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Maximum Weight Augmentation

m Given graph G=(V,E) and matching M, define
weight of path p to be total weight of its free
edges minus total weight of its matched edges

m Theorem 9.2. Let M be a matching of maximum
weight among matchings of size |[M|, let p be an
augmenting path for M of maximum weight, and
let M' be the matching formed by augmenting M
using p. Then M’ is of maximum weight among
matchings of size |M|+1.

Proof. Let M" be a matching of maximum weight among

matchings of size |M|+1. Let N be the set of edges in M or
M" but not both.
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Define the weight of a path or cycle in N with respect to M.
Any cycle of even length path in N must have weight <0,
since otherwise we could increase the weight of M without
changing its size, by exchanging the edges on the cycle or
path.

Since N contains exactly one more edge in M" than in M, we
can pair all but one of the odd-length paths so that each
pair has an equal number of edges in M and in M". Each
such pair of paths must have total weight <0 by the same
reasoning as before.

Augmenting M using the remaining path gives a matching of
size |M|+1 with same weight as M". This must be a
maximum weight augmenting path for M since if there were
an augmenting path with larger weight, we could construct
a matching of size |M|+1 with larger weight than M". &
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mTheorem 9.2 provides a basis for a weighted
matching algorithm

» finding max weight augmenting paths directly is difficult,
especially for general graphs
» can be done using LP duality
¢ dual variables can be viewed as vertex/blossom labels
¢ label values of edge endpoints are related to edge weights
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Matching and Linear Programming

m Matchings defined by selection variables X={x_}
» X,=1 if e is an edge in the matching

m Objective is to maximize weight(X)=2, x.w(e)

m Constraints:
» for each vertex u with incident edges E(u), Zocgy) Xe<1
» for each edge e, x,=0 or x.=1

m The constraints on the x_.s make this an integer
linear programming problem

» Edmonds showed that for bipartite graphs, we can replace
these constraints with x,<1
¢ this ordinary LP has same optimal solutions as original ILP
e we'll use duality to obtain a more efficient algorithm
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Dual Version of Matching LP

mFirst, re-state primal version in matrix form

» define the nxm edge incidence matrix G=[g, .] where
gu,=1if uis an endpoint of ¢, else g, =0

»let W=[w,] be column vector of edge weights and
let X=[x.] be column vector of selection variables

» primal problem becomes
e maximize weight(X)=W7X subject to GX<[1]
mDual version uses variables Z=[z]
» minimize cost(Z)=[1]"Z subject to GTZ=W
» equivalently, minimize X, z, subject to z,20 and
for all edges e, z.2w, where z,=z,+z, for e={u,v}

» complementary slackness implies that if X* and Z* are
optimal, z,.=w, for matching edges e and z,=0 if u is free
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Max Wt. Matchings & Vertex Labeling

m Theorem. Let G=(V,E) be a bipartite graph with
edge weights w(e), let M be a matching in G and
let each vertex u have a non-negative label z,. If

(1) z.zw(e) foreeE (z,=z,+z,)
(2) z.=w(e) for eeM
(3) z,=0 if uis free

then M is a maximum weight matching.

Proof. Let M and z satisfy the conditions in the theorem and
let N be any other matching.

2eEN W(e) = 2eEN Ze = 2u Zu = 2:eEM Ze T 2:eeM W(e) O
m Edges with w(e)=z, are called equality edges
» augmenting path using equality edges has max weight
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Bipartite Matching Using Vertex Labels

m Initialization
»M ={3} and z,=(max edge weight)/2 for all u
e this satisfies conditions (1) and (2) in theorem
m At each step, search for augmenting paths using
only equality edges (by building trees, as before)
» halt if condition (3) becomes true
» if search fails to find an augmenting path, modify labeling

¢ this makes condition (3) true or creates more equality edges

¢ in latter case, continue search for augmenting path using
newly created equality edges

» after finding a path, augment and reset even/odd status,
but retain z values

e note, augmentation maintains truth of (1), (2)
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Adjusting Labels

m Whenever the search runs out of eligible edges
» if all free vertices have zero labels, terminate

»let §; = min {z,|u is even}
d, = min{z,~w(e) | e={u,v}, u even, v unreached}
33 = min{(z,~w(e))/2 | e={u,v}, both even}

(85, 85 are undefined if no suitable edge)
d = min{d;, §,, 85} — ignore J,, 83, when undefined
» subtract 6 from labels for even vertices, add 6 to labels for
odd vertices
e note: this maintains truth of (1), (2)
» if 0=9,, this makes condition (3) true and algorithm halts

¢ since labels start with same value and free vertices
experience same sequence of changes

»if 8=0, or 95, search can resume using new equality edges
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Implementation Details

mUse heaps to compute §; values efficiently

» hy, and h,, store the even and odd vertices respectively,
with z, as the key for vertex u

» h,, h; store edges, with keys z_-w(e)

* h, has edges with one even endpoint and one unreached,
h; has edges with both endpoints even

e when a vertex u becomes even, add its edges to h, or h,
mTo enable fast updating of labels use heap with fast
addtokeys(x) operation
»adds x to keys of all items in a heap
» d-heap can be extended to do this in constant time

m Eligible equality edges appear at top of h, and h;

» can be selected directly from the heaps "
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Running Time Analysis

s Number of augmentations is at most n/2
» at end of search, update vertex labels using hy,, hy,
» also, clear heaps in preparation for next search

m Each step that extends a tree adds edges to heaps
and removes edges from heaps

»during one augmenting search, each edge added to a
heap <2 times, removed <2 times

»s0, O(mn log n) time for these heap operations
mAll but the last label adjustment adds at least one
equality edge and does not eliminate any

»so total # of label adjustments is O(m) and since these
require only findmin and addtokeys, we get O(m) time
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D-Heap with Addtokeys Operation

m Operation addtokeys(x) adds x to keys of all items
in @ heap
» add internal variable A to heap implementation
» every addtokeys(x) operation increases A by x
»let A(t) be value of A at time ¢, then
e from time t; to time t,, key(j) increases by A(t,)-A(t;)
s When inserting item j with key k into heap,
use k-A as the stored value, in place of k
» preserves relative values of all items in heap

mTo obtain the “true key” for item j, add the current
value of A to the stored key value
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