& Washington University in St.Louis

Engineering

Mincost Flows & Shortest Paths
for Negative Edge Lengths

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering

Minimum Cost Flows

cap,cost 5,2 flow, flow cost 5,10

6,4 cost=47 2,8
m Max flow can be generalized by adding edge costs
» costs are skew symmetric; cost(v,w)=-cost(w,v)
» for flow f, cost(f)=%4, -oCOSt(v,wW)f(v,w)=%, , cost(v,w)f(v,w)/2
» cost of path is defined as sum of edge costs and residual graph is
defined as before; cost(v,w) in R is same as in G

» A flow f has minimum cost if there is no flow g with |g|=|f| that
has lower cost than f

» min-cost, max-flow problem: seek min cost flow with max value
m General strategies for finding minimum cost flows

»cost reduction - add flow to negative cost cycles in R

»min cost augmentation - add flow to min cost augmenting paths ,

& Washington University in St.Louis

Engineering

Breadth-First Scanning

= Variant of scanning & labelling method; at each step,
select vertex that least recently became labeled
procedure breadthFirst(graph G=(V,E), vertex s,
mapping p:vertex—vertex);
vertex v; list queue;
for v&V = dist(v):=w; p(v):=null; rof;
dist(s):=0; queue:=[s]; /I contains all labelled vertices
do queue =[] =
v := queue(1); queue = queuel[2..];
for [v,w] € out(v) =
if dist(v)+length(v,w)<dist(w) =
p(w):=v; dist(w):=dist(v)+length(v,w);

" if w&queue = queue:=queue & [w]; fi;
(¥
rof;
od;
end;

& Washington University in St.Louis

Engineering
Analysis of Breadth-First Scanning

m Divide execution into passes
» pass 0 ends after vertex s is scanned for the first time.

» pass j ends after every vertex on queue at end of pass j-1
has been scanned

» the time for each pass is O(m)

= Theorem 7.7. If no negative cycle is reachable from s,
the breadth-first algorithm runs in O(mn) time stopping
after at most pass n-1; otherwise it never halts
Proof. Show by induction on k that if there is a shortest path
from s to v with k edges, then dist(v) will equal the length of
this path by the end of pass k-1
Basis: k=1. After pass 0, dist(w)=/ength(s,w), for every
edge [s,w]

& Washington University in St.Louis

Engineering

Induction: assume that after pass k-1, for every vertex v
with a shortest path from s with k edges, dist(v) is the
length of this path

» let w be any vertex that has a shortest path from s with k+1
edges and let v be its predecessor on this path

» since dist(v) is length of a shortest path from s to v, dist(v)
+length(v,w) is length of a shortest path from s to w

» when dist(v) receives this value, v is placed on the queue

» since this happens before end of pass k-1, v will be removed
from queue before end of pass k

» when v is removed from queue, dist(w) is set to
dist(v)+length(v,w) and w is placed on queue

» hence dist(w) equals the length of a shortest path from s by
the end of pass kKl

m Theorem 7.7 implies Theorem 7.2

& Washington University in St.Louis

Engineering
Making Breadth-First Algorithm Robust

m To ensure that breadth-first algorithm always halts,
count passes
procedure breadthFirst(digraph G=(V,E), vertex s,
mapping p:vertex—vertex);
integer pass; vertex v, last; list queue;
for v&eV = dist(v):=x~ p(v):=null; rof;
dist(s):=0; queue:=[s]; pass:= 0; last.=s;
do queue = [| =
v := queue(1); queue := queuel[2..];
for [v,w] € out(v) = ... rof;
if v=last and queue =[] =
pass := pass + 1; last := queue(|queue|)
fi;
if pass = n = there is a negative cycle fi;

od;
end; 6

& Washington University in St.Louis

Engineering

mLlemma 7.6. If queue is nonempty at end of pass n-1,
pX(v)=v for some vertex v and positive integer k, and
by Lemma 7.5, corresponding cycle in G is negative.
Proof. Define pass(v) to be the largest integer j such that v
was scanned during pass j.

Note that if pass(v) is defined and positive then p(v) and
pass(p(v)) are defined and pass(v)spass(p(v))+1.
» if pass(s)>0, there must be a cycle that includes s, so assume
pass(s)=0
Suppose we run the method until a vertex w is scanned in
pass n
Since pass(w)=n, can follow parent pointers back from w

Since pass(s)=0, and the pass values decrease by at most
one at each step we must eventually repeat some vertex m

7

& Washington University in St.Louis

Engineering

Finding Negative Length Cycles

- >

=Run breadth-first algorithm ;{él‘
from every vertex Lua
» otherwise risk missing a cycle éf’ —;@% —\’@
= Or, run breadth-first on modified §§ >:>/
graph
» add new vertex with zero length edge to all others

» run breadth-first scanning from new vertex

» if still running after n passes, follow parent pointers from
each vertex to find cycles

