& Washington University in St.Louis

Engineering

Minimum Spanning Trees
and d-Heaps

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering

Minimum Spanning Trees

m A spanning tree of an undirected graph G=(V,E) is a
tree T=(V,E"), for which E'CE

mIn a graph in which edges have costs the minimum
spanning tree problem is to find a spanning tree
T=(V,E") for which 2. cost(e) is as small as possible

m Variety of direct applications; often appears as a sub-
problem in other optimization problems

& Washington University in St.Louis

Engineering

The Greedy Method

m A cut in G=(V,E) is a division of V into two parts X, X’
» an edge crosses cut if one endpoint is in X and other is in X’

m The greedy method for solving the minimum spanning
tree problem is a general algorithmic pattern
» at each step it colors an edge either blue (accepted) or red
(rejected); when all edges are colored, the blue edges form a
minimum spanning tree
» coloring rules

e Blue rule. Select a cut with no blue edges, but at least one
uncolored edge; select a minimum cost uncolored edges crossing
the cut and color it blue

e Red rule. Select a simple cycle with no red edges and at least one
uncolored edge; select a maximum cost uncolored edge on the
cycle and color it red

& Washington University in St.Louis

Engineering

Correctness of Greedy Method

= Greedy method maintains color invariant
»there is an MST containing all the blue edges and no red ones

m Theorem 6.1 (Tarjan). Greedy method colors all edges
of a connected graph and maintains color invariant

Proof. Suppose invariant is true before a “blue step”
»let e={x,y} be selected edge, let T=(V,F) be an MST containing
all blue edges (and no red ones) before the step
»if eeF, T contains all blue edges (and no red ones) after the step
»if e&F, there is some other edge e’ on simple path from x to y in
T that is also in the cut selected by the blue rule (e’ is not blue)
e T'=(V,FU {e} -{e'}) is a spanning tree
e since e’ is not blue and cost(e)=cost(e”), T"is an MST and T’ contains
all the blue edges (and no red ones) after the step

& Washington University in St.Louis

Engineering

m Suppose invariant is true before a “red step”
»let e={x,y} be selected edge and let T=(V,F) be an MST that
contains no red edges (and all blue edges) before the step
»if e¢F then T contains no red edges (and all blue) after step
»if eEF, then removing e from T splits T into subtrees T, and T,

e there is some edge €' that is not in T, on the cycle selected by the
red rule that joins a vertex in T; to a vertex in T, (e’ is not red)

e T'=(V,FU {e'} -{e}) is a spanning tree.
e Since cost(e)=cost(e'), T is an MST. T’ contains no red edges (and all
blue) after the step
mTo see that all edges are colored, suppose that at some
point e={u,v} remains uncolored.
»if u and v are connected by a blue path then that path plus e
forms a cycle that the red rule can be applied to
»if u and v are not connected by a blue path, then there is a cut
crossed by e that the blue rule can be appliedto ®

& Washington University in St.Louis S

Prim’s Algorithm

= Build single blue tree, from an arbitrary starting vertex
by repeating following step n-1 times
» select a minimum cost edge incident to the blue tree containing
the starting vertex and color it blue
m The algorithm can also be expressed as follows.
procedure minspantree(graph G, set Tedges);
vertex w,u,v; set S, Tvertices;

Tvertices := {1}; Tedges := {}; S:=neighbors(1); m etr;]i%dtgazzl -
do S={} = min cost edge

select min cost edge {w,u} from w&Tvertices to ueS
Tvertices:=TverticesU{u}; Tedges:=TedgesU{w,u};
S:=S-{u};
for {u,v}€ edges(u)= if vé&Tvertices = S := S U {v} fi rof;
od; // edges not added to tree_edges are implicitly colored red
end; :

& Washington University in St.Louis

Engineering

The Heap Data Structure

m A heap is a data structure consisting of a collection of
items, each having a key; the basic operations are:
» insert(i,k,h) — add item j to heap h using k as the key value
» deletemin(h) - delete and return a minimum key item in h
» changekey(i,k,h) — change the key of item /i in heap h to k
» key(i,h) — return the key value for item j

m The d-heap is one implementation of the heap data
structure that has an integer parameter d

» running time of O(log,n) for insert and for changekey operations
that decrease the key value

» running time of O(d log,n) for deletemin and for changekey
operations that increase the key value

