
 - 1 -

General notes for labs. Review and follow the general notes from lab 1.

In this lab, you’ll be implementing Edmond’s algorithm for weighted matching in bipartite
graphs, and using it to implement Karp’s algorithm for the asymmetric traveling salesman
problem. In order to implement Edmond’s algorithm, you’ll need to extend the d-heap to
implement the addtokeys operation. The parts of the lab are outlined below. You will find more
details in the provided code and the lab report template.

• Part A. In this part, you will extend the Dheap data structure to include a constant time
addtokeys operation. The repository includes a partial implementation of a derived class
Ddheap that you will complete and test using a provided unit test.

• Part B. In this part, you will implement two versions of Edmonds algorithm for weighted
matchings in bipartite graphs. The first version, called edmondsBW, finds a max weight
matching, using the algorithm described in the lecture notes. Your implementation should
use the Ddheap data structure developed in part A.

The second version of the algorithm, called edmondsBWmin, finds a minimum weight
matching of maximum size. It differs from the first version in two ways. First, it starts by
negating all the edge weights. This effectively causes the algorithm to find a min weight
matching, instead of a max weight matching. Second, it does not halt when all the free
vertices have zero labels. Instead, it continues so long as there are unexamined edges with
either two even endpoints, or an even and an unreached endpoint.

• Part C. In this part, you will be implementing Karp’s algorithm for the asymmetric
traveling salesman problem that was described in the notes. This algorithm starts by
constructing a bipartite graph and finding a min weight matching in that graph. You will
use edmondsBWmin for this. The matching is used to define a collection of cycles in the
original graph. The algorithm then patches these cycles together, always combining a
shorter cycle with the longest cycle in the collection. Your implementation should be
designed to handle graphs that are not complete. For such graphs, it’s possible for the
algorithm to fail because there may not be any way to patch two cycles, using the available
edges. If this case comes up, your program should print an error message and halt.

• Parts D, E. In this part, you will experimentally evaluate the performance of Edmond’s
matching algorithm and Karp’s TSP algorithm.

CSE 542 – Advanced Data Structures and Algorithms Jon Turner
Lab 5

 Due 5/2/2013

