& Washington University in St.Louis

Engineering

Max Flow Problem
Dynamic Trees

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering
Speeding Up Dinic’s Algorithm

m Dinic’s algorithm can waste time rediscovering path
segments found previously
» Sleator & Tarjan showed how to maintain information about
path segments with positive residual capacity across successive
calls to findpath
m Partial paths stored in dynamic trees data structure
» represents a collection of trees
» used to represent subgraphs with unused residual capacity
» can largely eliminate retracing of previously discovered paths
» reduces time for each phase to O(m log n)

<S>

& Washington University in St.Louis

Engineering

Dynamic Trees

m Collection of trees on n nodes, each node with a cost
» findroot(v): return root of tree containing vertex v

» findcost(v): return pair [w,x] where x is min cost on tree path
from v to findroot(v) and w is last vertex on path with cost x

» addcost(v,x): add x to cost of every vertex on path from v to
findroot(v)

» link(v,w): combine trees containing vertices v and w by adding
the edge [v,w]; v assumed to be a root

» cut(v): divide tree containing v into two trees by deleting the
edge between v and p(v)
m Can be implemented so that any sequence of m=n
operations takes O(m log n) time

& Washington University in St.Louis

Example Tree Ops

Engineering

cut(k), link(k,m)\
addcost(p,3)

& Washington University in St.Louis

Engineering

Partial Paths and Dynamic Trees

m Dynamic trees can be used to represent partial paths
on which it may be possible to increase flow
»each tree node corresponds to vertex in G
»if v is non-root node, then the edge [v, p(v)] corresponds to an
edge with level(p(v))=Ilevel(v)+1 and positive residual capacity
e cost(v) is defined as residual capacity on [v,p(Vv)]
»if v is a tree root, cost(v) is defined to be huge>x, ,cap(u,v)
»s0, tree path from v to findroot(v) represents a path segment on
which we may be able to add flow
e value returned by findcost(v) is residual capacity of the path
» because ops take average of O(log n) time, can quickly traverse
path segments with positive residual capacity
e findcost allows us to determine residual capacity
e addcost allows us to effectively add flow to path

& Washington University in St.Louis

Engineering

m Algorithm represents flows in two ways
»for edges [u,v] with v=p(u) in dynamic trees, flow on edge is
represented implicitly by cost in the dynamic trees
»for other edges, flows are represented explicitly in flow graph

m At start of a phase, dynamic trees are initialized so that
each vertex forms a one node tree, with a cost of huge

m As paths are explored, perform link operations in trees
» when search reaches t, there is a tree with root t and s as a leaf
»findcost(s) is then used to get residual capacity (A) of the path
»addcost(s,-A) is then used to reduce residual capacity of all

edges on path by A

»then findcost(s) is used repeatedly to find path edges that now
have cost zero; these edges are removed from dynamic trees
data structure and their flows are recorded in f

»whenever search hits a dead-end u, cuts are done at all children
of u in the dynamic trees after saving flow values

& Washington University in St.Louis

Engineering
Example

cap,flow
Yy

4,4

level=0 level=1

cost—>1

& Washington University in St.Louis

Engineering

Dinic’s Algorithm with Dynamic Trees

{class encapsulates]
data and methods

class dinicDtrees {
public: dinicDtrees (Flograph&, intg);

private:
flograph* fg; // graph we're finding flow on
edge* nextEdge; // pointer into adjacency list
int* level ; // level[ul=# of edges in path from source
edge* upEdge; // upEdge[u]=flograph edge for dtrees link from u
dtrees* dt; // dynamic trees data structure

};

same as for
ordinary version of
Dinic’s algorithm

dinicDtrees: :dinicDtrees (Flograph& fgl, int& floVval)
level = new int[fg->n()+1l]; nextEdge = new edge[fg-
upEdge = new edge[fg->n()+1]; dt = new dtrees (fg->n(
for (vertex u = 1; u <= fg->n(); u++) {
dt->addcost (u,BIGINT); level[u] = nextEdge[u] pEdge[u] = 0;

}
while (newphase()) { while (findpath()) floVal += augment(); }
delete [] nextEdge; delete [] upEdge; delete [] level; delete dt;

& Washington University in St.Louis

Engineering

bool dinicDtrees::findpath() { follow tree path from w
vertex u, v; edge e; source to its tree root u
while (nextEdge[fg->src()] '= 0) { <

u = dt->findroot(fg->src()); e = nextEdge[u]; have tree path
while (true) ({ from src to snk
if (u == fg->snk()) return true;
if (e == 0) { nextEdge[u] = 0; break; }
v = fg->mate(u,e);
if (fg->res(u,e) > 0 && level[v] == level[u] + 1

: && nextEdge[v] !'= 0) {
this branch
chosen O(m) dt—>a§dcost(utfg—>res(u,el —.dt—>c(u)); extend path by ’
times per phase| 9t~>1ink(u,v); upEdge[u] = e; linking to next tree

nextEdge[u] = e; g
u = dt->findroot(v); e = nextEdge[u];
} else e = fg->nextAt(u,e);
}

for (e = fg->firstAt(u); e '= 0; e = fg->nextAt(u,e)) {
v = fg->mate(u,e);
if (u !'= dt->p(v) || e !'= upEdge[v]) continue;

dt->cut (v) ; upEdge[v] = 0;
fg->addFlow(v,e, (fg->cap(v,e) -dt->c(v)) - fg->f(v,e));
dt->addcost (v,BIGINT - dt->c(v));

}o} prune tree edges h
return false; leading to dead-ends
} transfer flow to flograph) 4

rewrite to update nextEdge on each iteration. Use explicit loop test.