» can choose value of d to optimize algorithm performance

& Washington University in St.Louis

Engineering

Prim’s Algorithm Using a Heap

procedure minspantree(graph G, set Tedges);
vertex u,v; set tree_vertices; Note that heap
I . . stores vertices,

heap S; mapping cheap: vertex — edge; not edges
Tvertices := {1}; tree_edges := {};
for {1,v} € edges(1) = insert(v,cost(1,v),S); cheap(v) := {1,v} rof;
do S={} =

u := deletemin(S);

Tvertices = Tvertices U {u}; Tedges := Tedges U {cheap(u)};

for {u,v} € edges(u) = <|\ every edge
if v&S and cost(u,v)<key(v) = examined twice

changekey(v,cost(u,v),S); cheap(v) := {u,v};
| V&S and véETvertices =
insert(v,cost(u,v),S); cheap(v) := {u,v}

. every changkey
fi; reduces key value

rof;
od: each vertex

inserted once

end;

& Washington University in St.Louis

Engineering

Analysis of Prim’s Algorithm

mAssume that Tvertices is implemented as a bit
vector and Tedges as a list

mNon-heap operations within main do-loop but
outside for-loop use constant time per iteration
m The do-loop is executed exactly n times
m The for-loop is executed 2m times
m Heap operation counts
»at most n deletemins, n inserts, m changekeys
» changekey operations all decrease the key value

m Choosing d = |2+m/n] gives O| m logn
log(2 + m/n)

& Washington University in St.Louis

Engineering

C++ Version

// Find min spanning tree of graf and return it in mst
void prim(Wgraph& graf, Wgraph& mst) {

vertex u,v; edge e;

edge *cheap = new edge[graf.n()+1];

Dheap nodeHeap (graf.n() ,2+graf.m()/graf.n());

for (e = graf.firstAt(l); e !'= 0; e = graf.nextAt(l,e)) {
u = graf.mate(l,e); nodeHeap.insert(u,graf.weight(e));
cheap[u] = e;

}
while (!'nodeHeap.empty()) {
u = nodeHeap.deletemin() ;
e = mst.join(graf.left(cheap[u]), graf.right(cheap[u]))
mst.setWeight (e,graf.weight (cheap([u])) ;
for (e = graf.firstAt(u); e '= 0; e = graf.nextAt(u,e)) {
v = graf.mate(u,e);
if (nodeHeap.member (v) && graf.weight(e) < nodeHeap.key(v))

nodeHeap.changekey (v, graf. weight(e)); cheap[v] = e;
} else if (!'nodeHeap.member (v) && mst.firstAt(v) == 0) {
nodeHeap.insert (v, graf.w(e)); cheap[v] = e;

} } }
delete [] cheap;

{

10

10

& Washington University in St.Louis

Engineering

d-Heaps

= Heaps can be implemented efficiently, " >(@d ke
using heap-ordered tree

» each tree node contains one item
with a real-valued key

» key of each node >key of its parent 5 6 8 1511 12 13

m A d-heap is heap-shaped, heap-ordered
d-ary tree
»let T be an infinite d-ary tree, with vertices
numbered in breadth-first order

» a subtree of T is heap-shaped if its vertices
have consecutive numbers 1,2,...,n

m The depth of a d-heap with n vertices is <[log,n]

11

11

& Washington University in St.Louis

Engineering
Implementing d-Heaps as Arrays

m D-heap can be stored in an array in breadth-first order

» allows indices for parents and children to be calculated directly,
eliminating the need for pointers

1234567891011
nlalnlp]i]ilalklgle]r]c]

ab cde fgh i jk
key |6]7[13]4]11]12]15] 4]10] 5] 8]

5 6 8 15 11 12 13

m If / is index of item x, then [(i-1)/d] is index of p(x);
indices of children of x are in range [d(i-1)+2 .. di+1]
m When key of item is decreased, restore heap-order, by

repeatedly swapping the item with its parent
» similarly, for increasing an item’s key

12

12

& Washington University in St.Louis

Engineering

d-Heap Operations

item function findmin(heap h);
return if h={} = null | h = {} = h(1) fi;
end;

insert / at
position x or
above

procedure siftup(item /, integer x, modifies heap h);
integer p;
p = [(x-1)/d];
do p=0 and key(h(p)) > key(i) =
h(x):=h(p); x:=p; p:=[(p-1)/d] ; at most one

od; iteration per
h(x) :=1i; level in heap
end;

procedure insert(item /; modifies heap h);
siftup(/,|h| + 1,h);
end;

