& Washington University in St.Louis

Engineering

9. Peer to Peer Applications

m Peer-to-peer file sharing - BitTorrent
= Distributed hash tables

Jon Turner

& Washington University in St.Louis

Engineering

Client-Server vs. Peer-to-Peer

m Cient-server applications
» servers typically operated by a well-known organization that is
well-motivated to operate responsibly
m Peer-to-peer applications
» “peers” are typically computers owned by individuals
e little basis for trust, users have mixed motivations

» technical advantage: group of peers can complete transfer of a
large file faster than can a single server

» cost advantage: no expensive server, peers are “free”
» legal/ethical concerns: can be enabler for large-scale piracy
= Why is peer-to-peer faster?
» server sending same file to N hosts must send every bit NV times
» peers can forward pieces of file to other peers, as they arrive
e so, total sending rate grows with the number of peers

& Washington University in St.Louis

Engineering
Simplified Transfer Time Analysis
= p %
= L =
3 [i,
))
= Client server case n Peer—to—|5eer case
» server upload rate: u.b/s » peer upload rate: u, b/s
» client download rate: d. b/s » peer download rate: d, b/s
» # of clients: N » originating peer sends piece
» file size: F bits of file to every other peer
» time to transfer file to all » each peer, sends its piece to
clients: all others
T=max{FN/u,,F/d.} seconds » if u,<d, then
so, if u;=1 Gb/s, d.=1Mb/s, T=F/u, seconds
N=10%, F=10 Gb, so, if u,=500 Kb/s, F=10 Gb,
T=100,000 seconds T=20,000 seconds 3

& Washington University in St.Louis

Engineering

Understanding the P2P Speedup

m If T is file transfer time using server and T, is transfer
time for p2p, Ts/T, is the peer-to-peer speedup
max{FN/ugF/d.}/F/u, = u,max{N/ug,1/d.}
= So, when there are many peers (N>u//d,)
speedup=Nu,/u,
» that is, what matters most is the total upload rate, whether it

comes from a single server or from N peers

» well-provisioned server may well outperform a small number of
peers

» for large enough N, peer-to-peer approach can be faster

m P2P methods have been used for distributing software
updates (and other large files) in data centers
» many peers, with high upload rates

& Washington University in St.Louis

Engineering

Exercises

1. Suppose a movie studio wants to distribute a new movie as a digital file
to 1,000 movie theaters across country. Assume the file is 5 GB long,
and that the studio’s server has 1 Gb/s internet connection and that the
theaters each have a 5 Mb/s DSL connection. Approximately, how much
time is needed to distribute the file to all the servers, using the client-
server method?

2. Reconsider the scenario from the last question, assuming peer-to-peer
distribution is used. To simplify, assume that both the studio’s server and
the theaters have DSL connections with a 5 Mb/s download rate and a 2
Mb/s upload rate. What is the total “upstream bandwidth” in this case?
How long does it take to distribute the file to all of the theaters, under
ideal conditions?

3. The analysis for the peer-to-peer case assumes idealized conditions, in
which each peer gets a portion of the file from the server, then
redistributes that part to all others. This requires that each peer maintain
large numbers of simultaneous connections. Suppose each peer is limited
to 10 simultaneous connections. Is it still possible to achieve the
idealized transfer time? If so, how? If not, why not? :

& Washington University in St.Louis

Engineering

BitTorrent

= In a real file-distribution system, peers come and go
over time and may be greedy
» protocol must accommodate changing set of peers
» and must encourage “socially beneficial” behavior

m In BitTorrent

» to distribute a file, a source creates a torrent file that contains
metadata about the file and the URL of a tracker site

» new peers register with the tracker, which provides each new
peer with a list of other peers (a random subset)

» files are broken up into smaller chunks and the chunks are the
basic unit of distribution

» a peer connects to others peers, learns what chunks they have
and then requests the chunks it doesn’t have

» a host will typically have tens of peers
e the set of peers changes continuously 6

