
CS 542 – Advanced Data Structures and Algorithm	Jon Turner
Quiz 4	
Your name here:	3/19/2013

1. (5 points). The diagram below shows a leftist heap that might be formed during the running of the round robin algorithm. Keys and ranks have been omitted. Nodes labeled with dashes (-) are dummy nodes introduced by lazy melds. For other nodes, the labels represent an edge in the graph (for example *be* denotes the edge {*b*, *e*}). Assume that the tree corresponding to this heap includes the vertices *a*, *c*, *d*, *f*, *h* and *j*. Draw an X through all nodes that are considered ``deleted'' by the round robin algorithm. Suppose a *findmin* operation is done on this heap. Draw a closed curve around each of the subtrees that are returned by the resulting call to the *purge* method.

2.	(5 points) In Edmond's algorithm, suppose that vertices a , c , f , g , h , i and k form a blossom. Suppose that edges $\{a, f\}$, $\{c, h\}$, $\{i, k\}$, are in the matching. Which vertex is the base of the blossom?
	Suppose that the base of the blossom has a parent in the tree. Is the edge to the parent in the matching or not?
	Suppose $\{h, k\}$ is the bridge of the blossom and the parent of c in the tree is a . List all the $even$ vertices in the blossom, at the moment just before the blossom was formed (suggestion: draw a picture of the blossom).
	Suppose that after the blossom is formed, we process the edge $\{i, d\}$ where d is in a different tree, yielding an augmenting path. When the augmenting path is flipped, which of the matching edges in the blossom is $removed$ from the matching.