

Engineering

Maximum Weight Matchings in General Graphs – Part 1

Jon Turner Computer Science & Engineering Washington University

www.arl.wustl.edu/~jst

Engineering

Maximum Weight Augmentation

- Given graph G=(V,E) and matching M, define weight of path p to be total weight of its free edges minus total weight of its matched edges
- Theorem 9.2. Let M be a matching of maximum weight among matchings of size |M|, let p be an augmenting path for M of maximum weight, and let M' be the matching formed by augmenting M using p. Then M' is of maximum weight among matchings of size |M|+1.

Proof. Let M'' be a matching of maximum weight among matchings of size |M|+1. Let N be the set of edges in M or M'' but not both.

Engineering

Define the weight of a path or cycle in N with respect to M. Any cycle of even length path in N must have weight ≤ 0 , since otherwise we could increase the weight of M without changing its size, by exchanging the edges on the cycle or path.

Since N contains exactly one more edge in M'' than in M, we can pair all but one of the odd-length paths so that each pair has an equal number of edges in M and in M''. Each such pair of paths must have total weight ≤ 0 by the same reasoning as before.

Augmenting M using the remaining path gives a matching of size |M|+1 with same weight as M''. This must be a maximum weight augmenting path for M since if there were an augmenting path with larger weight, we could construct a matching of size |M|+1 with larger weight than M''.

Engineering

- ■Theorem 9.2 provides a basis for a weighted matching algorithm
 - » finding max weight augmenting paths directly is difficult, especially for general graphs
 - » can be done using LP duality
 - dual variables can be viewed as vertex/blossom labels
 - label values of edge endpoints are related to edge weights

Ц

Engineering

Matching and Linear Programming

- Matchings defined by selection variables $X = \{x_e\}$ » $x_e = 1$ if e is an edge in the matching
- •Objective is to maximize $weight(X) = \sum_{e} x_{e}w(e)$
- Constraints:
 - » for each vertex u with incident edges E(u), $\Sigma_{e \in E(u)}$ $x_e \le 1$
 - » for each edge e, x_e =0 or x_e =1
- The constraints on the x_e s make this an integer linear programming problem
 - » Edmonds showed that for bipartite graphs, we can replace these constraints with $x_e \le 1$
 - this ordinary LP has same optimal solutions as original ILP
 - we'll use duality to obtain a more efficient algorithm

Engineering

Dual Version of Matching LP

- First, re-state primal version in matrix form
 - » define the $n \times m$ edge incidence matrix $G = [g_{u,e}]$ where $g_{u,e} = 1$ if u is an endpoint of e, else $g_{u,e} = 0$
 - » let $W=[w_e]$ be column vector of edge weights and let $X=[x_e]$ be column vector of selection variables
 - » primal problem becomes
 - maximize $weight(X) = W^TX$ subject to $GX \le [1]$
- Dual version uses variables $Z=[z_u]$
 - » minimize $cost(Z) = [1]^T Z$ subject to $G^T Z \ge W$
 - » equivalently, minimize $\Sigma_u z_u$ subject to $z_u \ge 0$ and for all edges e, $z_e \ge w_e$ where $z_e = z_u + z_v$ for $e = \{u, v\}$
 - » complementary slackness implies that if X^* and Z^* are optimal, $z_e = w_e$ for matching edges e and $z_u = 0$ if u is free

Engineering

Max Wt. Matchings & Vertex Labeling

- Theorem. Let G=(V,E) be a bipartite graph with edge weights w(e), let M be a matching in G and let each vertex u have a non-negative label z_u . If
 - (1) $z_e \ge w(e)$ for $e \in E$ $(z_e = z_u + z_v)$
 - (2) $z_e = w(e)$ for $e \in M$
 - (3) $z_u = 0$ if u is free

then M is a maximum weight matching.

