& Washington University in St.Louis

Engineering

Matchings in Bipartite Graphs

Jon Turner
Computer Science & Engineering

Washington University

www.arl.wustl.edu/~jst

& Washington University in St.Louis

Engineering

Matchings in Graphs

WIS V)

m A matching M in a graph G is a subset of the edges,
with no two edges incident to a common vertex

= Two maximum matching problems
» max size — find matching with largest number of edges
» max weight - find matching with largest total edge weight

m Special case of bipartite graphs
» in bipartite graph, vertex set can be divided into two subsets
such that every edge has an endpoint in each subset
» bipartite version arises frequently in practice
¢ weighted bipartite matching also known as the assignment problem

» bipartite version can be solved more efficiently than general
case

& Washington University in St.Louis

Engineering
Unweighted Bipartite Matching

m If G is bipartite, the max size matching problem can be
reduced to a max flow problem as illustrated below

all edge capacities = 1

m For any integer flow on this network the saturated
edges in the central part correspond to a matching

m Shortest augmenting path algorithm finds max flow on
this graph in O(mn) time
» can improve to O(mn'/2) using a different max flow algorithm

3

& Washington University in St.Louis

Engineering

Weighted Bipartite Matching

cost=-weight

= Weighted bipartite matching
can be solved using a variant
of min cost, max flow
» construct flow graph as before
» assign zero cost to source/sink edges
and cost(u,v)=-w(u,v) for the others
m Find a flow with minimum total cost
» may not be a max value flow
» apply minimum cost augmentation to get sequence of
augmenting paths of non-decreasing cost
» stop when augmenting path has positive cost
» flow at that point defines a maximum weighted matching
m Requires solution to at most n shortest path problems

» since edge costs can be negative, must use shortest path
algorithm that can handle negative edge lengths

cost=0(Q

all edge capacities = 1

& Washington University in St.Louis

Engineering

Review Questions

1. Draw a non-bipartite graph on with at least 10 vertices and 12 edges. Assign
positive weights to all of the edges. By trial and error, find a maximum weight
matching. Find a second matching that is a maximum size matching, but is not a
maximum weight matching.

2. Draw a bipartite graph with at least 5 vertices in each part and at least 12 edges.
For this part, the edges should not have weights. Construct the flow graph
described on page 3 and find a maximum flow from the source to the sink. What is
the matching that corresponds to this flow.

3. Add edge weights to your graph from question 2. Construct the flow graph for this
graph (including edge costs). Find a series of mincost augmenting paths for this
flow graph, stopping when you find an augmenting path of positive cost. What is
the matching corresponding to this flow?

& Washington University in St.Louis

Engineering

Alternating Paths

= Let M be a matching of G=(V,E)
» a matching edge is any edge in M; all other edges are free
» vertex is matched if incident to matching edge; free otherwise

» an alternating path or cycle is a simple path or cycle in which
every other edge is in matching

» alternating path is an augmenting path if its end points are free
m If G contains an augmenting path P (w.r.t. M), we can

get a larger matching by removing the matching edges
in P from M and adding the non-matching edges.

r
O—O=—0—-o0

1
O==—0—-"0

B
()
-/

N\ e
hod 4

©)
@)
@)

& Washington University in St.Louis

Engineering

Augmenting Path Method

m Theorem 9.1. Let M be a matching of G, M’ be a max
matching and k=|M’|-|M|; then G has k vertex disjoint
augmenting paths with respect to M

Proof. Let N be set of edges in M or in M’ but not in both
» every vertex is incident to at most two edges of N, so the subgraph
induced by N consists of paths and even length cycles that are
alternating with respect to M
» N contains exactly kK more edges from M’ than from M, so at least k
paths in N must begin and end with edges from M’
» these paths are vertex disjoint and augmenting (with respect to M) &

m The augmenting path method initializes M={} and
repeats following step until no augmenting paths left

» Augmenting Step: let P be an augmenting path w.r.t. M;
remove matching edges in P from M & add non-matching edges

m At most n/2 augmenting steps to find a max matching

7

& Washington University in St.Louis

Engineering

Augmenting Paths in Bipartite Graphs

m Each vertex is assigned one of three states, odd, even
or unreached; for each matched vertex v, mate(v) is
the vertex connected to v by a matching edge

m Algorithm builds forest, defined by parent pointers p(v)
» initially every matched vertex is unreached, every free vertex is
even and every free vertex v has p(v)=null
m Repeat following step until path is found or every edge
has been examined

Choose unexamined edge {v,w} with v even and examine it

¢ if wis even, stop; path from root of tree containing v to root of tree
containing w forms an augmenting path

