

Engineering

Linear Programming and Network Optimization

Jon Turner Computer Science & Engineering Washington University

www.arl.wustl.edu/~jst

Engineering

Linear Programming

- A linear program seeks values for a set of nonnegative real *variables* x_i that optimize a linear function of the x_i subject to linear constraints
 - » maximize $\Sigma_i c_i x_i$ subject to $\Sigma_i a_{ij} x_i \leq b_i$ for all i
 - » or in matrix form, maximize C^TX subject to $AX \leq B$
- Linear programs can be solved efficiently
 - » classical simplex method has exponential worst-case but is fast in practice
 - » interior point method runs in polynomial time
- If some or all of the x_i are constrained to be integers, we get an *Integer Linear Program*
 - » in general, these are NP-hard

Engineering

Max Flow as LP

- lacktriangle Defined over flow variables f_e for each edge e
 - » maximize $\Sigma_{e=(s,u)}f_e$ subject to $0 \le f_e \le cap_e$ for all e and $\Sigma_{e=(w,u)}f_e = \Sigma_{e=(u,v)}f_e$ for all $u \ne s$ or t
 - » to put this into the standard matrix form
 - let F be column vector with an entry per edge
 - let S be a column vector with a 1 entry for every edge leaving the source vertex and a 0 entry for all other edges
 - let I be the identity matrix with m rows and columns
 - let $G=[g_{ue}]$ be an edge incidence matrix where for $u \neq s$ or t, $g_{ue}=1$ if u is the tail of e and $g_{ue}=-1$ if u is the head of e
 - define coefficient matrix A by "stacking" I above G above -G
 - let B be a column matrix with m+2(n-2) entries where first m are the edge capacities and remainder are all 0
 - so LP becomes: maximize S^TF subject to $F \ge 0$ and $AF \le B$

Engineering

Min Cost Flow as LP

- ullet Also defined over flow variables f_e for each edge e
 - » minimize $\Sigma_e cost_e f_e$ subject to $\Sigma_{e=(s,u)} f_e = f^*$ and $0 \le f_e \le cap_e$ for all e and $\Sigma_{e=(w,u)} f_e = \Sigma_{e=(u,v)} f_e$ for all $u \ne s$ or t
 - » this can also be put into standard matrix form by
 - switching to a maximization problem (maximize $-\Sigma_{\rho} cost_{\rho} f_{\rho}$)
 - expanding coefficient matrix and constraint vector from max flow by adding two rows to express constraint on total flow
- •Integrality property for max flow and min cost flow
 - » if capacities are integers then optimal flows are also
 - » consequence of a general property of coefficient matrix
 - a coefficient matrix is *totally unimodular* if every square sub-matrix has a determinant equal to 0, 1 or −1
 - » any LP with integer coefficients and bounds, and a totally unimodular coefficient matrix, has an integral optimum

Engineering

Multicommodity Flow Problem

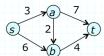
- Several types of "stuff" (called commodities) to be moved through a network
 - » can define a separate source and sink for each commodity
 - » each edge can have total flow capacity plus (optional) limits on individual commodity flows
 - » non source/sink nodes must preserve flow of each commodity
- Can be formulated as LP
 - » meaning that it can be solved reasonably efficiently even if we generalize by adding costs, more flow constraints
 - » in general, does not satisfy integrality property
 - coefficient matrix is not totally unimodular
 - » no substantially better solution method than LP

Engineering

Shortest Path Problem as LP

- For single-source, single-sink version, costs>0
 - » use $\{0,1\}$ selection variables x_e to define path (so ILP)
 - » minimize $\Sigma_e \cos t_e x_e$ subject to $\Sigma_{e=(u,t)} x_e \ge 1$ and $\Sigma_{e=(w,u)} x_e \ge \Sigma_{e=(u,v)} x_e$ for all $u \ne s$ or t

minimize $CX = 3x_{sa} + 6x_{sb} + 2x_{ab} + 7x_{at} + 4x_{bt}$ subject to $AX \ge B$



$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} x_{sa} \\ x_{sb} \\ x_{ab} \\ x_{bt} \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- » can also formulate as a min-cost flow problem $(x_e=f_e)$
 - because capacities are all 1, integrality property for min cost flows implies x_e values of an optimal solution are integers
 - so can find optimal solution of shortest path ILP using LP

