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Part A. Modifications to augPath, shortPath  

1. (15 points) Paste a copy of your changes to augPath and shortPath below. Highlight your 
changes by making them bold. You may omit methods you did not change. 

Here is the change to augPath.h. 

class augPath { 
public:  
        augPath(Flograph&,int&); 
        ~augPath(); 
 
        // statistics counters 
        int     fpCount; 
        int     fpSteps; 
        int     augCount; 
        int     augSteps; 
        int     runtime; 
protected: 
        Flograph* fg;          ///< graph we're finding flow on 
        edge *pEdge;           ///< pEdge[u] is edge to parent of u in spt 
 
        int     augment(); 
        virtual bool findPath() = 0;    ///< find augmenting path 
}; 
 

Here’s the change to augPath.cpp. 

 
int augPath::augment() { 
// Saturate the augmenting path p. 
        vertex u, v; edge e; flow f; 
 
        augCount++; 
        // determine residual capacity of path 
        f = Util::BIGINT32; 
        v = fg->snk(); e = pEdge[v]; 
        while (v != fg->src()) { 
                u = fg->mate(v,e); 
                f = min(f,fg->res(u,e)); 
                v = u; e = pEdge[v]; 
        } 
        // add flow to saturate path 
        v = fg->snk(); e = pEdge[v]; 
        while (v != fg->src()) { 
                augSteps++; 
                u = fg->mate(v,e); 
                fg->addFlow(u,e,f); 
                v = u; e = pEdge[v]; 
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        } 
        return f; 
} 
 

Here is the change to shortPath.cpp. 

shortPath::shortPath(Flograph& fg1, int& floVal) : augPath(fg1,floVal) { 
// Find maximum flow in fg using the shortest augment path algorithm. 
 int t0 = Util::getTime(); 
 floVal = 0; 
 while(findPath()) { 
  floVal += augment();  
 } 
 int t1 = Util::getTime(); 
 runtime = t1 - t0; 
} 
 
bool shortPath::findPath() { 
// Find a shortest path with unused residual capacity. 
 vertex u,v; edge e; 
 List queue(fg->n()); 
 
 fpCount++; 
 for (u = 1; u <= fg->n(); u++) pEdge[u] = 0; 
 queue.addLast(fg->src()); 
 while (!queue.empty()) { 
  u = queue.first(); queue.removeFirst(); 
  for (e = fg->firstAt(u); e != 0; e = fg->nextAt(u,e)) { 
   fpSteps++; 
   v = fg->mate(u,e); 
   if (fg->res(u,e) > 0 && pEdge[v] == 0 &&  
       v != fg->src()) { 
    pEdge[v] = e; 
    if (v == fg->snk()) { 
     return true; 
    } 
    queue.addLast(v); 
   } 
  } 
 } 
 return false; 
} 

2. (15 points) Compile the provided code in your lab1 directory using the makefile. Verify 
your changes to augPath and shortPath using the command checkSpath by typing 

checkSpath verbose <random10 
checkSpath <random20 
checkSpath <random50 
checkSpath verbose <hard3 
checkSpath <hard10 

Paste a copy of your output below. 

checkSpath verbose <random10 
{ 
[b: c(17,0) d(18,0) f(16,16) h(19,0)] 
[c: d(11,11) e(5,0)] 
[d: a(1,0) g(14,11) h(11,0)] 
[e: a(12,0) c(7,0)] 
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[f: h(2,0) j(60,16)] 
[g: c(14,0) d(3,0) j(70,11)] 
[h: f(17,0) g(5,0)] 
[i->: b(16,16) c(82,11)] 
[->j:] 
} 
 
stats 27 3 60 2 7 6 
% checkSpath <random20 
stats 58 11 562 10 45 18 
% checkSpath <random50 
stats 524 30 12046 29 159 218 
 
