& Washington University in St.Louis

Engineering

Binary Search Trees

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering
Sorted Sets

m Data structure for a collection of items each having
a distinct key and belonging to one of several sets
» sets are identified by one of their items; initially, each
item belongs to a singleton set
m Operations
setkey(i,k): initialize key of item / to k; i must be a singleton
access(k,s): return the item in set s having key k
insert(i,s): insert item / into s; i must be a singleton
delete(i,s): remove item j from s; i becomes a singleton
join(s4,i,s,) return set formed by combining s,, i and s,; all
items in s; must have keys <key(i) and all items in s,
must have keys >key(i); operation destroys s; and s,
split(i,s); split set s containing / into three sets: s
containing items with keys <key(i), {i} and s, containing
items with keys >key(i); return pair [s4,S,]

2

& Washington University in St.Louis

Engineering

Sorted Sets and Binary Search Trees

insert(x,a)

m Symmetric ordering - items arranged in trees so that
for every node v
» keys of nodes in v’s left subtree are smaller than key(v)
» keys of nodes in v’'s right subtree are larger than key(v)

= To insert new key value, search for key and insert at
place where search “falls out” of tree

& Washington University in St.Louis

Engineering

item function access(keytype k, sorted set s);
do s = null and k<key(s) = s:=left(s)
| s = nulland k>key(s) = s:=right(s)

od;

return s if any node in tree has
end; key k, then subtree
procedure insert(item /, sorted set s); rooted at s does

item x; x:=s;
if s = null = returnj fi;
do key(i)<key(x) and left(x) = null = x:=/eft(x)
| key(i)>key(x) and right(x) = null = x:=right(x)

od;

if key(i)=key(x) = return null;

| key(i)<key(x) = left(x):=i; proper insertion

| key(i)>key(x) = right(x):=i; location for i is in
fi; subtree with root x
p(i) 1= x;

end; 4

& Washington University in St.Louis

Engineering

procedure delete(item /, sorted set s);
item j;
if left(/) = null and right(i) = null =
Jj = left(i);
do right(j) = null = j := right(j) od;
swapplaces(i,j);
fi: i has <2 children]
if left(i) = null = left(i) < right(i) fi;
p(left(i)) := p(i);
if i = left(p(i)) = left(p(i)) := left(i)
| i = right(p(i)) = right(p()) := left(i)
fi;
left(i),right(i),p(i) := null;
return s
end;

find node j with
next smaller ke

& Washington University in St.Louis

Engineering
sset function join(sset s;, item /, sorted set s,);
left(i) 1= sy; right(i) := s,; (M
p(s1), p(s,) = 1; 5 ©
return J/;
end: JANWA
[sset, sset] function split(item /, sorted set s
sset X,54,S,;
X 1= p(); S$1,S, := left(i),right(i);
leftchild := (i = left(x))
do x = null =
if leftchild = S, = join(s,,X,right(x))
| not leftchild = s, := join(left(x),x,s;)
fi;
leftchild := (x = left(p(x)); x := p(x)
od;
left(i),right(i),p(i) := null;

p(sl)/p(sz) = nu"; leftchild=
return [s;, s,]; BEEAaS e —> 8
58

S, (s,) includes all
nodes at or below y

that belong in left
(right) tree after split

& Washington University in St.Louis

Engineering

Analysis of Binary Search Trees

m Access takes time proportional to depth of item
m Insert takes time proportional to depth of item after
insertion

m Delete takes time proportional to depth of deleted item
if it has a null child, and time proportional to depth of
its symmetric order predecessor if it has no null child

m Join take constant time

m Split takes time proportional to depth of item on which
the split is taking place

m Depth of BST on n nodes can be n-1 in worst case, so
most operations have worst-case running time Q(n)
» can improve to O(log n) by balancing subtrees

& Washington University in St.Louis

Engineering

Balanced Binary Trees

m A balanced binary tree (BBT) is a
full binary tree with each node
X having integer rank(x)
that satisfies following:

» if x is a node with a parent,
rank(x)srank(p(x))srank(x)+1

» if x is a node with a grand-
parent, rank(x)<rank(p(p(x)))

