& Washington University in St.Louis

Engineering

Maximum Weight Matchings
in General Graphs — part 2

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering

Weighted Matchings in General Graphs

mDefine LP with same optimal solutions as ILP
» maximize weight(X)=2, x,w(e) subject to
ZeceupXeS1 for all u with edges E(u)
Sec Xe<(|B|-1)/2 for every non-trivial odd subset BCV
mIn matrix form
» define G=[gg .] with row for every odd subset BCV,
* gg =1 if eCB or Bee, else gg =0
» let W=[w(e)] be column vector of edge weights and

let X=[x.] be column vector containing the LP variables
let K=[kg] be column vector with entry per odd subset B

» kg=max{1,(|B|-1)/2}
» primal problem becomes
e maximize weight(X)=W"X subject to GX<K

& Washington University in St.Louis

Engineering

Dual Version

m Dual version uses variables Z=[z;]
» minimize cost(Z)=K’Z subject to and GTZ=W
» equivalently, minimize =z kgzz subject to z,2w(e) for all
edges e
e 7,=35 7z — sum is over odd subsets B where eCB or Bece
mComplementary slackness implies that if X and Z
are optimal solutions
» (GTZ-W)™X=[0] and (K-GX)"Z=[0]
» the first condition says that for each edge eeM, z.=w(e)
» the second says
o for every free vertex u, z,=0 and

e for every non-trivial odd subset B with z;#0, the humber of
matching edges in B is kg "

& Washington University in St.Louis

Engineering

m Theorem. Let G=(V,E) be a graph with edge
weights w(u,v), let M be a matching in G, let each
odd subset B have a non-negative label zz. For an
edge e, let z,=3; zz; where sum is over odd subsets
B where eCB or Bee. If

(1) z.zw(e) for all ee E
(2) z.=w(e) for all eeM
(3) zz=0 if B is a free vertex or the number

of matching edges in B is <(|B|-1)/2
then M is a maximum weight matching.

Proof. Assume conditions (1) to (3) hold with respect to
some matching M, let N be any other matching.

& Washington University in St.Louis

Engineering

w(e) <
szN () E(JEN Z()
S eSS,
E<,,Jv)e‘v\"(z“ z,) eN Lapec B

of edges in N with
= E (Zu + Z\‘)+ E ZB . .
{uviEN B.IB1>1 both endpoints in B

= EuEV &t EB:IBI>1 2z (IBI-1)/2

of edges in M with
i E{u.v,\EM (Z” u Z“)+ EI);IBM <p (]

both endpoints in B
u E(‘EM AT ELEM Wie)

Hence, M is a maximum weight matching. &
m Equality edges have z,=w(e)
» can find max weight augmenting paths using equality
edges alone

& Washington University in St.Louis

Engineering

Equality Edges Yield Max Weight

mIf M and z satisfy conditions (1) and (2), all free
vertices have same label and only blossoms B
have zz>0, augmenting paths using equality edges
are max weight paths

@ Weight of augmenting path:
w(a,b)+w(c,d)+w(e,g)+w(f,h)
® - (w(b,c)+w(d,e)+w(f,9))

S(Zo+2p) H(z A z4+2p) +(Zo+ 24+ 25) +(26+2))

o‘ ~ ((Z+2)+(24+ 2e+25) + (21424 25))
® ® :

If all equality edges, then path weight
equals z,+z,

© @ If all free vertices have same label, any such
path is max weight augmenting path

6

& Washington University in St.Louis

Engineering
General Matching Using Labeling

m Algorithm maintains variables zz only for vertices
and blossoms B; others are implicitly 0

» note, this means that condition (3) in theorem holds
automatically if B is not a free vertex

m Initialization
>M = {}, 2,=(1/2) max, w(e)
e note: this satisfies conditions (1) and (2)
m Search for augmenting paths using equality edges
» if (3) becomes true, algorithm halts
» whenever search “stalls”, modify the labels