& Washington University in St.Louis

Engineering

Some Details

m Peers request the rarest chunks first
» this increases number of copies of rare chunks, enabling more
peers to get a copy
m A peer responds to chunk requests by favoring other
peers that have supplied it with the most data recently

» a peer measures number of bits received from its neighbors and
preferentially responds to requests from the “best suppliers”

» a peer also randomly selects other neighbors and responds to
their requests in order to expand set of “trading partners”
m Torrent files contain crytpographic hashes of each file
chunk to prevent malicious corruption of files
» peers compute the hash of chunks they receive and compare
against the torrent file, discarding chunks that don’t match

m Variety of BitTorrent clients, with varying behavior

& Washington University in St.Louis

Engineering

Exercises

1. At any moment in time, the peer-to-peer connections in a torrent form a
graph. How does the diameter of this graph affect the time taken to
distribute a given chunk? Suppose the connections among the hosts are
purely random and that each has 20 peers. Estimate the diameter of the
graph, assuming there are 10,000 hosts in the torrent.

2. The rarest-chunk-first policy tries to increase the availability of chunks
held by only a small number of hosts. Describe a situation in which this
policy may not have the desired effect. In general, how is the
effectiveness of this policy affected by the number of peers that each
host has at one time?

3. Consider a network that supports multicast communication, in which a
single host can send packets to many receivers simultaneously (with the
network routers copying packets as necessary). Write an expression for
the time to transfer an F bit file to N clients using such a network.
Express your result in terms of the server and client upload/download
rates. Compare to the original client-server analysis and to the peer-to-
peer analysis.

& Washington University in St.Louis

Engineering

Distributed Hash Tables

= A hash table can implement a map data structure
» stores set of (key, value) pairs, where each key is unique
» get(key) operation returns associated value,
» put(key,value) adds the pair (key,value) to the set, possibly
replacing an existing pair
mIn a DHT, the (key,value) pairs are distributed among a
large (possibly changing) collection of servers

» typically, each server is responsible for a sub-set of the keys,
determined by a hash function applied to the key value

* e.g., a server might handle keys k, for which 1<h(k)<1000
» seeks to balances the load among servers roughly equally
m Key design issues for DHTs
» how to find server for a given key
» how to reconfigure DHT as servers come and go

& Washington University in St.Louis

Engineering

Simple Circular DHT

0
server 5 server 1

m Assign each server a range

of hash values 800 200
m Each server “knows” IP address

of its successor server 4 server 2
m A “client” can query the DHT by

» sending get(key) message to any server server 3 400

» the server computes h=hash(key)

¢ if his in server’s range of hash values, it does a lookup in its local
data structure (typically a hash table) and responds with value

e otherwise, it forwards message to its successor
* when message reaches “responsible server”, it responds

m For a DHT with n servers, can take O(n) time to respond

» also, each server does some work for about half the queries

¢ so, not much higher query volume than a single server %

10

& Washington University in St.Louis

Engineering

Adding Shortcuts to Circular DHT

m Can improve performance dramatically by having each
server store IP address of multiple other servers
» if each server knows address and range of all other servers, at
most two servers are involved in responding to each query

e so n server DHT can process about n/2 times as many queries as a
single server

e can be reasonable choice if n is not too large and servers are
reasonably stable

» alternatively, use Ig n (=log,n) shortcuts

e each server stores routes for servers that are 1, 2, 4, 8,... hops
away

e when forwarding query, send directly to “nearest known server”

e so, each hop reduces circular distance to destination by at least a
factor of 2 — implies at most Ig n hops

» intermediate strategies also possible
11

11

& Washington University in St.Louis

Engineering

Choosing Shortcuts

m With (2n)/2 routes per server can space more closely

» choose routes to servers that are 1, 2, 4, 7, 11, 16,... hops
away (differences increase by 1)

» this way, each hop reduces the circular distance to destination
by a factor of (n/2)¥/2 — so O(lg Ig n) hops
m Learn routes by requesting them from other servers

» by repeatedly querying “furthest-known-server”, can acquire
Ig n routes in Ig n “rounds”

= Or, acquire routes passively by observing responses
» responses routed through “first-contact-server”

12

12

& Washington University in St.Louis

Engineering

Exercises

1. Consider a circular DHT with 10 nodes numbered 0..9 and that server i is
responsible for (key,value) pairs with hashes in the range [10/,10(i+1)).
Also, assume that if / is a prime number, there is a shortcut route from i
to i+3 mod 10. For all other i, there is a shortcut route from i to i+5 mod
10. Draw a graph of this DHT, showing all routes. Suppose node 6
receives a get request for a key that hashes to 47. What sequence of
nodes does this request pass through before going back to the client?

