& Washington University in St.Louis

Engineering

The Round Robin Algorithm for
MSTs and Leftist Heaps

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering

The Round-Robin Algorithm

m Start with n blue trees (one for each vertex) then
merges trees using following rule

»Coloring rule 3: select a blue tree and a min cost edge incident
to it; color the edge blue

= To minimize time, select blue trees using
“round-robin” strategy

procedure minspantree(graph G=(V,E),; modifies set blue);
vertex u,v; list queue; partition(V); blue:={}; queue :=[];
for ue[1..n] = queue := queue & [u]; rof;
do |queue|>1 =
Let {u,v} be a min cost edge incident to the tree that
contains queue(1)
blue := blueu{{u,v}}; queue := queue-{find(u), find(v)};
+ link(find(u),find(v)); queue := queue & [find(u)];
od;
end; D

& Washington University in St.Louis .

Selecting Edges with Meldable Heaps

m To select min cost edge incident to a tree
» for each tree, maintain heap of all incident edges
» need fast way to combine heaps as we combine trees (meld)
» must remove “internal” edges created as heaps are combined

procedure minspantree(graph G=(V,E); modifies set blue);
vertex u,v; list gueue; mapping h:vertex—heap;
partition(V); blue := {}; queue :=[];
for uc[1..n] = queue:=queue & [u]; h(u):=makeheap(edges(u)); rof;
do |queue| > 1 =
{u,v} := findmin(h(queue(1)));
blue := blueU{{u,v}}; queue:=queue-{find(u),find(v)};
h(link(find(u),find(v))) := meld(h(find(u)),h(find(v)));
Remove from heap all edges joining vertices in newly-formed tree
gueue := queue & [find(u)];
od;
end;
m O(m log log n) time using “lazy” leftist heaps

& Washington University in St.Louis

Engineering

Leftist Heaps

m Heap operation meld(h,,h,), combines the two heaps
and returns resulting heap

m Can be implemented efficiently using leftist heaps
» if x is node in a full binary tree, define rank(x)=length of
shortest path from x to a leaf that is a descendant of x

» a full binary tree is leftist if rank(left(x))=rank(right(x))
for every internal node x
» the right path in a leftist tree is path from the root to the
rightmost external node
» is a shortest path from root to an
external node; has length <Ig n (35,2 (71
» a leftist heap is a leftist tree in
heap order containing one item
per internal node

key,rank

(@)10,2(9)8,1 @)18,1(=3-,0

16,1 external node

4

& Washington University in St.Louis

Engineering

Melding Leftist Heaps

merge right paths
according to key
values

update ranks and swap
subtrees on right path to
restore leftist property

& Washington University in St.Louis

Engineering

Implementing Leftist Heaps

heap function meld(heap h,,h,);
if h, = null = return h, | h, = null = return h, fi;
if key(h,)>key (h,) = h; <= h,; fi;
right(h,) := meld(right(hy),h,);
if rank(left(h,))<rank(right(h,)) = left(h,) < right (h,) fi
rank(h,) := rank(right(h,))+1;

s note use of
|.'eturn 17 possibly null
end; node right(h,)

procedure insert(item /, modifies heap h);
left(i) := null; right(i) := null; rank(i) := 1;
h := meld(i,h);

end;

item function deletemin(modifies heap h);
item/; i:= h;
h := meld(left(h),right(h));
return j;

end;

!

& Washington University in St.Louis

Engineering

Heapify

m heapify(q) builds heap from heaps on list g
heap function heapify (list g);
if g = [] = return null fi;
do |g| =22 = q :=qg[3..] &meld(q(1),q(2)) od;
return g(1)
end

m Time for heapify

» let k=number of heaps on g initially and let r be number of
heaps on g after first [k/2] melds (r<k/2)

» if n;=size of i-th heap after first pass, the first pass time is
O(gn, +...+1gn)=0(rlg(n/r)) since 2<sn;< n and =n;=n,

» heapify time is
[lng] 1 [lgkj T { ;
0(2 (k/2’)lg(2-’n/k))=0(k2 (127)+(112))gn /&)
J=1 Jj=1

