& Washington University in St.Louis

Engineering

Max Flow Problem
Dinic’s Algorithm

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering
Dinic’s Algorithm

= Shortest augmenting path algorithm often explores
same “dead-ends” multiple times
» can avoid some redundant effort by ignoring edges that cannot
possibly appear in augmenting paths of the “current length”
m Let f be flow function on G and let R be residual graph
» level(u)=number of edges in a shortest path from s to v in R
» only edges (u,v) for which level(v)=level(u)+1 can possibly be
on a shortest augmenting path
= Dinic’s algorithm restricts path search to those edges
(u,v) for which res(u,v)>0 and level(v)=level(u)+1
» this can be done by explicitly constructing a subgraph of R with
only these edges
» or, it can be done by ignoring edges that violate the condition
during path searches R

& Washington University in St.Louis

Engineering

m Dinic's algorithm begins by setting f(u,v) to zero for all
edges in G, computes /evel(u) for all vertices u and
then repeats the following step as long as level(t)<n

» while there is an augmenting path using edges (u,v) with
level(v)=level(u)+1, select such a path and saturate it

» recalculate level(u) for all u

m The subroutine that finds augmenting paths uses
depth-first search and maintains certain information
across searches

» for each vertex u, maintain a pointer
nextedge(u) into adjacency list for u

» when a path search reaches u
always continue search through nextedge(u)

» pointer is advanced past edges used for unsuccessful searches
from u

» nextedge(u) is reset to the start of the adjacency list every time
level is recalculated "

adjacency list

<—nextedge(u)

& Washington University in St.Louis

Engineering

Performance on Hard Cases

m Shortest augmenting path algorithm examines most of
the graph on every search - Q(k>) steps

m For each path length, Dinic does k? path searches,
spending O(k) time per search, so O(k%) altogether
» does not explore entire central subgraph on every search

& Washington University in St.Louis

Engineering
Implementing Dinic’s Algorithm

class dinic : public augPath { // inherits pEdge, augment()
public:
dinic(Flograph&,int&);

~dinic();
private:
int* nextEdge; // ignore edges before nextEdge[u]
int* level; // level[u]=# of edges in path from source
bool findPath(vertex); // find augmenting path
bool newPhase(); // prepare for a new phase

bi
dinic::dinic(Flograph& fgl, int& floval) : augPath(fgl,floval) {
level = new int[fg->n()+1];

nextEdge = new edge[fg->n()+1];

floval = 0;

while (newPhase()) {
while (findPath(fg->src())) floval += augment(); at most m steps
) per phase

& Washington University in St.Louis

bool dinic::newphase() {

// Prepare for new phase.
vertex u,v; edge e;
UiList g(G->n());

for (u 1; u <= fg->n
level[u] fg->n();

}
g.addLast (fg->src());

while (!qg.empty()) {

Engineering

Return true if there is a source/sink path.

()i ut+) {

nextEdge[u] breadth-first search

O(m) time

fg->first(u); {

level[fg->src()] = 0;

u = q.first(); gq.removefirst();
for (e = fg->firstAt(u); e != 0; e = fg->nextAt(u,e)) {
v = fg->mate(u,e);
if (fg->res(u,e) > 0 && level[v] == fg->n()) {
level[v] = level[u] + 1;
if (v == fg->snk()) return true;
g.addLast(v);
}
}

}

return false;

early return prevents

useless exploration of
vertices that are further

from source than sink

1

& Washington University in St.Louis —

// Find a path to sink with positive residual capacity.
while (nextEdge[u] != 0) {
edge e = nextEdge[u];
vertex v = fg->mate(u,e);
if (fg->res(u,e) > 0 && level[v] == level[u] + 1 &&
(v == fg->snk() || findpath(v))) {
pEdge[v] = e; return true;

} N
A [Y
} return path in e
return false; pEdge and
) M Lpdate"—extfdgej

on failure,
LnextEdge=O bIockingJ

depth-first
search
bool dinic::findpath(vertex u) { /éﬁﬁ;z//,—____J

future searches

& Washington University in St.Louis

Engineering

Analysis of Dinic’s Algorithm

m Define a phase of Dinic’s algorithm to be the period
from one calculation of level function to the next

m Theorem 8.4. Dinic’s algorithm executes <n-1 phases
proof sketch. Level(t) increases by =1 after each phase;
since no path is longer than n-1, there can be at most n-1 phases
m Theorem 8.7. Dinic's algorithm spends at most O(mn)
time per phase and finds a max flow in O(mn?2) time
Proof. Time per phase is O(mn) excluding time for path searches.
Let V; be number of edges traced by i-th top level call to findpath
in a phase. Time for all calls to findpath is proportional to =,__,, N,
A nextedge pointer is advanced for every edge traced in i-th top
level call that is not part of path returned by findpath. So pointers
are advanced at least (N,—n) times during the i-th call. Thus,
Zm(N—n) < 2m and £ __,, N;is O(mn)
So, O(mn) time per phase and O(mn?2) time overall B