Proof. Let M and z satisfy the conditions in the theorem and let N be any other matching.

$$\Sigma_{e \in N} w(e) \le \Sigma_{e \in N} z_e \le \Sigma_u z_u = \Sigma_{e \in M} z_e = \Sigma_{e \in M} w(e)$$

■ Edges with $w(e)=z_e$ are called equality edges » augmenting path using equality edges has max weight

Engineering

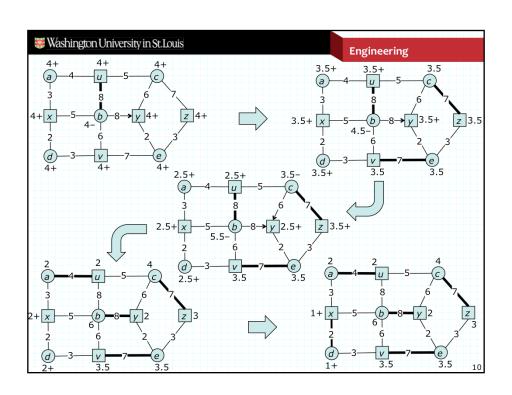
Bipartite Matching Using Vertex Labels

- Initialization
 - $M = \{\}$ and $z_u = (\max \text{ edge weight})/2 \text{ for all } u$
 - this satisfies conditions (1) and (2) in theorem
- At each step, search for augmenting paths using only equality edges (by building trees, as before)
 - » halt if condition (3) becomes true
 - » if search fails to find an augmenting path, modify labeling
 - this makes condition (3) true or creates more equality edges
 - in latter case, continue search for augmenting path using newly created equality edges
 - » after finding a path, augment and reset even/odd status, but retain z values
 - note, augmentation maintains truth of (1), (2)

Engineering

Adjusting Labels

- Whenever the search runs out of eligible edges
 - » if all free vertices have zero labels, terminate
 - » let $\delta_1 = \min \{z_u | u \text{ is even}\}$
 - $\delta_2 = \min\{z_e w(e) \mid e = \{u, v\}, u \text{ even, } v \text{ unreached}\}$
 - $\delta_3 = \min\{(z_e w(e))/2 \mid e = \{u, v\}, \text{ both even}\}\$ $(\delta_2, \delta_3 \text{ are undefined if no suitable edge})$
 - $\delta = \min\{\delta_1, \delta_2, \delta_3\}$ ignore δ_2, δ_3 , when undefined
 - » subtract δ from labels for even vertices, add δ to labels for odd vertices
 - note: this maintains truth of (1), (2)
 - » if $\delta = \delta_1$, this makes condition (3) true and algorithm halts
 - since labels start with same value and free vertices experience same sequence of changes
 - » if $\delta = \delta_2$ or δ_3 , search can resume using new equality edges



Engineering

Implementation Details

- •Use heaps to compute δ_i values efficiently
 - » h_{1e} and h_{1o} store the even and odd vertices respectively, with z_u as the key for vertex u
 - h_2 , h_3 store edges, with keys z_e -w(e)
 - h₂ has edges with one even endpoint and one unreached,
 h₃ has edges with both endpoints even
 - when a vertex u becomes even, add its edges to h_2 or h_3
- ■To enable fast updating of labels use heap with fast addtokeys(x) operation
 - » adds x to keys of all items in a heap
 - » d-heap can be extended to do this in constant time
- Eligible equality edges appear at top of h_2 and h_3
 - » can be selected directly from the heaps

Engineering

Running Time Analysis

- ■Number of augmentations is at most n/2» at end of search, update vertex labels using h_{1e} , h_{1o}
 - » also, clear heaps in preparation for next search
- Each step that extends a tree adds edges to heaps and removes edges from heaps
 - » during one augmenting search, each edge added to a heap ≤2 times, removed ≤2 times
 - » so, $O(mn \log n)$ time for these heap operations
- All but the last label adjustment adds at least one equality edge and does not eliminate any
 - » so total # of label adjustments is O(m) and since these require only *findmin* and *addtokeys*, we get O(m) time

Engineering

D-Heap with Addtokeys Operation

- Operation addtokeys(x) adds x to keys of all items in a heap
 - » add internal variable Δ to heap implementation
 - » every addtokeys(x) operation increases Δ by x
 - » let $\Delta(t)$ be value of Δ at time t, then
 - from time t_1 to time t_2 , key(j) increases by $\Delta(t_2)-\Delta(t_1)$
- ■When inserting item j with key k into heap, use $k-\Delta$ as the stored value, in place of k » preserves relative values of all items in heap
- ■To obtain the "true key" for item j, add the current value of Δ to the stored key value