& Washington University in St.Louis

Engineering

Fibonacci Heaps

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst




& Washington University in St.Louis

Engineering

Fibonacci Heaps

m Collection of meldable heaps
» meld operation combines two heaps
» each heap is identified by one of its members (its id)
» initially, all items form singleton heap
» good amortized running time

m Heap operations
»findmin(h): return an item of minimum key in (heap with id) h
»insert(i,x,h): insert item Jj into heap h with key x
e/ must be a singleton heap
»delete(i,h): delete item i from h and return resulting heap’s id
»deletemin(h): delete a min key item from h; return it and new id

»meld(hy,h,): return id of heap formed by combining h; and h,;
operation destroys h; and h,

»decreasekey(A,i,h): decrease key of i in h by A; return new id




& Washington University in St.Louis

Engineering

Structure of Fibonacci Heaps

m Each F-heap is represented by a collection of heap-
ordered trees
»each node has its item’s key, an integer rank and a mark bit
e rank(i) equals the number of children of i

»each node has pointers to its parent, its left and right siblings
and one of its children

»the tree roots are linked together on a circular list
»heap is identified by a root node of minimum key

key,rank

6,0 8,0 10,0




& Washington University in St.Louis

Engineering

Implementing F-Heap Operations

m For meld, combine root lists; implement insert as meld
»new heap identified by item of minimum key; takes O(1) time

m For delete(i,h)
»perform a decreasekey at i, to make j the item with smallest key
»perform a deletemin to remove j from the heap
»restore original key value of j
»time is just sum of times for deletemin and decreasekey

m For deletemin
»remove min key item from root list
»combine its list of children with root list and clear mark bits of
children

»find new min key node
¢ while doing this, combine trees with root nodes of equal rank until no two
nodes in root list have same rank




& Washington University in St.Louis

Engineering

m Deletemin combines trees with equal rank roots

»insert tree roots into an array, at g
position determined by their rank =
»make one root a child of the other Iy

whenever there is a “collision”

¢ note that root of new tree
increases its rank

m For decreasekey(A,i,h) *

»subtract A from key(i) then cut &
edge joining i to its parent p ’gﬁﬁg
»make detached subtree a separate tree in heap
and clear its mark bit
»if key(i)<key(h), i becomes the min node of heap
»if p is not a tree root, and i is second child cut from p, since p
became child of some other node, cut edge from p to its parent
e apply this rule recursively to parent of p, then its parent,...
e use mark bit to identify nodes that have lost a child
»increases number of trees, decreases number of marked nodes ¢




& Washington University in St.Louis

Engineering

Amortized Analysis

m Objective is to bound total time for sequence of ops
»some individual ops may take more time than others
»expensive ops must be balanced by (earlier) inexpensive ops

m To facilitate analysis, imagine we’re given credits for

each operation
»one credit pays for one unit of computation
»credits not used to pay for a current op can be saved for later
»the credit allocation for each operation is its effective cost
= Central question: "How many new credits needed for
each op to ensure there are always enough on hand?”
m Following credit invariant is key to analysis

at all times, the number of credits on hand is at least the number
of trees in all heaps, plus twice number of marked non-root nodes

6




& Washington University in St.Louis

Engineering

m Determine number of new credits needed per op to pay
for the op and maintain validity of invariant
» findmin, insert and meld each take constant time and don’t
affect invariant, so just one new credit for each op
» time for deletemin bounded by number of steps in second part
¢ so, need one new credit per step plus one for every net new tree
e details to come
» time for decreasekey bounded by number of cuts performed and
each cascading cut involves a marked node
m Detailed analysis of decreasekey
» let k=number of cuts made by decreasekey
» running time for decreasekey is O(k)
» number of trees increases by k
» number of marked non-root nodes decreases by k-2
» s0, the number of new credits needed is k+k-2(k-2)=4
» s0, cost of the decreasekey is O(1)




& Washington University in St.Louis

Engineering

Detailed Analysis of Deletemin

m Detailed analysis of deletemin
» let k=rank of node removed in deletemin
e number of trees increases by k during first part of the op
e number of marked non-root nodes does not increase
» in second part, trees with roots of equal rank are combined
» let p=# of times a tree root collides with another,
let g=# of times a tree root is inserted with no collision
e running time for deletemin is O(p+q)
e number of trees decreases by p during the second part
» so, humber of new credits needed to pay for the op and
maintain credit invariant is (p+q)+(k-p)=k+g
» note that both k and g are bounded by the max rank,
which we will show is O(log n)
= So, O(s+tlogn) time for s findmin, meld or
decreasekey ops plus t delete or deletemin ops




