

Engineering

Maximum Weight Matchings in General Graphs – part 2

Jon Turner Computer Science & Engineering Washington University

www.arl.wustl.edu/~jst

Engineering

Weighted Matchings in General Graphs

- Define LP with same optimal solutions as ILP
 - » maximize $weight(X) = \Sigma_e x_e w(e)$ subject to $\Sigma_{e \in E(u)} x_e \le 1$ for all u with edges E(u) $\Sigma_{e \subseteq B} x_e \le (|B|-1)/2$ for every non-trivial odd subset $B \subseteq V$
- ■In matrix form
 - » define $G=[g_{B,e}]$ with row for every odd subset $B\subseteq V$,
 - $g_{B,e}$ =1 if $e\subseteq B$ or $B\in e$, else $g_{B,e}$ =0
 - » let W=[w(e)] be column vector of edge weights and let $X=[x_e]$ be column vector containing the LP variables let $K=[k_B]$ be column vector with entry per odd subset B
 - $k_B = \max\{1, (|B|-1)/2\}$
 - » primal problem becomes
 - maximize $weight(X) = W^TX$ subject to $GX \le K$

Engineering

Dual Version

- Dual version uses variables $Z=[z_B]$
 - » minimize $cost(Z) = K^T Z$ subject to and $G^T Z \ge W$
 - » equivalently, minimize $\Sigma_B k_B z_B$ subject to $z_e \ge w(e)$ for all edges e
 - $z_e = \Sigma_B z_B \text{sum}$ is over odd subsets B where $e \subseteq B$ or $B \in e$
- Complementary slackness implies that if X and Z are optimal solutions
 - $(G^{T}Z-W)^{T}X=[0]$ and $(K-GX)^{T}Z=[0]$
 - » the first condition says that for each edge $e \in M$, $z_e = w(e)$
 - » the second says
 - for every free vertex u, z_u =0 and
 - for every non-trivial odd subset B with $z_B \ne 0$, the number of matching edges in B is k_B

Engineering

■ Theorem. Let G=(V,E) be a graph with edge weights w(u,v), let M be a matching in G, let each odd subset B have a non-negative label z_B . For an edge e, let $z_e=\Sigma_B z_B$ where sum is over odd subsets B where $e\subseteq B$ or $B\subseteq e$. If

 $\begin{array}{ll} \text{(1)} & z_e{\geq}w(e) & \text{for all } e{\in}E \\ \text{(2)} & z_e{=}w(e) & \text{for all } e{\in}M \end{array}$

(3) $z_B=0$ if B is a free vertex or the number of matching edges in B is <(|B|-1)/2

then M is a maximum weight matching.

Proof. Assume conditions (1) to (3) hold with respect to some matching M, let N be any other matching.

Engineering

$$\sum_{e \in N} w(e) \leq \sum_{e \in N} z_e$$

$$= \sum_{\{u,v\} \in N} (z_u + z_v) + \sum_{e \in N} \sum_{B:e \subseteq B} z_B$$

$$= \sum_{\{u,v\} \in N} (z_u + z_v) + \sum_{B:|B|>1} z_B \begin{pmatrix} \text{# of edges in } N \text{ with both endpoints in } B \end{pmatrix}$$

$$\leq \sum_{u \in V} z_u + \sum_{B:|B|>1} z_B (|B|-1)/2$$

$$= \sum_{\{u,v\} \in M} (z_u + z_v) + \sum_{b:|B|>1} z_B \begin{pmatrix} \text{# of edges in } M \text{ with both endpoints in } B \end{pmatrix}$$

$$= \sum_{e \in M} z_e = \sum_{e \in M} w(e)$$

Hence, M is a maximum weight matching.

- Equality edges have $z_e = w(e)$
 - » can find max weight augmenting paths using equality edges alone

Engineering

Equality Edges Yield Max Weight

■If M and z satisfy conditions (1) and (2), all free vertices have same label and only blossoms B have $z_B > 0$, augmenting paths using equality edges are max weight paths

Weight of augmenting path:

$$w(a,b)+w(c,d)+w(e,g)+w(f,h) - (w(b,c)+w(d,e)+w(f,g))$$

$$\leq (z_a+z_b)+(z_c+z_d+z_B)+(z_e+z_g+z_B)+(z_f+z_h) - ((z_b+z_c)+(z_d+z_e+z_B)+(z_f+z_g+z_B))$$

$$= z_a+z_h$$

If all equality edges, then path weight equals z_a+z_h

If all free vertices have same label, any such path is max weight augmenting path

