& Washington University in St.Louis

Engineering

Dynamic Trees and Path Sets

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering

Dynamic Trees

m Collection of trees, with each node having a cost; tree
edges directed from child to parent; operations are:
»findroot(v): return the root of the tree containing node v

»findcost(v): return pair [w,x] where x is the min cost of a node
on tree path from v to findroot(v) and w is last node on path
with cost x

»addcost(v,x): add x to cost of every node on the path from v to
findroot(v)

»link(v,w): combine the trees containing vertices v and w by
adding the edge [v,w]; v must be a root

»cut(v): divide tree containing v into two trees by deleting the
edge between v and p(v)
m For efficient implementation, each tree is decomposed
into a set of linked paths

& Washington University in St.Louis

Engineering

Representing Trees As Paths

m A tree can be represented as a
7

set of linked paths @50
» edges linking different paths are ;
called dashed others are solid succ(i)=a (- 5
()~ ® 1
13

4
'
/

» direction of paths is up the tree 3

= All nodes in a path are
ancestors of path head

/
/
7

» s0, each node has at most 8 /’I
one solid edge to a child z
_ g @20 ,B3
m If v is canonical node of a path, !
1 8

m A given tree can be represented
in many different ways

V|
/ Vs
succ(v) is parent of the tail of Q15O 11@9
the path containing v in the tree /
13 7 5
&

& Washington University in St.Louis

Engineering

Path Sets

= Collection of paths in which each node has a cost; the
first node on a path is called the head, the last is called
the tail; the operations on a path set are:

» findpath(v): return the path (actually, the canonical node)
containing node v

» findtail(p): return the tail of p

» findpathcost(p): return pair [w,x], where x is the min cost of
any node on path p and w is the last node of cost x

» addpathcost(p,x): add x to the cost of every node on p

» join(p,v,q): return the new path formed by adding an edge from
the tail of p to v and from the v to the head of g; either p or g
may be empty, but v must be a single node path

» split(v): return the pair [p,q] formed by dividing path containing
v at v; either p or g (or both) may be empty

m Path ops can be implemented to run in O(log n) time

4

& Washington University in St.Louis

Engineering

Example of Path Operations

@ ® © @ e ®
heads 5 10 5 21 13 2 tails

to left B 7 B o 8 to right
4 6 @3 2 4 8
split(d) join(findpath(i),m,findpath(y)) addpathcost(findpath(b),30)

@0 6 e —6
35 40 35 @21 13 2

N\ [(0 N
® @ @ ® W @
4 6 3 2 4 8

findcost(findpath(b)) = [c,35]

& Washington University in St.Louis

Engineering

Exposing Paths

m If tree path from a node v to findroot(v) is one of the
pathset paths, we can use the findpathcost op on this
path to implement the findcost op in the dynamic tree

= The expose(v) operation makes tree @s
path from v to findroot(v) solid, by s

] ~
» converting dashed edges along
the path to solid

/

» converting solid edges incident to s

the path to dashed \15 @ 1@o V1 8
» returns resulting path S

! 13 7 5

m Using expose and pathset Xpose%

ops, we can implement all Ve
the dynamic tree ops

» findcost(u) in tree = expose(u) then findpathcost(u)

) \\
(b) 3 6
/7

& Washington University in St.Louis

Engineering

Implementing Dynamic Trees

node function findroot(node v); procedure link(node v,w);
return findtail(expose(v)); node u;

end: u := join(null,expose(v),
! expose(w))

[node,real] function findcost(node v); succ(u) = null;
return findpathcost(expose(v)); &N

end; procedure cut(node v);

procedure addcost(node v, real x); Fe)itphoggi;v)'
addpathcost(expose(v),x); [g,r] := sélit(v);

end; succ(v) := null;

succ(r) := null;
end;

& Washington University in St.Louis

Engineering

path function expose(node v);
path p; p := null;
do v = null =
[p,v] := splice(p,v);
od;
succ(p) := null;
return p;
end;

[path, node] function splice(path p, node v);
path g,r; node w;
w := succ(findpath(v));
[g,r] := split(v);
if g=null = succ(q) := v fi;

return [join(p,v,r),w]; ’
end C/’g)