2. Consider a DHT with 1,000 servers. Assume that each has a 100 Mb/s
connection to the internet, and that it can process 100K packets per
second (this includes receiving the packet, processing it and either
sending a reply or forwarding it to another host). Assume that each
server has routes to those hosts that are 1, 2, 4, 8,..., 512 hops away,
but that it does not cache (key,value) pairs. What is the maximum
number of requests this DHT can respond to in a second? What traffic
pattern produces this peak performance? What is the minimum number
of requests it can respond to in a second? What traffic pattern produces
this performance? What is the minimum if each server is the target for

an equal number of requests? &

13

& Washington University in St.Louis

Engineering

Adding and Removing Servers

m In some DHT applications, servers come and go
frequently
» even in more stable applications, servers may crash or be taken
out of service for maintenance
= To maintain routing information, must adjust successor
information
» requires some redundancy: each server tracks suc,, suc,

e servers send “are you there” messages to suc;, suc, periodically to
detect departures

» suppose server s, having predecessors p, and p, leaves

e p, obtains information about new suc,(p,) from (old) suc,(p,) and
p, obtains information about new suc,(p,) from p,

» to insert server s following p; (with predecessor p,)
¢ p, informs s about suc,(p,) and suc,(p,); p, informs p, about s

14

14

& Washington University in St.Louis

Engineering

Maintaining Data in Dynamic DHTs

= To avoid data loss, each server maintains copy of its
successor’s data

» allows departing server’s predecessor to take over its role in the

DHT (expanding its range of hash keys)

» requires that copy of data owned by departing server now be
transferred to its predecessor’s predecessor

» when server s joins DHT following node p, p splits its range of
hash key values and sends associated data to s

» s obtains copy of data owned by suc(s) and p may now discard
redundant data it must no longer maintain
m Redundant data must also be maintained during normal
update operations

» requires responsible server to inform its predecessor of updates

m Server holding copy of data can also respond to gets

15

15

& Washington University in St.Louis

Engineering

Caching in DHTs

m DHTs perform best if query load is distributed evenly
among servers
» use of hashing contributes to load balancing

» but overloads can occur if some data items are much more
“popular” than others

» can improve performance of popular items by distributing
copies to other servers and letting them respond to queries

= One approach
» target-server t sends query response to first-contact-server f,
allowing f to respond to client and place copy in its cache
e subsequent queries through f can be handled directly
e fcould also respond to queries during forwarding

» this approach can quickly distribute many copies of popular
items, enabling higher query rates for such items

» cached copies removed if timestamp expires, or space needed -+

16

& Washington University in St.Louis

Engineering
Exercises

1. Consider a DHT with 1000 servers, in which servers are added and
removed as described on slide 12.

» What happens if two adjacent servers leave the DHT at the same time?

» Suppose that servers leave the DHT only when they fail, that the average time
between failures for one server is one month and that the time to update the
DHT when a server fails is 10 seconds. How often will an update fail?

» Suppose server owners collude to disrupt the DHT by joining, then leaving in a
coordinated fashion? How might you protect the DHT from such behavior?

2. Consider a DHT that starts with a single server A, with a hash range of
0-1023. Suppose that whenever a new server joins the DHT, the target
of the join splits its hash range in half, sending the second half to the
new server. Now suppose 9 servers join A’s DHT, and that they all do so
by sending a join message to A. Draw a circular diagram of the resulting
10 node DHT showing the hash range for each of the servers. Suggest a
modification of the join procedure that would produce a more even
distribution of the hash ranges?

17

17