13

13

& Washington University in St.Louis

Engineering

procedure siftdown(item /, integer x, modifies heap h);
integer c; nsert 7 at it
¢ = minchic(c) Ty
do ¢ = 0 and key(h(c)) < key(i) =
h(x) := h(c); x := ¢; ¢ := minchild(x,h);

od;
h(x) :=i; at most one iteration
end; per level in heap

integer function minchild(integer x, heap h);
integer i, minc;
minc := d(x=1) + 2;
if minc > |h| = return O fi;
i = minc + 1;
do i < min {|h|,dx+1} =
if key(h(i)) < key(h(minc)) = minc := i fi;
i=i+1;
od;
return minc;
end;

at most d
iterations

14

14

& Washington University in St.Louis

Engineering

h~t implemented
using auxiliary
“position-of array”

procedure delete(item i, modifies heap h);
item j; j:= h(|h[); h(|h]) := null;

,}

if i =jand key(j) < key(i) = siftup(j,h‘1 i),h);

| i = j and key(j) > key(i) = siftdown(j,h‘1(i),h);
fi;
end;

item function deletemin(modifies heap h);
item /;
if h = {} = return null; fi;
i :=h(1); delete(h(1),h);
return j;
end;

procedure changekey(item j, keytype k, modified heap h);
item ki; ki:= key(i); key(i) := k;
if k< ki = siftup(i,h'(/),h);
| k > ki = siftdown(j,h™(i),h);
fi;
end;

15

15

& Washington University in St.Louis

Engineering

Analysis of d-Heap Operations

heap function makeheap(set of item s);
integer j; heap h;
h:={}
for ies = j := |h|+1; h(j) = i; rof;
J=T1(h=1)d];
do j>0 = siftdown(h(j),j,h); j = j-1; od;
return h;
end;
m Each execution of siftup (and hence insert) takes O(log,n) time,
while each execution of siftdown takes O(d log,n) time
m Time for changekey depends on whether keys increase or
decrease
» if keys always decrease, can make changekey faster using a large d

m The running time for makeheap is O(f) where

fn)=Ld+=2d+23d+-
which is O(n) d d d

16

16

& Washington University in St.Louis

Engineering

E 1 Show the heap contents after inserting new
XerCISeS items i, j, k, | and m with keys 3, 6 ,1, 2,
9. Show the heap state both in picture form

and in array form, as above.
1. The figure below shows a 3-heap.

@)2

B} (4 ©3

@©®@ @

7 8 105 8 4 6

12345678 910111213 123456789
hldlolnlclelflgfal | [[|] hik[plild]e[f[glaln]j]c]/]m]

abcdefghijkIm abcde fghi jk I m
key |5|6(3[2|7|8|10 4 key |5|6(3]2|7|8[104[3]|6[1]|2]|9
pos|8|2(4|1|5|6|7|3 pos |8|2|11{4|5[|6(| 79310/ 1|12|13

Delete items d and k and show the array
contents after these operations.

17

& Washington University in St.Louis

2. Construct an example of a 2-heap on 15
items for which a deletemin operation
requires the largest amount of time possible.
Construct an example of a 2-heap on 15
items for which a sequence of 15 deletemin
operations requires the maximum amount of
time possible.

The 2-heap shown below satisfies both parts
of the question.

Engineering

3. The correctness of any data structure

operation depends on its maintaining certain
essential invariants of the data structure. The
data portion of the class declaration for the C
++ implementation of the d-heap data
structure is shown below. What invariants
must be maintained by programs that operate
on it? List as many as you can think of.

class dheap {

int N; // max # of items in heap
int ni // # of items in heap
int d; // base of heap

item *h; // {h[i]} is set of items
int *pos; // position of item
keytyp *kvec; //key of item i

R

d>1

0=nsN

for 1<isn, 1<h[ilsn

for 1<isn, 1spos[ilsn

for 2sisn, kvecl[h[|i/d|]]skvec[h[i]]
for 1sisn, pos[h[i]]=i

for 1<i<jsn, h[il=h[j], pos[il=pos[j]

18

18

& Washington University in St.Louis

4. The figure below shows an intermediate state
in the execution of Prim’s algorithm. The
heap and the cheap mapping are shown
below (d=2).

abcdefghi jk

cheap |biacidi| |fj| |hjcildjlik
hs W7

® 15

Engineering

Show the state after four more steps have
been performed.

abcdefyg

h i j k
cheap | _lphlac|dileg|fi [fg | hilcildj]jK]

19

19