& Washington University in St.Louis

Engineering

Dinic’s Algorithm on Unit Networks

= In a unit network all edges have capacity one and
every vertex other than s or t has either a single
entering edge or a single outgoing edge

m Theorem 8.5. On unit network, Dinic's algorithm takes
O(m) time/phase and finds max flow in O(mn'/2) time
Proof. Time for i-th top level call to findpath in a phase is
proportional to number of edges N, that are traced

A nextedge pointer is advanced for every edge traced in i-th call
that is not part of the path returned by findpath

So, if k; is length of j-th augmenting path, nextedge pointers are
advanced at least (N;-k;) times during findpath and all k; edges on
path are saturated when flow is added

Consequently, 2, k; <m and =,(N- k;)<s2m, so I,N;< 2m+2k; < 3m and
thus, number of edges examined in all calls to findpath during a
phase is O(m)

& Washington University in St.Louis

Engineering

Now show there are at most 2[(n-2)'/?] phases; suppose the we've
completed k phases, and let f be current flow, f* be a max flow
and R be the residual graph for f£.

The number of remaining phases is at most |f*|-|f|, so the total
number of phases is at most k+|f*|-|f|. We can complete the
analysis by finding an upper bound on this expression.

Note that f*-f is a flow on R, R is a unit network and f*-fis zero
or one on every edge.

We can partition edges on which f*-fis one into a collection of

|f *|-|f| paths from s to t and possibly some cycles.

Since R is unit, any vertex other than s or t can be on at most one
of these paths; hence, there is some augmenting path in R with at
most (n-2)/(|f*|-|f])+1 edges

Since we've completed k phases, the next augmenting path will
have at least k+1 edges, so

k+1 < (n=-2)/(If*|=If]) +1 or |[f*|-|f] = (n-2)/k
Hence, the total number of phases is <k+(n-2)/k, no matter what

value k has. Choosing k=[(n-2)%/2] yields the desired result. m
10

10

& Washington University in St.Louis

Exercises

1. The diagram below shows an intermediate
state in the execution of Dinic’s algorithm. In
the diagram, the numbers by the vertices
represent the value of the level function. The
arcs around each vertex indicate the order of
the edges in the adjacency list, and the
heavy dot on each arc shows the position of
the next edge pointer. So, for example, the
next edge at vertex cis (b,c).

3 2 3
5,3 6,3
2, =) W,
4,0 3.3

44 20 3511

0 %3,0@ \@4/1‘@5
1 1,0
3,2 Zfo.i 41,0

3,2

5,2 2,2
2 5
Which augmenting path is selected next?
scehft

Show the state of the algorithm after flow is
added to the next augmenting path.

Engineering

The new state appears below.

3 2
5,3 6,6
N, ’
OGS -
4,4 2,0 3,3 1,1\ 4,3 '
1 1,0
3,2 2,0 4 10 32
5,2 2,2@/
1 2 5

2. Explain how Dinic’s algorithm can be used
to compute a maximum size matching in a
bipartite graph in O(mn1/2) time.

We have seen earlier how a maximum size
matching for a bipartite graph can be
computed by solving a maximum flow
problem. The flow problem used to solve
the matching problem is a unit network.
Therefore, if we solve it using Dinic’s
algorithm, the running time is O(mn1/2) by
the analysis on pages 9 and 10.

11

11

& Washington University in St.Louis

3. The left-hand diagram below shows a
residual graph R for some flow. The nhumber
next to each vertex is its level value (that is,
the number of edges in a shortest path from
the source). The subgraph shown at right
excludes the edges tat are ignored by Dinic’s
algorithm and is sometimes called the /eve/
graph.

We can view each phase of Dinic’s algorithm
as finding a blocking flow in the level graph.
A flow is called a blocking flow, if every
source-to-sink path contains some saturated
edge. Find a blocking flow with a total value
of 2 in the level graph. Show that this is not
a maximum flow.

Engineering

If we add one unit of flow to the path sact
and one unit of flow to the path sbdt, we get
a blocking flow.

To get a maximum flow, add one unit of flow
to each of the three paths sadt, sbdt and
sbct.

12

12