¢ if w is unreached and matched, make w odd, mate(w) even, p(w)=v
and p(mate(w))=w

m Can be implemented to run in O(m) time

& Washington University in St.Louis

Engineering

function path augpath(graph G, matching M);
vertex u,v,w,Xx,y;
mapping state:vertex—{unreached,even,odd?};
mapping matched:vertex—{true false};
mapping p, mate: vertex—vertex;
for ucV = state(u):=even; matched(u) := false rof;
for {u,v}eM =
state(u), state(v) := unreached;
matched(u), matched(v) := true; mate(u):=v; mate(v):=u;
rof;
queue := [];
for us[1,n] =
for {u,v}ceedges(u) =
if v>u and (state(u)=even or state(v)=even) =
qgueue := queue & {u,v};
fi;
rof;
rof;

& Washington University in St.Louis

Engineering

do queue = [] =

{v,w} := queue(l); queue := queue[2..];
if not even(v) = v < w fi;

od;
end;

if

fi;

state(w) = unreached and matched(w) =
X := mate(w);
state(w) := odd; p(w):=v; state(x) :=even; p(x):=w;
for {x,y}€edges(x) - {x,w} =
if {x,y}é&queue = queue := queue & {x,y},; fi;
rof;
| state(w) = even =
path :=[]; x :=v;
do p(x) = null = path := [p(x),x] & path; x := p(x); od;
path := path & [v,w]; x := w;
do p(x) = null = path := path & [x,p(x)]; x := p(x); od;
return path;

main do-loop executed at most m times
inner for-loop also executed at most m times
inner do-loops executed at most n times

10

10

& Washington University in St.Louis

Engineering

Stable Matchings

= Given two sets A and B with n elements each, and
» for each element a€A, a function rank,(b) that assigns each
bEB a unique integer in [1,n], and
» for each element bEB, a function rank,(a) that assigns each
acA a unique integer in [1,n]
m Stable matching is set P of n pairs (a,b) with a€A, beB
such that for any two pairs (a,b)eP and («,B)EP
(rank,(b) < rank,(pB) or rank,(a) < rank,a)) and
(ranky(a) < rank,(a) or rank () < rank (b))
m Gale-Shapley algorithm - to find stable matching start
with no pairs and repeat following step until done
» select an unpaired element a of A and let b be its top-ranked
member of B, among those it has not yet tried to match with

» if b has no current match, form pair (a,b); if b has a current
match (a’,b) and b ranks a above a’, replace (a’,b) with (a,b)

11

11

& Washington University in St.Louis

Exercises

1. Consider the weighted bipartite graph shown

below.
g

3
oﬁ‘e
2

& ®

Construct the flow graph used to find a max
weight matching in this graph and find a min-

cost flow corresponding to a max wt
matching.

all capacities are 1
source/sink edge
costs are zero

The heavy-weight edges correspond to a
min-cost flow. The weight of the
corresponding matching is 10.

Engineering

2. Identify an augmenting path in the bipartite
graph shown below, relative to the matching
defined by the heavy weight edges.

The path daebfc is an augmenting path.

Show the matching obtained using this
augmenting path.

12

12

& Washington University in St.Louis

3. The figure below shows two matchings in a
graph.

Draw the graph defined by the edges that
are in one matching or the other, but not
both.

Engineering

4. As described in the notes, the augmenting
path algorithm performs a lot of redundant
work each time it starts a new augmenting
path search. Describe a version that would
eliminate much of this overhead.

One simple optimization is to avoid doing the
augmenting path search at all, when the
number of edges in the matching is small. To
implement this, just go through the edges
one-by-one and add an edge to the matching
so long as it doesn’t conflict with any
previously selected edge. This will give us a
matching that is at least half as large as the
maximum size matching.

After we find this initial matching, we can
start applying the augmenting path
algorithm. We can avoid much of the
overhead of the search by maintaining a
variable visit(u) for each vertex u. These are
initialized to zero. When we reach a vertex u
in the k-th augmenting path search, the
value of visit(u) is set to k. We can use
visit(u) to determine if u has been visited in
the current search or not (this takes the
place of the unreached state in the original
search).

13

13

& Washington University in St.Louis

Engineering

We can also save some overhead by
maintaining a list of free (unmatched)
vertices and a list of leaves in the set of trees
in the current augmenting path search. The
list of free vertices can be carried over from
one search to the next (although it is must
be modified at the end of each successful
search). The list of leaves is initialized at the
start of each search to contain all the free
vertices. Then each step in the path search
expands a leaf by examining its incident
edges that are not in the matching. If the
other endpoint of such an edge has not yet
been reached in the search, we can expand
the tree containing the current leaf. If the
other endpoint has been reached, then the
path to the root of its tree together with the
path from the current leaf to its tree forms
an augmenting path.

By eliminating about half the path searches
and much of the overhead of each search,
this version can potentially cut the time
required to find a maximum matching by a
factor of 2 or 3.

14

14