& Washington University in St.Louis

Engineering

Bound on Ranks

mLemma 1. Let x be any node and let y4,...,y, be
children of x, in order of time in which they were linked
to x (earliest to latest); then, rank(y,)=i-2 for all j

Proof. Just before y; was linked to x, x had at least /-1 children
So at that time, rank(y;) and rank(x) were equal and =i-1
Since y; is still a child of x, its rank has been decremented at most
once since it was linked, implying rank(y,)=i-2 m

m Corollary 1. A node of rank k has >F,,,>¢X descendants
(including itself), where F, is k-th Fibonacci number,
defined by F,=0, F,=1, F,=F,_;+F,, and ¢=(1+52)/2
Proof. Let S, be min possible number of descendants of a node of
rank k; clearly, S;=1, S;=2 and by Lemma 1, S, =2+%__, , S; for
k=2; the Fibonacci numbers satisfy F,,,=1+%_._, F; from which S,
>F,,, follows by induction on kK ®

Corollary implies that rank(x) is O(log n)




& Washington University in St.Louis

Engineering

Exe rci S eS 2. Let P,(n) denote the running time of Prim’s
algorithm using d-heaps, where the value of d is

1. Assume that items a through m with keys
3,52,7,4,10,8,6,3,6,1,2,9 are
inserted in alphabetical order into a
Fibonacci heap. Show the heap following
the insertions. Then do a deletemin and
show the resulting heap state.

Data structure after insertions (single
node trees linked in circular list

o key,rank

@3,0 @50 ©20 @7,0 ... ©2,0 @90

Data structure after deletemin (including
linking process).

3 Q2,2

7,0 @3,1 |4,2 @90 D31

5,0 @ 10,0 6,1 ©) 6,0

8,0

chosen dynamically to give the best overall
running time. Let P(n) denote the running time of
Prim’s algorithm, using Fibonacci heaps. Which of
the following statements is true? Justify your
answers.

P4 is O(Pg) when m = 3n.

This is true, since P, = O(m (log n)/log(2+m/n))
= O(n logn) and Pr= Q(m+ n logn) = Q(n logn).

P, is O(Ps) when m = n?/4.

This is true, since Py, = O(m (log n)/log(2+my/n))
= 0(n 2) and Pr = Q(m+ n logn) = Q(n?).

P, is O(Ps) when m = n (log n)2.

This is false, since P; = Q(m (log n)/log(2+m/n))
= Q(n (log n)3/log log n) and Pr= O(m+ n logn)
= O(n (log n)2) and

n (log n)3/log log n grows more quickly than n
(log n)?2 does.

P;is O(Ps) when m = n3/2,
This is true, since P; = O(m (log n)/log(2+m/n))

= 0O(n 32) and P = Q(m+ n logn) = Q(n3?). "

10



& Washington University in St.Louis

Engineering

3. In the Fibonacci heaps data structure, a cut between a vertex v and its
parent v causes a cascading cut at v if v has already lost a child since it
last became a child of some other vertex. Suppose we change this, so
that a cascading cut is done at v only if v has already lost two children.
How does this change alter the lemma shown below (this lemma is
from the analysis of the running time of Fibonacci heaps)? Explain your
answer.

Lemma. Let x be any node in an F-heap. Let y,, . . . ,y, be the children
of x, in order of time in which they were linked to x (earliest to latest).
Then, rank(y;) = i-2 for all /.

The inequality in the lemma becomes rank(y;) = i-3. Since y; had the
same rank as x when it became a child of x and x must have had at
least i-1 children at that time, y; must have had rank of at least i-1
when it became a child of x. Since it still is a child of x, it can have lost
at most two children since that time, so its rank must be at least i-3.

Let S, be the smallest possible number of descendants that a node of
rank k has, in our modified version of Fibonacci heaps. Give a recursive
lower bound on S,. That is, give an inequality of the form S, =

f(S0,S1, - - -+ Sk.1) where fis some function of the S/'s for i<k.

Clearly S,=1, S;=2 and S,=3. For k>2, we can use the modified lemma
to conclude that S, 23+S,+S;+...+S,_3. Note that the difference
between the bounds for S, and for S;_; is S;_3.

Use this to give a lower bound on the smallest number of descendants
that a node with rank 7 can have.

From the above, we have $;23+5,=4, S,z 4+5,=6, S;26+5,=9,
S5¢29+53213, S,213+5,219.

11

11