& Washington University in St.Louis

Engineering

void dinicDtrees: :augment() { “‘ﬁ{(VEWeX/COSO PaW]
vertex u; edge e; cpair p; N N -
p = dt->findcost (Eg->src()) ;gf'”‘j redS(;della| ctapaattr;]/
dt->addcost (fg->src() ,-p.c) ; i & OWAtOIPS /

for (p=dt->findcost(fg->src()); p.c == 0; p=dt->findcost(fg->src()))
u = p.s; e = upEdge[u];
fg->addFlow(u,e, fg->cap(u,e) - fg->f(u,e));

dt->cut (u) ; dt->addcost(u,BIGINT) ; ‘
upEdge[u] = 0; prune tree edges

with zero cost)
time dominated
by tree ops

{

10

10

& Washington University in St.Louis

Engineering

int dinicDtrees: :newphase() { reset nextEdge to fl
vertex u, v; edge e; start of adjacency list ___move tow
= =t ! information from
list q(fg->n())

for (u=1; u <= £g->n(); uté) dtrees to flograph,

and clear dtrees
nextEdge [u] = fg->first(u)?
if (dt->p(u) '= 0) { // cleanup from previous ph
e = upEdge[u];

fg->addFlow (u,e, (fg->cap(u,e) -dt->c(u)) - fg->f(u,e));
dt->cut (u) ; dt->addcost (u,BIGINT - dt->c(u));

upEdge [u] = 0; initialize level before new
} values computed |
level[u] = f£g->n()

’

} v
q.addLast(fg->src()); level[fg->src(bfe?qth ﬂrStsearChtow
while ('q.empty()) { initialize level values |

u = q.first(); gq.removeFirst();
for (e = fg->firstAt(u); e !'= 0; e = fg->nextAt(u,e)) {
v = fg->mate(u,e);
if (fg->res(u,e) > 0 && level[v] == fg->n()) {
level[v] = level[u] + 1; g.addLast(v);
if (v == fg->snk()) return level[v];

Yooy) O(m+n) time
return 0;

excluding tree ops
} O(n) tree ops

11

& Washington University in St.Louis

Engineering

Analysis of Dinic with Dynamic Trees

= Running time per phase is O(m+#of tree ops) if we
count each tree op as taking constant time
m Number of tree ops per phase: O(# of links+# of cuts)

» for each edge (u,v), there is at most one link per phase and one
cut per phase

» thus, O(m) tree ops per phase

= The dynamic tree operations can be implemented so
that m operations take O(m log n) time

m Theorem 8.10. Dinic’s algorithm with dynamic trees
completes each phase in O(m log n) time and finds a
max flow in O(mn log n) time

12

12

& Washington University in St.Louis

Exercises

1. The diagram below shows a collection
of trees in a dynamic trees data
structure.

Engineering

Show the new collection results after
the following operations are performed.
Addcost(f,3), cut(v), cut(e), link(v,m),

link(s,f), addcost(p,2).

@7 ©2

What value is returned if we now
perform findcost(x)?

[z,3]

)3

13

13

& Washington University in St.Louis

Engineering
2.The diagram at right shows an cap,fiow nextEdge
intermediate state in the execution 11 G 2

of Dinic’s algorithm with dynamic
trees. The heavy edges are edges in 1@4,- 2,2
the tree and the number next to

24
7

each vertex represents its cost 6,0, 3.0
(those with no cost shown have cost 4,0 @ 2
“huge”). A dot on an edge indicates 2

the position of a nextedge pointer.

If a findpath operation is performed
on this flowgraph, what is the
structure of the set of trees after
the findpath returns. Assume that
nextedge pointers start at the “12-
oclock” position and move
clockwise. 6

What is the resulting augmenting
path, and which tree edges are
removed after flow is added to the
path?

The augmenting path is sbcfgt and
the tree edges bc and fg get
removed after flow is added to the
path.

14

& Washington University in St.Louis

Engineering

3.The diagram below is a bad
case for the shortest
augmenting path algorithm.

If we apply Dinic’s algorithm
with dynamic trees to this
graph, show which edges
are in the set of trees after
the first augmenting path

is found?

The edges in the dynamic
trees are shown in bold at
bottom right

How does the dynamic tree
structure change after the
second augmenting path is
found?

The edge in the central
bipartite graph drops out,
and the next edge at the
same vertex is added to the
tree, along with the edge
from its other endpoint to the first vertex in the lower right chain.
In general, just a few edges change in each step within a phase.

15

15