Engineering

General Matching Using Labeling

- Algorithm maintains variables z_B only for vertices and blossoms B; others are implicitly 0
 - » note, this means that condition (3) in theorem holds automatically if B is not a free vertex
- Initialization
 - $M = \{\}, z_u = (1/2) \max_e w(e)$
 - note: this satisfies conditions (1) and (2)
- Search for augmenting paths using equality edges
 - » if (3) becomes true, algorithm halts
 - » whenever search "stalls", modify the labels
 - » when augmenting path found, augment matching and make unexpanded blossoms unreached
 - expand only those blossoms with $z_B=0$

Engineering

- View each vertex as belonging to some (possibly trivial) blossom in the current shrunken graph
 - » maintain variable z_B for all blossoms B, including those contained in other blossoms
 - z_B =0 for each new blossom; blossom expanded only if z_B =0
 - \bullet z_B values are changed only for outer-most blossoms
 - » for each vertex u, let B_u denote the outermost blossom containing u in the current graph
 - state of u (odd, even, unmatched) is inherited from B_u
 - let $mate(B_u)$ be outer blossom at other end of matching edge incident to B_u
 - » for each blossom B, maintain an edge entry(B) which is the edge to the parent blossom of B in tree containing B
- Note: for any matched edge not in a blossom
 - » either both endpoints are unreached, or one is even, while the other is odd

Engineering

Adjusting Labels

- Whenever the search runs out of eligible edges, we select a value δ and adjust labels
 - » for vertices u
 - ullet subtract δ from z_u if u even, add δ if u odd
 - » for outer-most blossoms B
 - add 2δ to z_B if B even, subtract 2δ if B odd
- Observations
 - » for unreached, blossom or tree edges e, z_e doesn't change
 - for *e* contained in a blossom, change to labels for edge endpoints are balanced by change for blossom
 - ullet for e outside any blossom, z_e is sum of endpoint labels and either the changes balance, or neither changes
 - » for remaining edges, take care to avoid violations of (1)

Engineering

Choosing δ

■Select δ as follows

```
» let \delta_1=min \{z_u|u \text{ is even}\} \delta_2=min\{z_e-w(e) | e=\{u,v\}, u even, v unreached\{v_e-min\{v_e-w(e))/2 | v_e=\{v_e, v_e, v_e even and not in same blossom\{v_e=min\{v_e/2 | v_e is a top-level odd blossom\{v_e0 =min\{v_e0, v_e0, v_e0, v_e0 =min\{v_e0, v_e0, v_e0, v_e0 =min\{v_e0, v_e0, v_e0, v_e0, v_e0 =min\{v_e0, v_e0, v_e
```

Observations

- » this choice ensures that labels remain non-negative
- » label change causes one or more of the following to occur
 - algorithm terminates immediately (if $\delta = \delta_1$)
 - one or more equality edges are created (if $\delta = \delta_2$ or δ_3)
 - for at least one odd blossom B, z_B becomes zero (if $\delta = \delta_4$); this allows B to be expanded

Engineering

Putting It Together

- Initialization
 - $M = \{\}, z_u = (1/2) \max_e w(e)$
- ■Repeat the following step until z_u =0 for all free u
 - » if there is an equality edge $\{u,v\}$ with u even, v unreached
 - expand tree containing u to include B_v and $mate(B_v)$, setting odd/even status and entry edge
 - » if there is an equality edge with $\{u,v\}$ with u,v even
 - if *u*, *v* are in same tree, form new even blossom, set *entry*
 - if u, v are in different trees, augment matching and make blossoms on augmenting path unreached, entry undefined
 - » if neither of the previous cases apply, adjust labels
 - if this makes z_B =0 for some odd blossom B, expand B and update status of sub-blossoms

Engineering

Running Time Analysis

- During one augmenting path search
 - \gg ≤n/2 steps that extend the collection of trees
 - add edges at new even vertices to set of eligible edges
 - » at most $\leq n/2$ steps form new blossoms
 - since new blossoms are always even and are not expanded
 - » no edge can become an equality edge more than once
 - so, # of label adjustments that add equality edges is $\leq m$
 - » steps that expand odd blossoms
 - $\leq n/2$ since blossoms that become odd were originally formed before current search
- So, O(m) steps per search, O(mn) altogether
 - » with no special data structures takes $O(mn^2)$ time
 - » with appropriate data structures can cut to $O(mn \log n)$

Engineering

About Data Structures

- Use heaps with addtokeys as in bipartite case
- Blossom structure forest
 - » contains a node for every original vertex, blossom and sub-blossom in the current graph
 - » parent of x is inner-most blossom that contains x
 - » trees implemented using doubly-linked circular lists of siblings, plus child pointer
- Split-join sets data structure to find B_u , given u
 - » ordered base set with join, split and find operations
 - » can be implemented using binary search trees
- Group heap
 - » divides heap into groups that can be active or inactive
 - addtokeys affects active groups