% checkSpath verbose <hard3 
{ 
[1->: 2(9,9) 6(9,9) 10(9,9) 14(9,9) 18(9,9) 22(9,9)] 
[2: 3(27,9)] 
[3: 4(27,9)] 
[4: 5(27,9)] 
[5: 6(27,9)] 
[6: 7(27,18)] 
[7: 8(27,18)] 
[8: 9(27,18)] 
[9: 10(27,18)] 
[10: 11(27,27)] 
[11: 12(27,27)] 
[12: 13(27,27)] 
[13: 28(9,9) 29(9,9) 30(9,9)] 
[14: 15(27,9)] 
[15: 16(27,9)] 
[16: 17(27,9)] 
[17: 18(27,9)] 
[18: 19(27,18)] 
[19: 20(27,18)] 
[20: 21(27,18)] 
[21: 22(27,18)] 
[22: 23(27,27)] 
[23: 24(27,27)] 
[24: 25(27,27)] 
[25: 26(27,27)] 
[26: 27(27,27)] 
[27: 31(9,9) 32(9,9) 33(9,9)] 
[28: 31(1,0) 32(1,0) 33(1,0) 34(9,9)] 
[29: 31(1,0) 32(1,0) 33(1,0) 34(9,9)] 
[30: 31(1,0) 32(1,0) 33(1,0) 34(9,9)] 
[31: 48(9,9)] 
[32: 48(9,9)] 
[33: 48(9,9)] 
[34: 35(27,27)] 
[35: 36(27,27)] 
[36: 37(27,27)] 
[37: 38(27,27)] 
[38: 39(27,27)] 
[39: 40(27,18) 60(9,9)] 
[40: 41(27,18)] 
[41: 42(27,18)] 
[42: 43(27,18)] 
[43: 44(27,9) 60(9,9)] 
[44: 45(27,9)] 
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[45: 46(27,9)] 
[46: 47(27,9)] 
[47: 60(9,9)] 
[48: 49(27,27)] 
[49: 50(27,27)] 
[50: 51(27,27)] 
[51: 52(27,18) 60(9,9)] 
[52: 53(27,18)] 
[53: 54(27,18)] 
[54: 55(27,18)] 
[55: 56(27,9) 60(9,9)] 
[56: 57(27,9)] 
[57: 58(27,9)] 
[58: 59(27,9)] 
[59: 60(9,9)] 
[->60:] 
} 
 
stats 54 55 7272 54 1134 241 
 
% checkSpath <hard10 
stats 2000 2001 1153760 2000 98000 18112 
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Part B. FaugPath and fshortPath.  
 

1. (30 points) Paste a copy of your code for faugPath and fshortPath below. Highlight your 
changes by making them bold. You may omit methods you did not change. 
 
/** Find maximum flow in a flow graph. 
 *  Base class constructor initializes dynamic data common to  
 *  all algorithms. Constructors for derived classes actually  
 *  implement specific algorithms. 
 */ 
faugPath::faugPath(Flograph& fg1, int& flow_value) : fg(&fg1) { 
 pEdge = new edge[fg->n()+1]; 
 d = new int[fg->n()+1]; 
 fpCount = fpSteps = augCount = augSteps = 0; 
 runtime = 0; 
} 
 
/** Saturate augmenting paths. 
 *  This method uses the pEdge array to discover as many augmenting 
 *  paths as it can. 
 */ 
int faugPath::augment() { 
 flow f, fsum;  
 augCount++; 
 fsum = 0; 
 while ((f = reaugment()) > 0) { fsum += f; } 
 return fsum; 
} 
 
/** Try to augment a path and if successful, patch the pEdge array. 
 *  This method follows edges in the pEdge array back towards the sink. 
 *  If an augmenting path is found, it adds flow to the path and attempts 
 *  to patch the pEdge array, in order to replace saturated edges with 
 *  replacement edges that may define another augmenting path. 
 *  @return the amount of flow added to the path (0 if no path found) 
 */ 
int faugPath::reaugment() { 
 vertex u, v; edge e; flow f; 
 
