
 - 1 -

General notes for labs. The labs are intended to help you get a deeper understanding of the
material covered in class. There is typically not a lot of new code required, but you will need to
familiarize yourself with the provided codebase. Documentation for the provided code is
available on the class website. Copies of the source code will be made available to you through
your own personal svn repository. See the link in the left margin of the web site for instructions
on accessing the repository.

In each lab you will be adding source code. Sometimes this involves adding new files. Other
times, it involves modifying existing code. You are expected to clearly document your code.
Each method should have a brief description of what it does, what the parameters are and what
result is returned (if any). Any method that involves some non-trivial computation should have
additional comments explaining the algorithm. You should write your comments with two
purposes in mind:

1. To make it easy for me and the TAs to understand what you have done, so that we can
give you appropriate credit. If we can’t understand your code, you should not expect to
receive full credit.

2. To demonstrate to me and the TAs that you have a complete understanding of the
material. When grading an assignment, we’re trying to evaluate how well you
understand things. If you don’t show us that you‘ve mastered the material, you should
not expect to receive full credit.

Your source code changes must be submitted online, by doing a commit on your svn repository.
This must be done by 6:00 pm on the due date for the lab. At that time, I will be retrieving a
copy of all student repositories and those copies will constitute the official submission. Changes
made after the deadline don’t count.

In addition to the online submissions, you will be provided with a lab report template that
includes more detailed instructions and questions for you to answer. You should fill in all
required material and include a copy of your completed report in your svn repository. You
should also hand in a printed copy of your lab report at the start of class on the due date. You
will be asked to include copies of your source code in your lab report. Please format your source
code files with no more than 80 characters per line, so that when they are pasted into the report,
they can be printed in portrait mode without lines wrapping around. Please fasten the pages of
your report securely before you hand it in (preferably with a single staple in the upper left
corner).

Lab 1 instructions.

In this lab you will be evaluating the performance of Prim’s minimum spanning tree algorithm.
You will be using a provided implementation that you will be modifying to compute selected
performance statistics. You will also be writing some additional methods to generate the graphs
you’ll use when evaluating Prim’s algorithm. There are several parts to the lab.

CSE 542 – Advanced Data Structures and Algorithms Jon Turner
Lab 1

 Due 1/29/2013

 - 2 -

A. In this part, you will be making source code modifications that will be used in later steps
to measure the performance of Prim’s algorithm. In your svn repository, you will find a
directory called grafalgo that contains various data structures and algorithms that we’ll
be using over the course of the semester. Before doing anything else, familiarize yourself
with the contents of this directory.

In this part, you will be extending the d-heap implementation (the .h file is in the include
sub-directory, the .cpp file is in dataStructures/heaps) to add three counters:
changeKeyCount should be incremented every time the changekey method is called;
siftupCount should be incremented when the siftup method is entered and once more for
each loop iteration; siftdownCount should be incremented when the minchild method is
entered and once more for each loop iteration of minchild. Make all three counters public,
to simplify accessing their values from other parts of the program.

Verify that the program compiles using the provided makefiles. In the top level grafalgo
directory, type “make clean” followed by “make all”. This should compile all the source
code including your changes to Dheap. You may need to make some adjustments to the
makefiles to suit your environment. I normally compile them on a Mac (Mountain Lion),
but have also compiled them on a linux computer using the g++ compiler. For g++, you
may need to add the compiler flag “std=c++0x”, since the source code does use some
features of the latest C++ standard (now known as C++11). Other compilers may have
different ways to specify this.

B. In the lab 1 directory, you will find several .cpp files containing C++ source code. The
file common.c has several missing pieces. First, you should modify the provided
implementation of Prim’s algorithm to make the heap parameter d a configurable
parameter and you should fill in the PrimStats structure after the algorithm completes
(details in the code). Use the method Util::getTime() to measure the running time. This
method returns the number of microseconds that have elapsed since the first time
getTime was called, so if you call it twice, say t0=Util::getTime();...,t1=Util::getTime(), the
difference (t1–t0) is the elapsed time between the two calls, in microseconds.

Next, complete the two methods badcase and worsecase to return graphs having the
characteristics defined in the source code comments. The method Graph::join() can be
used to create an edge between two vertices and the method Graph::addEdges() can be
used to add random edges to a graph. See the online documentation and the source code
in include/Graph.h and dataStructures/graphs/Graph.cpp for details. These methods will be
used in our evaluation of Prim’s algorithm.

The lab report includes instructions for verifying your code and making some basic
observations about the performance of Prim’s algorithm.

C. In this part, you will be evaluating the performance of Prim’s algorithm on three types
of graphs: random graphs, graphs produced using badcase and graphs produced using
worsecase. We will be studying how the algorithm performs as the number of vertices
grows, while edge density, m/n remains constant. The provided script1 will generate all
the specific results needed for this section.

D. In this part, you will be running another set of experiments, but in this case, we will hold
n fixed while increasing m. The provided script2 will generate the results needed for this
section.

 - 3 -

E. In this part, you will be running a third set of experiments, to evaluate the effect of the
heap parameter d on the performance of Prim’s algorithm. The provided script3 will
generate the results needed for this section.

More detailed instructions can be found in the lab report template in the lab1 directory of your
svn repository.

