
 - 1 -

General notes for labs. Review and follow the general notes from lab 1.

In this lab you will be evaluating the performance of the shortest augmenting path algorithm
for the maximum flow problem, and you will be implementing an optimized version of the
algorithm that can often be significantly faster. There are several parts to the lab.

A. In this part, you will be making source code modifications that will be used in later steps
to measure the performance of the shortest augmenting path algorithm. In your svn
repository, you will find a class called augPath, which serves as a base class for all
specific variants of the augmenting path algorithm. You will also find a class called
shortPath that implements the shortest augmenting path algorithm, using augPath. Take
some time to understand the code in both (the .h files are in the include directory, the
.cpp files are in graphAlgorithms/maxFlo).

Next, add the following five performance counters to augPath: fpCount, fpSteps, augCount,
augSteps and runtime (do not change the names). Make them all public. In augPath.cpp,
you should initialize the first four to zero. Also, in augPath.cpp, add code to increment
augCount every time the augment method is executed and augSteps for every edge on
which the flow is increased. In shortPath.cpp, increment fpCount whenever the findpath
method is executed and fpSteps, for each iteration of the inner loop. Also in shortPath.cpp,
include code to measure the total running time of the algorithm and save this in runtime.

You’ll find additional instructions in the lab report template.

B. In this part, you will be writing a modified version of the augmenting path algorithm.
The standard version adds one augmenting path to the graph after each execution of the
findpath method. We will be modifying the augment method to find multiple augmenting
paths during each call. This will reduce the number of augmenting path searches that
are required and improve the overall running time. When augment is called, the pEdge
array defines a subtree of the flograph in which all edges have positive residual capacity.
This subtree includes an augmenting path from the source to the sink, but it also
contains information about lots of other paths, and we can often use this to find multiple
augmenting paths using the same pEdge array.

Consider the case where the augment method, causes just one edge (u,v) to become
saturated. When augment is called pEdge[v]=(u,v), so after we add flow to (u,v), the
pEdge array no longer represents a subtree in which all edges have positive residual
capacity. But this is only true because of this one edge. Suppose we could assign a new
value to pEdge[v] that would again give us a subtree in which all edges have positive
residual capacity. We could then use this to find another augmenting path. And by
repeating this process multiple times, we can potentially find several augmenting paths,
by making just small changes to the pEdge array for each path we find.

CSE 542 – Advanced Data Structures and Algorithms Jon Turner
Lab 2

 Due 2/19/2013

 - 2 -

To make this work, we must add another array to augPath; define d[u] to be the number
of edges in the path from u to the source vertex in the subtree defined by the pEdge
array. For vertices u that are not in the subtree, we let d[u]=n. The values of d can be
computed by findpath; whenever we make pEdge[v]=(u,v), we assign d[v]=d[u]+1.

Now, the augment method is modified to use a helper method called reaugment.
Reaugment attempts to add flow to a single augmenting path defined by the pEdge array.
If it succeeds in doing so, it attempts to fixup the pEdge array to enable another path to
be found on a subsequent call. Specifically, for each edge (u,v) that becomes saturated,
reaugment attempts to replace pEdge[v] with another edge (w,v), where (w,v) has positive
residual capacity and d[w]=d[u]. It does this by scanning all edges incident to v until it
finds one that satisfies the condition. When reaugment is done, it returns the amount of
flow added to the path it found or 0 if no flow was added. Augment calls reaugment
repeatedly, until reaugment returns 0. Augment then returns the total flow added during
all calls to reagument.

Create classes faugPath and fshortPath that include the modifications described above
(plus the statistics counters you added to augPath and shortPath). You’ll find further
instructions in the lab report template.

C. In this part, you will be evaluating the performance of shortPath and fshortPath on
random graphs, as the number of edges increases, while the number of vertices is held
constant. You will find detailed instructions in the lab report template.

D. In this part, you will be evaluating the performance of shortPath and fshortPath on
random graphs, as the number of vertices and edges increases together. You will find
detailed instructions in the lab report.

E. In this part, you will be evaluating the performance of shortPath and fshortPath on “hard-
case” graphs, for which the running times grow very quickly. You will find detailed
instructions in the lab report.

