

Minimum Spanning Trees and *d*-Heaps

Jon Turner Computer Science & Engineering Washington University

www.arl.wustl.edu/~jst

Engineering

Minimum Spanning Trees

- A spanning tree of an undirected graph G=(V,E) is a tree T=(V,E'), for which $E'\subseteq E$
- In a graph in which edges have *costs* the *minimum* spanning tree problem is to find a spanning tree T=(V,E') for which $\Sigma_{e\in E'}$ cost(e) is as small as possible
- Variety of direct applications; often appears as a subproblem in other optimization problems

The Greedy Method

- A cut in G=(V,E) is a division of V into two parts X, X' » an edge crosses cut if one endpoint is in X and other is in X'
- The *greedy method* for solving the minimum spanning tree problem is a general algorithmic pattern
 - » at each step it colors an edge either blue (accepted) or red (rejected); when all edges are colored, the blue edges form a minimum spanning tree
 - » coloring rules
 - Blue rule. Select a cut with no blue edges, but at least one uncolored edge; select a minimum cost uncolored edges crossing the cut and color it blue
 - Red rule. Select a simple cycle with no red edges and at least one uncolored edge; select a maximum cost uncolored edge on the cycle and color it red

Correctness of Greedy Method

- Greedy method maintains color invariant*there is an MST containing all the blue edges and no red ones
- Theorem 6.1 (Tarjan). Greedy method colors all edges of a connected graph and maintains color invariant *Proof.* Suppose invariant is true before a "blue step"
 - »let $e=\{x,y\}$ be selected edge, let T=(V,F) be an MST containing all blue edges (and no red ones) before the step
 - »if $e \in F$, T contains all blue edges (and no red ones) after the step
 - »if $e \notin F$, there is some other edge e' on simple path from x to y in T that is also in the cut selected by the blue rule (e' is not blue)
 - $T'=(V,F \cup \{e\} \{e'\})$ is a spanning tree
 - since e' is not blue and $cost(e) \le cost(e')$, T' is an MST and T' contains all the blue edges (and no red ones) after the step

Engineering

- Suppose invariant is true before a "red step"
- »let $e=\{x,y\}$ be selected edge and let T=(V,F) be an MST that contains no red edges (and all blue edges) before the step
 - »if $e \notin F$ then T contains no red edges (and all blue) after step
- »if $e \in F$, then removing e from T splits T into subtrees T_1 and T_2
 - there is some edge e' that is not in T, on the cycle selected by the red rule that joins a vertex in T_1 to a vertex in T_2 (e' is not red)
 - $T'=(V,F \cup \{e'\} \{e\})$ is a spanning tree.
 - Since $cost(e) \ge cost(e')$, T' is an MST. T' contains no red edges (and all blue) after the step
- To see that all edges are colored, suppose that at some point $e=\{u,v\}$ remains uncolored.
 - »if u and v are connected by a blue path then that path plus e forms a cycle that the red rule can be applied to
 - »if u and v are not connected by a blue path, then there is a cut crossed by e that the blue rule can be applied to ■

Engineering

Prim's Algorithm

- Build single blue tree, from an arbitrary starting vertex by repeating following step *n*−1 times
 - » select a minimum cost edge incident to the blue tree containing the starting vertex and color it blue
- The algorithm can also be expressed as follows. procedure minspantree(graph G, set Tedges);

