& Washington University in St.Louis

Engineering

Self-Adjusting Search Trees

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering

Self-Adjusting Binary Trees

m Self-adjusting binary search trees restructure search
tree after each operation
» requires no explicit balance condition
» m operations take O(m log n) time
» in some contexts provides better overall performance than
balanced binary trees

m Restructuring operation is called splay

» moves one vertex x to root of the tree by a sequence of
rotations

» the rotations reduce depth of each vertex u, by roughly half the
original depth of the nearest common ancestor of x and u

& Washington University in St.Louis

Engineering
Illustration of Splay Steps
splaystep(x) X has grandparent

inner(x)

outer(x)
no grandparent Z

D A

rotate(x)

‘h%

rotatez(x)

& Washington University in St.Louis

Engineering

Implementation of Splay

sset function splay(item x);
if X = null = return null fi;
do p(x) = null = splaystep(x) od;

return Xx;

end;

procedure splaystep(item x);
item y,z; last step
if p(x) = null = return fi; of splay
y 1= p(x);

if p%(x) = null = rotate(x)
| p2(x) # null = rotate?(x)

fi;
return
end; each moves descendants of

x one step closer to root;
depth of original

descendants roughly halved

& Washington University in St.Louis

Engineering

Implementing Self-Adjusting BSTs

item function access(keytype k, sset s);
if s = null = return null fi;
do k < key(s) and /eft(s) = null = s := left(s)
| kK > key(s) and right(s) = null = s := right(s)
od;
s = splay(s); time bounded
if K = key(s) = return s; by number of
| kK = key(s) = return null; splay steps
fi;
end;
[sset, sset] function split(item /i, sset s);
sset 5,,S,,
splay(/);
S1,S; += left(i),right(i); p(s;),p(s,) := null;
left(i), right(i) := null;
return [sy,s,];
end;

& Washington University in St.Louis

Engineering

procedure insert(item /, sset s);
itemx; x:=s;
do key(i) < key(x) and left(x) = null = x := left(x)
| key(i) > key(x) and right(x) = null = x := right(x)
od;
if key(i) = key(x) = return null
| key(i) < key(x) = left(x) := i,
| key(i) > key(x) = right(x) :=i;
fi;

end; by number of

p(i) 1= x
splay(/); time bounded
splay steps

& Washington University in St.Louis

Engineering

procedure delete(item /, sset s);
item j;
if left(i) = null and right(i) = null =
J = left(i);
do right(j) = null = j := right(j) od;
swapplaces(i,j);
fi;
if left(i) = null = left(i) < right(i) fi;
p(left(i)) := p(i);
if i = left(p(i)) = left(p(i)) := left(i)
| i = right(p(i)) = right(p(i)) := left(i)
fi;
splay(p(/));
left(i),right(i),p(i) := null;
end;

time bounded
by number of
splay steps

& Washington University in St.Louis

Engineering

Analysis of Self-Adjusting BSTs

m Objective is to show that sequence of m operations,
on trees with total of n nodes takes O(m log n) time

m Use a credit scheme to account for running time

» all operations but join include a splay, so can account for their
running time by bounding the time for all splays

» splay time is proportional to number of splay steps, so account
for running time of splay by “spending” one credit per step

» allocate up to C Ig n credits per splay and per join (C to be
determined)

» credits not needed to pay for performing an operation are
“stored” in the tree and can be used to “pay” for later steps

m To ensure we have enough credits on hand to pay for
future operations, maintain the credit invariant
» keep rank(x) credits on hand for each node x, where
rank(x)=|lg(# of descendants of x)|

& Washington University in St.Louis

Engineering

m Balanced trees need fewer credits than unbalanced
trees, so splays generally “release” credits

mLemma 4.2. Splaying a tree with root v at a node u
while maintaining credit invariant requires at most
3(rank(v)-rank(u))+1 new credits

Proof. The credits are divided among the different splay steps

»a splay step at node x with parent y and grandparent z is allocated
3(rank(z)-rank(x)) credits

»a splay step at a node x with a parent y but no grandparent is allocated
3(rank(y)-rank(x))+1 credits

Let rank and rank’ be the rank functions before and after the step

» Case 1. x has no grandparent: this is last step, and extra credit
pays for it; number of credits needed to maintain invariant is
(rank’(x) - rank(x)) + (rank’(y) - rank(y))
= rank’(y) - rank(x) = rank(y) - rank(x)
which is one third of the available credits

& Washington University in St.Louis

Engineering

» Case 2. x=left(left(z)) or x=right(right(z)): if rank(z)=rank(x)=k
we get no new credits for this step, but rank’(z)<k, so we can
spend an existing credit while still maintaining the invariant

if rank(z)>rank(x), the number of credits needed to maintain the
invariant is

(rank’(x)-rank(x)) + (rank’(y)-rank(y)) + (rank’(z)-rank(z))
= rank’(y) + rank’(z) - rank(x) - rank(y)
< 2(rank(z) - rank(x)) < 3(rank(z) - rank(x))
releasing at least one extra credit to pay for the step
» Case 3. x=left(right(z)) or x=right(left(z)); if rank(z)=rank(x)=k
we get no new credits for this step, but either rank’(z)<k or
rank'(y)<k , so we can spend a credit while maintaining invariant
if rank(z)>rank(x), the number of credits needed to maintain the
invariant is
(rank’(x)-rank(x)) + (rank'(y)-rank(y)) + (rank’(z)-rank(z))
= rank’(y) + rank'(z) - rank(x) - rank(y)
< 2(rank(z) - rank(x)) < 3(rank(z) - rank(x))

releasing at least one extra credit to pay for the step & "