 // determine residual capacity of path 
 f = Util::BIGINT32; 
 v = fg->snk(); e = pEdge[v]; 
 while (v != fg->src() && e != 0) { 
  u = fg->mate(v,e); 
  f = min(f,fg->res(u,e)); 
  v = u; e = pEdge[v]; 
 } 
 if (v != fg->src()) return 0; 
 // add flow to saturate path 
 v = fg->snk(); e = pEdge[v]; 
 while (v != fg->src()) { 
  u = fg->mate(v,e); 
  fg->addFlow(u,e,f); 
  augSteps++; 
  if (fg->res(u,e) == 0) { 
   pEdge[v] = 0; 
   for (edge ee = fg->firstAt(v); ee != 0; 
      ee = fg->nextAt(v,ee)) { 
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    vertex w = fg->mate(v,ee); 
    augSteps++; 
    if (fg->res(w,ee) > 0 && d[w] == d[u]) { 
     pEdge[v] = ee; break; 
    } 
   } 
  } 
  v = u; e = pEdge[v]; 
 } 
 return f; 
} 
 
#include "fshortPath.h" 
 
fshortPath::fshortPath(Flograph& fg1,int& floVal):faugPath(fg1,floVal) { 
// Find maximum flow in fg using the shortest augment path algorithm. 
        int t0 = Util::getTime(); 
        floVal = 0; 
        while(findPath()) { 
                floVal += augment();  
        } 
        int t1 = Util::getTime(); 
        runtime = t1 - t0; 
} 
 
bool fshortPath::findPath() { 
// Find a shortest path with unused residual capacity. 
        vertex u,v; edge e; 
        List queue(fg->n()); 
 
        fpCount++; 
        for (u = 1; u <= fg->n(); u++) { pEdge[u] = 0; d[u] = fg->n(); } 
        d[fg->src()] = 0; 
        queue.addLast(fg->src()); 
        while (!queue.empty()) { 
                u = queue.first(); queue.removeFirst(); 
                for (e = fg->firstAt(u); e != 0; e = fg->nextAt(u,e)) { 
                        fpSteps++; 
                        v = fg->mate(u,e); 
                        if (fg->res(u,e) > 0 && pEdge[v] == 0 &&  
                            v != fg->src()) { 
                                pEdge[v] = e; d[v] = d[u] + 1; 
                                if (v == fg->snk()) return true; 
                                queue.addLast(v); 
                        } 
                } 
        } 
        return false; 
} 

2. (15 points) Check your new classes by typing in the lab1 directory. 

checkFspath verbose <random10 
checkFspath <random20 
checkFspath <random50 
checkFspath <hard3 
checkFspath <hard10  

Paste a copy of your output below. Note that these should produce the same flows as in 
part1, although you will see differences in the performance counter values. 
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% checkFspath verbose <random10 
{ 
[b: c(17,0) d(18,0) f(16,16) h(19,0)] 
[c: d(11,11) e(5,0)] 
[d: a(1,0) g(14,11) h(11,0)] 
[e: a(12,0) c(7,0)] 
[f: h(2,0) j(60,16)] 
[g: c(14,0) d(3,0) j(70,11)] 
[h: f(17,0) g(5,0)] 
[i->: b(16,16) c(82,11)] 
[->j:] 
} 
 
stats 27 3 60 2 22 5 
% checkFspath <random20 
stats 58 11 562 10 107 25 
% checkFspath <random50 
stats 524 20 7621 19 403 153 
% checkFspath <hard3 
stats 54 15 1852 14 1488 84 
% checkFspath <hard10 
stats 2000 183 104108 182 113880 4006 
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Part C. Evaluating performance on random graphs as the number of edges increases.  

1. (10 points) Run the provided script1 and use the data from the first half of the output file to 
complete the “count” columns of the table below. Note that the table has separate sections 
for shortPath and fshortPath graphs. To make the numbers easier to interpret, enter values 
like 34538 as 34.6K and values like 1234567 as 1.2M, and so forth. For each performance 
counter, compute the ratios of the values from one row to the next, as we did in lab 1. 