& Washington University in St.Louis

Engineering

Analysis of Dynamic Trees

= Number of path ops required to implement a sequence
of m tree operations is O(# of splices)
» each splice takes O(1) path operations

m Let size of a node v be number of descendants it has
» call an edge from v to its parent w heavy ﬁ
if size(v)>size(w)/2 and light otherwise 3
mlemma 5.1. If v is any node, there is at O
most one heavy edge from v to a child of v and
<|lg n] light edges on the path from v to findroot(v)
The proof follows directly from the definitions
= Note that each splice during an expose (except first)
converts a dashed edge into a solid edge

» these edges are either heavy or light; by lemma, there are at
most [Ig n| light edges and the rest are heavy

& Washington University in St.Louis

Engineering

m If x=number of heavy solid edges created by splices

during an entire sequence of m operations,
(# of splices) =< (# of exposes)(|lgn] + 1) + x

m Every heavy solid edge created during a splice %b
increases the total number of heavy solid edges

m If y is number of heavy solid edges destroyed Cf@
by various operations, then x-y<n-1 since there
can be at most n-1 edges at the end of the sequence
» thus, x<y+n-1

m A splice destroys a heavy solid edge only if it is the
first splice of an expose or if it converts a light edge
from dashed to solid

m S0, each expose destroys at most |Ig n]+1 heavy solid

edges, so all exposes destroy <2m(|lg n]+1)
» still need to account for those destroyed by other operations

10

& Washington University in St.Louis

Engineering

m A cut destroys <|Ig n]+1 heavy solid
edges outside of those destroyed by
the expose; there are <m/2 cuts

= None of the other tree operations '
destroys any heavy solid edges other 8
than those destroyed by exposes

mThus, y=<(5/2)m(|lg n|+1), x<(5/2)m(|lg n]+1)+n-1 and
number of splices is <(9/2)m(|lg n]+1)+n-1

m Theorem 5.1. A sequence of m dynamic tree ops on n
vertices requires O(m log n) path set ops

m Path sets can be implemented with binary search trees
» to implement addpathcost, need differential cost representation

» with balanced trees, each op takes O(log n) time, leading to a
running time of O(m (log n)2) for dynamic trees data structure

» can improve to O(m log n) using self-adjusting search trees
11

11

& Washington University in St.Louis

Engineering

Exe rC | SeS Show how the tree and the succ

values change following an expose
at node p. Assume that when two

1.The diagram below shows a dynamic path are combined, the node that
tree represented as a collection of paths comes first alphabetically becomes
that are linked together. The nodes the canonical element.

with a heavy outline are the canonical
nodes for their paths.

For each canonical
node x, give the
value of succ(x).

succ(k)=d,
succ(d)=null,
succ(p)=j,
succ(e)=a,
succ(b)=a,
succ(g)=n,
succ(l)=b,
succ(h)=i

Which edges on the path from p to succ(k)=j, succ(f)=d. Nothing else
the root of the tree are heavy? changes.

Edges ij, di and ad are heavy 12

& Washington University in St.Louis

Engineering

2.1In the tree from problem 1, which edges
are heavy and solid before the expose?

ij, ad and bn are heavy and solid before.

Which are heavy and solid after the
expose?

ij, ad, di and bn are heavy and solid
after.

Suppose we did a second expose at node
g. How does this change the set of
heavy solid edges?

Edges ad and bn are no longer solid, so
they drop out of the set of heavy solid
edges. There are no other changes.

Suppose we did a cut at node j following
the second expose. How does this
change the set of heavy solid edges?

Edge ij is no longer an edge after the
cut, so it drops out of the set. Also, edge
di is no longer heavy after the cut, it
drops out. This leaves us with no heavy
solid edges.

13

13

& Washington University in St.Louis

3. Consider a dynamic tree implemented
using the path sets data structure.
Suppose that the path from node u to the
root of the tree includes 12 dashed
edges, four of which are heavy. What
does this tell you about the number of
nodes in the tree?

It means that there are at least 256
nodes in the tree, since the path has 8
light edges and any path from a node to
the root can have no more than Ig n light
edges.

How many heavy solid edges are created
during an expose that starts at u?

The 4 dashed heavy edges along the path
will become heavy solid edges during the
expose, so the number of heavy solid
edges that are created by the expose is
four.

Engineering

Give an upper bound on the number of
heavy solid edges that are destroyed
during the expose.

If u has a child that connects to it by a
heavy solid edge, then this heavy solid
edge is destroyed. For each of the light
edges (x,p(x)) along the path, there may
be a heavy solid edge from p(x) to
another child. These edges are destroyed
by the expose. This gives us a total of no
more than 9 heavy solid edges that are
destroyed by the expose.

14

14

