Washington University in St. Louis 24. IP Version 6 IPv6 features and packet format IPv6 transition issues

Washington University in St. Louis

Engineering

IPv6

- IPv4 address size limits growth of global internet
 - » 32 bit address supports only about 4 billion addresses
- Key features of IPv6
 - » expands address size from 32 to 128 bits
 - » allows senders to mark packets as belonging to common "flow"
 - » no support for fragmentation/reassembly
 - » no header checksum
 - » options replaced with more general "extension headers"
 - » integrated support for mobile IP and IPsec
- Getting from here to there
 - » large installed base of IPv4 inhibits transition, but IPv4 address exhaustion is imminent, making transition essential
 - last large block of IPv4 addresses was assigned in February 2011
 - » host operating systems and routers now support both

₩ Washington University in St. Louis

Engineering

IPv6 Addresses

- Addresses are associated with interfaces (like IPv4)
- Text representation 8 groups of 4 hex digits
 - » 2345:0056:0789:0000:0000:abcd:ef01:0000
 - » drop leading 0s in a group 2345:56:789:0:0:abcd:ef01:0
 - » compress pure zero groups 2345:56:789::abcd:ef01:0
- Global unicast address
 - » first 64 bits divided between global routing prefix and subnet id
 - first hex digit of prefix in range [2,e]
 - boundary between prefix and subnet id may vary
 - » last 64 bits are interface identifier (based on MAC address)
- Link local addresses
 - » every interface has link-local address which is used only within its direct subnet - first 3 hex digits in {fe8,fe9,fea,feb}
- Multicast address range first 2 hex digits are ff

₩ Washington University in St. Louis

Engineering

Neighbor Discovery Protocol (NDP)

- ICMPv6 messages are identified by a next header field of 58 include a message type and code similar to IPv4
- Five ICMPv6 message types are used to implement NDP, which take the place of ARP and (optionally) DHCP
 - » router advertisement sent periodically by routers; contain configuration info including prefixes associated with subnet
 - » router solicitation used by host to request an immediate router advertisement
 - » neighbor advertisement used to advertise a link layer address
 - » neighbor solicitation used to request a neighbor advert
 - » redirect used by router to inform hosts of better first-hop router for reaching desired destination
- Link local addresses are generated by hosts and global addresses may be – duplicate detection is included

Washington University in St. Louis

Engineering

Transitioning to IPv6

- To use IPv6, sender and receiver must be IPv6-capable and both must have access to an IPv6 router
 - » if a host has a globally connected IPv6 router on its local network, it can use it to send and receive IPv6 packets
 - » if not, a host can use a "tunnel" to exchange packets with a remote IPv6 router
 - put IPv6 packet inside an IPv4 packet and send it to the IPv4 address of the desired IPv6 router
 - the IPv6 router extracts the packet from its IPv4 "wrapper" and then handles it like a normal IPv6 packet
 - » tunneling works but adds processing with little clear benefit
- When will it happen?
 - » wireless providers are pushing IPv6 for mobile devices
 - » Google reports 2% of its users access it using IPv6
 - rate has doubled for several years; could reach 50% in five years