10

& Washington University in St.Louis

Engineering

mLemma implies each splay requires <3|Ig n| + 1 credits

» number of credits needed for an insert is this nhumber plus the
number of new credits needed to maintain the credit invariant,
after the new item is inserted but before the splay is done

» the only nodes whose ranks can increase are those on the path
from the root to the inserted node that have exactly 2«1
descendants before the operation (where k€[0..|1g n|])

» there can be at most |[Ig n| + 1 of these, so the total number of
credits required for an insert is at most 4 |[Ilgn| + 2
m The join operations requires at most |Ig n| credits

m All other operations require no credits beyond those
used by the splay

m Theorem 4.1. The total time required for a sequence of
m sorted set operations on n vertices, using self-

adjusting binary search trees is O(m log n)
11

11

& Washington University in St.Louis

Exercises

1.Show the tree that results from
performing a splay at node e in the
self-adjusting BST shown below.

What is the largest increase in depth of
any node? What is the largest
decrease?

Engineering

The new tree appears below

The largest increase in depth is 2 (all
nodes in the subtree of d see an
increase in depth of 2). The largest

decrease is for node e, which goes from

depth 4 to 0.

12

12

& Washington University in St.Louis

2.Prove the following statement. Let u be

a descendant of x in a self-adjusting
BST. If a splay is performed at x, then
D(u)=d(u)-(d(x)/2)+1, where d(u) is
the depth of u before the splay and
D(u) is the depth of u after the splay
(recall that the depth of a node in a
tree is the length of the path from the
root).

If we look at the definition of a splay
step on slide 3, we observe that each
splay step except possibly the last,
moves the descendants of the "splay
node” at least one step closer to the
root. The splay node moves two steps
closer. So if d(x)=2k, there are k splay
steps that reduce move u at least one
step closer to the root, so

D(u)<d(u)- k=d(u)-(d(x)/2)+1
The above inequality is also true if
d(x)=2k+1.

Now, suppose that z is the nearest-
common ancestor of x and v and that a
splay is performed at x. Show that,

Engineering

D(u)<d(u)-(d(z)/2)+3
We'll assume that u is not a descendant
of x, since that case has already been
covered earlier. Now, let’s first consider
the effect of the splay on the depth of
z. As long as x remains a descendant of
z, the splay steps at x have no effect
on the depth of z. The first splay step
that makes z a descendant of x
increases the depth of z by up to 2.
Subsequent splay steps (except
possibly the last) each decrease the
depth of z by 1. Therefore,

D(z)<d(z)-(d(z)/2)+3
Since u is a descendant of z, the splay
steps will affect u in essentially the
same way as z. The splay step that
makes z a descendant of u can increase
the depth of u by 2, but each
subsequent step (except possibly the
last) decreases its depth by 1. So,
D(u)=d(u)-(d(z)/2)+3.

13

13

& Washington University in St.Louis

3. Consider the self-adjusting BST in
problem 1. How many credits are
needed to satisfy the credit invariant
before the splay at node e?

Leaves in the tree require no credits.
Nodes with a total of 2 or 3
descendants require 1, nodes with 4 to
7 require 2 and nodes with 8 to 15
require 3. So, in the tree from the
previous problem, we need a total of
13.

How many are needed after the splay?
14

How many credits were needed to pay
for the splay?

2

Engineering

How many new credits are allocated to
the splay in the analysis?

Node e has a rank of 0 initially and the
tree root has a rank of 3, so 10 credits
are allocated.

How many “surplus credits” does this
leave us with?

10- ((14-13)+2)=7

14

14

& Washington University in St.Louis

4. Consider a highly unbalanced BST

where each non-root node is the right
child of its parent and there are n=15
nodes altogether. How many credits are
needed to satisfy the credit invariant?

2 nodes require 1 credit, 4 nodes
require 2 credits, 8 require 3. This
gives us 2+8+24=34.

How many are needed after a splay at
the one leaf node?

The final tree has x at the root and all
other nodes in its left subtree. Each
internal node in this left subtree has a
leaf as its left child. In this tree one
node has a rank of 1, two have a rank
of 2 and five have a rank of 3. The rest
are leaves with rank 0. So the total
number of credits needed is
1+4+15=20, a reduction of 13.

Engineering

How many credits were needed to pay
for the splay?

There are 7 splay steps, so 7 credits
are needed to pay for the splay.

How many new credits are allocated to
the splay in the analysis?

10 credits are allocated.

How many “surplus credits” does this
leave us with?

10- ((20-34)+8)=16

15

15