» if x is an external node, rank(x)=0;
if x also has a parent, rank(p(x))=1
m Also called red-black trees

» red nodes have same rank as parents, black nodes have
different ranks

» sufficient to store 1 bit of balance information

external nodes not shown

& Washington University in St.Louis

Engineering

Depth of Balanced Binary Trees

mLlemma 4.1. A node of rank k in a balanced binary tree
has height at most 2k and at least 2k*1-1 descendants;
therefore, a balanced binary tree with n internal nodes
has depth at most 2 Ig(n+1)

Proof. The proof of first part is by induction on k

» basis (k=0) is obvious since by definition of ranks, any node of rank 0,
must be external, hence its height is 0 and it has 1 descendant

» assume lemma is true for rank k, and let x have rank k+1

¢ by definition of ranks and induction hypothesis, the grandchildren of
x have height at most 2k, so x can have height at most 2(k+1)

e similarly, its two subtrees must contain at least 2k*1-1 nodes, so x
has a total of at least 2(2k+1-1)+1=2k+2-1 descendants

by the first part of the lemma, the rank of the root is at most
Ig(n+1) and the height of the root is at most twice its rank

= Lemma implies access time in a BBT is O(log n)

& Washington University in St.Louis

Engineering

Rotation Operations

single rotation
rotate taller

subtree up to
reduce height
dlscrepancy

double rotations

9 outer Q inner
(v A A (V)
QW A 2 A A
A A A

10

& Washington University in St.Louis

Engineering

Convenience Notations/Operations

m Special notations
»p*(x) = p(p(x))
» sib(x) - sibling of x
» uncle(x) — child of grandparent that is not parent
» nephew(x) - far child of sibling
» niece(x) - near child of sibling
» outer(x) - true if x is leftmost or rightmost grandchild
e inner(x) — not outer(x)
m Operations
» rotate(x) - rotates x up to parent’s position

» rotate?(x) - rotates x up to grandparent’s position
e equivalent to two rotations

11

11

& Washington University in St.Louis

Insertion in BBTs

Engineering

12

& Washington University in St.Louis

Engineering

Rebalancing After Insert/Delete

In case of insertion, let x be inserted node

do p2(x) = null and rank(x) = rank(p?(x)) =
if rank(p(x)) = rank(uncle(x)) =
X 1= p3(x); rank(x) := rank(x) + 1;
| rank(p(x)) = rank(uncle(x)) =
if outer(x) = x := rotate(p(x)); done
f_| inner(x) = x := rotate?(x); done
fi; I
od;

13

13

& Washington University in St.Louis ——

In case of deletion, let x be root of
the subtree that moved up (if any)

do p(x) = null and rank(p(x))=rank(x)+2 =
r := rank(x)
if rank(sib(x)) = r+1 =
if rank(nephew(x)) = rank(niece(x)) = r =
X 1= p(x); rank(x) := r+1;
| rank(nephew(x)) = r+1 =
rotate(sib(x)); rank(p(x)) = r+1; rank(p?(x))=r+2; done
| rank(niece(x)) = r+1 > rank(nephew(x)) =
rotate?(niece(x)); rank(p(x))=r+1; rank(p?(x))=r+2; done

fi;
| rank(sib(x)) = r+2 = rotate(sib(x))
fi;

14

& Washington University in St.Louis

Engineering

Join and Split

rank(x)=rank(s;)

@
mjoin(s,,i,s,): when rank(s,)<rank(s,) 8 s
» find leftmost node x in s, with +

» replace x with /i, make s; the left child
and x the right child of /

» make rank(i)=rank(s,;)+1 then
rebalance as in insert

msplit(i,s) is done in same way as for
unbalanced trees but using new join

» differences between ranks of joined subtrees
sums to <rank(root), so O(log n) time

mCan use to implement split/join lists
» O(log n) time per operation

15

15

& Washington University in St.Louis

Engineering

Dual Key Search Trees

m Data structure for sets of items having two keys
key, and key,; key values need not be unique
» setkey(i,ky,k,): initialize keys of singleton item i to ky,k,
»insert(i,s): insertjinto s
» delete(i,s): remove item i from s; i becomes a singleton
» access(ky,s): return some item in set s having key,=k;
» findmin(ky,s): return item in s with smallest key, value

among those with key,<k;
mCombines aspects of search trees and heaps
mCan implement all ops in O(log n) time

m Extend to find min key, item in key, range [/o,hi]
»can use to find min key, item in a time interval

