
 - 1 -

General notes for labs. Review and follow the general notes from lab 1.

The round robin algorithm uses leftist heaps because they support an efficient melding
operation. In this lab, you will re-implement the round-robin algorithm using Fibonacci heaps,
which also support efficient melding. In order to use Fibonacci heaps with the round-robin
algorithm, we need to extend them so that they also support lazy deletion. (We won’t need to
implement lazy melding, since the meld operation for Fibonacci heaps is already a constant
time operation.) To implement lazy deletion, we need to add support for a deleted function. See
the provided implementation of leftist heaps (called LlheapSet) to see how this is done. In
addition, we need to implement a purge() method to eliminate deleted nodes from the top of the
heap, and return a list of non-deleted tree roots that can be combined to form a single heap.
Findmin() and deletemin() should both use purge() followed by the existing mergeRoots() method
which restructures the heap to reduce the number of separate trees. Your repository includes a
class called LfheapSet, which is a sub-class of FheapSet. You will need to complete the missing
elements of LfheapSet. More details can be found in the source code files.

The unit sub-directory of the heaps directory contains a program testLfheapSet that you can use to
test your implementation of LfheapSet. Note that the test program expects a certain specific form
for the heaps after each test is run. There are many equivalent ways to represent a given heap,
so don’t be concerned if your program produces heaps that do not exactly match those expected
by the unit test. You should verify that they are equivalent, but they need not be exactly the
same. Once you have LfheapSet working correctly, you will need to implement a new version of
the round-robin algorithm, called rrobinF that uses your LfheapSet.

You will also evaluate the performance of rrobinF, comparing it to the original rrobin and to
prim. For each algorithm you will measure the time spent on initialization and the total time. In
addition, for each algorithm you will count two additional components of the running time that
will vary among the three algorithms.

• For prim, you will measure siftupCount and siftdownCount in the underlying heap data
structure. These counts keep track of the number of elementary steps used by siftup and
siftdown.

• For rrobin, you will measure the total number of calls to the recursive meld() method in the
leftist heap data structure (this is called meldCount) and the total number of find steps in the
partition data structure (this is called findCount).

• For rrobinF, you will measure the total number of steps performed by the recursive
mergeRoots() method in the Fibonacci heap data structure (this is called mrCount) and the
total number of find steps in the partition data structure.

You’ll find more details in the lab report template.

CSE 542 – Advanced Data Structures and Algorithms Jon Turner
Lab 4

 Due 4/2/2013