= O(k(1+1g(n/k)))

& Washington University in St.Louis

Engineering

Makeheap and Listmin

m To build a heap in O(n) time from a list of n items,
heap function makeheap(set s);
listg, g:=[1;
for ies = left(i),right(i) := null; rank(i):=1; q:=q & [i]; rof;
return heapify(q)
end;

m Operation listmin(x,h) returns a list containing all
items in heap h with keys < x
list function listmin(real x, heap h);
if h = null or key(h) > x = return []; fi;
return [h] & listmin(x,/eft(h)) & listmin(x,right(h));
end;

Running time is proportional to number of items listed

& Washington University in St.Louis

Engineering

Lazy Melding and Deletion

m It's often possible to improve performance of algorithms
by postponing certain operations
»to implement lazy melding and deletion, add deleted bit to nodes

» delete node by setting bit, meld two heaps by making them children
of a dummy node with deleted bit set

»alternatively, call deleted function to determine node status

»remove deleted nodes during deletemin and findmin operations

item function deletemin(modifies heap h);
item /; h := heapify(purge(h)); i := h; h := meld(left(h),right(h));

return purge() time
end; =0(1 + length of returned list)
list function purge(heap h); =0(1 + # of calls to deleted())

if A = null = return []; assuming deleted() takes constant time

| A = null and not deleted(h) = return [h]
| h = null and deleted(h) = return purge(/eft(h)) & purge(right(h))
fi;
end;

& Washington University in St.Louis

Engineering
Analysis of Round Robin

m Use implicit deletion using deleted function
predicate deleted(edge €); return find(/eft(e))=find(right(e)); end;
m Use deleted bit for lazy melding

m Divide the algorithm into passes as follows
»pass zero ends after every tree that was on the queue initially
has been removed and combined with some other tree.
»pass j ends after every tree that was on the queue at the end of
pass j-1 has been removed and combined with some other tree

= By induction on j, each tree that is on queue during
pass j contains at least 2/ vertices, so <|Ig n] passes

mlet m=+# of edg?s in the heap selected in i-th step
=Lemma 6.2. Ef:lm, <(2m+n-1)|lgn|

1

Proof. Trees chosen in same pass are vertex disjoint, so the

number of edges in all the associated heaps is <2m+n-1 =
10

10

& Washington University in St.Louis

Engineering

m Findmin time dominated by heapify time + # of find ops
» let k;=# of nodes removed from heap by findmin in the /-th step
» excluding the finds the time for the i-th findmin is

O((k+1)(1+lg(m; /(k+1))))
m Call a findmin small if ki+1<m;/(lg n)?, else call it large
» time for all the small findmins (excluding finds) is

O(E”"' m") (1+1gm,,))=0(2”"'ﬂ)=0(m)

-l (Ign)’ -l 1gn

» time for all the large findmins (excluding finds) is

O(EII (k,+1)lg L) - 0(2]1 k lglg n) = O(mlglgn)

m, /(g n)2
m So, takes O(m Ig Ig n) time excluding find ops
» so there are at most O(m Ig Ig n) find operations
» by analysis of partition data structure, the find operations take
O((mlglg n)a(mlglg n, n))=0(m Ig Ig n) time

11

11

& Washington University in St.Louis

» not really a good option
in practice
m Comparing MST options
» Prim’s with F-heaps best
at most densities
» round robin best at
lowest densities
» other factors may dominate
theoretical running time

function/m

10

4__

0

Engineering
Implications for MST & Shortest Path

m Using Fheaps, Prim’s algorithm and Dijkstra’s
algorithm take O(m+n log n) time

= Fheaps also enables multipass algorithm for MST that
takes O(mp(m,n)) time where [3 grows very slowly

8_,

6 -

m=

mlg(n)

n lg(n)

mlglg(n)

2 ju
1n=103 :

mlg(n)/lg(2+m/n)

m+nlg(n)

1.E+03

1.E+04

1.E+05 1.E+06

m

12

12

& Washington University in St.Louis

Exercises

1. The figure below shows an incomplete
representation of an intermediate state
in the execution of the round-robin
algorithm. Show the complete state of
the algorithm after one more iteration,
showing the state of the partition data
structure as a collection of sets. Also,
circle all the nodes in the leftist heaps
that should be considered “deleted”.