The Heap Data Structure

- A heap is a data structure consisting of a collection of items, each having a key; the basic operations are:
 - insert(i,k,h) add item i to heap h using k as the key value
 - » deletemin(h) delete and return a minimum key item in h
 - » changekey(i,k,h) change the key of item <math>i in heap h to k
 - » key(i,h) return the key value for item i
- The *d*-heap is one implementation of the heap data structure that has an integer parameter *d*
 - » running time of $O(\log_d n)$ for *insert* and for *changekey* operations that decrease the key value
 - » running time of $O(d \log_d n)$ for deletemin and for changekey operations that increase the key value
 - » can choose value of d to optimize algorithm performance

```
Washington University in St.Louis
                                                                Engineering
Prim's Algorithm Using a Heap
procedure minspantree(graph G, set Tedges);
                                                                  Note that heap
    vertex u,v; set tree vertices;
                                                                  stores vertices,
    heap S; mapping cheap: vertex \rightarrow edge;
                                                                     not edges
    Tvertices := {1}; tree_edges := {};
    for \{1,v\} \in \text{edges}(1) \Rightarrow \text{insert}(v,cost(1,v),S); cheap(v) := \{1,v\} \text{ rof};
    do S \neq \{\} \Rightarrow
        u := deletemin(S);
        Tvertices := Tvertices \cup \{u\}; Tedges := Tedges \cup \{cheap(u)\};
        for \{u,v\} \in edges(u) \Rightarrow
                                                                        every edge
            if v \in S and cost(u,v) < key(v) \Rightarrow
                                                                      examined twice
               changekey(v,cost(u,v),S); cheap(v) := \{u,v\};
            | v \notin S and v \notin Tvertices \Rightarrow
               insert(v,cost(u,v),S); cheap(v) := \{u,v\}
                                                                    every changkey
           fi;
                                                                   reduces key value
        rof;
                each vertex
    od;
                inserted once
end:
```

Engineering

Analysis of Prim's Algorithm

- Assume that Tvertices is implemented as a bit vector and Tedges as a list
- Non-heap operations within main **do**-loop but outside **for**-loop use constant time per iteration
- ■The **do**-loop is executed exactly *n* times
- ■The for-loop is executed 2m times
- Heap operation counts
 at most n deletemins, n inserts, m changekeys
 changekey operations all decrease the key value
- Choosing $d = \lfloor 2 + m/n \rfloor$ gives $O\left(m \frac{\log n}{\log(2 + m/n)}\right)$

C++ Version

Washington University in St. Louis

```
// Find min spanning tree of graf and return it in mst
void prim(Wgraph& graf, Wgraph& mst) {
   vertex u,v; edge e;
   edge *cheap = new edge[graf.n()+1];
   Dheap nodeHeap(graf.n(),2+graf.m()/graf.n());
   for (e = graf.firstAt(1); e != 0; e = graf.nextAt(1,e)) {
       u = graf.mate(1,e); nodeHeap.insert(u,graf.weight(e));
       cheap[u] = e;
   while (!nodeHeap.empty()) {
       u = nodeHeap.deletemin();
       e = mst.join(graf.left(cheap[u]),graf.right(cheap[u]));
       mst.setWeight(e,graf.weight(cheap[u]));
       for (e = graf.firstAt(u); e != 0; e = graf.nextAt(u,e)) {
           v = graf.mate(u,e);
           if (nodeHeap.member(v) && graf.weight(e) < nodeHeap.key(v)) {</pre>
               nodeHeap.changekey(v, graf. weight(e)); cheap[v] = e;
           } else if (!nodeHeap.member(v) && mst.firstAt(v) == 0) {
               nodeHeap.insert(v, graf.w(e)); cheap[v] = e;
      }
   delete [] cheap;
```

Engineering

d-Heaps

- Heaps can be implemented efficiently, item → d 4 ← key using heap-ordered tree **b** 7
 - » each tree node contains one item with a real-valued key
 - » key of each node ≥key of its parent
- A d-heap is heap-shaped, heap-ordered d-ary tree
 - » let T be an infinite d-ary tree, with vertices numbered in breadth-first order
 - » a subtree of T is heap-shaped if its vertices have consecutive numbers 1,2,...,n
- The depth of a *d*-heap with *n* vertices is $\leq \lceil \log_d n \rceil$

i10

Implementing d-Heaps as Arrays

D-heap can be stored in an array in breadth-first order
 allows indices for parents and children to be calculated directly, eliminating the need for pointers

