& Washington University in St.Louis

Engineering

Max Flow Problem
Augmenting Paths

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering

Network Flows

mLet G=(V,E) be directed graph with source s, sink t and
positive real capacity cap(u,v) for every edge [u,V]
(cap(u,v)=0 if there is no edge [u,Vv])
» a flow on G is a real-valued function f on vertex pairs that
satisfies the following properties
o Skew symmetry: f(u,v)=-f(v,u)
e Capacity constraint: f(u,v)<cap(u,v)
e Flow conservation: for every vertex u except s and t, =, f(u,v)=0
» in maximum flow problem, seek a flow of maximum value,
where value |f| of a flow fis Z f(s,Vv)
m Define a cut to be a partition of V into two parts
X, X" with s€X and teX’
» the capacity cap(X,X’) of the cut is X oy ,ex cap(u,v)
» a cut of minimum capacity is called a minimum cut

& Washington University in St.Louis

Engineering

Flows and Cuts

mThe flow across a cut X, X" is f(X,X")=2 ex yex f(U,V)
mLemma 8.1. For any flow f and cut X, X', |f|=f(X,X")
Proof. f(X,X")=Y _. . /()
= EIIEX.IEV f(u’ V) H EUEX.\EX f.(u’ V)
i E‘el/ f.(S’ V) i EuEX—{s},)EV f(u’ V) ui ElEX.»GX f.(u’ V)
=/
So also, |flscap(X,X') m
m Residual capacity: res(u,v)=cap(u,v)-f(u,v)

» residual graph R is graph with vertex set V, source s, sink t and
an edge [u,v] of capacity res(u,v) for all u,v with res(u,v)>0

& Washington University in St.Louis

Engineering
Max-Flow Min-Cut Theorem

= An augmenting path for fis path p fromsto tin R
» residual capacity of p is res(p)=min, .=, res(u,v)
» flow along an augmenting path p can be increased by res(p)
m Theorem 8.1. The following statements are equivalent
1. fis a maximum flow
2. there is no augmenting path for f
3. |fl=cap(X,X’) for some cut X, X’

Proof. (1=2) If there is an augmenting path p for f,
we can increase flow by adding flow along p

(2=3) Suppose there is no augmenting path for f and let X be set
of vertices reachable from s in R; then X, X'=V-Xis a cut and

= e (M= cap(vw) =cap(X,X')

(3=1) Since |f|=cap(Y,Y’) for any cut Y,Y’ and since
|fl=cap(X,X"), f must be a maximum flow H

& Washington University in St.Louis

Engineering

Augmenting Path Method

m Start with zero flow on all edges and repeat the
following step as long as possible

» Augmenting step: find an augmenting path p for the current
flow and increase the flow by res(p) units on all edges of p

m If edge capacities are integers

» flow increases by at least 1 on each step, so at most |f*| steps
where f*is a max flow

= Flow between each pair of vertices
is integral after each step
»such a flow is called an integral flow

m Theorem 8.2. If all capacities are
integers there is an integral max flow

& Washington U

inherits all
digraph methods

Flograph

class Flograph : public Digraph {

public:
vertex src() const; /
vertex snk() const; //
flow cap(vertex,edge) const; //
flow f(vertex,edge) const; //
flow res(vertex,edge) const; //
flow addFlow(vertex,edge, flow);

protected:

struct FloInfo {
flow cpy, flo;

} *floInfo;

vertex s, t; // source and sink vertices
)i flow leaving v
inline flow flograph::f(vertex v, edge e) on edge e
{ return tail(e) == v ? floInfo[e].flo -floInfo[e].flo; }

basic methods for ’
manipulating flows

urn
return
return
return
return
// add

inline flow flograph::res(vertex v, edge e)

{ return tail(e) == v ?
floInfo[e].cpy - floInfo[e]

.flo

source vertex
sink vertex

Engineering

capacity from v on e
flow from v on e
res capacity from v on e
flow from v on e

floInfo[e].flo;

// edge capacity and flow

}

residual cap
of e from v to

mate(v)

& Washington University in St.Louis

Engineering

Implementing Aug. Path Method

invoke algorithm
using class
constructor

class augPath { // encapsulates data a
public: augPath(Flograph&);
private:

path algorithm

Flograph* fg; // graph we're finding flow on
edge *pEdge; // pEdge[u] is edge to parent of u in spt

bi

augPath: :augPath(flograph& fgl) fg(&fgl) { // Find maximum flow in fg.
pEdge = new edge[fg->n()+1];
while(findPath()) augment();
delete [] pEdge

if findpath succeeds)
augmenting path
defined by pEdge

}
void augPath::augment() { // Saturate the augmenting path p.
vertex u, v; edge e; flow f = BIGINT;
u = fg->snk(); e = pEdge[u];
while (u != fg->src()) { // find residual capacity
v = fg->mate(u,e); £ = min(f,fg->res(v,e)); u = v; e = pEdge[u];

}
u = fg->snk(); e = pEdge[u];
while (u != fg->src()) { // add flow to saturate path

v = fg->mate(u,e); fg->addFlow(v,e,f); u = v; e = pEdge[u];

P}

& Washington University in St.Louis

Engineering
Choosing Augmenting Paths

m Several options for findpath subroutine
» method for choosing augmenting paths is critical to efficiency
» following lemma shows that there is always a good choice
mLemma 8.3. There is a sequence of <m augmenting
steps that leads to a max flow

Proof. Let f* be max flow and let G* be subgraph of G induced by
edges with positive flow. Initialize / to 1 and repeat the following
step until t is not reachable from s in G*

» Pathfinding Step: find path p; from s to t in G7; let A; be the minimum
of f*(v,w) for an edge [v,w] of p;; for every edge [v,w] on p,,
decrease f*(v,w) by A; and delete [v,w] from G™ if its flow is now zero;
increment /.

