& Washington University in St.Louis

Engineering

Shortest Paths in
Directed Graphs

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering

Shortest Paths in Graphs

TR PR
i 2 2 5 /2 2 5
by by
3 4 5 7 3 4 5 7
% _-4% K‘B/—4%
shortest path shortest path tree

mlet G = (V,E) be a directed graphs and let length
be a real-valued function on E

»the length of a path is the sum of the lengths of its edges
»a shortest path is a path of minimum length

»edge lengths can be negative, so path lengths can be also
ebut no shortest path in presence of negative length cycles

& Washington University in St.Louis

Engineering

Shortest Path Problems

m The shortest path problem has several versions

»single pair problem: given a source vertex s and a sink
vertex t, find a shortest path fromstot

»single source problem: given a source vertex s, find a
shortest path from s to every other vertex in G

»single sink problem: given a sink vertex t, find a shortest
path to t from every other vertex in G

»all pairs problem: find a shortest path between every pair
of vertices
m The single source and single sink problems are
essentially the same

m Most solutions to the single pair problem
effectively solve a single source problem

& Washington University in St.Louis

Engineering

Shortest Path Trees

m Theorem 7.1. Let G be digraph with path from s to t.
There is a shortest path from s to t if and only if no
path from s to t contains a negative cycle. If there is a
shortest path from s to t, there is one that is simple

Proof. If some s-t path includes a negative cycle, we can produce
an arbitrarily short path by traversing the cycle enough times.

If there is no negative cycle then we can make any s-t path simple
without increasing its length by deleting cycles. B

m A shortest path tree for vertex s is a directed spanning
tree with root s in which all paths are shortest paths.

m Theorem 7.2. G contains shortest paths from s to every

other vertex if and only if it contains a shortest path
tree with root s. Proof deferred

& Washington University in St.Louis

Engineering

mlet T be any spanning tree of G with root s
» let distance(v) to be length of the path fromstovinT

m Theorem 7.3. T is a shortest path tree if and only if,
distance(w)<distance(v)+length(v,w), for every edge
[v,w] in G
Proof. If T is shortest path tree in which distance(w)>distance(v)

+length(v,w) for some edge [v,w], then there is a shorter path
than theonein T

Conversely, suppose distance(w)=distance(v)+/ength(v,w) for every

edge [v,w] and let p be any path from s to any vertex x

eshow by induction on number of edges in p that
distance(x)<length(p); the basis, |p|=1 is immediate

e for inductive step, assume distance(x")<length(p’) for all vertices
x" and paths p’ with |p’|=k; let p be a path from s to some vertex
x of length k+1, let g=p-[x] and let y be last vertex on g;

e by induction, distance(y)<length(q), so distance(x)=
distance(y)+length(y,x)<length(q)+length(y,x)=Ilength(p) B

& Washington University in St.Louis

Engineering

The Labeling Method

m Labeling method finds an SPT by repeatedly applying
Theorem 7.3

» uses two mappings: dist(v) is length of shortest path so far
from s to v, p(v) is the parent of v in the current partial SPT

» initially, p(s)=null, dist(s)=0 and p(v)=null, dist(v)=« for v#s
» Labeling Step: select edge [v,w] for which dist(w)>dist(v)+
length(v,w); let p(w)=v, dist(w)=dist(v)+length(v,w)
mLemma 7.1. The labeling method maintains invariant
that if dist(v) is finite, there is a path from s to v of
length dist(v)
Proof. By induction on the number of labeling steps &

mLemma 7.2. If p is a path from s to any vertex v, then
dist(v)<length(p) when the labeling method halts
Proof. By induction on number of edges in p &

& Washington University in St.Louis

Engineering

m Theorem 7.4. When labeling method halts, dist(v) is
length of a shortest path from s to v if v is reachable
from s; dist(v)=« otherwise. If there is a negative cycle
reachable from s, the method never halts.

Proof. Follows from Theorem 7.1 and Lemmas 7.1, 7.2 &

mLemma 7.3. Labeling method maintains the invariant
that if p(v)=null, dist(v)=dist(p(v))+length(p(v),v) with
equality when the method halts.
Proof. By induction on number of labeling steps B

mLemma 7.4. At each step of labeling method, either the
edges [p(v),v] with p(v)=null form a tree rooted at s
spanning all vertices v with dist(v)<«, or there is a
cycle of parent pointers.

