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General notes for labs. Review and follow the general notes from lab 1. 

In this lab you will be writing a program to solve the edge coloring problem in bipartite graphs, 
using a matching algorithm as a key component. The input to the edge coloring problem is a 
simple bipartite graph and the output is an assignment of colors to the edges, such that each 
vertex is incident to at most one edge of each color. The objective is to find such an assignment 
that uses the smallest possible number of colors. 

Note that each subset of the edges that share the same color forms a matching. So we can view 
the problem as one of partitioning the edge set into a minimal number of matchings. Also, note 
that the number of colors must be at least equal to the maximum vertex degree. For simple 
bipartite graphs, the number of colors required is always equal to the maximum vertex degree. 

Here is a general method for finding an edge coloring of a bipartite graph G=(V,E). We start by 
making a copy H of G, then repeat the following step as long as there are edges in H. 

Matching step. Find a matching M in H that includes an edge incident to every vertex of 
maximum degree. Let c be a previously unused color, and color all edges in M with color c. 
Remove all edges in M from H. 

To implement the matching step, we need a method to find a matching that includes an edge at 
every vertex of maximum degree. This can be done using a variant of the augmenting path 
method for the maximum matching algorithm. In this case, we build a single tree, rooted at a 
vertex of maximum degree. The tree is constructed in the same way as the trees in the 
augmenting path method, but we terminate the path search early, if we come to an even vertex 
that does not have maximum degree. If we “flip” the edges on the path from such a vertex to 
the root of the tree (that is, matched edges on the path become unmatched and unmatched 
edges become matched), we get a new matching with the same number of edges, but with one 
more vertex of max degree incident to a matching edge (the root).  

Here’s a more detailed description of the method for finding a path to extend the matching. 
Start by selecting a vertex r of maximum degree. Let state(r)=even and for all other vertices u, let 
state(u)=unreached. For all vertices u, let p(u)=null. Now, repeat the following step until we find a 
path that can be used to extend the matching. 

Let e={v,w} be a previously unexamined edge with v even. 

If w is not unreached, ignore e and proceed to the next edge. 

If w is unreached and unmatched, then the edge e together with the tree path from v to r 
is an augmenting path, and we terminate the path search. 

If w is unreached and matched, let {w,x} be the matching edge incident to w. Expand the 
tree by making p(w)=v, p(x)=w, state(w)=odd and state(x)=even. If x is not a maximum 
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degree vertex, then the tree path from x to r can be flipped to extend the matching, and 
we terminate the path search. 

Note that there are two ways the algorithm can terminate with a path. In both cases, we extend 
the matching by flipping the edges on this path. Each time we do this, we increase the number 
of maximum degree vertices incident to matching edges by at least 1. 

We claim that for simple bipartite graphs, the algorithm always returns a path. To understand 
why, note that the basic step described above maintains the following invariant, as long as it 
does not terminate. 

The number of odd vertices is one less than the number of even vertices and all even vertices 
have maximum degree. 

This is true because every non-terminating step adds one odd and one even vertex, and the 
algorithm terminates whenever we reach an even vertex that does not have maximum degree. 
Note that since the even and odd vertices are joined by edges, they are in different subsets of the 
partition defined by the bipartite graph. Let X be the subset containing the even vertices and Y 
be the subset containing the odd vertices. Now, suppose there are k even vertices and the 
maximum degree is Δ. Since no vertex has degree larger than Δ, the number of vertices in Y that 
are adjacent to an even vertex must be at least k. But only k–1 of these are currently in the tree, 
so there must be at least one unreached vertex in Y that has an edge connecting it to an even 
vertex. Consequently, the algorithm will not terminate without returning a path. 

The lab is organized into a series of parts which are summarized below. You will find more 
details in the lab report template. 

A. In this part, you will develop a class called maxdMatch that finds a matching that 
includes every vertex of maximum degree, using the algorithm described above. You 
will find a skeleton of this class in the graphAlgorithms/match subdirectory in your svn 
repository. You will test your implementation against several provided sample graphs. 
Be sure to include the code required to update the performance statistics. These include 
the following. 

maxdInit On completion, this variable should equal the total number of microseconds 
spent on all initialization within the maxdMatch method, before proceeding 
to compute the matching. 

fpInit On completion, this variable should equal the total number of microseconds 
spent on initialization with findpath method, summed over all calls to 
findpath. Initialization includes all code proceeding the “main loop” where 
the algorithm builds the tree, in order to find a path to extend the matching. 

fpLoop On completion, this variable should equal the number of microseconds 
spent in the main loop of the findpath method, subbed over all calls to 
findpath. 

extend On completion, this variable should equal the total number of microseconds 
spent executing the extend method. 

total On completion, this variable should equal the total number of microseconds 
spent computing the matching. 

B. In this part, you will develop a method called edgeColor that implements the algorithm 
described above. You will find a skeleton of this method in the graphAlgorithms/match 



 - 3 - 

subdirectory. You will test your implementation against several provided sample 
graphs. Be sure to include code to update the performance statistics, by accumulating 
the values computed in each call to maxdMatch. 

C. In this part, you will be evaluating the performance of edgeColor and maxdMatch on 
random graphs. You will find detailed instructions in the lab report template. The 
results of this analysis will show that a large fraction of the running time is associated 
with initialization code required in the findpath method of the maxdMatch algorithm. 

D. In this part, you will design a faster version edgeColor algorithm, by modifying the 
implementation of maxdMatch. Name the new components fedgeColor and fmaxdMatch. 
Use the results from part C to guide your decisions about how to speedup maxdMatch. 
Your improved version should reduce the running time by at least a factor of 10. You 
will repeat measurements from part C for the new version, to demonstrate the expected 
improvement in performance. 