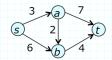
_

Engineering

Alternate LP for Shortest Path

- Imagine a graph as a set of balls connected by strings of different length
 - » pull the source and sink balls as far apart as possible
 - distance separating them is the shortest path distance
- ■Leads to maximization problem
 - » maximize d_t subject to $d_v \le d_u + cost_{uv}$ for all edges (u,v) and $d_s = 0$ $\max_{\text{maximize } d_t}$

maximize d_t subject to



$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \times \begin{bmatrix} d_a \\ d_b \\ d_t \end{bmatrix} \leq \begin{bmatrix} 3 \\ 6 \\ 2 \\ 7 \\ 4 \end{bmatrix}$$

» this is the dual of the original LP

Engineering

Duality

- Standard form LP: maximize C^TX subject to $AX \le B$
- Dual: minimize B^TZ subject to $A^TZ \ge C$ where the vector Z is made up of dual variables
- The optimal solution values of the primal and dual forms are equal $-C^TX^*=B^TZ^*$
 - » sometimes the dual is easier to solve than primal
- Alternate forms
 - » can convert to minimization by negating C
 - » can change ≤-bounds to ≥-bounds by negating A and B
 - » so for example, if primal expressed as minimize C^TX subject to $AX \le B$, dual is minimize B^TZ subject to $A^TZ \ge -C$

Engineering

Complementary Slackness

- Primal: maximize C^TX subject to $AX \le B$ » B-AX is referred to as slack in primal variables
- Dual: minimize B^TZ subject to $A^TZ \ge C$ » $A^TZ - C$ is referred to as slack in dual variables
- Complementary slackness condition states that X^* and Z^* are optimal solutions if and only if

$$(B-AX^*)=[s_i] => s_i z_j^*=0$$
 for all i and $(A^TZ^*-C)=[t_i] => t_i x_i^*=0$ for all j

- » so each non-zero slack value in primal (dual) corresponds to a zero dual (primal) variable
- » primal-dual algorithms adjust values of primal and dual variables with objective of making these conditions true

Washington University in St.Louis Engineering Shortest Path & Complementary Slackness minimize $CX = 3x_{sa} + 6x_{sb} + 2x_{ab} + 7x_{at} + 4x_{bt}$ maximize d_t subject to subject to $\begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} x_{sa} \\ x_{sb} \\ x_{ab} \\ x_{at} \\ x_{bt} \end{bmatrix} \ge \begin{bmatrix} x_{sa} \\ x_{sb} \\ x_{at} \\ x_{bt} \end{bmatrix}$ 1 0 0 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \times \begin{bmatrix} d_a \\ d_b \\ d_t \end{bmatrix}$ ≤ 2 7 ■ For primal, optimal solution $X^* = [1 \ 0 \ 1 \ 0 \ 1]$ ■ For dual, optimal solution $D^* = [3 5 9]$ Complementary slackness conditions $(A^TD^*-C)^TX^*=[0]$ and $(B-AX^*)^TD^*=[0]$ 1 0 1 0 1 0 0 0 0 3 6 2 7 4 3 5 9 -1 1 0 -1 0 1 0 -1 1

Engineering

Max Matching as ILP

- ■ILP for maximum size matching problem using 0-1 selection variables $X=[x_e]$
 - » maximize $\Sigma_e x_e$ subject to $\Sigma_{e=\{u,v\}} x_e \leq 1$ for all u
 - » to get matrix form, let $G=[g_{ue}]$ be incidence matrix of graph where $g_{ue}=1$ if u is an endpoint of e, else 0
 - » maximize $[1]^T X$ subject to $X \ge 0$ and $GX \le [1]$
- For weighted matching, let W be column vector of edge weights, then
 - » maximize W^TX subject to $X \ge 0$ and $GX \le [1]$
 - can get LP with same optimal solutions by adding constraints
 - » dual: minimize $[1]^TZ$ subject to $Z \ge 0$ and $G^TZ \ge W$
 - the variables z_u can be thought of as vertex labels and the constraints take form $z_u + z_v \ge w_e$ for all $e = \{u, v\}$