- If *i* is index of item *x*, then $\lceil (i-1)/d \rceil$ is index of p(x); indices of children of *x* are in range $\lfloor d(i-1)+2 \ldots di+1 \rfloor$
- When key of item is decreased, restore heap-order, by repeatedly swapping the item with its parent
 - » similarly, for increasing an item's key

```
Washington University in St.Louis
                                                       Engineering
d-Heap Operations
   item function findmin(heap h);
                                                          insert i at
     return if h=\{\} \Rightarrow \text{null} \mid h \neq \{\} \Rightarrow h(1) \text{ fi};
                                                         position x or
                                                             above
   end;
   procedure siftup(item i, integer x, modifies heap h);
     integer p;
     p := [(x-1)/d];
     do p\neq 0 and key(h(p)) > key(i) \Rightarrow
        h(x):=h(p); x:=p; p:=\lceil (p-1)/d \rceil;
                                                         iteration per
     od;
                                                         level in heap
     h(x) := i;
   end;
   procedure insert(item i; modifies heap h);
     siftup(i,|h|+1,h);
   end;
```

```
Washington University in St. Louis
                                                                Engineering
    procedure siftdown(item i, integer x, modifies heap h);
      integer c;
                                                    insert i at position
      c := minchild(x,h);
                                                         x or below
      do c \neq 0 and key(h(c)) \leq key(i) \Rightarrow
          h(x) := h(c); x := c; c := minchild(x,h);
      od;
                                                   at most one iteration
      h(x) := i;
                                                      per level in heap
    end;
    integer function minchild(integer x, heap h);
      integer i, minc;
      minc := d(x-1) + 2;
                                        at most d
      if minc > |h| \Rightarrow return 0 fi;
                                         iterations
      i := minc + 1;
      do i \le \min\{|h|, dx+1\} \Rightarrow
          if key(h(i)) < key(h(minc)) \Rightarrow minc := i fi;
          i := i + 1;
      od;
      return minc;
    end:
```

```
Washington University in St.Louis
                                                                     Engineering
                                                                  h^{-1} implemented
   procedure delete(item i, modifies heap h);
                                                                   using auxiliary
      item j; j := h(|h|); h(|h|) := null;
                                                                "position-of array"
      if i \neq j and key(j) \leq key(i) \Rightarrow siftup(j,h^{-1}(i),h);
       |i \neq j \text{ and } key(j) > key(i) \Rightarrow siftdown(j,h^{-1}(i),h);
      fi;
   end;
   item function deletemin(modifies heap h);
      if h = \{\} \Rightarrow \text{return null}; fi;
      i := h(1); delete(h(1),h);
      return i;
   end:
   procedure changekey(item i, keytype k, modified heap h);
      item ki; ki := key(i); key(i) := k;
      if k < ki \Rightarrow siftup(i, h^{-1}(i), h);
       | k > ki \Rightarrow siftdown(j,h^{-1}(i),h);
      fi:
   end;
```

Engineering

Analysis of d-Heap Operations

heap function makeheap(set of item s); integer j; heap h; $h := \{\};$ for $i \in s \Rightarrow j := |h|+1$; h(j) = i; rof; $j = \lceil (|h|-1)/d \rceil;$ do $j > 0 \Rightarrow$ siftdown(h(j),j,h); j = j-1; od; return h; end;

- Each execution of *siftup* (and hence *insert*) takes $O(\log_d n)$ time, while each execution of *siftdown* takes $O(d \log_d n)$ time
- Time for changekey depends on whether keys increase or decrease
 - » if keys always decrease, can make changekey faster using a large d
- The running time for makeheap is O(f) where

which is O(n) $f(n) = \frac{n}{d}d + \frac{n}{d^2}2d + \frac{n}{d^3}3d + \cdots$

Construct an example of a 2-heap on 15 items for which a deletemin operation requires the largest amount of time possible. Construct an example of a 2-heap on 15 items for which a sequence of 15 deletemin operations requires the maximum amount of time possible.

The 2-heap shown below satisfies both parts of the question.

Engineering

3. The correctness of any data structure operation depends on its maintaining certain essential invariants of the data structure. The data portion of the class declaration for the C++ implementation of the d-heap data structure is shown below. What invariants must be maintained by programs that operate on it? List as many as you can think of.

```
// max # of items in heap
int
        N;
              // # of items in heap
int
               // base of heap
int
       *h; // {h[i]} is set of items
        *pos; // position of item
keytyp *kvec; //key of item i
...};
d>1
0≤n≤N
for 1 \le i \le n, 1 \le h[i] \le n
for 1 \le i \le n, 1 \le pos[i] \le n
for 2 \le i \le n, kvec[h[\lfloor i/d \rfloor]] \le kvec[h[i]]
for 1 \le i \le n, pos[h[i]] = i
for 1 \le i < j \le n, h[i] \ne h[j], pos[i] \ne pos[j]
```

class dheap {