 fpCount fpSteps augCount augSteps runtime 

n m count ratio count ratio count ratio count ratio count ratio 

shortPath 

200	
   800	
   46	
   	
   62K	
   	
   45	
   	
   320	
   	
   990	
   	
  
200	
   1.6K	
   158	
   3.43	
   450K	
   7.23	
   157	
   3.49	
   861	
   2.69	
   5.8K	
   5.81	
  
200	
   3.2K	
   504	
   3.19	
   2.9M	
   6.37	
   503	
   3.20	
   2.4K	
   2.76	
   35K	
   6.13	
  
200	
   6.4K	
   1.6K	
   3.25	
   17M	
   6.07	
   1.6K	
   3.26	
   7K	
   2.93	
   311K	
   8.81	
  
200	
   12.8K	
   4.1K	
   2.50	
   79M	
   4.53	
   4.1K	
   2.50	
   16K	
   2.35	
   1.4M	
   4.64	
  

fshortPath 

200	
   800	
   34	
   	
   45K	
   	
   33	
   	
   665	
   	
   731	
   	
  
200	
   1.6K	
   84	
   2.47	
   231K	
   5.07	
   83	
   2.52	
   2,565	
   3.86	
   3K	
   4.13	
  
200	
   3.2K	
   166	
   1.98	
   909K	
   3.94	
   165	
   1.99	
   10K	
   3.97	
   11.4K	
   3.79	
  
200	
   6.4K	
   216	
   1.30	
   2.2M	
   2.37	
   215	
   1.30	
   41K	
   3.99	
   29.3K	
   2.56	
  
200	
   12.8K	
   226	
   1.05	
   4.1M	
   1.88	
   225	
   1.05	
   152K	
   3.73	
   78.6K	
   2.68	
  

2. (5 points) Give an expression for the worst-case number of calls to findpath (in shortPath). 
How does this compare to the observed data? How does the growth rate of fpCount compare 
to the worst-case analysis? 

According to the worst-case analysis, there are at most mn calls to findpath, so here the values would 
range form 160 thousand to 2.56 million. The data shows 46 to 4.1 thousand, so only a tiny fraction 
of the predicted number. 

Concerning the growth rate, n is fixed, while m is doubling at each step, so we would expect fpCount 
to grow by a factor of 2. We observe a higher growth rate, so apparently as the graph becomes more 
dense, the number of path searches is growing more quickly than the number of edges (although it 
remains well below the absolute bound). 

3. (5 points) Give a bound on the number of steps per call to findpath (in shortPath). How does 
this compare to the data in the table? 

We expect at most 2m steps per call to findpath, since each edge is considered at most two times over 
all iterations of the inner loop. For m=800, the observed values are (62K/46))≈1,300 vs a bound of 
1,600. For m=1600, the observed values are (450K/158)≈2,848 vs a bound of 3,200. In general the 
data match the bounds fairly well. 

4. (5 points) How would you expect the runtime of shortPath to grow (based on the worst-case 
analysis)? How does this compare to the data? Try to explain any differences you observe. 
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The worst-case runtime grows in proportion to m2n, so we would expect a factor of 4 increase at each 
step. The observed growth rate is generally more than this. This is consistent with the fact that 
fpCount grows faster than the predicted rate. 

5. (5 points) Compare the fpCount values and growth rates for shortPath vs. fshortPath. What 
does this tell you about the number of augmenting paths found during each execution of the  
augment method? 

The absolute difference is relatively modest for small graphs, but for the largest graphs, shortPath 
requires about 20 times as many calls as fshortPath. So, in this latter case, fshortPath is finding an 
average of 20 augmenting paths every time augment is called. What’s most striking is that as the 
number of edges grows, this advantage is increasing. 

6. (5 points). Compare the augSteps values for shortPath vs. fshortPath. Explain the observed 
differences. What are the implications of this comparison for the overall running time? 

The augSteps values are much larger fshortPath (nearly 10 times larger for the largest graphs). This 
makes sense, since fshortPath spends extra steps “patching” the pEdge array. Still, the augSteps 
values are much smaller than the fpSteps values, so overall we would still expect the running time for 
shortPath to be much smaller than for shortPath. 

7. (5 points) Compare the runtime values for shortPath and fshortPath. Consider both the 
absolute values and the growth rate. 