Proof. A vertex v=s has p(v)=null iff dist(v)<~. If dist(v)<x and
p(v)=null then dist(p(v))<«=. Thus, if we follow parent pointers
from any vertex v, we either encounter s or repeat a vertex. & 7

& Washington University in St.Louis

Engineering

mLemma 7.5. If labeling method creates a cycle of
parent pointers, the corresponding cycle of G is
negative
Proof. Suppose that a labeling step on edge [x,y] creates a cycle
of parent pointers; just before the step, pk(x)=y for some k; by
Lemma 7.3, dist(p'(x))=dist(p'+1(x))+length(p+1(x),p'(x)) for
O=<i<k; summing these inequalities gives

2: dist(p'(x)) = 2; dist(p'(x))+ z:glength(pm (x), p'(x))

adding the inequality dist(y)>dist(x)+/ength(x,y) and noting that
y=pX(x) and x=p°(x) gives

E,iodist(p"(x)) > Ef:o dist(p'(x)) + E:/ength(pm (x), p'(x)) + length(x, y)

0> z:length(p”'(x),pi(x)) +length(x, y)

hence the cycle of parent pointers created by the labeling step
corresponds to a negative cycle of G m

& Washington University in St.Louis

Engineering

m Theorem 7.5. When the labeling method halts, the
parent pointers define a shortest-path tree for the
subgraph of G reachable from s
Proof. Immediate from Theorem 7.4 and Lemmas 7.3, 7.4, 7.5 m

m Labeling method can take Q(2") time if order in which
edges are chosen is poor

» for example, labeling method can take Q(2k) steps on the
graph G, defined below

G, Gy

1

& Washington University in St.Louis

Engineering

Scanning and Labeling

m Scanning and labeling method is a special case of the
labeling method, where we select all “eligible” edges
leaving a particular vertex as a group

» each vertex can be in one of three states: unlabeled, labeled, or
scanned; initially s is labeled and all others are unlabeled

» Scanning Step. Select a labeled vertex v and convert v to the
scanned state; for all [v,w] with dist(w)>dist(v)+ length(v,w),
replace p(w) by v and dist(w) by dist(v)+ length(v,w)
convert w to the labeled state

» correctness follows directly from correctness of labeling method

m Different vertex selection rules yield different variants

m For acyclic graphs select vertices to be scanned in
topological order
» no vertex is scanned more than once giving O(m) running time10

& Washington University in St.Louis

Engineering

Shortest First Scanning

m In shortest first scanning, select vertex v for which
dist(v) is minimum
» if every edge has non-negative length, each vertex will be
scanned at most once.
m Theorem 7.6. If every edge has non-negative length
and scanning is shortest first, then after vertex v is
scanned, dist(v) is length of shortest path from s to v.

Proof. Just before a vertex v is scanned, dist(v)=dist(w) for any
labeled vertex w

In addition, dist(v)=dist(w) for any vertex w that becomes labeled
during or after the scanning of v

Consequently, the vertices are scanned in non-decreasing order of
distance from s and once a vertex is scanned it cannot become

labeled m
11

& Washington University in St.Louis

Engineering
Dijkstra’s Algorithm

m Similar to Prim's MST algorithm; same running time
procedure dijkstra(digraph G=(V,E), vertex s,
mapping p: vertex—vertex);
vertex u,v; heap S;
for ucV = dist(v):=«; p(u):=null; rof;
dist(s):=0; insert(s,0,S);
do S={} =
u:=deletemin(S);
for {u,vicout(u) =
if dist(v)>dist(u)+length(u,v) =
p(v):=u; dist(v):=dist(u)+length(u,v);
if V&S = insert(v,dist(v),S);
| v&S = changekey(v,dist(v),S);
fi; fi;
rof; od; end;

12

& Washington University in St.Louis

Engineering

Worst Case for Dijkstra

mcost(v;,v;)=n(n-i)+(n-j) for i<j-1, cost(v,v;.,)=1

m After step k the “current tree” includes path
V1,Va,...,V and direct edge from v, to v; for j>k

mNumber of changekeys is 1+2+...+(n-2)=Q(n?)

m If edges processed in “increasing-head order”, each
item moves from “bottom of heap” to “near top”

=Can remove edges [v;,v;] with 1<i<j-1 to get
sparse graph with Q(m) changekey ops

13

& Washington University in St.Louis

Exercises

1. The figure below shows an intermediate
state in the execution of the labeling
algorithm for shortest paths starting at
vertex a. The heavy edges are the tree
edges defined by parent pointers in the
implementation. The distance values are
shown next to the nodes in the diagram.

