Engineering

23. Managing Mobility in Wireless Networks

- Basic Issues
- Mobile IP
- Cell Phone Networks
- Mobility in GSM

Jon Turner - based on slides from Kurose & Ross

Engineering

Levels of Mobility

- Stationary mobile device
 - » connects from different locations but does not move while communication is in progress
 - » "client-only" operation just requires DHCP
 - » to allow others to "reach you" at any location, need mechanism for them to learn your current location
 - mobile IP handles this by "forwarding your calls" from home net
 - application-specific solutions such as SIP registration also an option
- Moving mobile
 - » requires mechanism to disconnect from one wireless access point and connect to another as needed (handoff)
 - » speed of movement, wireless communication range are key factors when engineering solutions
 - WIFI networks with small cells and walking users
 - cell phone networks with large cells (10 km) and driving users

J

Engineering

Mobile IP (RFC 3344)

- Key elements
 - » home agents, foreign agents
 - » foreign-agent registration
 - » care-of-addresses
 - » encapsulation (packet-within-a-packet)
- Three components to standard:
 - » indirect routing of datagrams
 - » agent discovery
 - » registration with home agent
- Mainly intended for communicating from different locations, not for communicating while in motion
- Requires support for permanent, globally routable IP addresses from host-to-host

Engineering

Indirect Routing Observations

- Mobile uses two addresses:
 - » permanent address: used by correspondent (hence mobile location is transparent to correspondent)
 - » care-of-address: used by home agent to forward datagrams to foreign agent
 - » correspondent sees only permanent address
- Foreign agent functions may be done by mobile itself
 - » if no foreign agent detected, acquire local address via DHCP and use this as care-of-address
 - » register care-of-address with home agent
- Triangle routing: correspondent-home-network-mobile
 - » less efficient than direct routing

ą.

Engineering

Obstacles to Mobile IP Deployment

- Requires widespread support in access routers
 » to serve as home agents and foreign agents
- Requires support in most widely used operating systems» IOS, Android, Windows, Linux
- Shortage of IPv4 addresses
 - » mobile IP nodes need permanent, public IP addresses
 - not directly compatible with common usage of NAT
 - » need IPv6 before large-scale deployment of mobile IP
- Competing solutions to mobility problem
 - » DHCP, SIP, Skype for "stationary mobile"
- Chicken-and-egg problem
 - » little motivation to use it until there are apps that require it
- Potential for cell phone carriers to support it

Engineering

Beyond Stationary Mobile

- Mobility within 802.11 networks
 - » moving device can disconnect from one AP, connect to another
 - MAC address remains the same; switches learn new location
 - » if both APs in same IP subnet, no need to change IP address
 - so ongoing TCP sessions not affected
- Moving mobile IP hosts
 - » moving host detects and registers with new foreign agent after connecting to new AP
 - » new foreign agent registers with home network which starts forwarding packets through new foreign agent
- Mobility in cell phone networks
 - » cell phone networks engineered for rapid mobility
 - » large cells reduce frequency of handoffs
 - also, more powerful radios and use of licensed spectrum
 - but, smaller cells required in densely populated areas

Engineering

Cellular Networks: the First Hop

- Two techniques for sharing mobile-to-BS radio spectrum
 - » CDMA: code division multiple access
 - » combined FDMA/TDMA
 - divide spectrum in frequency channels
 - divide each channel into time slots
 - » mobile devices communicate over assigned channels
- Why not contention-based methods like CSMA/CA?
 - » poor fit for cell-phone environment
 - many users and large cells (e.g. 10 km across) would require high bandwidth and frequent contention
 - CSMA is inefficient unless packet transmission time is much larger than signal propagation time
 - » more susceptible to noise/interference

Engineering

Code Division Multiple Access (CDMA)

- Unique "code" assigned to each user; i.e., code set partitioning
 - » all users share same frequency, but each user may have own "chipping" sequence (i.e., code) to encode data
 - » allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- Encoded signal = (original data) X (chipping sequence)
- Decoding: take inner-product of encoded signal and chipping sequence
- Some systems use same chipping sequence for all users
 - » means only one sender at a time
 - » still useful, because more robust to interference than direct modulation

Engineering

4G Long-Term Evolution (LTE)

- Evolved Packet Core (EPC)
 - » objective is to transition to all IP network using standard IETF protocols (SIP, RTP, etc.)
 - » special handling of voice calls to ensure low delay
 - separate high priority queues; possibly explicit reservation

LTE Radio Access

- » increases data rates
 - users can achieve up to 100 Mb/s downstream, 50 Mbp/s upstream when using 20 MHz of radio spectrum
- » uses combination of FDM and TDM
 - users allocated multiple timeslots across multiple frequencies
 may change dynamically based on traffic
- » also uses MIMO (multiple-input, multiple-output) antennas
 - signals sent over multiple antennas, received on multiple antennas
 - · allows application of more sophisticated signal processing

Engineering

Handling Mobility in Cellular Networks

- Home network: network of cellular provider you subscribe to (e.g., Sprint PCS, Verizon)
 - » home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- Visited network: network in which mobile currently resides
 - » visitor location register (VLR): database with entry for each user currently in network
 - » note: mobile could be away from home location, but still within the home network

Engineering

Mobility and Higher Layer Protocols

- Logically, impact of mobility should be minimal ...
 - » for IP, best effort service model remains unchanged
 - » TCP and UDP can (and do) run over wireless, mobile
 - for TCP, address used by mobile device must not change while connection is active
 - mobile IP can maintain TCP connections of mobile devices if access networks support it
- Performance issues in wireless networks
 - » packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
 - » TCP interprets loss as congestion, will decrease congestion window unnecessarily
 - » delay impairments for real-time traffic
 - » limited bandwidth of wireless links