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Linear Programming

mA linear program seeks values for a set of non-
negative real variables x; that optimize a linear
function of the x; subject to linear constraints
» maximize Z; ¢;x; subject to X; a;x;<b; for all i
» or in matrix form, maximize C’X subject to AX<B

mLinear programs can be solved efficiently

» classical simplex method has exponential worst-case but
is fast in practice

» interior point method runs in polynomial time

= If some or all of the x; are constrained to be
integers, we get an Integer Linear Program
»in general, these are NP-hard
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Max Flow as LP

m Defined over flow variables f, for each edge e
» maximize Z._ ,f. subject to 0<f,<cap, for all e and
Ze—wu) fe=Ze=u,v fe for all u#s or t
»to put this into the standard matrix form
e let F be column vector with an entry per edge

e let S be a column vector with a 1 entry for every edge
leaving the source vertex and a 0 entry for all other edges

e let I be the identity matrix with m rows and columns

¢ let G=[g,.] be an edge incidence matrix where for u#s or t,
due=1 if uis the tail of e and g, =-1 if u is the head of e

o define coefficient matrix A by “stacking” I above G above -G

¢ let B be a column matrix with m+2(n-2) entries where first
m are the edge capacities and remainder are all 0

¢ so LP becomes: maximize S7F subject to F=0 and AF<B




& Washington University in St.Louis

Engineering

Min Cost Flow as LP

mAlso defined over flow variables f, for each edge e
»minimize Z.cost.f, subject to Z._. ,f.=f and 0<f,<cap,
for all e and X._, ) fe=Ze—(, 1 fe fOr all u#s or t
» this can also be put into standard matrix form by
¢ switching to a maximization problem (maximize -2 .cost.f,)
e expanding coefficient matrix and constraint vector from max
flow by adding two rows to express constraint on total flow
m Integrality property for max flow and min cost flow
» if capacities are integers then optimal flows are also
» consequence of a general property of coefficient matrix
¢ a coefficient matrix is totally unimodular if every square
sub-matrix has a determinant equal to 0, 1 or -1
»any LP with integer coefficients and bounds, and a totally
unimodular coefficient matrix, has an integral optimum
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Multicommodity Flow Problem

mSeveral types of “stuff” (called commodities) to be
moved through a network
» can define a separate source and sink for each commodity

»each edge can have total flow capacity plus (optional)
limits on individual commodity flows

»non source/sink nodes must preserve flow of each
commodity
mCan be formulated as LP

» meaning that it can be solved reasonably efficiently even
if we generalize by adding costs, more flow constraints

»in general, does not satisfy integrality property
¢ coefficient matrix is not totally unimodular
» no substantially better solution method than LP -
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Shortest Path Problem as LP

m For single-source, single-sink version, costs>0
»use {0,1} selection variables x, to define path (so ILP)

» minimize X, cost, X, subject to X,_, ;) X,21 and
Zem(w,u) Xe 2 Ze=(uv) Xe for all u#s or t

minimize CX= 3X,,+6Xy,+2X,5+7X 0+ 4X
subject to AX =8B
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» can also formulate as a min-cost flow problem (x.=f.)

e because capacities are all 1, integrality property for min cost
flows implies x, values of an optimal solution are integers

¢ so can find optimal solution of shortest path ILP using LP
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Alternate LP for Shortest Path

mImagine a graph as a set of balls connected by
strings of different length
» pull the source and sink balls as far apart as possible
e distance separating them is the shortest path distance
mLeads to maximization problem

» maximize d, subject to d,<d, +cost,, for all edges (u,v)
and dS:O maximize d,
subject to
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» this is the dual of the original LP
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Duality

= Standard form LP: maximize C’X subject to AX<B

= Dual: minimize B'Z subject to A7Z>C where the
vector Z is made up of dual variables
m The optimal solution values of the primal and dual
forms are equal - C’X*=B7Z*
» sometimes the dual is easier to solve than primal
m Alternate forms
»can convert to minimization by negating C
» can change <-bounds to =-bounds by negating A and B

» so for example, if primal expressed as minimize C'X
subject to AX<B, dual is minimize B'Z subject to A7TZ>-C
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Complementary Slackness

= Primal: maximize C'X subject to AX<B

» B-AX is referred to as slack in primal variables
mDual: minimize B’Z subject to A7Z>C

» ATZ-C is referred to as slack in dual variables

mComplementary slackness condition states that
X* and Z* are optimal solutions if and only if
(B-AX")=[s;] => s;z;"=0 for all i and
(ATZ*-C)=[t;] => tx;"=0 for all j
»s0 each non-zero slack value in primal (dual) corresponds
to a zero dual (primal) variable

» primal-dual algorithms adjust values of primal and dual
variables with objective of making these conditions true
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Shortest Path & Complementary Slackness
minimize CX= 3X,+6X,+2X,5+7X,+4Xy, maximize d, subject to
subject to
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m For primal, optimal solution X*=[1 01 0 1]
m For dual, optimal solution D*=[3 5 9]

mComplementary slackness conditions
» (ATD*-C)7X*=[0] and (B-AX")"D*=[0]
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Max Matching as ILP

mILP for maximum size matching problem using 0-1
selection variables X=[x_]
» maximize Z.x, subject to X,_., ,,x.<1 for all u

»to get matrix form, let G=[g,.] be incidence matrix of
graph where g,.=1 if u is an endpoint of e, else 0

» maximize [1]7X subject to X=0 and GX<[1]

m For weighted matching, let W be column vector of
edge weights, then
» maximize WX subject to X=0 and GX<[1]

e can get LP with same optimal solutions by adding constraints

»dual: minimize [1]7Z subject to Z=0 and G'Z=W

e the variables z, can be thought of as vertex labels and the
constraints take form z,+z, 2w, for all e={u,v}
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