Show the state of the algorithm after edges

(c,9), (g,b), (k,h), (k,f) have been selected

and the labels of their “heads” updated.
4 14 = 20

Engineering

2. Let G be a digraph in which edges have
“capacities”. The bottleneck capacity of a path
in G is the minimum edge capacity on the
path. A best bottleneck path tree is a spanning
tree of G in which each path has the largest
possible bottleneck capacity.

Let T be a spanning tree of G with root s and
let bcap(u) be the bottleneck capacity of the
path from s to v in T. Show that if T is a best
bottleneck path tree, then
bcap(v)=min{bcap(u), cap(u,v)}, for all edges
(u,v) in G.

If bcap(v)<min{bcap(u),cap(u,v)} for some
edge (u,v) then there is a path to v with a
larger bottleneck capacity than the tree path,
implying that T is not a best bottleneck path
tree. Therefore, if T is a best bottleneck path
tree then bcap(v)= min{bcap(u),cap(u,v)}, for
all edges (u,v) in G.

Show that if there is a non-tree path p from s
to some vertex x, that has bottleneck capacity
larger than bcap(x), then there must be some
edge (u,v) for which
bcap(v)<min{bcap(u),cap(u,v)}.

14

& Washington University in St.Louis

Assume that p is a shortest path (by edge
count) satisfying the condition and that
path p has k edges. If k=1, p consists of
the single edge (s,x) and has bottleneck
capacity equal to
cap(s,x)=min{bcap(s),cap(s,x)}, and
since p is assumed to have larger
bottleneck capacity than the tree path to
X, it follows that
bcap(x)<min{bcap(s),cap(s,x)}.

If k>1, let (w,x) be the last edge on p and
note that since p is the shortest non-tree
path with larger bottleneck capacity than
the corresponding tree path, the tree path
from s to w is a best bottleneck path.
Consequently, the bottleneck capacity of p
is at most min{bcap(w),cap(w,x)}. Since p
has larger bottleneck capacity than the
tree path to x, this means that
bcap(x)<min{bcap(w),cap(w,x)}.

Engineering

3. Consider a version of the shortest path problem
with positive edge lengths and multiplicative
costs. In this version, the length of a path is the
product of the edge lengths, rather than the
sum. Explain how shortest path algorithms can
be modified to handle multiplicative costs. What
is the implication of having positive edge costs
that are less than 1?

One approach is to replace the original costs by
their logarithms and then use a standard
shortest path algorithm on the graph with the
transformed costs. The resulting distances must
then be transformed back to give the
multiplicative distances. Since the log of a
product equals the sum of the logs, this yields
the shortest multiplicative paths.

Alternatively, one can modify the original
algorithms to replace expressions of the form
dist(u) + length(u,v) with dist(u) * length(u,v)
in the shortest path algorithm. The correctness
of this follows from the logarithm
transformation.

Positive edge costs less than 1 reduce path
lengths and have the same effect as negative
edge lengths in the standard problem. If such
edges are present, Dijkstra’s algorithm cannot

be used. 15

& Washington University in St.Louis

4. The figure below shows an intermediate state in the
execution of Dijkstra’s algorithm. The bold edges in the
graph are the edges defined by the parent pointers, and
the numbers next to the vertices are the current
distance values. Fill in the blanks (as appropriate) in the
arrays that implement the d-heap (assume d=2 and that
vertices b, ¢, d and h have not yet been “scanned”).

2

Wl T TLTLLL]

abcdef ghi j kil
key 4173 9
nt| [2]3]1 4

Show how the heap contents changes after the next

iteration. | 5 3 45678910112

nlellefe TTTTTTT]
a b cde f ghi j kI

key 4|6 5 9

h? 1(3 2 4

Engineering

16