» 0(n) time to find cycle, so O(mn) overall
m Can get same effect by changing initialization
» set initial distances to zero and put all vertices on queue

& Washington University in St.Louis

Engineering

Cost Reduction Method

m Theorem 8.11. A flow f has min cost if and only if its
residual graph R has no negative cost cycle
Proof. If R, contains a negative cost cycle, we can reduce cost of f
without changing its value by pushing flow around the cycle
If f does not have min cost and f* is min cost flow with same value
as f, then f*-f is flow on R, with zero value and negative cost
By flow conservation, f*-f can be partitioned into sum of flows on
cycles; at least one of these cycles must have negative cost &

mTo find a max flow of min cost

» find any max flow then repeat following step as long as possible
e Cost reduction step: find negative cost cycle in R; push as much
flow as possible around cycle
» for integer costs and capacities, takes <2mcy cost reduction
steps, where c is max edge capacity and y is the largest edge
cost magnitude; each step can be done in O(mn) time, using
breadth-first scanning algorithm for shortest paths

& Washington University in St.Louis

Engineering

Minimum Cost Augmentation

m Theorem 8.12. If fis a min cost flow and p is a min
cost augmenting path for f, then flow obtained by
augmenting along p is a min cost flow

Proof. If new flow is not min cost, then its residual graph has a
negative cycle c; let H be subgraph formed from edges in c plus
edges in p (include edges that appear in both, two times)

» H is an Eulerian graph, meaning that it can be decomposed into a
simple path from s to t and a collection of simple cycles; also note that
cost(H)=cost(p)+cost(c)<cost(p)

» Construct H’ from H by removing all edge pairs {(u,v),(v,u)} where
(u,v)ep and (v,u)ec; H' is also Eulerian and by skew symmetry has
same cost as H; also, all edges in H’ are also in the residual graph of f,
so any cycles in H” are non-negative

» Decompose H’ into simple s-t path and a set of cycles; since cycles are
non-negative, s-t path has lower cost than p, contradicting the fact

that p is @ min cost augmenting path for f W
10

10

& Washington University in St.Louis

Engineering

Min-Cost Augmenting Path Algorithm

= Find min cost flow using augmenting path algorithm
and selecting min cost paths
» O((# of steps)(time to find a min cost augmenting path))
» for integer capacities, number of steps is at most |f*|

» since residual graphs may have negative cost edges, we must
use an algorithm that can handle negative cost edges

» using breadth-first scanning, running time is O(mn|f*|)
¢ later, we'll see that this can be improved to O((m+nlogn)|f*|)

11

11

& Washington University in St.Louis

Example

network with spt and distances from s

cap,cost 1
AW

Step 3.

Engineering

Step 2. showing residual graph and spt

res cap,cost 1 0

Step 4.

12

& Washington University in St.Louis

Exercises

1.The diagram below represents the
residual graph for a flow. The numbers
next to the edges are the edge costs. Is
the flow corresponding to this residual
graph a min-cost flow? Why or why not?

It is not a min cost flow because the
cycle acdba has a cost of -2.

Explain how you can reduce the cost by
6 if all edges in the residual graph have
capacity 37

Since the edges in the residual graph all
have capacity 3, we can push 3 units of
flow around the cycle acdba. This
reduces the cost by 6.

Engineering

2.Let G be a directed graph in which each

edge (u,v) has a length length(u,v)
Describe (in words) an algorithm to
determine if G has k edge disjoint paths
between a given pair of vertices with
total length no larger than a bound B.

We can solve this using min-cost flows,
by treating the given graph as a flow
graph, with the two vertices as source
and sink. All edges are assigned
capacity 1 and the cost of each edge is
equated to the given edge length.

If we do k steps of the min-cost
augmenting path algorithm, the set of
augmenting paths will all be edge-
disjoint. If the sum of their costs is less
than or equal the bound B, then the
algorithm succeeds. If the algorithm
terminates before finding k paths, or if
the total length of the paths found is too
large, then the original graph does not
have k edge disjoint paths with the

desired total length. "

13

& Washington University in St.Louis

Engineering

3.The figure below represents an instance
of the minimum cost, maximum flow
problem. What is the cost of the flow
that is shown?

6,04 /(':\ 3,04

cap, flow, cost 3,0,2 3,31

The cost of the original flow is 46.
Show the residual graph corresponding
to this flow (including the edge costs)
and show the minimum cost
augmenting path in the residual graph.

res. cap, cost 3,2

Show how the residual graph changes
when the minimum cost augmenting
path is saturated and show the new
minimum cost augmenting path.

14

14

& Washington University in St.Louis

4. Take the original residual graph from
the previous problem and transform the
edge costs to make them non-negative.
Also, show the distances from s using
the transformed costs.

Engineering

Find the shortest augmenting path
using the transformed costs, add flow
to that path and show the new residual
graph with the new transformed edge
costs and new distance values. Identify
the shortest augmenting path in this
residual graph.

15

15