2 queue:defcg

Engineering

The graph, queue and partition are
shown below. The leftist heaps are on the

next page..
2 queue: fcgd

partition: {a,b,g}, {c,h},

{de}, (f}

13

& Washington University in St.Louis

Engineering

2.Let f(n) be an integer function that
satisfies the following property: for all
integers i and j, the value of f(j) does not
lie above the line through (i) and f(i+1).
More precisely,

f(j) = f (i) + (-i) D, where A, = f(i+1)-f(i)

Show that if ny,n, =0 and n, + n, = n
then
f(ny) + f(n,) <f([n/2]) + f([n/2]). Show
that if
Ny ...,ng=0andn; +---+ n,=nthen
f(ny) + -+ +f(n)=mf([n/k]) + (k-
m) f([n/k])

where m = n mod k.

14

14

& Washington University in St.Louis

To show the first part, note that the
property satisfied by f implies that for
all i,

F(i+2)-F (i+1) = f(i+1)-F (/)

That is, successive differences in adjacent
function values decrease (or at least, do
not increase), which means that for all i <
Jr

f (G+1)-f (j) = f (i+1)-f (i)
This means, in particular, that if n;< |n/2]

f(nz)-f (ny-1) = f (n;+1)-f (n,)
f(ny) +f (ny) = f(n+1)+f (ny-1)

That is, the sum of the function values
increases (or at least doesn’t decrease)
as we select pairs of function arguments
that are more nearly equal. This implies
f(n,) + f(ny) <f(ln/2]) + f([n/2]).

Engineering

The second part follows from the same
observation. For any pair n; <n; we can
only increase the sum, by replacing n; and
n; with n;,., and n;_,. Applying this as long
as possible yields
f(ny)+ - +Ff(n)=mf([n/k]) + (k-m)
f(ln/k]).
Let P be a partition on a set of r elements,
with h subsets,
Sy, ...,S; Suppose the running time of
an algorithm on this partition is g(|S;|) + -
-+ g(|S,]) where g(n)=n'/2. Give an
upper bound on the running time of the
algorithm in terms of h and r.

If we treat g as an integer function, it
clearly satisfies

g() = g (i) + (-) A; where A; = g(i+1)-g(/)
since its second derivative is negative. So,

g(IS:) + - - -+ g(ISul)
= mg([r/h]) + (h-m) g(|r/h]
< hg([r/h]) = h[r/h]/2
15

15

& Washington University in St.Louis

3. A portion of the C++ declaration of the
leftist heap data structure is given
below. List as many invariants as you
can think of for this data structure.

typedef int keytyp, item;
class Lheaps {
public:
private:
int n;
struct node {
keytyp keyf; int rankf;
int leftf, rightf;
} *vec;

}i

Engineering

n=0

for1 <i =n, 0 s vec[i].left =n

for 1 <i =n, 0 =svec[i].right =n
vec[0].leftf = vec[0].rightf =
vec[O0].rankf = 0

for 1 <i =n, vec[vec[i].rightf].rankf <
vec[vec[i].leftf].rankf

for 1 <i =n, vec[i].rankf = 1+
vec[vec[i].rightf].rankf

for 1 <si <j =n, vec[i].leftf =
vec[j].leftf = vec[i].leftf = 0

for 1 <i <j =n, vec[i].leftf =
vec[j].rightf = vec[i].leftf = 0

for 1 <i <j =n, vec[i].rightf =
vec[j].leftf = vec[i].rightf = 0

for 1 si <j =n, vec[i].rightf =
vec[j].rightf = vec[i].rightf = 0

Let p(i)=j if i=vec[j].leftf or i =
vec[j].rightf; if there is no such j, let
p(i)=null. There is no sequence iy,...,i;
such that p(i;)=p(i;,,) for 1 = j < k and
p(i)=p(iy).

16

16