Since each step deletes at least one edge from G”* this process

halts after at most m steps. Starting from a zero flow and

successively adding A; units of flow to each p; produces a max

flow in =<m steps m

& Washington University in St.Louis

Engineering

Selecting Shortest Augmenting Paths

UiList g (fg->n());

[pEdge will define
bool shortPath::findPath() { parent in a
vertex u,v; edge e; shortest path tree

breadth-first

search over edges
with positive

residual capacity

for (u = 1; u <= fg->n(); ut++) pEdge[u] = 0;
g.addLast (fg->src());
while (!q.empty()) {

u = q.first(); gq.removeFirst();

for (e = fg->firstAt(u); e != 0; e = fg->nextAt(u,e)) {
v = fg->mate(u,e);
if (fg->res(u,e) > 0 && pEdge[v] == 0 &&

v != fg->src()) {
pEdge([Vv] = e;

if (v == fg->snk()) return true;
g.addLast(v);

terminate search
early, once path
has reached sink

Yooy o}

return false;

& Washington University in St.Louis

Engineering

Augmenting by Shortest Paths

m Selecting paths with fewest edges gives O(m?n) time
m Let R; to be residual graph after the i-th augmenting
step and let /evel,(u) be number of edges in a shortest
path from s to u in R,
mLemma. For all ueV and i=0, level, ,(u)=zlevel(u)
Proof. Suppose that claim is not true and that k is smallest integer
for which there is a vertex v with level,,(v)=k<level(v)
» let (u,v) be edge in R;,; with level,.;(u)=k-1; note level(u)<k-1
» since level,(v)>k, it follows that (u,v) is not an edge in R;, hence
(v,u) must be an edge in the path selected in step i+1
» this implies that level(u)=level(v)+1>k+1, but this contradicts
the earlier observation that /level(u)<k-1 =
mLemma. For i=0, level, ,(t)>level(t)
Proof. Let k = level(t) and let S be the set of edges (u,v) in R; that

satisfy level(v)=Ilevel(u)+1<level(t)
10

10

& Washington University in St.Louis

Engineering

Now suppose that next r steps all select paths of
length k; these paths contain only edges in S
» suppose path of length k selected in step j>/ includes an edge

(u,v)&S; assume that j is the earliest such step and that (u,v) is
the last edge on the path &S; note that level,_;(v)=level,_;(u)+1

» observe that level,_;(t) =k =level|(t); since all edges on the path
from v to t are in S, level,_;(x) =level,(x) for all x on the path

» if level;_y(u) =level(u), then since (u,v)&S, (u,v)&R;; on the other
hand, if level,_;(u) =level(u), then level,_;(u)>level(u)

(by previous lemma) and so level(u)<level(v)-1, which again
implies that (u,v)€R,;

» this implies that at some time between steps j and j, flow was
added from v to u; at that time level(u)>level(v)=level;_ (V)
>level;_;(u), which contradicts the previous lemma

Since each step saturates at least one edge in S and

|S|<m, after r steps, there will be at most m-r

unsaturated edges in S, hence r=sm =m

11

11

& Washington University in St.Louis

Engineering
Running Time

= Note that /evely(t)=1 and level(t)<n-1 for all i=0

m By last lemma, level, increases by at least 1 after
every m steps, so algorithm must halt after at most
(n-1)m augmenting steps and takes O(m?n) time

= The graph shown below illustrates that it can take
Q(n?) time

12

12

& Washington University in St.Louis

Engineering

Exe rCISeS 2.Let Rys be the residual graph after the

45-th step in the execution of the
shortest augmenting path algorithm on

1.In thg flow graph .shown below, identify some flow graph with 10 edges. Give a

a minimum capacity cut. lower bound on the number of edges in
/@\Tz the shortest path from s to t in R,s.

57 2) N By the lemma on page 9, the length of
Qg?’*éé JORE0) the shortest path from s to t in the
4 3 4 residual graph must increase by at

\@Z& least one after every m steps. In this
SH@/ case, m=10, so the shortest path must

The cut with X={s,b,c,d,g} is a min- have at least 5 edges.

capacity cut with value 10.

Find a max flow that corresponds to this
cut.

The numbers
labeling the
edges in the
diagram at
right are the
flow values.

13

& Washington University in St.Louis

3.The figure below shows an instance of the max
flow problem, followed by a residual graph for the
augmenting path algorithm at an intermediate
stage in the computation. Identify the next path
that would be selected using shortest path
augmentation and show the residual graph
obtained when this path is saturated.

EN :_< N
Residual \‘(j
Gl'n’p/lln
The path selected by
shortest path M@T%
augmentation is /1) A

s,c,e,h,f,t which| @;ﬁz_%/l 1 /_<1—27§D

has capacity 1. N o

14

14

& Washington University in St.Louis

4.1In the diagram below, assume that the
values represent flows. Apply the
procedure described in Lemma 8.3 to
obtain a series of augmenting paths.
Compare the number of paths to the
bound in the Lemma.

2. 4 —{()
7 7N
o 2" ™2 e
AN
1\ 9
If we select path sbeht with value 2,
edges be and ht drop out. Then,

selecting sbft with value 2 causes edges
bf and ft to drop out. This leaves us with

A P
Lt o p
i

Engineering

Selecting scgit followed by sdgit gives
us the graph

Finally, selecting scehfit followed by
sbcehfdgt completes the process. So,
this gives us six augmenting paths that
could have been used to produce the
original flow. The bound in the lemma
is the number of edges in the graph
(which is 17 in this case). So, the
bound is almost three times larger than
the number of paths we needed in this
particular example.

15

15