We see only a modest advantage for small graphs, but for the largest graphs, fshortPath is almost 20 
times faster than shortPath. The growth rates for fshortPath are also consistently smaller and 
generally less than the worst-case growth rate (which would give a factor of 4 per step). In contrast, 
shortPath grows by more than a factor of 4 per step, as noted above. Again, this is happening because 
shortPath’s performance on these graphs is better than the absolute worst-case bounds. As m gets 
larger, its performance gets closer to the bounds. 
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Part D. Evaluating performance on random graphs as the number of vertices and edges both 
increase.  

1. (10 points) Use the data from the second half of the script1 output to complete the count 
columns of the table below. Compute ratios as before. 

 fpCount fpSteps augCount augSteps runtime 

n m count ratio count ratio count ratio count ratio count ratio 

shortPath 

50	
   800	
   254	
   	
   307K	
   	
   253	
   	
   1.1K	
   	
   3.4K	
   	
  
100	
   1.6K	
   430	
   1.69	
   1.1M	
   3.67	
   429	
   1.70	
   1.9K	
   1.79	
   13K	
   3.93	
  
200	
   3.2K	
   504	
   1.17	
   2.9M	
   2.55	
   503	
   1.17	
   2.4K	
   1.23	
   35K	
   2.64	
  
400	
   6.4K	
   575	
   1.14	
   6.9M	
   2.39	
   574	
   1.14	
   2.8K	
   1.20	
   90K	
   2.56	
  
800	
   12.8K	
   622	
   1.08	
   15M	
   2.19	
   621	
   1.08	
   3.2K	
   1.13	
   285K	
   3.18	
  

fshortPath 

50	
   800	
   55	
   	
   63K	
   	
   54	
   	
   4.4K	
   	
   758	
   	
  
100	
   1.6K	
   109	
   1.98	
   271K	
   4.29	
   108	
   2.00	
   7.8K	
   1.79	
   3.4K	
   4.51	
  
200	
   3.2K	
   166	
   1.52	
   909K	
   3.36	
   165	
   1.53	
   10K	
   1.31	
   11K	
   3.32	
  
400	
   6.4K	
   212	
   1.28	
   2.5M	
   2.71	
   211	
   1.28	
   12K	
   1.20	
   32K	
   2.89	
  
800	
   12.8K	
   265	
   1.25	
   6.2M	
   2.54	
   264	
   1.25	
   14K	
   1.17	
   119K	
   3.64	
  

2. (5 points) How does the growth rate of fpCount compare to the worst-case analysis in this 
case? Try to explain any differences you observe. 

According to the worst-case analysis, there are at most mn calls to findpath. Since m and n are both 
doubling at each step, we expect an increase of a factor of 4 at each step. The actual rate of increase is 
much smaller.  

Why should this be? Well, these are random graphs and the average out degree is held constant at 16 
as n increases, what’s probably happening is that the minimum cut is close to either the source or the 
sink, and the capacity of this cut is not increasing very much as the graph gets larger. So, even 
though there are more “potential” paths from source to sink, most of them never get used because the 
min cut gets saturated so quickly. 

3. (5 points) How does fshortPath compare to shortPath in this case? Discuss how this differs 
from the case where n is held constant. 

Here, fshortPath has a much a smaller advantage over shortPath. It appears that with these graphs, 
there few opportunities to “patch” the pEdge array. This could happen if for many edges (u,v) in the 
min cut, there are no “replacement edges” (w,v) where d[w]=d[v]. That is, there is only one “parent” 
of v in the breadth-first search tree from the source. This could happen frequently, if the min cut is 
defined by s and its neighbors on the left side of the cut, and all other vertices on the right side. 
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Part E. Evaluating performance on “hard”graphs as k1 and k2 both increase.  