16

16

& Washington University in St.Louis

Engineering

Implementation

m Nodes arranged in binary search tree order on key,

m Field min, is node in subtree with smallest key, value

m After insertion/deletion, update min, fields going up tree
m Also, update during rotation operations

17

17

& Washington University in St.Louis

Engineering

Implementing findmin

let key,(null) be larger than any valid key, let min,(null)=null

item function findmin(keytyp k,, sset2 s); —
; ! v is best node found so far
item u, v;u:=s;v:=null;%[J

do u = null = key, values of u and
if key,(u) > k; = right(u) are too large, so
u = left(u); “target” must be in left(u)

| key,(u) < ky =
if key,(u)<key,(v) = v = u; fi;
if key,(min,(left(u))) < key,(v) = v := min,(left(u)) fi;
u := right(u);

fi;
od;
return v;
end;

all nodes in left(u) are
“eligible” so no need
to search left(u)

right(u) might
contain an
eligible node

18

18

& Washington University in St.Louis

Exercises

1.Show the result of performing a split
operation at node e on the
(unbalanced) binary search tree shown
below.

Engineering

The split produces the three trees

shown below.

(e 16

(n) 20

m14 (@18 (@21

(D 19

19

19

& Washington University in St.Louis

2.The diagram below shows a right
rotation operation at node x. Show that
if the height of subtree A is larger than
the heights of subtrees B and C, the
rotation reduces the height of the
overall tree.

(X

The height of a tree is the max distance
from its root to one of its leaves, so in
the left hand tree, the overall height is
2+height(A), if the height of A is larger
than the heights of B and C. The height
of the right hand tree, is
max(1+height(A),2+height(B),
2+height(C)) but since A has height
greater than the other two, this is
1+height(A).

Engineering

Now suppose that in the previous
diagram, the height of B is larger than
the heights of subtrees A and C. The
diagram at left below shows the same
tree but with the subtree B shown in
more detail (with root z and its
subtrees B, and B,). The right hand
diagram is obtained from the left by a
double rotation. Show that the right-
hand tree has smaller height than the
left.

The height of the left-hand tree is
3+max(height(B,),height(B,)) and the
height on the right is
2+max(height(B,),height(B,))

20

20

& Washington University in St.Louis

Engineering

3.Draw a picture of a balanced binary 4.Consider a rotation operation at y in

tree on 10 nodes that is as unbalanced
as it can possibly be and show a
sequence of insert and delete
operations that will produce that tree.

The diagram below has 11 nodes. If the
nodes are inserted in alphabetical
order, we get the balanced binary tree
shown below. If we then remove node
h, there is no further change in the tree
structure and we get a maximally
unbalanced 10 node tree.

the dual key search tree shown below.
How would you update the min, values
for nodes x and y shown below?

0 2
AAA AAA

With the assignment
miny(x):=min(key,(x),min,(B),min,(C))
followed by
min,(y):=min(key(y),min,(A),min,(x))

21

21

& Washington University in St.Louis

Engineering

5. Write a program for the dual key search tree How would you extend the data

that implements an operation structure so that it would also
findminRight(k,,s) that returns the item with support a findmax operation?

the smallest key, value in s from among Add a max, field to each node that
those items with key, values that are =k;. identifies the node in the subtree of

the given node that has the largest
key, value. These fields can be
updated in the same way as the
min, fields.

item function findminRight(keytyp k;,
sset2 s);
itemu, v; u:=5s;,v:=null
do u = null =
if key (u) < ky =
u := right(u);
| key,(u) 2 ky =
if key,(u) < key,(v) = v := u; fi;
if key,(min,(right(u))) < key,(v) =
v 1= min,(right(u));

fi;
u = left(u);
fi;
od;
return v;
end;

22

