WashingtonUniversity in St. Louis 19. Multicast Communication Multicast within a subnet Reverse path forwarding IGMP PIM

Scalable multicast forwarding

Jon Turner

Engineering

Basic Multicast Receiver

```
/** usage: Rcvr mcAdr port iface */
import java.io.*; import java.net.*;
public class Rcvr {
 public static void main(String args[]) throws Exception {
   // form multicast group from command-line arguments
   int port = Integer.parseInt(args[1]);
   InetSocketAddress group = new InetSocketAddress(
      InetAddress.getByName(args[0]),port);
   \ensuremath{//} open multicast socket and join group
   MulticastSocket sock = new MulticastSocket(port);
   NetworkInterface iface = NetworkInterface.getByName(args[2]);
   sock.joinGroup(group,iface);
   // create buffer and packet
   byte[] inBuf = new byte[1000];
   DatagramPacket inPkt = new DatagramPacket(inBuf,inBuf.length);
   while (true) {
     // receive packet and print payload
     sock.receive(inPkt);
     System.out.println(new
      String(inBuf,0,inPkt.getLength(),"US-ASCII"));
} } }
```

Engineering

Basic Multicast Sender

```
/** usage: Sender mcAdr port iface ttl message */
import java.io.*; import java.net.*;
public class Sender {
 public static void main(String args[]) throws Exception {
   // from multicast group address from command-line arguments
   int port = Integer.parseInt(args[1]);
   InetSocketAddress group = new InetSocketAddress(
       InetAddress.getByName(args[0]),port);
   // open multicast socket, set interface and time to live
   MulticastSocket sock = new MulticastSocket();
   sock.setNetworkInterface(NetworkInterface.getByName(args[2]));
   sock.setTimeToLive(Integer.parseInt(args[3]));
   // create buffer and packet to send
   byte[] outBuf = args[4].getBytes("US-ASCII");
   DatagramPacket outPkt = new DatagramPacket(
                               outBuf,outBuf.length,group);
   sock.send(outPkt); // send packet to group
   sock.close();
} }
```


Engineering

IGMP Details

- Message fields
 - » type query, report, leave group
 - » max response time max wait time before responding to query
 - » group address subject multicast addr; 0 for "general query"
- On each subnet, one router plays role of "Querier"
 - » router with smallest IP address acts as querier
 - » issues periodic general membership queries
 - sent on all systems multicast address: 224.0.0.1
- Hosts send reports to subject multicast address
 - » in response to general queries or when first joining a group
- Leave group message sent by host when leaving
 - » sent to all routers group (224.0.0.2)
 - » querier responds with a group-specific query
 - verify that no other group members still out there

■ Washington University in St. Louis IGMP Snoopi

Engineering

IGMP Snooping (RFC 4541)

Objective

- » use group membership to limit propagation of multicast packets
- » learn which hosts are in which group by snooping on IGMP
- » invented by switch vendors to limit multicast traffic in large switched networks
- Suppression of duplicate membership reports by IGMP interferes with snooping
 - » so send report packets only to routers, not to hosts
 - implies switches must be able to detect which ports go to routers
- Forwarding based on group membership
 - » forwarding can use either Ethernet or IP addresses
 - IP addresses preferred due to non-exact multicast address mapping
 - but not an option for simple Ethernet switches

Engineering

Reverse Path Forwarding

- Efficient distribution of multicast packets requires that packets be forwarded along a tree
 - » in principle, any tree joining subnets can be used and each multicast can use a different tree
 - » internet multicast generally uses reverse of unicast routes
 - so routing based on combination of (source adr, multicast adr)
 - means multicast with many senders requires more routing state
 - more efficient to use shared tree through "rendevouz point"

€

Engineering

More About PIM (RFC 4601)

- PIM stands for Protocol Independent Multicast
 - » PIM can use routing data from any routing protocol
 - e.g. unicast routing state, or multicast BGP
- Routers must be able to determine RP for any address
 - » can use statically configured mapping based on address ranges
 - » or, a PIM domain can use a Bootstrap Router (BSR) to distribute information used to map a multicast address to an RP
 - · domain has a defined set of RPs distributed by BSR
 - PIM routers use a hash function to select an RP in this set
 e.g. if N candidate RPs, hash(multicast address) mod N selects one
- PIM generally used only within single routing domain
 - » RFC omits essential details for inter-domain routing
 - e.g. how are RPs coordinated among different domains
 - » BGP extensions may eventually enable inter-domain multicast

Engineering

IGMPv3 (RFC 3376)

- Adds support for source-specific multicast using "filters"
 - » include-filter specifies a list of acceptable senders
 - multicast packets are delivered to socket only if sender is on list
 - » exclude-filter specifies a list of blocked senders
 - » hosts have "interface filters" derived from socket filters
 - » not supported by java multicast sockets; linux does support it
- Queries and membership reports are extended to handle "filtered multicasts"
 - » new source-specific query that includes a sender list for target destination address
 - » reports can cover multiple groups and includes a filter per group
- IGMPv3 ignores membership reports from other hosts
 » so all IGMPv3 hosts in a multicast group will respond to a query
- Can operate in "compatibility mode" with older versions

Engineering

Other Issues with IP Multicast

- Separate protocol needed to reserve network capacity
 - » RSVP protocol (RFC 2205) can be used for this purpose
 - » but cannot select route based on required network capacity
 - QoS routing has been discussed but never implemented
- No "private" multicast groups
 - » no way to get short-term exclusive use of a multicast address
 - » no way to limit subscribers or limit who can send to an address
 - makes it awkward to use for multi-party teleconferencing
 - privacy requires encryption
- Largely unavailable in public internet
 - » unresolved technical issues for inter-domain routing
 - » no economic benefit to network providers
 - multicast senders benefit as they need not duplicate traffic
 - but ISPs lose money if senders reduce internet access link rate