1. (10 points) Use the data from the second half of the script2 output to complete the count 
columns of the table below. Compute ratios as before. 

   fpCount fpSteps augCount augSteps runtime 

k1 k2 n m count ratio count ratio count ratio count ratio count ratio 

shortPath 

2	
   2	
   42	
   52	
   17	
   	
   1.4K	
   	
   16	
   	
   272	
   	
   35	
   	
  
4	
   4	
   78	
   112	
   129	
   7.59	
   24K	
   17.14	
   128	
   8.00	
   3,200	
   11.76	
   451	
   12.89	
  
8	
   8	
   150	
   256	
   1K	
   7.95	
   440K	
   18.56	
   1K	
   8.00	
   42K	
   13.12	
   6.8K	
   15.03	
  

16	
   16	
   294	
   640	
   8.2K	
   7.99	
   9.1M	
   20.66	
   8K	
   8.00	
   598K	
   14.24	
   123K	
   18.17	
  
32	
   32	
   582	
   1.8K	
   65K	
   8.00	
   212M	
   23.34	
   65K	
   8.00	
   9M	
   15.01	
   2.6M	
   20.74	
  

fshortPath 

2	
   2	
   42	
   52	
   7	
   	
   512	
   	
   6	
   	
   416	
   	
   20	
   	
  
4	
   4	
   78	
   112	
   27	
   3.86	
   4,730	
   9.24	
   26	
   4.33	
   3,978	
   9.56	
   148	
   7.40	
  
8	
   8	
   150	
   256	
   115	
   4.26	
   48K	
   10.25	
   114	
   4.38	
   49K	
   12.38	
   1.6K	
   10.71	
  

16	
   16	
   294	
   640	
   483	
   4.20	
   533K	
   10.99	
   482	
   4.23	
   686K	
   13.93	
   16K	
   10.10	
  
32	
   32	
   582	
   1.K	
   2K	
   4.11	
   6.4M	
   12.06	
   1,986	
   4.12	
   10M	
   14.86	
   207K	
   12.91	
  

2. (5 points) The flow graphs used in this part are structured similarly to the example graphs 
on slide 12 of the max flow lecture. Look at the source code to make sure you understand 
the role of the parameters k1 and k2. Give an upper bound on the number of calls to findpath 
in shortPath as a function of k1 and k2. How does the data for shortPath compare to the 
bound? 

The number of calls to shortPath should be 2k1k2*k2+1, where the +1 accounts for the last 
unsuccessful call to findpath This gives us 17, 129, 1025, 8193 and 65,537. These are exactly the 
values shown in the table. These values are growing by just under a factor of 8 at each step, which is 
what we expect in this case. 

3. (5 points) Find an upper bound on the number of calls to findpath in fshortPath as a function 
of k1 and k2. How does the data for fshortPath compare to the bound? 

For these graphs, each call to augment should find k2 augmenting paths, so the number of calls to 
findpath should be at most 2k1*k2+1, This would give us 9, 33, 129, 513 and 2049. The actual values 
are a little smaller, because towards the end of the run, the edges connecting the central bipartite 
graph become saturated, allowing the reaugment method to patch the pEdge array for these edges as 
well. 

4. (5 points) For large values of k1 and k2, how quickly would you expect the run time of 
shortPath to grow, based on the worst-case analysis. How does this compare with the data? 
Explain any discrepancy. 

For large values of k1 and k2, the runtime should grow in proportion to k1(k2)4. In this case, that 
would imply that the runtime would grow by a factor of 32 for each doubling of k1 and k2. In this case, 
the growth rate is a bit slower, but the reason is that k1 and k2 are still small enough that the chains 
leading to and from the central bipartite subgraph still constitute a signifcant fraction of the total 



 - 12 - 

number of edges. If we go to substantially larger values, the central subgraph dominates and we can 
expect to see the ratios converge to 32. 

5. (5 points) Explain how you could modify the hard-case graphs so as to eliminate fshortPath’s 
advantage over shortPath. Comment on the general utility of the method used by fshortPath 
to reduce the running time. 

A general way to eliminate the advantage of fshortPath is to replace any edge of capacity c with a path 
of three edges. In this path, the central edge would have capacity c, while the other 2 would have 
capacity c+1. With this change, only the central edges on such paths would ever become saturated, 
and since these edges have no potential “replacement edges” that the reaugment method could use to 
patch the pEdge array, the augment method would find just one augmenting path for each call to 
findpath. 

While this makes it clear that fshortPath is no better than shortPath in the worst case, the data for 
random graphs suggests that it can often be significantly faster. So, it seems like a worthwhile 
refinement to the basic algorithm. On the other hand, we’ll later study other algorithms that are 
substantially faster. 

 