» when augmenting path found, augment matching and
make unexpanded blossoms unreached

e expand only those blossoms with zz;=0

& Washington University in St.Louis

Engineering

Augmenting Without Expanding

mBlossoms B with zz;>0 are retained following
augmentation, along with their labels
» necessary to maintain condition (3)

mMeans blossoms may be unreached, odd or even

& Washington University in St.Louis

Engineering

mView each vertex as belonging to some (possibly
trivial) blossom in the current shrunken graph
» maintain variable zg for all blossoms B, including those
contained in other blossoms
e z;=0 for each new blossom; blossom expanded only if zz;=0
e 7z values are changed only for outer-most blossoms
» for each vertex u, let B, denote the outermost blossom
containing v in the current graph
e state of u (odd, even, unmatched) is inherited from B,
¢ let mate(B,) be outer blossom at other end of matching edge
incident to B,
» for each blossom B, maintain an edge entry(B) which is
the edge to the parent blossom of B in tree containing B

mNote: for any matched edge not in a blossom

» either both endpoints are unreached, or one is even, while
the other is odd

9

& Washington University in St.Louis

Engineering

Adjusting Labels

mWhenever the search runs out of eligible edges, we
select a value § and adjust labels
» for vertices u
e subtract § from z, if u even, add 3 if v odd
» for outer-most blossoms B
e add 26 to zg if B even, subtract 23 if B odd
mObservations

» for unreached, blossom or tree edges e, z, doesn’t change

e for e contained in a blossom, change to labels for edge
endpoints are balanced by change for blossom

e for e outside any blossom, z, is sum of endpoint labels and
either the changes balance, or neither changes

» for remaining edges, take care to avoid violations of (1)
10

10

& Washington University in St.Louis

Engineering
Choosing 6

mSelect 6 as follows
»let 8;=min {z,|u is even}
d,=min{z,-w(e) | e={u,v}, u even, v unreached}
d;=min{(z,~w(e))/2 | e={u,v}, u, v even and
not in same blossom?}
d,=min{zz/2 | B is a top-level odd blossom}
d :min{éll 62/ 63l 64}

m Observations
» this choice ensures that labels remain non-negative

» label change causes one or more of the following to occur

e algorithm terminates immediately (if 6=9,)
e one or more equality edges are created (if =9, or 95)

o for at least one odd blossom B, zz becomes zero (if §=90,);
this allows B to be expanded

11

11

& Washington University in St.Louis

Engineering

Expanding Odd Blossoms

s When label adjustment makes z;=0 for an odd
blossom B, it is expanded

» for sub-blossoms on path from entry(B) to sub-blossom at
base of B

¢ assign new odd/even status and update entry edge
» other sub-blossoms become unreached, entry undefined
mImplies that a vertex can alternate between odd,
unreached many times during one search
» complicates required data structures

12

12

& Washington University in St.Louis

Engineering

Putting It Together

m [nitialization
»M = {}, z,=(1/2) max, w(e)
m Repeat the following step until z,=0 for all free u

» if there is an equality edge {u,v} with u even, v unreached

e expand tree containing u to include B, and mate(B,), setting
odd/even status and entry edge

» if there is an equality edge with {u,v} with u, v even
e if u, v are in same tree, form new even blossom, set entry

¢ if u, v are in different trees, augment matching and make
blossoms on augmenting path unreached, entry undefined

» if neither of the previous cases apply, adjust labels

e if this makes zz=0 for some odd blossom B, expand B and
update status of sub-blossoms

13

13

& Washington University in St.Louis

Engineering

Running Time Analysis

mDuring one augmenting path search

» <n/2 steps that extend the collection of trees

e add edges at new even vertices to set of eligible edges
»at most <n/2 steps form new blossoms

¢ since new blossoms are always even and are not expanded
»no edge can become an equality edge more than once

e so, # of label adjustments that add equality edges is <m
» steps that expand odd blossoms

e <n/2 since blossoms that become odd were originally formed

before current search
m So, O(m) steps per search, O(mn) altogether
» with no special data structures takes O(mn?) time
» with appropriate data structures can cut to O(mn log n)

14

14

& Washington University in St.Louis

Engineering

About Data Structures

mUse heaps with addtokeys as in bipartite case
mBlossom structure forest

» contains a node for every original vertex, blossom and
sub-blossom in the current graph

» parent of x is inner-most blossom that contains x
» trees implemented using doubly-linked circular lists of
siblings, plus child pointer
m Split-join sets data structure to find B,, given u
» ordered base set with join, split and find operations
»can be implemented using binary search trees
= Group heap

» divides heap into groups that can be active or inactive
e addtokeys affects active groups

15

15

