received from application above
add received bytes to send buffer (as many, as will fit)
if allowed, create/send segment(s) using bytes in send buffer
if timer currently not running, start timer
pass segment to IP
nextSeqNum = nextSeqNum + length(segment)

event: timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
re-start timer

event: ACK received, with ACK field value of y
if (y > sendBase) {
sendBase = y
if there are currently not-yet-acknowledged segments, start timer

} /* end of loop forever */

nextSeqNum

11

11

& Washington University in St.Louis

Engineering

TCP Retransmission Scenarios

lost ACK scenario premature timeout
Host A Host B Host A Host B
Seg=
=92, 8p I
W 3
Q
5 £
= 0 £
@ R ~
X 1
0SS 5]
s !
€9=92 o sendBase T
bYte
S dats =100 3
sendBase g
o =120 5 20
=10 N =)
pCK i RS>
sendBase &
=100 sendBase 1
=120
time time

12

12

& Washington University in St.Louis

Engineering

TCP Retransmission Scenarios

Cumulative ACK scenario
Host A Host B

Seq\
\92
W
100
X

loss

timeout

Seq\
=1
00, 20 YEeS dagy

b
sendBase %

=120

time

13

13

& Washington University in St.Louis

Engineering

TCP ACK Generation [RFC 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500 ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediately send ACK, provided that
segment starts at lower end of gap

14

14

& Washington University in St.Louis

Engineering

Exercises

1. Draw a space-time diagram showing two hosts communicating
with TCP. Suppose A sends 8 packets to B, each containing 10
bytes of data, and that the fourth and fifth packets are lost. Show
these packets and the acks sent by B. Show the sequence
numbers in the ACKs. Suppose that when A retransmits the fourth
packet, it is also lost, but the fifth packet gets through. Show
these packets and resulting ACKs. Finally, show what happens
when the fourth packet is retransmitted the second time and
successfully delivered to B. At what point in this scenario does the
application at B receive the eighth packet?

15

15

& Washington University in St.Louis

Engineering

Fast Retransmit

= Time-out period often relatively long
»long delay before resending lost packet

m Detect lost segments via duplicate ACKs
» sender often sends many segments back-to-back
» if segment is lost, there will likely be many duplicate ACKs

m If sender receives 3 duplicate ACKs for the same data,
it concludes that segment after ACKed data was lost:
» fast retransmit: re-send segment before timer expires

= Why wait for 3 duplicate ACKs?

»since IP may deliver segments out-of-order, a duplicate ACK
does not necessarily mean a lost segment

» but, with 3 duplicate ACKs, a lost segment is likely

16

16

& Washington University in St.Louis

Engineering
Fast Retransmit Illustration

Host A Host B

timeout

17,

17

& Washington University in St.Louis

Engineering

Fast Retransmit Algorithm

event: ACK received, with ACK field value of y
if (y > sendBase) {
sendBase =y
if (there are currently not-yet-acknowledged segments)
re-start timer
} else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y == 3)
resend segment with sequence number y

a duplicate ACK for]
already ACKed segment fast retransmit

18

18

& Washington University in St.Louis

Engineering

TCP Round Trip Time and Timeout

m How should TCP select its timeout value?

»must be longer than RTT, but not too much longer
e if too long, retransmissions needlessly delayed
e if too short, may retransmit when not necessary

» but different connections have different RTTs and RTT varies
during a connection as well

= How to estimate RTT?

» SampleRTT: measured time from segment transmission until ACK

receipt
»ignore retransmissions
» SampleRTT will fluctuate, want estimated RTT “smoother”
e average several recent measurements, not just current SampleRTT
EstimatedRTT = (l1l-o)*EstimatedRTT + a*SampleRTT

where a is typically 0.125; this method called exponential weighted
moving average

19

19

& Washington University in St.Louis

Engineering

Example RTT estimation:

350

300 |

RTT (milliseconds)
N
(5
o

N
=]
S

150 |

100 +
1 8 15 22 29 36 43 50 57 64 7

time (seconnds)

—— SampleRTT —#— Estimated RTT

78

85

92

99

106

20

20

& Washington University in St.Louis

Engineering

Computing the Timeout

= Timeout should be EstimatedRTT plus “safety margin”
» if large variation in EstimatedRTT need larger safety margin

m First estimate of how much SampleRTT deviates from
EstimatedRTT

DevRTT = (1-f)*DevRTT + B*|SampleRTT-EstimatedRTT|
typically, p = 0.25

= Then set timeout interval
TimeoutInterval = EstimatedRTT + 4*DevRTT

21

21

& Washington University in St.Louis

Engineering

Exercises

1.Consider a TCP connection linking a residential client A to a
remote server that is 2000 km away from A. Suppose the DSL
link connecting A to its ISP has a download rate of 2 Mb/s and
can store packets with a total length of 64 KB. Ignoring all other
considerations, what is the minimum delay on the path from the
server to A? If the queue is oscillating rapidly between being
empty and full, what would you expect the estimated RTT to be?
What about the DevRTT value? Compute the resulting timeout
interval. Is this value “safe”? Is it too conservative?

22

22

